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ABSTRACT 9 

The results of a global sensitivity and uncertainty analysis of a microalgae model applied to a Membrane 10 

Photobioreactor (MPBR) pilot plant were assessed. The main goals of this study were: (I) to identify the 11 

sensitivity factors of the model through the Morris screening method, i.e. the most influential factors; (II) to 12 

calibrate the influential factors online or offline; and (III) to assess the model’s uncertainty. Four experimental 13 

periods were evaluated, which encompassed a wide range of environmental and operational conditions. 14 

Eleven influential factors (e.g. maximum specific growth rate, light intensity and maximum temperature) were 15 

identified in the model from a set of 34 kinetic parameters (input factors). These influential factors were 16 

preferably calibrated offline and alternatively online. Offline/online calibration provided a unique set of model 17 

factor values that were used to match the model results with experimental data for the four experimental 18 

periods. A dynamic optimization of these influential factors was conducted, resulting in an enhanced set of 19 

values for each period. Model uncertainty was assessed using the uncertainty bands and three uncertainty 20 

indices: p-factor, r-factor and ARIL. Uncertainty was dependent on both the number of influential factors 21 

identified in each period and the model output analyzed (i.e. biomass, ammonium and phosphate 22 

concentration). The uncertainty results revealed a need to apply offline calibration methods to improve model 23 

performance. 24 

Keywords: Dynamic optimization; Microalgae model; MPBR; Municipal wastewater; Sensitivity analysis; Uncertainty 25 

analysis. 26 
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HIGHLIGHTS 27 

- A global sensitivity and uncertainty analysis of a microalgae model was conducted. 28 

- Eleven factors out of 34 were identified as influential and were calibrated offline/online.  29 

- Four different experimental periods were properly represented by a single set of model factors. 30 

- The uncertainty bandwidth revealed a need to apply offline calibration procedures. 31 

1. Introduction 32 

Microalgae-based wastewater treatment represents a promising biological system to treat different 33 

wastewater sources in a way that can transform conventional wastewater treatment plants (WWTPs) into 34 

water resource recovery facilities (WRRFs) (Seco et al., 2018). Photoautotrophic microalgae use light 35 

energy, inorganic carbon and nutrients (inorganic nitrogen and phosphorus) for growth. Solar energy and 36 

nutrients are harvested in form of microalgae biomass while inorganic carbon is biofixed. Microalgae-based 37 

wastewater treatment can reduce treatment costs, generate clean water and reduce the environmental 38 

impact of the process (Seco et al., 2018). 39 

An in-depth knowledge of the processes involved in microalgae metabolism is required to better understand 40 

how to operate microalgae-based technologies, how to optimize processes associated, how to improve 41 

reactor design and how to select the best control strategies to enhance pollutant removal efficiency. 42 

Microalgae and traditional activated sludge systems are intrinsically complex, since both depend on 43 

environmental variables such as temperature, pH, substrate availability, etc. However, it should be noted 44 

that photoautotrophic microalgae metabolism is not only affected by the environmental factors that influence 45 

activated sludge but also by seasonal and daily fluctuations in light intensity (González-Camejo et al., 2018). 46 

The correct operation of microalgae-based wastewater treatments thus demands a robust, feasible and 47 

efficient tool to forecast the culture development and its compliance with increasingly stringent regulations. 48 

Mathematical models can help to study the main processes and variables that influence algal metabolism 49 

in different culture media, including municipal wastewater.  50 

An array of mathematical models for predicting microalgae growth has been developed in the last ten years 51 

(Costache et al., 2013; Eze et al., 2018; Ndiaye et al., 2018; Ruiz et al., 2013; Solimeno et al., 2015, 2017; 52 

Wágner et al., 2016). This process cannot be considered a well-characterized system, since some model 53 
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factors are uncertain and speciation-dependent. The ammonium semi-saturation constant has been 54 

reported to range from 0.1 to 31.5 g N m-3 (Aslan and Kapdan, 2006; Solimeno et al., 2017), and is a perfect 55 

example of the intrinsic variability and uncertainty of model factors, so that the application of these models 56 

requires a great number of assumptions regarding the simplification of biological processes and model 57 

factors. These assumptions are sources of uncertainty that could propagate through the model thus 58 

generating uncertainty in the model outputs. The resulting uncertainty in the model results could lead to 59 

misleading decisions during process design and/or optimization. Hence, performing a global sensitivity and 60 

uncertainty analysis (GSA and UA, respectively) would help to deal with these issues by analysing and 61 

understanding model performance. GSA involves identifying the most important model factors to be 62 

calibrated, while UA entails determining the model output uncertainty derived from uncertain model input 63 

factors (Rajabi et al., 2020). GSA and UA should be performed concurrently, as both are essential parts of 64 

the model development process in design optimization, reliability analysis, and data-worth analysis (Rajabi 65 

et al., 2020). To the best of the authors' knowledge, both GSA and UA have not been performed concurrently 66 

in mathematical models for wastewater treatment with microalgae. Therefore, no information is available on 67 

the microalgae models’ most influential factors and the variability of the uncertainty of model output.  68 

Although, the mechanistic microalgae model proposed by Viruela et al. (2021) was validated using 4 69 

experimental periods, which combine key environmental and operational conditions characteristic of a 70 

microalgae-based wastewater treatment, the uncertainty of model parameters could lead to uncertainty 71 

propagations on modelling results, reducing its practical application. Thus, this study tends to address data 72 

gaps related to uncertainty on microalgae-based wastewater treatment models, based on Viruela et al. 73 

(2021), by performing a GSA and UA. The Morris screening method was applied as GSA method to identify 74 

the most influential factors of the model, which were calibrated through offline (obtained from experimental 75 

assays) and online (variation of model parameters to match model predictions to experimental results) 76 

methodologies. For further enhancing the model performance, the calibrated values for the influential factors 77 

were dynamically optimized using online data. Model uncertainty was analyzed and quantified from Monte 78 

Carlo simulations and three uncertainty coefficients: the p-factor, the r-factor and the Average Relative 79 
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Interval Length (ARIL). A calibration protocol was also recommended to reduce model uncertainty by means 80 

of prioritizing different calibration methodologies. 81 

Hence, this work could be seen as the first study to simultaneously perform GSA and UA in the field of 82 

microalgae-based wastewater treatment modelling, while proposing a set of input factors to be calibrated by 83 

a given protocol. 84 

2. Material and methods 85 

2.1. The mathematical model  86 

The model used in this work (Viruela et al., 2021) simulated microalgae growth from different phosphorus 87 

and nitrogen sources. Regarding phosphorus source, the microalgae had two different metabolic pathways: 88 

under phosphorus-replete conditions, microalgae uptake dissolved extracellular phosphate (SPO4) to support 89 

their vital metabolic functions and stored part of the excess in form of intracellular polyphosphate (XPP-ALG) 90 

while under phosphorus-starved conditions they consumed their XPP-ALG reservoirs to grow. In terms of 91 

nitrogen source, microalgae can use ammonium-ammonia (SNHX, both are considered in chemical 92 

equilibrium) and nitrate (SNO3), although different authors state that microalgae prefer SNHX over SNO3 when 93 

both are present simultaneously (Kim et al., 2013; Markou et al., 2014; Nagase et al., 2001; Pastore et al., 94 

2020). To represent the microalgae’s preference for the nitrogen-reduced form, an inhibition switching 95 

function of SNHX was included for microalgae growth on SNO3. González-Camejo et al. (2019) and Shoener 96 

et al. (2019) reported that SNO3 uptake rate was lower than SNHX, so that nitrate related growth kinetic 97 

expressions have a specific growth rate reduction factor. Microalgae growth was modeled as a biomass of 98 

non-specific photosynthetic organisms (XALG) by combining Monod-type kinetics for five components: SPO4, 99 

XPP-ALG, SNHX, SNO3, and inorganic carbon source (SIg,C) (Table 1). The storage of XPP-ALG was modeled 100 

through the Hill equation and Monod kinetics for SPO4, potassium (SK) and magnesium (SMg), since XPP-ALG 101 

composition was assumed as (K0.34Mg0.33PO3)n. The five processes described above are influenced by three 102 

environmental factors: light, pH and temperature factor (described below in Section 2.4.1). The endogenous 103 

respiration and decay processes of the particulate components (XALG and XPP-ALG) were also considered in 104 

the model. These were light intensity and pH-independent, being affected only by thermal variations. As the 105 

storage product of XPP-ALG was considered separately from XALG, this component was subjected to a separate 106 



5 
 

decay process. The model included the stripping processes for free ammonia (S[NH3]), oxygen (SO2) and 107 

carbon dioxide (S[CO2]). The processes described above together gave rise to a model comprising a total of 108 

11 different processes: XALG growth on SNHX and SPO4, XALG growth on SNO3 and SPO4, XALG growth on SNHX 109 

and XPP-ALG, XALG growth on SNO3 on XPP-ALG, XPP-ALG storage, XALG endogenous respiration, XALG lysis, XPP-110 

ALG lysis, S[CO2] stripping, SO2 stripping and S[NH3] stripping. The model process kinetics are summarized in 111 

Table 1. 112 

The 13 components considered for the model were classified as soluble (described with S-index) and 113 

particulate (described with X-index): soluble oxygen SO2, soluble ammonia-ammonium nitrogen SNHX,  114 

soluble nitrate nitrogen SNO3, soluble phosphate SPO4, soluble inorganic carbon SIg,C, proton SH, soluble 115 

magnesium SMg, soluble potassium SK, readily biodegradable soluble organic matter SS, inert soluble organic 116 

matter SI, microalgae biomass XALG, inert particulate organic matter XI and polyphosphates stored by 117 

microalgae XPP-ALG. 118 

Microalgae biomass (XALG) was quantified as volatile suspended solids (VSS). In order to compare 119 

experimental and simulated results, two additional components were included: total suspended solids (XTSS, 120 

g TSS m-3) and volatile suspended solids (XVSS, g VSS m-3). XTSS was considered as the sum of XALG, XI, 121 

and XPP-ALG while XVSS was the sum of XALG and XI. The modeled and experimental data were thus compared 122 

through XVSS. For stoichiometry matrix, conversion factors and further details of the microalgae model the 123 

reader is referred to the literature (Viruela et al., 2021).  124 



6 
 

Table 1. Processes kinetics included in microalgae model developed by Viruela et al. (2021). 125 

126 Processes j  Processes rate [M L-3 T-1] 

1. XALG growth on SNHX and SPO4 μALG ·
SIg,C

KIg,C + SIg,C
·

SNHX
KNHX + SNHX

·
SPO4

KPO4 + SPO4
· XALG · fL · fpH · fT 

2. XALG growth on SNO3 and SPO4 μALG · ηNO3 ·
SIg,C

KIg,C + SIg,C
·

KNHX

KNHX + SNHX
·

SPO4
KPO4 + SPO4

·
SNO3

KNO3 + SNO3
· XALG · fL · fpH · fT 

3. XALG growth on SNHX and XPP-ALG μALG ·
SIg,C

KIg,C + SIg,C
·

SNHX
KNHX + SNHX

·
KI,PO4

KI,PO4 + SPO4
·

XPP−ALG
XALG

KXPP−ALG + XPP−ALG
XALG

· XALG · fL · fpH · fT 

4. XALG growth on SNO3 on XPP-ALG μALG · ηNO3 ·
SIg,C

KIg,C + SIg,C
·

KNHX

KNHX + SNHX
·

KI,PO4

KI,PO4 + SPO4
·

SNO3
KNO3 + SNO3

·

XPP−ALG
XALG

KXPP−ALG + XPP−ALG
XALG

· XALG · fL · fpH · fT 

5. XPP-ALG storage 
qPP−ALG ·

SPO4
KPO4 + SPO4

·
SMg

KMg + SMg
·

SK
KK + SK

·
KXPP−qXPP

n

KXPP−qXPP
n + �XPP−ALG

XALG
�
n · XALG · fL · fpH · fT 

6. XALG endogenous respiration bALG,1 · XALG · fT 

7. XALG lysis bALG,2 · XALG · fT 

8. XPP-ALG lysis bALG,2 · XPP−ALG · fT 

9. S[CO2] stripping KLa,CO2 · �S[CO2] − S[CO2]
∗ � 

10. SO2 stripping KLa,O2 · (SO2 − SO2∗ ) 

11. S[NH3] stripping KLa,NH3 · �S[NH3] − S[NH3]
∗ � 
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2.2. Case studies 127 

The outdoor MPBR pilot plant under study was located in the “Cuenca del Carraixet” WWTP (39°30′04.0’’N 128 

0°20′00.1’’W, Valencia, Spain). The MPBR pilot plant was fed with effluent from an anaerobic membrane 129 

bioreactor (AnMBR) system on the same premises. The MPBR consisted of two 0.25-m and two 0.10-m 130 

wide flat panel photobioreactors (PBRs), all with a surface area of 2.3 m2 (1.15 x 2 m; H x L), and a 14-L 131 

working volume membrane tank (MT) equipped with one commercial ultrafiltration hollow-fiber membrane 132 

system (PURON® Koch Membrane Systems (PUR-PSH31), 0.03 μm pore) with a filtration area of 3.4 m2. 133 

The PBRs were air-stirred to promote complete mixing of culture medium. Stirring the PBR also promotes 134 

carbon stripping as carbon dioxide. Pure CO2 was injected into the stirring system to set pH to 7.5, ensuring 135 

not only an inorganic carbon-rich culture, but also to reduce uncontrolled phosphorus precipitation and 136 

ammonia stripping. The temperature of the biomass culture was controlled by a cooling device and 137 

thermostat (Daikin R410A inverter). Besides natural light, twelve LED lamps (Unique Led IP65 WS-TP4S-138 

40W-ME) placed at the back of the PBRs continuously illuminated the microalgae culture at a constant 139 

irradiance of 300 µmol m-2 s-1. Allylthiourea (ATU) was added to keep a constant concentration of 5 mg L-1 140 

to inhibit nitrifying bacteria. For further details of the MPBR pilot plant see González-Camejo et al. (2020). 141 

Real-time information on the process operation and conditions was obtained from a control network 142 

consisting of pH sensors (pHD sc DPD1R1, Hach Lange), dissolved oxygen-temperature sensors (LDO 143 

Hach Lange) and light irradiance sensors (Apogee Quantum SQ-200) to measure only photosynthetically 144 

active radiation (PAR). Data acquisition from the online sensors was previously described in Viruela et al. 145 

(2018). 146 

Four operation periods were selected from the MPBR pilot plant performance. This analysis is divided into 147 

these 4 periods, which are the guiding threads to perform GSA and UA. The 4 periods represent the key 148 

variations observed during the three years of the MPBR pilot plant operation, i.e. daily variations in light 149 

intensity and temperature, phosphorus-replete and phosphorus-starved conditions in the culture medium, 150 

and different operational conditions. Datasets related to the periods selected are shown in Table 2. There 151 

were remarkable changes in the daily PAR averages in Periods 1 and 2, reaching minimum values of 10 152 

and 67 µmol m-2 s-1 and maximum values of 406 and 394 µmol m-2 s-1 for Period 1 and Period 2, respectively.  153 

The difference between the PBR widths and VSS concentration in Period 1 (0.10-m reactor width and VSS 154 
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of 1063 ± 141 g VSS m-3) and Period 2 (0.25-m reactor width and VSS of 445 g VSS m-3) revealed significant 155 

information on the model sensitivity and uncertainty towards the light intensity constants. Period 3 was 156 

mainly characterized by negligible SPO4 concentrations (phosphorus-starved conditions). As the model 157 

approach stipulates that microalgae should grow in this period by consuming the stored XPP-ALG, the model 158 

factors related to XPP-ALG consumption could have influenced the simulation results. Although PBR 159 

temperature was controlled, thermal fluctuations of up to 8°C in culture medium were recorded during warm 160 

periods, as in experimental Period 4. Bearing in mind that all kinetic expressions of biological processes are 161 

regulated by a thermal factor (explained and developed in Section 2.4.1), the model should have been 162 

sensitive to cardinal temperatures.  163 

Table 2. Environmental and operational conditions for the 4 selected experimental periods. VSS: volatile suspended solids in PBRs; 164 

PO4-P soluble phosphate in PBRs; PAR: photosynthetically active radiation recorded on PBR surface area; T: culture temperature; 165 

and pH: culture pH. The MIN, MAX and AVG sub-indexes refer to the minimum, maximum and average values respectively.  166 

  Period 1 Period 2 Period 3 Period 4 
PBR width m 0.10 0.25 0.10 0.25 

VSS g VSS  m-3 1063 ± 141 445 ± 80 830 ± 136 252 ± 36 
NH4-N g N  m-3 16 ± 6 34 ± 4 11 ± 7 42 ± 6 
PO4-P g P  m-3 3.7 ± 0.9 3.2 ± 0.9 0.14   ± 0.11  4.74 ± 1.12 
PARMIN µmol m-2 s-1 10 67 284 112 
PARMAX µmol m-2 s-1 406 394 394 290 
PARAVG µmol m-2 s-1 214 ± 133 258 ± 114 345 ± 36 259 ± 50 

TMIN ºC 20 24.82 23.2 24 
TMAX ºC 26 28.18 24.30 32 
TAVG ºC 24 ± 2 26.14 ± 1.03 23.8 ± 0.4 27 ± 2 
pHMIN - 7.32 7.00 7.08 7.36 
pHMAX - 7.55 7.40 7.37 7.68 
pHAVG - 7.40 ± 0.06 7.2 ± 0.2 7.18 ± 0.08 7.50 ± 0.08 

 167 

The following parameters were monitored (APHA, 2005) in the influent, the algae culture medium and the 168 

permeate: total suspended solids (TSS) 2540-TSS-D, VSS 2540-VSS-E, soluble chemical oxygen demand 169 

(sCOD) 5220-COD-D, ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N) 4500-NO3-H, and phosphate 170 

(PO4-P) 4500-P-F). The optical density at 680nm (OD680) was measured with a portable fluorometer 171 
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AquaPen-C AP-C 100 (Photon Systems Instruments). For more specific details on the analytical procedures 172 

see Viruela et al. (2021). 173 

2.3. Sensitivity analysis 174 

GSA was performed through the Morris screening method (Morris, 1991) to identify the model’s most 175 

influential factors, reducing the size of parameter set to be calibrated. The Morris screening method was 176 

selected from other classical methodologies (e.g. Standardized Regression Coefficients, Sobol indices, or 177 

Fourier amplitude sensitivity testing) since it is widely used for GSA in the field of wastewater treatment (see 178 

e.g. Corominas and Neumann, 2014; Robles et al., 2014a, Robles et al., 2014b; Ruano et al., 2011; Sin et 179 

al., 2011; Solimeno et al., 2016; Sun et al., 2015), it represents a well-stablished methodology for data 180 

processing, and it is characterized by a relative simple interpretation. 181 

The Morris screening method is a one-factor-at-a-time (OAT) GSA method that evaluates the distribution of 182 

the elementary effects (EEi) of each input factor upon model outputs, used to calculate the statistical 183 

parameters that provide sensitivity results. The scaled elementary effect (SEEi) proposed by Sin and 184 

Gernaey (2009) was applied. The finite distribution of SEEi associated with each input factor (i.e. Fi) is 185 

usually obtained by sampling different coordinates (X) from the parameter space at random. However, this 186 

random sampling of X could only cover a reduced part of the space. Campolongo et al. (2007) proposed a 187 

modification of the Morris screening method by improving the sampling strategy. In this study, the trajectory-188 

based sampling strategy proposed in Ruano et al. (2012) was applied. From the generated matrices, it 189 

determines the distribution of SEEi of each input factor on the model output. Finally, the distribution of SEEi 190 

is analyzed to determine the relative importance of the input factors and obtain a good approximation of a 191 

GSA. Specifically, the selected statistical parameters to evaluate these distributions were: the absolute 192 

mean (μ*, Eq. 1) and the standard deviation (σ, Eq.2) (see e.g. Saltelli et al. (2004) and Campolongo et al. 193 

(2007)). µ* estimates the input factor influence on the output and σ assesses the ensemble of higher order 194 

factor effects on the output, i.e. nonlinear effect and/or interactions among factors. Relatively low µ* and σ 195 

values refer to negligible effects, high µ* and low σ values indicate linear and additive effects, and low µ* 196 

and high σ values are the nonlinear or interactions effects. The method is composed of individually 197 

randomized OAT screening experiments which consist of varying one factor at a time and measuring the 198 
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variance of the output. Each model input factor is presumed to be varied across p selected levels in the input 199 

factor space. In this case study, the input factor variation for each factor was set at ±20% of the initial 200 

conditions, through 4 p levels. GSA was performed for the 4 experimental periods described in Section 2.2. 201 

A GSA based on these 4 periods gave a wider variability range in the environmental factors.  202 

μi∗ =  
∑ |𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛|𝑟𝑟
𝑛𝑛=1

𝑟𝑟
 

(1) 

σ𝑖𝑖 =  �
1
𝑟𝑟
� (𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛 − 𝜇𝜇𝑖𝑖)2

𝑟𝑟

𝑛𝑛=1
 

(2) 

where r is the number of repetitions of EE calculation, SEEi is the scaled elementary effect and µ is the 203 

mean. 204 

The software used for the GSA was the MATLAB/Simulink platform. The total number of simulations required 205 

in Morris’s method is denoted as N and is calculated from Eq. 3: 206 

N = r(k + 1) (3) 

where r is the number of repetitions of EE calculation and k is the input factor number. 207 

Croop & Braddock (2002) established that a good choice of r is critical to obtain a good estimation of the 208 

effects. In the model developed, an r = 100 setting was sought with a constant resolution of p = 4 209 

(Campolongo et al., 1999).  The input factor values used are listed in Table 3, resulting in k = 34, so that the 210 

overall model evaluation costs were 3500 simulations.  211 

The effects of these input factors were evaluated with respect to three model outputs: SNHx, SPO4 and XALG 212 

concentrations. The simulation time period was set at 7 days to reach a pseudo-steady state and avoid 213 

excessive simulation costs. 214 

Table 3. Default and offline/online calibrated values for the model parameters. 215 

Parameters Description Value Unit Source 

µALG Maximum growth rate of XALG 1.8 d-1 Calibrated 

bALG,1 Maximum inactivation rate of XALG  0.1 d-1 (Reichert et al., 2001) 

bALG,2 Maximum decay rate of XALG 0.15 d-1 Calibrated 

qXPP Rate constant for storage of XPP-ALG 0.01 d-1 Calibrated 
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KO2 Half saturation parameter for SO2 0.2 g O2  m-3 (Reichert et al., 2001) 

KIg,C Half saturation parameter for SIg,C 4.32·10− 3 g C m-3 (Solimeno et al., 2015) 

KNHX Half saturation parameter for SNHX in a 
phosphorus-replete medium 0.1 g N m-3 Calibrated 

KNHX-qXPP Half saturation parameter for SNHX in a 
phosphorus-deplete medium 3 g N m-3 Calibrated 

KNO3 Half saturation parameter for SNO3 12.61 g N m-3 (Wágner et al., 2016) 

ɳNO3 Reduction factor for XALG growth of SNO3 0.59 − (Eze et al., 2018) 

KPO4 Half saturation parameter for SPO4 0.05 g P m-3 Calibrated 

KI,PO4 
Inhibition parameter for XPP-ALG use in a 

phosphorus-replete medium 0.15 g P m-3 Calibrated 

KXPP Half saturation parameter of XALG growth 
for XPP-ALG 0.0027 g P m-3 (Ruiz-Martinez et al., 

2014) 

KXPP_qXPP Half saturation parameter of XPP storage 
for XPP-ALG 0.003 g P m-3 (Ruiz-Martínez et al., 

2015) 

n Regulation coefficient or Hill number 0.006 − (Ruiz-Martínez et al., 
2015) 

KMg Half saturation parameter for SMg 0.13 g Mg m-3 (Sydney et al., 2010) 

KK Half saturation parameter for SK 8.78 g K m-3 (Sydney et al., 2010) 

TMIN Minimum temperature for microalgae 
growth 2 °C Calibrated 

TMAX Maximum temperature for microalgae 
growth 40 °C Calibrated 

b Intrinsic model parameter 87.13 − Calibrated 

c Intrinsic model parameter 1.46 − Calibrated 

IOPT Optimal light intensity for XALG growth 230 µmol m-2 s-

1 Calibrated 

kw Attenuation coefficient due to water 1.97 m-3 (Sun et al., 2016) 

KI 
Attenuation coefficient due to particulate 

components 0.025 m2 g TSS-1 Calibrated 

KI,H  Lower half saturation parameter for SH 0.00001 mol H+ L-1 (Siegrist et al., 1993) 

KS,H  Upper half saturation parameter for SH 0.00063 mol H+ L-1 (Siegrist et al., 1993) 

SH,opt Optimal pH for XALG growth 7.50 pH Calculated 

KLa,O2 Mass transfer coefficient for oxygen 16.2 h-1 Calibrated 

KLa,CO2 
Mass transfer coefficient for dioxide 

carbon 16.2 h-1 Calibrated 

KLa,NH3 
Mass transfer coefficient for free 

ammonia 16.2 h-1 Calibrated 

k Constants of mass transfer coefficient 
equation 0.05 - Calibrated 

r Constants of mass transfer coefficient 
equation 1 - Calibrated 

FXI 
Fraction of XI generated microalgae 

decay 0.25 g COD g 
COD-1 Calculated 
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FSI 
Fraction of SI generated microalgae 

decay 0.6 g C g 
COD-1 Calculated 

A more precise description of the GSA method applied in this study can be found elsewhere (Robles et al., 216 

2014a). 217 

2.4. Model calibration 218 

The model was calibrated preferably with data from photo-respirometric tests and MPBR performance 219 

(offline calibration), and alternatively matching model predictions to dynamic experimental MPBR data 220 

(online calibration). Offline and online calibration were only applied to determine the values of the most 221 

influential model input factors (influential GSA factors). The rest of the input factors were set to their default 222 

values (Table 3) based on expert knowledge and the scientific literature. 223 

2.4.1. Offline calibration 224 

2.4.1.1. Photo-respirometric test 225 

Offline calibration consisted of isolating specific microalgae biomass processes and measuring Oxygen 226 

Production Rate (OPR) and Oxygen Uptake Rate (OUR). Photo-respirometric tests were made to calibrate 227 

the model factors related to environmental conditions, i.e. light intensity and thermal factor. For this, a 228 

respirometer system was set up consisting of: a conical flask bioreactor (500 mL transparent glass flask), a 229 

dissolved oxygen probe (WTW CellOx 330i) recording both dissolved oxygen and temperature data every 230 

30 s, an on-off electrovalve to add pure carbon dioxide to set pH at 7.5 and to avoid inorganic carbon 231 

limitation, a cooling-heating system connected to a heating coil for temperature control, a LED lighting 232 

system (SevenON LED 8 x 11W), and a magnetic stirrer system running at 100 rpm to ensure homogeneous 233 

conditions, prevent microalgae sedimentation, and minimize the oxygen mass transfer. The following 234 

protocol was conducted: 235 

1. Microalgae biomass was collected from the MPBR pilot plant. Samples were centrifuged at 5000xg 236 

(Eppendorf AG 22331, Hamburg) and resuspended with AnMBR effluent to set OD680 at a fixed 237 

interval ranging from 0.4 to 0.6, giving comparable biomass light attenuation and nutrients 238 

concentration. An aliquot of 500 mL was transferred into the photo-respirometric system. 239 
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2. Dissolved oxygen concentration was monitored online in two differentiated phases: light and dark. 240 

The light phase was set to 20 min and the dark phase to 10 min. In the light phase, oxygen 241 

production was expected due to photosynthesis, but oxygen was also consumed due to respiration 242 

of microalgae and other possible aerobic organisms. In the dark phase the bioreactor was covered 243 

to ensure darkness and that OUR was only due to microalgae and aerobic organism respiration. 244 

The net oxygen production rate (nOPR) was thus the result of the following contributions (Eq. 4):  245 

nOPR =  OPR − OUR (4) 

Different temperature (10, 20.5, 25, 30, 35 and 40 ºC) and light conditions (87, 172, 229, 314, 374, 246 

462, 534 and 607 µmol m-2 s-1) were tested, all runs performing under non-limiting nutrients 247 

concentration. Each temperature test (6 bioreactors) was acclimatized for 24 hours at the selected 248 

temperature and at a reference light intensity of 229 µmol m-2 s-1. Each light intensity test (8 249 

bioreactors) was acclimatized for 24 hours at the selected light intensity and at a reference 250 

temperature of 25 ºC. Temperature and light intensity were calibrated in triplicate, i.e. 18 and 24 251 

trials were conducted to calibrate the effect of both temperature and light intensity on oxygen 252 

production, respectively. 253 

The experimental nOPR was matched by the following mathematical models to calibrate cardinal 254 

temperatures (Ratkowski model) and light intensity (Steele model) using the Solver tool in Microsoft Excel. 255 

The Ratkowski model was used to describe the temperature dependence of biokinetics and to obtain the 256 

two cardinal temperatures (minimum and maximum), together with the thermic factor (FT), which modifies 257 

kinetic rates (Eq. 5). 258 

𝐹𝐹T = (b · (T0 − TMIN ))2 · (1 − ec·(T0−TMAX)) (5) 

where T0 [ºC] is the culture medium temperature; TMIN [ºC] is the lowest limiting temperature for growth and 259 

the expected growth rate below which is zero; b is a model parameter; TMAX [ºC] is the upper temperature 260 

limit above which the expected growth rate is zero; and c is a model parameter allowing the model to fit the 261 

data at a temperature approaching and exceeding the optimum temperature for growth. 262 
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The light factor (FL) included in light-dependent model processes was calculated by Steele’s function (Eq. 263 

6), which was selected for modeling microalgae growth according to light intensity because it includes 264 

photoinhibition and the shallow effect in photobioreactors (Steele, 1965):  265 

F𝐿𝐿 =
IAV

IOPT
· e�1−

IAV
IOPT

� (6) 

where IOPT [µmol m-2 s-1] is the optimal light intensity and IAV [µmol m-2 s-1] is the average light intensity. IAV 266 

was obtained using Lambert-Beer's Law. The incident light intensity is attenuated by TSS [g TSS m-3] 267 

concentration in the photobioreactor depth [m] (Eq. 7).   268 

IAV =
I0,s · �1 − e−(kw+ KI·TSS)·d�

(kw + KI · TSS) · d
 

(7) 

where I0,s [µmol m-2 s-1] is the incident light intensity and kw [m-3] is the attenuation coefficient due to water, 269 

KI [m2 gTSS-1] is the extinction coefficient associated to particulate components and d is the photobioreactor 270 

depth [m]. 271 

2.4.1.2. MPBR pilot plant 272 

As in Ruiz et al. (2013), the PBRs were operated in two successive stages: batch and continuous operation. 273 

After microalgae inoculation with the AnMBR effluent, the PBR culture was grown in batch stage until the 274 

pseudo-stationary phase was reached (according to TSS), obtaining the batch growth kinetics and achieving 275 

a high microalgae biomass concentration. The batch stage datasets were calibrated by matching 276 

experimental data with two models: the Verhulst logistic kinetic model and Michaelis-Menten expression 277 

rate. Experimental data were matched to the corresponding model by minimizing the sum of squared 278 

residuals using Microsoft Excel Solver. 279 

The Verhulst logistic kinetic model (Verhulst, 1838) was used to describe the PBR microalgae growth curve 280 

under batch operation and to obtain the kinetic growth factors. This model is a substrate-independent 281 

equation widely used to describe biomass growth in ecological studies, mainly because it can accurately 282 

describe biomass evolution under different culture conditions using a simple mathematical and biological 283 

definition.  According to the Verhulst model, biomass growth can be expressed as sinusoidal (Eq. 8): 284 
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∂X
∂t

= μmaxX[1 −
X

Xmax
] (8) 

 285 

Integrating Eq. 8, Eq. 9 was derived, where µmax is the maximum specific growth rate [d-1], X0, Xmax and X 286 

are biomass concentrations [g VSS m-3] at an operating time equal to zero, infinity and t, respectively. 287 

X =
X0Xmaxetμmax

Xmax − X0 + X0etμmax
 

(9) 

 288 

The Michaelis-Menten relationship (Eq. 10) is an ecological model which can be applied to nutrient removal 289 

kinetics (Aslan and Kapdan, 2006): 290 

r0 =
rmaxS0

Km + S0
 (10) 

 291 

where r0 is the nutrients uptake rate [g m-3 d-1], rmax is the maximum removal rate of nutrients [d-1], S0 is the 292 

nutrient concentration at time equal zero [g m-3] and Km is the Michaelis-Menten constant [g m-3]. The kinetic 293 

coefficients rmax and Km were fitted and calibrated by use of the Lineweaver-Burk equation (Eq. 11). 294 

1
r0

=
Km

rmax
1
S0

+
1

rmax
 (11) 

2.4.2. Online calibration 295 

Online calibration with mid-term pseudo-steady periods consisted of matching the modeling results to the 296 

experimental data and entailed 35 days of dynamics in nitrogen, phosphorus, VSS and sCOD concentration 297 

obtained from the MPBR system. The 0.10-m wide PBR was operated with an HRT and BRT of 1.25 ± 0.03 298 

and 4.5 ± 0.2 days, respectively. Medium temperature and incident PAR were 25.6 ± 1.4 ºC and 290 ± 47 299 

µmol m-2 s-1, respectively. This period was long enough to enable the effect of both phosphorus-starved and 300 

-replete culture conditions. From this data, different model factors (bALG,2, KNHX-QPP, KI,PO4 and KLa) were 301 

adjusted using the Matlab® Curve Fitting App. To compare and determine whether there was a significant 302 

difference between the experimental data and the modeling results, the t-test and F-test, and a non-303 

continuous level test (i.e. the Mann-Whitney U-test) were performed on Statgraphics® Centurion v.19. 304 
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A mass transfer coefficient KLa function (Eq. 12) was used to describe gas transport between liquid and gas 305 

phases. 306 

KLa = k · �
GF
VL
�
r
 

(12) 

where GF is the gas flow rate (L h-1), VL is the liquid volume (L) and k and r are fitting parameters. Constants 307 

k (KLa_k) and r (KLa_r) were therefore the input factors calibrated to match simulated results.   308 

2.4.3. Dynamic optimization 309 

After offline/online calibration of the influential factors, these parameters were dynamically optimized to 310 

improve model performance throughout each experimental period. The optimization algorithm aimed at 311 

matching experimental data with the modeled results, using a standardized residuals function (Eq. 13) as 312 

objective function to be minimized. To this aim, a constrained optimization using genetic algorithm (GA) was 313 

applied through the function implemented on Matlab® software. Specifically, a global GA optimization was 314 

conducted for a predefined set of lower and upper bounds on the design variables, i.e. the influential model 315 

input factors. Bound constraints for variations of model inputs were set to ±20%. The influencing factors 316 

were fed to the GA with the same order of magnitude (unity) and later reconverted in the model function, 317 

e.g. optimal light intensity for XALG growth was 230 µmol m-2 s-1, then a 10-2 factor was applied for seeding 318 

the GA; and µALG was 1.8 d-1, so that it was not necessary to apply a correction factor. The termination 319 

tolerance on fitness function value (“TolFun” option) was set to 10-3 (it was confirmed for a given 320 

experimental period (Period 1) that the optimized results did not vary statistically when this option was 321 

reduced from 10-3 to 10-6). 322 

�
�S𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑖𝑖𝑠𝑠 − S𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑒𝑒�

�std �S𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁𝑒𝑒�
+ �

�S𝑃𝑃𝑃𝑃4𝑠𝑠𝑖𝑖𝑠𝑠 − S𝑃𝑃𝑃𝑃4𝑒𝑒𝑁𝑁𝑒𝑒�

�std �S𝑃𝑃𝑃𝑃4𝑒𝑒𝑁𝑁𝑒𝑒�
+ �

�X𝐴𝐴𝐿𝐿𝐴𝐴𝑠𝑠𝑖𝑖𝑠𝑠 − X𝐴𝐴𝐿𝐿𝐴𝐴𝑒𝑒𝑁𝑁𝑒𝑒�

�std �X𝐴𝐴𝐿𝐿𝐴𝐴𝑒𝑒𝑁𝑁𝑒𝑒�
 

(13) 

Bound constraints for variations of model inputs were set to ±20% of default or offline/online calibrated 323 

values.  324 

2.5. Uncertainty analysis 325 

UA was conducted to assess the propagation of different uncertainty sources to the model output. Only the 326 

influential input factors were considered during UA implementation, while non-important factors were set to 327 
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their default values. 3500 Monte Carlo runs were performed with a 20% variance rate of the influencing 328 

factors. The Latin hypercube sampling method was used to generate the matrix for the Monte Carlo runs. 329 

The matrix for the Monte Carlo simulations was generated using the “maximin” criteria from Matlab® 330 

software, which maximize minimum distance between points. To try to optimize the Latin hypercube 331 

sampling design, the default number of interactions to be applied during the Monte Carlo design was 332 

increased from 5 to 100. 333 

Results were assessed on different indices: (i) the 5th and 95th percentiles (Mannina et al., 2017), (ii) the p-334 

factor (Yang et al., 2008), (iii) the r-factor (Mannina et al., 2018; Yang et al., 2008) and (iv) the Average 335 

Relative Interval Length (ARIL) (Mannina et al., 2018; Yang et al., 2008).  336 

The p-factor, or the percentage of observations within the 95% prediction uncertainty (95PPU). The 95PPU 337 

was calculated at the 2.5% and 97.5% levels of the cumulative distribution of the model output. The closer 338 

the p-factor approaches 100%, the lower the uncertainty of the model predictions (Mannina et al., 2018; 339 

Yang et al., 2008). The r-factor was calculated from Eq. 14 (Mannina et al., 2018; Yang et al., 2008). The 340 

closer the r-factor is to 1, the narrower the uncertainty bands are. 341 

r − factor =
1
n∑ �ysim,97.5%,i − ysim,2.5%,i�n

i=1

σobs
 

(14) 

where ysim,97.5%,i and ysim,2.5%,i are the upper and lower boundary value of 95PPU, respectively; n is the number 342 

of observation; and σobs represents the standard deviation of the measured data.  343 

The ARIL index was calculated according to Eq. 15 (Jin et al., 2010). The lower the ARIL value the lower 344 

the model uncertainty. 345 

ARIL =
1
𝑛𝑛
�

(ysim,97.5%,i − ysim,2.5%,i)
yobs

𝑛𝑛

𝑖𝑖=1

 
(15) 

The model uncertainty was assessed by combining the indices described above. High p-factor values, an r-346 

factor values close to 1 and low ARIL values indicate low uncertainty in the model’s prediction. 347 
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3. Results and discussion  348 

3.1. Global sensitivity analysis 349 

3.1.1. SNHX output 350 

SNHX concentration decreases due to microalgae uptake for growth and SNH3 stripping. Conversely, SNHX 351 

concentration increases due to microalgae lysis and endogenous respiration. Processes 1 (XALG growth on 352 

SNHX and SPO4), 3 (XALG growth on SNHX and XPP-ALG), 6 (XALG endogenous respiration), 7 (XALG lysis) and 11 353 

(S[NH3] stripping) in Table 1 therefore affect SNHX concentration. 354 

Figure 1 gives the sensitivity measurements (µ* and σ) calculated from each input factor on the SNHX output 355 

for the 4 periods. 356 

Maximum growth rate of XALG (µALG), optimal light intensity (IOPT) and maximum temperature (TMAX) were the 357 

most sensitive input factors for Period 1 (Figure 1A). Specifically, µALG (µ* = 4.31, σ = 1.09), IOPT (µ* = 2.99, 358 

σ = 0.75) and KI (µ* = 1.72, σ = 0.50) exhibited a linear and additive effect on SNHX output, while TMAX (µ* = 359 

1.68, σ = 1.31) showed a nonlinear effect. SNHX model output was mainly influenced by environmental 360 

factors, i.e. light intensity and temperature, which had a direct effect on photosynthesis and thus on net 361 

microalgae growth rate. This model output was also sensitive, although to a lesser extent, to the following 362 

input factors:  KNHX, bALG,2, KPO4, KI,PO4, bALG,1, KNHX-QPP, KXPP, qXPP and KLa,r. All these influential input factors 363 

were involved in microalgae growth and decay rate, except KLa,r which refers to free ammonia stripping. 364 

GSA results for SNHX in Period 2 are represented in Figure 1B. Similar results to the ones obtained in Period 365 

1 were observed in Period 2: µALG (µ* = 11.58, σ = 2.40) and IOPT (µ* = 6.80, σ = 1.26) showed a linear 366 

effect, while TMAX (µ* = 6.58, σ = 7.32) exhibited a nonlinear or interactive effect on SNHX output. However, 367 

the fundamental difference between the two periods was in the factors described as less influential. Whereas 368 

in Period 1 input factors related to nutrient uptake, such as half saturation constants or maximum phosphate 369 

uptake rate, had a relatively important effect on the model output, in Period 2 only one minor input, KI (µ* = 370 

4.68, σ = 0.93), was identified. This difference between the GSA results could be due to the available SNHX 371 

concentration in the culture medium. The SNHX concentrations in Periods 1 and 2 were 16 ± 6 mg N L-1 and 372 

34 ± 4 mg N L-1, respectively. The determination of SNHX removal rate depends on external nitrogen 373 

concentrations. At high SNHX concentrations, microalgae should remove ammonium-ammonia species at the 374 
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maximum rate (rMAX); thus, despite increasing the substrate concentration, the removal rate will not vary 375 

where the Michaelis-Menten equation becomes independent of SNHX concentration, so that the Michaelis-376 

Menten kinetics factors were irrelevant in Period 2. As mentioned previously, the reduced SNHX concentration 377 

in the culture medium was mainly due to the growth of microalgae. Growth kinetics were dependent on the 378 

global computation of the nutrients uptake, including phosphorus sources (SPO4 and XPP-ALG). Given that 379 

microalgae growth was limited in Period 1 by the SNHX concentration, input factors involved in nutrient uptake 380 

had a relatively significant effect in Period 1 as compared to Period 2.  381 

Period 3 was operated in P-starved conditions. The GSA results from this period are reported in Figure 1C. 382 

µALG, (µ* = 5.28, σ = 1.49) had a relatively higher influence than the remaining input factors and a nonlinear 383 

or interactive effect on SNHX model output. IOPT (µ* = 2.71, σ = 0.92) and TMAX (µ* = 1.84, σ = 0.98) presented 384 

a linear or additive effect on the model output. KI, KXPP, KPO4, KNHX-qPP, bALG,2, and KI,PO4 were included in the 385 

factors classified as influential, but to a lesser extent.  386 

GSA results for Period 4 are shown in Figure 1D. As this figure shows, there was a significant dependence 387 

of SNHX concentration on microalgae growth rate, light intensity and temperature. µALG (µ* = 8.88, σ = 1.55), 388 

IOPT (µ* = 6.09, σ = 1.25) and KI (µ* = 5.39, σ = 1.25) exhibited linear or additive effects, while TMAX (µ* = 389 

6.96, σ = 6.43) showed nonlinear or interactive effects on the output. KLa_r (µ* = 3.21, σ = 1.65) reflected 390 

that free ammonia stripping participated on SNHX concentration balance, but to a lesser degree than 391 

microalgae growth. 392 

Regarding SNHX, 10 input factors were selected as influential. Among these factors, µALG, IOPT and TMAX had 393 

the greatest influence on SNHX model output with linear/additive or nonlinear/iterative effects. Indeed, the 394 

variation in SNHX concentration was mainly due to light-affected processes (photosynthetic metabolism), 395 

since IOPT is one of the most influential input factors in SNHX output. KI was a relatively influential factor on 396 

model output in the 4 periods studied because of its intrinsic relationship to the light intensity available for 397 

photosynthesis. On the other hand, the following factors were considered as influential due to their effect on 398 

the model output within two or more periods: KNHX, bALG,2, KLa,r, KPO4, KI,PO4 and KNHX-QPP.  399 
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According to the results of the SNHX model output evaluation, it would thus be recommendable to calibrate 400 

the following model factors: µALG, IOPT, TMAX, KI, KNHX, bALG,2, KLa,r, KPO4, KI,PO4 and KNHX-QPP. 401 

[FIGURE 1 NEAR HERE] 402 

Figure 1. Sensitivity measures μ* versus σ for the model outputs SNHX for Period 1 (A), Period 2 (B), Period 3 (C) and Period 4 (D). 403 

3.1.2. SPO4 output 404 

SPO4 decreases due to microalgae uptake for growth and XPP-ALG storage. Conversely, SPO4 concentration 405 

increases due to microalgae endogenous respiration and XPP-ALG and microalgae lysis. Processes 1 (XALG 406 

growth on SNHX and SPO4), 2 (XALG growth on SNO3 and SPO4), 5 (XPP-ALG storage), 6 (XALG endogenous 407 

respiration) and 7 (XALG lysis) in Table 1 thus affect SPO4 concentration.   408 

Figure 2 gives the sensitivity measurements (µ* and σ) calculated from each input factor on the SPO4 output 409 

for the 4 periods. 410 

Seven input factors were determined as influential on SPO4 output. The most influential input factors for 411 

Period 1 were: TMAX (µ* = 0.15, σ = 0.15) exhibiting a nonlinear or interactive effect, and qXPP (µ* = 0.24, σ 412 

= 0.11), IOPT (µ* = 0.20, σ = 0.10) and KI (µ* = 0.11, σ = 0.07) with a linear or additive effect on the model 413 

output. Contrary to SNHX model output, microalgae growth processes were not the main pathway for SPO4 414 

removal, since polyphosphate storage also affected SPO4 concentration. Figure 2A discloses a higher µ* 415 

value of qXPP (0.24) than µALG (0.06), showing that SPO4 output was more influenced by the XPP-ALG storage 416 

process than direct microalgae growth from SPO4 in Period 1. µALG, bALG,2, and KPO4 were encompassed 417 

within the input factors cluster with a relatively minor influence in the model output.  418 

Period 2 (Figure 2B) highlighted TMAX’s nonlinear or interactive significant effect on the model output (µ* = 419 

0.54, σ = 0.62), while qXPP (µ* = 0.49, σ = 0.23), IOPT (µ* = 0.43, σ = 0.24), µALG (µ* = 0.33, σ = 0.28) and KI 420 

(µ* = 0.25, σ = 0.15) showed a linear or additive effect. The higher µ* of qXPP than µALG indicates that XPP-421 

ALG storage had a larger overall effect on the output, as well as in Period 1.  422 

The effect of negligible soluble phosphorus concentration in the culture media (phosphorus-starved 423 

conditions) was assessed through Period 3 (Figure 2C). The input factors qXPP (µ* = 0.025, σ = 0.007) and 424 

KPO4 (µ* = 0.023, σ = 0.006) stand out, suggesting that XPP-ALG storage was the main SPO4 removal pathway 425 



21 
 

and that the storage rate was dependent on soluble phosphorus concentration, both with a nonlinear or 426 

interactive effect. SPO4 removal by XPP-ALG storage process was influenced by environmental input factors, 427 

IOPT (µ* = 0.015, σ = 0.005) and TMAX (µ* = 0.012, σ = 0.006), with a nonlinear or interactive effect. KI (µ* = 428 

0.008, σ = 0.003), µALG (µ* = 0.006, σ = 0.004) and bALG,2 (µ* = 0.006, σ = 0.002) showed a relatively low 429 

µ* values and could suggest a less influence on the model output. SPO4 uptake and release by microalgae 430 

absorption and lysis was thus not significant in Period 3.   431 

Period 4 (Figure 2D) showed a nonlinear or interactive effect of TMAX (µ* = 1.31, σ = 1.20) on SPO4 output. 432 

Input factors related to light availability for photosynthesis – IOPT (µ* = 0.87, σ = 0.18) and KI (µ* = 0.75, σ = 433 

0.19) – exhibited a lower µ* than TMAX, indicating that Period 4 was governed by temperature fluctuations 434 

and their effect on microalgae kinetics. Figure 2D differentiates three processes involved in the SPO4 balance: 435 

XPP-ALG storage, and growth and decay of microalgae. The input factor qXPP (µ* = 0.84, σ = 0.18) concerning 436 

XPP-ALG storage had a linear or additive effect and a higher µ*, suggesting that the XPP-ALG storage process 437 

was the main pathway for SPO4 removal, similarly to previous periods. The relatively low µ* value of µALG (µ* 438 

= 0.42, σ = 0.10) and bALG,2 (µ* = 0.26, σ = 0.09), regarding microalgae growth and decay respectively, had 439 

a negligible overall effect on model output.   440 

Regarding SPO4, 7 input factors were hence selected as influential. Among these factors, TMAX had the 441 

greatest influence on SPO4 concentration in the PBR. Indeed, this factor influences XPP-ALG storage, 442 

microalgae growth, and decay processes. The GSA results obtained here suggest that SPO4 balance was 443 

mainly affected by XPP-ALG storage since qXPP along with TMAX were the most influential input factors on SPO4 444 

model output. On the other hand, the following factors were considered as influential due to their effect on 445 

the model output within two or more periods: IOPT, KI, µALG, KPO4 and bALG,2. 446 

Therefore, according to GSA of SPO4 concentration model output, the following factors must be calibrated: 447 

TMAX, qXPP, IOPT, KI, µALG, KPO4 and bALG,2. 448 

[FIGURE 2 NEAR HERE] 449 

Figure 2. Sensitivity measures μ* versus σ for the model outputs SPO4 for Period 1 (A), Period 2 (B), Period 3 (C) and Period 4 (D). 450 
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3.1.3. XALG output 451 

XALG decreases due to microalgae lysis and endogenous respiration. Conversely, XALG increases due to 452 

microalgae growth. Processes 1 (XALG growth on SNHX and SPO4), 2 (XALG growth on SNO3 and SPO4), 3 (XALG 453 

growth on SNHX and XPP-ALG), 4 (XALG growth on SNO3 and XPP-ALG), 6 (XALG endogenous respiration) and 7 454 

(XALG lysis) in Table 1 thus affect XALG concentration.  455 

Figure 3 shows the sensitivity measurements (µ* and σ) calculated from each input factor on the XALG output 456 

for the 4 periods. 457 

In Period 1 (Figure 3A), four input factors represented the greatest influence on the model output: µALG (µ* 458 

= 153.76, σ = 37.47) and TMAX (µ* = 57.24, σ = 40.62) with nonlinear or interactive effects, and IOPT (µ* = 459 

105.17, σ = 25.64) and KI (µ* = 60.50, σ = 16.12) with linear or additive effects. Microalgae growth depended 460 

firstly on µALG and secondly on the environmental factors (temperature, light intensity, nutrients 461 

concentration, etc.) conditioning biomass growth rate. Indeed, the high µ* for µALG indicates that it was the 462 

input factor with the most important overall effect on the model output. The higher values of µ* and σ for IOPT 463 

suggested that microalgae growth rate was subjected to average light intensity, which is in agreement with 464 

the main growth pathway of microalgae: photosynthesis. However, although microalgae productivity was 465 

due to biomass growth, cell lysis and endogenous respiration represented by input factors bALG,2 (µ* = 43.04, 466 

σ = 11.20) and bALG,1 (µ* = 32.13, σ = 10.24), respectively, played a relatively minor role compared to µALG. 467 

Influential input factors on XALG output for Period 2 were thus: µALG (µ* = 268.76, σ = 57.78), IOPT (µ* = 468 

153.85, σ = 26.79), KI (µ* = 103.53, σ = 19.83), bALG,2 (µ* = 60.44, σ = 12.06) with a linear or additive effect, 469 

and TMAX (µ* = 150.66, σ = 165.04) having a nonlinear or interactive effect.  470 

GSA results for Period 3 are shown in Figure 3C. µALG (µ* = 139.71, σ = 38.41) was the input with the 471 

greatest influence on XALG model output and had a nonlinear or interactive effect. Kinetic processes were 472 

mainly affected by IOPT (µ* = 70.77, σ = 23.45) and TMAX to a lesser extent (µ* = 48.77, σ = 27.60). Period 3 473 

provided P-starved culture conditions, which explained why input factors associated with XPP-ALG storage 474 

and assimilation processes (KXPP, µ* = 34.23, σ = 10.08; KPO4, µ* = 32.67, σ = 14.47; KNHX-qPP, µ* = 32.58, 475 

σ = 6.79; and KI,PO4, µ* = 31.85, σ = 13.05) stood out as relatively influential. 476 
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The influence of input factors in Period 4 followed the same pattern for nutrients removal outputs as for 477 

biomass production output. The higher µ* of µALG (µ* = 246.47, σ = 41.84) indicated an important overall 478 

effect on biomass productivity. Figure 3D reports that µALG had a linear and additive effect on XALG output, 479 

while TMAX (µ* = 199.29, σ = 182.49) had a nonlinear or interactive effect. These two input factors, µALG and 480 

TMAX, were the most influential in comparison with KI (µ* = 88.09, σ = 33.54), IOPT (µ* = 77.38, σ = 33.94), 481 

KNHX (µ* = 60.88, σ = 14.08) and bALG,2 (µ* = 53.41, σ = 15.46) which were encompassed in the cluster of 482 

input factors with a relatively minor influence. These results suggest that the input factors related to 483 

microalgae productivity were mainly regulated by PBR temperature variations and the average available 484 

light intensity did not limit microalgae growth during Period 4. 485 

XALG model output was sensitive to 10 inputs: µALG, TMAX, IOPT, KI, bALG,2, KNHX, KPO4, and KNHX-qPP. GSA results 486 

suggested that biomass concentration balance was dominated by microalgae growth and not by 487 

endogenous respiration and microalgae lysis. The four-kinetic rates of microalgae growth were influenced 488 

by light availability and temperature. The most influential factors related to XALG biomass concentration were 489 

thus µALG, TMAX, and IOPT. The remaining factors, although they had a relative influence on XALG output, were 490 

less influential. 491 

[FIGURE 3 NEAR HERE] 492 

Figure 3. Sensitivity measures μ* versus σ for the model outputs XALG for Period 1 (A), Period 2 (B), Period 3 (C) and 493 

Period 4 (D). 494 

3.1.4. Overall GSA results 495 

Overall, 11 of the 34 model parameters were classified as influential factors: µALG, TMAX, IOPT, KI, KNHX, bALG,2, 496 

qXPP, KPO4, KI,PO4, KNHX-qPP, and KLa_r. The four input factors with the most important overall effect on the 497 

outputs analyzed were µALG, qXPP, TMAX, and IOPT. The input factor µALG showed a strong influence on the 498 

SNHX and XALG output, whereby the nitrogen and biomass concentrations in the PBRs were mainly due to 499 

microalgae growth processes. Conversely, the main phosphorus removal pathway was XPP-ALG storage by 500 

qXPP. TMAX and IOPT indicated that the growth and storage kinetic rates were mainly influenced by temperature 501 

and light intensity fluctuations.  The model was also sensitive to nitrogen half saturation constants, KNHX and 502 
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KNHX-qPP for Period 1 and Period 3, characterized by a low nitrogen and negligible phosphorus concentration, 503 

respectively.  504 

3.2. Model calibration 505 

3.2.1.  Offline calibration 506 

TMAX, IOPT, KI, µALG, KNHX and KPO4 (Table 3) were calibrated offline using experimental data from both photo-507 

respirometric tests and the MPBR pilot plant. 508 

Figure 4A shows the normalized nOPR values following a typical temperature response characterized by a 509 

slow rise from cold to optimum temperature before a rapid drop for higher temperatures. The Ratkowski 510 

model provided a good fit with the experimental data (variance > 94%), providing TMIN and TMAX values of 0 511 

± 0.01 and 40.1 ± 0.2 ºC, respectively. These results were within the range of values compiled by Bernard 512 

& Rémond (2012) for 15 different algal species. 513 

Figure 4B shows that Steele’s equation was able to describe the normalized nOPR evolution with light 514 

intensity with a variance of 95%. The light curve showed the typical increase in photosynthesis light response 515 

with rising light availability and a drop at high light intensities due to photoinhibition. The calibrated optimal 516 

light intensity for XALG growth and attenuation coefficient were 230 ± 30 µmol m-2 s-1 and 0.025 ± 0.002 m2 517 

g TSS-1. The values reported in the literature range from 80 (Khalili et al., 2015) to 413 µmol m-2 s-1 (Barbera 518 

et al., 2020). This wide variation is probably due to differences in the environmental and operating conditions 519 

of the experimental set-up (Bernard, 2011) and microalgae speciation (Ouyang et al., 2010). The obtained 520 

attenuation coefficient of 0.025 m2 g TSS-1 was in agreement with the observations made by Ruiz-Martinez 521 

et al. (2014). 522 

Figure 4C shows the microalgae growth kinetic curve. The experimental data was described by the logistic 523 

Verhulst model to quantify microalgae growth, resulting in a match with a variance above 99% in all 524 

regressions. The average µALG obtained was 1.8 ± 0.3 d-1, similar to the rates of 2, 1.6, 1.5 and 1.6 d-1 used 525 

by most integrated microalgae models, i.e. Reichert et al. (2001), Zambrano et al. (2016), Solimeno et al. 526 

(2017), and Sánchez‐Zurano et al. (2021), respectively. According to the values reported in the literature, a 527 

maximum growth rate of 1.8 d-1 is suitable for modeling microalgae growth and development in a wastewater 528 

medium. 529 



25 
 

KNHX and KPO4 were determined by the Michaelis-Menten kinetic relationship. Experimental data from 4 batch 530 

periods were linearized by the Lineweaver-Burk function (see Figure 4D). Kinetic coefficients of SNHX and 531 

SPO4 were determined from the intercept and the slope. The observed KNHX was 0.10 ± 0.02 g N m-3 and 532 

KPO4 was 0.050 ± 0.011 g P m-3. The kinetic relationship proposed was able to adjust the experimental data 533 

to the model results at a variance above 96%. The calibrated KNHX value was consistent with the 0.10 g N 534 

m-3 adopted by Reichert et al. (2001).  Zambrano et al. (2016) and Solimeno et al. (2017) both used the 535 

value proposed by Reichert et al. (2001) for model calibration and validation. As phosphorus was not usually 536 

considered a limiting nutrient, the KPO4 factor was not normally included in mathematical models, which limits 537 

the comparison between KPO4 values in the wastewater culture medium. Reichert et al. (2001) determined 538 

a phosphorus saturation constant of 0.02 g P m-3 for continental water bodies. 539 

[FIGURE 4 NEAR HERE] 540 

Figure 4. Influence of temperature (A) and light intensity (B) on normalized oxygen production rate of microalgae, biomass growth 541 

(C) and nitrogen and phosphorus consumption linearizer by Lineweaver-Burk function. Experimental and modeled data are 542 

represented by markers and lines, respectively. 543 

 544 

3.2.2. Online calibration and dynamic optimization 545 

KNHX-qPP, KI,PO4, bALG,2, qXPP, and KLa_r factors were calibrated online after setting the calibrated values of 546 

µALG, TMAX, IOPT, KI, KNHX, and KPO4 using data from a 35-day pseudo-stationary operating period of the MPBR 547 

pilot plant. By means of the Curve Fitting tool implemented in Matlab® software and expert knowledge, the 548 

modeling results were matched with the experimental data. KNHX-qPP and KLa_r parameters were calibrated 549 

using the SNHX concentration as a reference, while qXPP and KI,PO4 were calibrated from SPO4 and total 550 

suspended phosphorus (XP, g P m-3) concentrations. bALG,2 was calibrated from sCOD, XTSS and XVSS data. 551 

The resulting data set was calibrated by evaluating the combined effect of the following 6 model outputs: 552 

SNHX, SPO4, XP, XTSS, XVSS and sCOD. Graphical representation of the experimental results and the modeled 553 

data obtained by the calibrated factors compiled in Table 3 are reported in supplementary material. 554 

Ruiz-Martinez et al. (2014) reported that N removal rate was higher in P-replete than in P-starved culture 555 

conditions. KNHX-QPP (i.e. the half saturation parameter for SNHX in a phosphorus-starved medium) was 556 
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included in the model to represent this approach. The calibrated value of KNHX-QPP was 3 g N m-3, while that 557 

of KNHX was 0.1. A higher value of the half saturation constant under P-deficient culture conditions is in 558 

agreement with the observations of Ruiz-Martinez et al. (2014). Parameters bALG,2 and qXPP-ALG were 559 

calibrated at 0.15 and 0.01 d-1 respectively. The bALG,2 calibrated value was in agreement with the range 560 

reported in the literature of 0.012 to 0.21 d-1 (Ruiz-Martinez et al., 2014; Wágner et al., 2016).The value 561 

obtained was in agreement with the maximum rate used by the ExPIM model (Singh et al., 2018). The fitting 562 

parameter KLa_r is physically meaningless and cannot be compared with the scientific literature.  563 

Statistical tests were performed to find any significant differences between the experimental and simulated 564 

results. 565 

The t-test revealed a confidence interval for the difference between the means of the experimental and 566 

modeled data from -57.50 to 58.93. As this confidence interval contains the value 0, thus it can be assumed 567 

that there is no significant difference between these means, with a confidence level of 95%. Furthermore, 568 

since the calculated p-value was 0.9808 (> 0.05), the null hypothesis cannot be rejected. The means of the 569 

experimental and modeled data thus do not differ significantly from each other. 570 

The confidence interval of the F-test ranged from 0.77 to 1.32. Since the confidence interval contained the 571 

value of 1, it can be assumed that there are no significant differences between the standard deviations of 572 

experimental and modeled data, with a confidence level of 95%. Since the calculated p-value was 0.9562 573 

(> 0.05), the null hypothesis cannot be rejected and the standard deviations of the experimental and modeled 574 

data can be said not to differ significantly from each other. 575 

The p-value of the Mann-Whitney U-test was 0.9184 (> 0.05), so that the null hypothesis cannot be rejected 576 

either and it can be assumed that there are no statistically significant differences between the medians of 577 

the experimental and modelled data, at a 95% confidence level. 578 

Although, the statistical tests revealed the goodness of the results obtained with the offline/online calibration, 579 

it was decided to carry out a dynamic optimization of the 11 most influencing factors (µALG, TMAX, IOPT, KI, 580 

KNHX, bALG,2, qXPP, KPO4, KI,PO4, KNHX-qPP and KLa_r), to see if it was possible to obtain even better results for 581 

each period. The remaining factors were set to default values (Table 3). 582 
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Table 4 shows the calibrated values by offline/online methods, the dynamically optimized values for each 583 

operating period, and the rounded values of optimized parameters. The model accurately predicted 584 

microalgae performance using the calibrated offline/online values: an adequate correlation coefficient (R2) 585 

of 0.9954 was obtained between the experimental and simulated data. It also obtained the following 586 

correlation coefficients (R2) when using the optimized values: 0.9969, 0.9980, 0.9976 and 0.9982 for 587 

Periods 1, 2, 3 and 4, respectively (average R2 of 0.9977). The model accuracy using the sets of model 588 

parameters values obtained from both the offline/online calibration and the dynamic optimization was also 589 

assessed by Root Mean Square Error (RMSE) and Sum of Squares due to error (SSE). RMSE and SSE 590 

were reduced by 47% and 27%, respectively, when using the dynamically optimized values for the model 591 

parameters over the offline/online calibrated ones. 592 

The model performance can thus be said to have only slightly improved by dynamically optimizing the 593 

model’s influential parameters, validating the values obtained from the offline/online calibrated values from 594 

experimental data.  595 

Table 4. Offline/online calibrated and dynamically optimized values for the influential model parameters. SD was not specified in 596 

online and dynamically calibrated factors because they were set to a single specific value.  597 

Parameter Offline/Online 
Calibrated value 

Dynamic Optimization values 

Period 1 Period 2 Period 3 Period 4 Mean ± SD 
µALG d-1 1.8 ± 0.31 1.63 1.45 2.14 2.00 1.8 ± 0.3 

KNHX g N m-3 0.10 ± 0.021 0.11 0.12 0.095 0.10 0.109 ± 0.012 

KNHX-QPP g N m-3 32 3.55 3.57 2.54 3.56 3.3 ± 0.5  

KPO4 g P m-3 0.050 ± 0.0111 0.04 0.05 0.04 0.06 0.049 ± 0.008 

KI,PO4  g P m-3 0.152 0.17 0.12 0.13 0.12 0.14 ± 0.02  
Iopt µmol m-2 s-1 230 ± 301 187.47 199.23 184.78 215.56 197 ± 14 

KI m2 g TSS-1 0.025 ± 0.0021 0.028 0.020 0.022 0.027 0.024 ± 0.004 

Tmax °C 40.1 ± 0.21  33.76 44.89 34.69 42.90 39 ± 6  

bALG,2 d-1 0.152 0.15 0.14 0.16 0.17 0.156 ± 0.013 

qXPP d-1 0.0102 0.0096 0.011 0.011 0.012 0.0110 ± 0.0010 

KLa_r - 12 0.86 1.00 1.19 0.81 1.0 ± 0.2 
1Offline calibrated 598 
2Online calibrated 599 
 600 
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3.3. Uncertainty analysis  601 

3.3.1. SNHX output 602 

The results for SNHX output from Monte Carlo simulations in the 4 periods are reported as supplementary 603 

material. There were 3500 lines (spaghettis), each one referring to the results of one simulation. The varying 604 

spread of the band in the multiple probability density function plot indicated the extent of the uncertainty in 605 

the simulated SNHX at different sampling times. The 5th and 95th Monte Carlo percentiles (uncertainty bands) 606 

were calculated; the further away the uncertainty bands from the mean value, the greater the uncertainty. 607 

Figure 5 shows the experimental and calibrated model results, as well as the uncertainty bands for the 4 608 

periods. It can be seen that the uncertainty bandwidths change with the period considered. This could be 609 

due to variations in the influencing factors of each period, the role they played in the variation of the model 610 

output and the interlinkage between the model outputs. The uncertainty bandwidths can be quantified from 611 

the r-factor (Table 5). The closer the r-factor to 1, the narrower the uncertainty bands. According to this 612 

uncertainty factor, the uncertainty in Periods 3 and 4 is therefore lower than in Periods 1 and 2. UA results 613 

should be complemented with other indices such as the p-factor and the ARIL value. The closer to 100% 614 

the p-factor, the lower the uncertainty of the model predictions. Conversely, the lower the ARIL value, the 615 

lower the model uncertainty. The p-factor value was above 90% In all the periods because the wide bands 616 

obtained embrace most of the data. However, in this specific case, the large values obtained for the p-factor 617 

did not reflect low model uncertainty but rather the great width of the uncertainty bands and therefore a high 618 

degree of uncertainty. For the ARIL value (Table 5), Period 4 had the lowest uncertainty of all the remaining 619 

periods. As the uncertainty of the periods varied according to the target coefficient, it was required to 620 

combine the three uncertainty coefficients analysis together with the uncertainty bandwidth for a critical UA. 621 

Compiling the three coefficients, Period 4 showed low uncertainty (r-factor: 1.56, p-factor: 100% and ARIL: 622 

0.22). From the 11 influential parameters, only TMAX showed a strong influence on SNHX output in Period 4, 623 

while the remaining factors had a relatively less influential effect, so that the model was mainly influenced 624 

by TMAX, reducing the range of the simulation uncertainty bands.  625 

A larger bandwidth and uncertainty coefficient values were obtained for Periods 1, 2 and 3 (Table 5). Four 626 

(µALG, TMAX, IOPT and KI) and 9 (µALG, TMAX, IOPT, KI, KNHX, KPO4, KNHX-qPP, KI,PO4 and bALG,2) of the influencing 627 

parameters were identified in Periods 2 and 3, respectively, while all of them were identified in Period 1. 628 
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Comparing the uncertainty bandwidth and coefficients obtained for the 4 periods, the results suggest that 629 

the model uncertainty is influenced by the number of influential input factors involved in each period. As 630 

expected, the more the influencing input factors involved, the greater the uncertainty of the model appears 631 

to be.  632 

[FIGURE 5 NEAR HERE] 633 

Figure 5. Calibrated, experimental data, 95th and 5th percentiles for SNHX concentration in the MPBR effluent for Period 1 (A), Period 634 

2 (B), Period 3 (C) and Period 4 (D). 635 

 636 

3.3.2. SPO4 output 637 

The results for SPO4 output from the Monte Carlo simulation are also reported as supplementary material. 638 

The results of the SPO4 model output showed the model’s good response in terms of uncertainty for Periods 639 

1, 2 and 4. Nearly all the experimental data (p-factor value > 70%) lay inside the uncertainty bands (Figure 640 

6A, B and D, Table 5). All the experimental data obtained for Period 2 were inside the 5th and 95th percentiles 641 

with a p-factor value of 100%, because this period presented the widest bandwidth with an r-factor value of 642 

2.10. According to the uncertainty coefficient values reported by Mannina et al. (2018), the r-factor value for 643 

Period 2 showed a degree of uncertainty in the model output, although the low ARIL value (0.69) suggested 644 

a good response of the model in terms of uncertainty.  645 

In Periods 1 and 4, the r-factor values close to 1 (1.72 and 0.58, respectively) and the low ARIL values (0.46 646 

and 0.11, respectively), combined with the high p-factor value (75 and 71%, respectively), suggested an 647 

acceptable model response in uncertainty terms. 648 

In contrast to the preceding periods, Period 3 showed high uncertainty in terms of SPO4 output. Although 649 

most experimental data fell within the uncertainty bands (p-factor value of 86%), the high ARIL value and r-650 

factor provided high uncertainty in the SPO4 output. According to GSA, the more influential input factors were 651 

related to XPP-ALG storage. The higher level of uncertainty than the other periods could be due to the fact that 652 

storage and assimilation of XPP-ALG played a more significant role in Period 3. The results suggested that the 653 

uncertainty propagation through the model output was due to parameters related to XPP-ALG. 654 

[FIGURE 6 NEAR HERE] 655 
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Figure 6. Calibrated, experimental data, 95th and 5th percentiles for SPO4 concentration in the MPBR effluent for Period 1 (A), Period 656 

2 (B), Period 3 (C) and Period 4 (D). 657 

 658 

3.3.3. XALG output 659 

The results of XALG output from the Monte Carlo simulation are reported as supplementary material and the 660 

uncertainty coefficient values are shown in Table 5. In XALG, all the experimental data lay inside the 661 

uncertainty bands (Figure 7) and the p-factor was 100% for each period. As ARIL values were lower than 1, 662 

given the high p-factor values and low ARIL values, a good model response in terms of uncertainty would 663 

be obtained for the XALG output. However, the r-factor values on average were not near 1, with the closest 664 

being 2.06 in Period 3. As detailed above, the wider the bandwidth, the greater the probability of the 665 

experimental data being inside the uncertainty bands. Consequently, although the p-factor value 666 

mathematically provided low uncertainty, the model response should be analyzed as a whole, considering 667 

the overall computation of the uncertainty coefficients and Monte Carlo simulations. 668 

[FIGURE 7 NEAR HERE] 669 

Figure 7. Calibrated, experimental data, 95th and 5th percentiles for XALG concentration in the MPBR effluent for Period 1 (A), Period 670 

2 (B), Period 3 (C) and Period 4 (D). 671 

Table 5. Uncertainty coefficient for each Period and model output: p-factor, r-factor and ARIL. 672 

Output - #Period p-factor r-factor ARIL 
SNHX - 1 100 2.42 1.61 

SNHX - 2 94.44 5.70 0.73 

SNHX - 3 100 1.51 0.84 

SNHX - 4 100 1.56 0.22 

SPO4 - 1 75.00 1.72 0.46 

SPO4 - 2 100 2.10 0.69 

SPO4 - 3 85.71 12.63 2.94 

SPO4 - 4 71.43 0.58 0.11 

XALG - 1 100 3.45 0.50 

XALG - 2 100 4.35 0.74 

XALG - 3 100 2.06 0.31 

XALG - 4 100 4.49 0.65 
 673 
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3.3.4. Overall uncertainty analysis 674 

The Monte Carlo simulation and uncertainty coefficients show different responses in terms of uncertainty for 675 

each period. This result is probably due to two main reasons: (i) the number of sensitive factors involved 676 

and (ii) the processes involved in each period. The results obtained for the SNHX model output suggested 677 

that the uncertainty bandwidth depended on the number of influential input factors involved. SPO4 output 678 

suggested that the processes involved in each period had different effects on model output variations and 679 

on the interrelationship between model outputs. On the other hand, although p-factor and ARIL values for 680 

XALG output suggested a good response in terms of uncertainty, an integrated analysis of all uncertainty 681 

indices (bandwidth, p-factor, r-factor and ARIL value) showed high uncertainty in the model output.  682 

The high uncertainty response of the 3 model outputs could be attributed to online calibrated factors. The 683 

reproducibility of this online calibration approach may be questionable and could introduce uncertainty into 684 

the model. The problem with online calibration is the non-identifiability of the parameters, which leads to 685 

accepting the possible "equifinality" of the models, i.e. there is no one "optimal" set of calibrated parameters 686 

to represent microalgae culture, although there are multiple combinations of parameter values for a chosen 687 

model structure that can be equally valid for matching data (Sin et al., 2005). These model parameter sets 688 

can be distributed over a wide range of values for each parameter, introducing high uncertainty into the 689 

model. Offline calibration is an alternative method to online calibration. In this respect, offline calibration 690 

enables kinetic processes to be isolated and the variables involved to be controlled. In this study, offline 691 

calibration was performed by: (i) photo-respirometry tests with biomass adapted from the MPBR pilot plant; 692 

and (ii) microalgae growth in batch conditions, so that the offline calibrated data agree with the intrinsic 693 

characteristics of microalgae culture and operating conditions and thus provide more reliable values. Since 694 

a subset of the parameters was calibrated online, an optimization algorithm was used to match the model 695 

parameters within a realistic data range. The offline method can thus be recommended over online 696 

calibration, as can the dynamic optimization of all the influential parameters. 697 

4. Conclusions 698 

This paper presents a GSA, an offline/online calibration, a dynamic optimization, and a UA of a previously 699 

proposed and validated microalgae model. Eleven out of 34 influential factor were identified from the GSA. 700 
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The four factors with the most important overall effect on the three outputs evaluated (SNHX, SPO4 and XALG) 701 

were µALG, qXPP, TMAX and IOPT. SNHX and XALG model outputs were influenced by kinetic input factors related 702 

to microalgae growth, while SPO4 model output was affected by XPP-ALG storage. A single data set was 703 

achieved by offline/online calibration methods able to reproduce the model outputs for the 4 experimental 704 

periods evaluated, regardless of the operational and environmental conditions. A dynamic optimization of 705 

the calibrated model parameter values was conducted to improve the model’s output response. The UA 706 

results revealed different responses according to the model output and the operating period considered and 707 

were dependent on the processes and the number of influencing input factors involved in each period. 708 

Uncertainty indices were analyzed together with uncertainty bands to avoid erroneous conclusions. The 709 

model’s uncertainty results revealed the need to prioritize offline calibration to improve model performance. 710 
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