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Abstract

We describe the public release of the Cluster Monte Carlo (CMC) code, a parallel, star-by-star N-body code for
modeling dense star clusters. CMC treats collisional stellar dynamics using Hénon’s method, where the cumulative
effect of many two-body encounters is statistically reproduced as a single effective encounter between nearest-
neighbor particles on a relaxation timescale. The star-by-star approach allows for the inclusion of additional
physics, including strong gravitational three- and four-body encounters, two-body tidal and gravitational-wave
captures, mass loss in arbitrary galactic tidal fields, and stellar evolution for both single and binary stars. The public
release of CMC is pinned directly to the COSMIC population synthesis code, allowing dynamical star cluster
simulations and population synthesis studies to be performed using identical assumptions about the stellar physics
and initial conditions. As a demonstration, we present two examples of star cluster modeling: first, we perform the
largest (N= 108) star-by-star N-body simulation of a Plummer sphere evolving to core collapse, reproducing the
expected self-similar density profile over more than 15 orders of magnitude; second, we generate realistic models
for typical globular clusters, and we show that their dynamical evolution can produce significant numbers of black
hole mergers with masses greater than those produced from isolated binary evolution (such as GW190521, a
recently reported merger with component masses in the pulsational pair-instability mass gap).

Unified Astronomy Thesaurus concepts: Algorithms (1883); Distributed computing (1971); Gravitational waves
(678); Globular star clusters (656); N-body simulations (1083); Stellar dynamics (1596)

1. Introduction

The modeling of dense star clusters (DSCs), such as globular
clusters (GCs), super star clusters (SSCs), or the nuclear star
clusters (NSCs) in the centers of many galaxies, remains one of
the most challenging problems in computational astrophysics.
At first glance, this fact is somewhat surprising: these clusters
typically start with 105–108 individual particles, well within the
range of many collisionless gravitational particle solvers.
However, it is the collisional nature of these star clusters that
makes their dynamics so difficult to resolve: unlike the
dynamics of galaxies or particles in a cosmological volume,
the long-term evolution of DSCs is driven by both the orbits of
individual stars in the cluster potential and the diffusion of the
stars through phase space via two-body encounters (e.g.,
Spitzer 1987; Heggie & Hut 2003; Binney & Tremaine 2008).

Both historically and currently, the first approach employed
to study collisional stellar dynamics has often been a direct
summation approach. In many ways the most straightforward
conceptually (though exceedingly complex in implementation),
a direct summation code calculates the gravitational force of
every particle on every other particle before summing the
individual forces to arrive at the instantaneous acceleration for
every particle. The system is then advanced using standard
numerical techniques for solving ordinary differential equations
(typically a fourth-order Hermite integrator). These techniques
have a long and storied history going back more than 60 yr to
the first numerical work by von Hoerner (1960). The modern
generation of codes, such as HiGPUs (Capuzzo-Dolcetta et al.
2013), PhiGRAPE (Harfst et al. 2008), ph4 (McMillan et al.
2012), frost (Rantala et al. 2021), and the well-known
NBODY series (Aarseth 2003, 2012) and its derivatives
(NBODY6++GPU, Wang et al. 2015), contains state-of-the-art
algorithmic and hardware optimizations that enable the
modeling of clusters with N∼ 106 particles. But even with
dozens of parallel GPUs, these models require months or even
years of wall-clock time to integrate a cluster for ∼10 Gyr (e.g.,
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Heggie 2014; Wang et al. 2016; Rantala et al. 2021) and are
limited to systems with low binary fractions, large initial radii,
and relatively long dynamical times. These constraints preclude
any reasonable exploration of the parameter space of massive
star clusters, especially those with the compact initial radii
needed to produce core-collapsed GCs (e.g., Kremer et al.
2019a).

Direct summation N-body methods represent the “gold
standard” of collisional stellar dynamics because of their
unparalleled accuracy. But just as the advent of fiat currency
proved faster, cheaper, and more robust than the gold standard,
faster approaches to collisional stellar dynamics offer many
avenues of scientific study. The orbit-averaged Monte Carlo
method, originally developed by Hénon (1971a, 1971b), is one
such approach. Instead of integrating the orbits of each star
directly, the Monte Carlo method leverages a statistical
treatment of stellar dynamics, where the cumulative effect of
many distant two-body encounters is modeled as a single
effective scattering between neighboring particles. The deflec-
tion angle of this effective encounter is chosen to reproduce the
mean of the averaged change in the velocity per unit time,

v 2( )á D ñ , experienced by a particle traveling through a field of
stars with known density (e.g., Spitzer 1987, Chapter 2). In
doing so, Hénon’s method naturally resolves the two-body
relaxation that drives the long-term evolution of collisional star
systems and has been shown to reproduce the pre- and post-
core-collapse evolution of DSCs for nearly 50 yr (Aarseth et al.
1974; Joshi et al. 2000; Giersz et al. 2013; Rodriguez et al.
2016b; Kremer et al. 2020c). Furthermore, by modeling
collisional dynamics as nearest-neighbor encounters between
radially sorted particles, the Monte Carlo method can also be
expanded to include close encounters between stars and
binaries, a critical component to understanding the post-
collapse evolution of clusters and their production of stellar
exotica such as X-ray binaries (Clark 1975; Pooley et al. 2003;
Kremer et al. 2018a), millisecond pulsars (Rappaport &
Putney 1989; Ye et al. 2019), cataclysmic variables (Grindlay
et al. 1995; Kremer et al. 2021), and binary black hole (BBH)
mergers (Portegies Zwart & Mcmillan 2000; Rodriguez et al.
2015).

Following updates to the method by Stodółkiewicz (1982) to
ensure the stability of long-term integrations, the majority of
work on the Hénon N-body method has been led by two
groups: the Cluster Monte Carlo (CMC) group (Joshi et al.
2000) and the Monte Carlo Cluster Simulator (MOCCA) group
(Giersz 1998). A third code was also developed around the
same time by Freitag & Benz (2001), which introduced new
ways of treating stellar collisions and central-massive black
holes (BHs) with Hénon’s method. While that code is no longer
actively maintained, many of its techniques have since been
incorporated into both CMC and MOCCA. Both codes have seen
significant enhancements and improvements over the past two
decades, with the most recent iterations of the codes being
described in Pattabiraman et al. (2013) and Giersz et al. (2013).
Although there are key differences in the choices of the
dynamical time step and other aspects of stellar evolution and
collisions, CMC and MOCCA contain much of the same physics
and are currently the only codes capable of modeling realistic
populations of DSCs with more than 106 stars and binaries over
many gigayears.

In this paper, we describe the first public release of CMC, an
N-body approach to modeling collisional stellar dynamics with

Hénon’s method. Written in C and designed for distributed-
memory architectures, CMC has been continuously developed
since Joshi et al. (2000) and contains all the necessary physics
for the evolution of massive, spherical DSCs. Key physical
processes, such as two- and three-body binary formation,
strong encounters between stars and binaries (performed with
the small-N direct integrator fewbody; Fregeau et al. 2003;
Fregeau & Rasio 2007), galactic tidal fields (Joshi et al. 2001;
C. L. Rodriguez et al. 2021, in preparation), physical collisions
(Fregeau & Rasio 2007), and post-Newtonian (pN) dynamics
(Rodriguez et al. 2018b), have been incorporated and are
available in the v1.0 release of CMC (Rodriguez et al. 2021a).
The public release of CMC also contains detailed treatments

for single and binary stellar evolution using the COSMIC
population synthesis code (Breivik et al. 2020a). Both CMC and
COSMIC are based on the Binary Stellar Evolution (BSE)
package of Hurley et al. (2000, 2002) and have been
significantly enhanced with new prescriptions for the evolution
of massive stars, binary mass transfer, common-envelope
efficiency, compact object formation, and much more. The
latest version of COSMIC, v3.4, is now pinned as a Git
submodule to CMC, ensuring that any changes to the population
synthesis code are also available in the dynamics code. This
allows for direct, “apples-to-apples” comparisons between
isolated binary evolution and dynamical formation for many
astrophysical sources, such as stellar binaries and high-energy
transients. In Section 2, we review the Hénon method, its
implementation in CMC, and the additional dynamical and
stellar physics included in the code, as well as the assumptions
and limitations of the Monte Carlo method. In Section 3, we
describe features specific to the public release of CMC and the
integration of the COSMIC population synthesis package.
Finally, in Section 4, we show two examples of cluster
evolution: a Plummer sphere of point-mass particles evolved to
core collapse, and several realistic cluster models evolved for
12 Gyr.

2. Dynamics in CMC

Here we review the theoretical basis of the original Hénon
(1971a, 1971b) scheme as it is implemented in CMC. In a
collisional stellar system, particles undergo repeated two-body
gravitational encounters with other particles. These “collisions”
allow energy and angular momentum to be exchanged between
particles and subsequently diffused throughout the cluster, just
as physical collisions diffuse energy throughout an ideal gas
(though, unlike their microscopic counterparts, a star cluster
can never reach thermodynamic equilibrium). In clusters with
relatively few particles (N 103), this process is dominated by
a handful of close encounters with small impact parameters,
producing large deflection angles with every encounter. With
larger N, however, the cumulative effect of many distant
encounters (producing many small-angle deflections in the
particle’s trajectory) begins to dominate the cluster evolution
(e.g., Spitzer 1987). In the large-N regime, the dynamical
behavior of the particles becomes largely predictable using the
techniques of statistical mechanics, forming the basis for the
Hénon method.
The dividing line between these regimes can be understood

as a competition between two timescales: the dynamical time
(the time a particle takes to orbit the cluster at the half-mass
radius), and the relaxation timescale, or the time required for
these distant encounters to change the velocity of the particle

2

The Astrophysical Journal Supplement Series, 258:22 (21pp), 2022 February Rodriguez et al.



by order of itself. The scaling between these two timescales
depends on the size of the cluster (e.g., Binney &
Tremaine 2008):

T
N

N
T

0.1

log
. 1relax dyn ( )»

When Trelax? Tdyn, the cluster is in the weak-encounter regime
and can be thought of as a collection of stars on semi-
independent orbits that slowly diffuse through phase space on a
relaxation timescale.

By itself, two-body relaxation would drive star clusters
toward core collapse, where the inner regions of the cluster
contract as energy is transported by two-body relaxation from
the core toward the outer halo of the cluster. This, in turn,
causes an expansion of the outer regions of the halo and creates
a dynamical “temperature” gradient between the hotter core and
the cooler outer regions. This gradient accelerates the transport
of heat from core to halo, driving the central regions of the
cluster inward and toward the well-known gravothermal
catastrophe (e.g., Lynden-Bell & Wood 1968; Antonov 1985;
Heggie & Hut 2003). But while these distant two-body
encounters drive the cluster to collapse, it is the close
encounters that largely reverse this process. As the core
contracts, the increasing density of objects facilitates the
production and dynamical hardening of binaries, creating an
effective power source that halts the collapse and determines
the long-term evolutionary fate of the cluster. These close
encounters are also largely responsible for the large number of
stellar exotica found in GCs and other DSCs.

In CMC, the dynamics of interparticle interactions are
separated into these two natural categories: (a) the average
two-body relaxation from many weak encounters using
Hénon’s method, and (b) strong encounters, such as binary
encounters and physical collisions. We now describe both of
these.

2.1. Two-body Relaxation

In the Hénon method, the cluster is assumed to be spherically
symmetric and in dynamical (virial) equilibrium. The full 6D
positions and velocities are reduced to 3D: the radial position,
r, of each particle, and its radial and tangential velocities, vr and

vt. Of course, these position and velocities change on a
dynamical timescale as the particle orbits through the cluster
potential. What the Monte Carlo method tracks over time is the
energy (E) and angular momentum (J) of each particle’s orbit,
quantities that are conserved on dynamical timescales.
Combined with the cluster potential, Φ(r), these quantities
fully define an orbit for every particle in the cluster. New r, vr,
and vt are randomly sampled from these orbits at every Monte
Carlo time step.
While E and J do not change on dynamical timescales, the

cumulative effect of many weak encounters drives their
evolution on a relaxation timescale. During a Monte Carlo
time step, we model these weak encounters as perturbations
ΔE and ΔJ to the particle’s energy and angular momentum.
These perturbations are computed as a single effective
encounter between each particle and its nearest neighbor in
radius. In the center-of-mass frame of the two-body encounter,
the magnitude of the particles’ velocities is unchanged, but the
velocity vectors are deflected by some angle β. In this frame,
the energy of the two particles is conserved; however, in the
cluster frame, such encounters exchange energy and angular
momentum. To correctly capture two-body relaxation through-
out the cluster, each of these effective encounters should give
the correct value for the mean change in kinetic energy at each
particle’s position during the time step ΔT. We satisfy this
constraint by computing an effective deflection angle βe for
each particle that results in the correct mean ΔE and ΔJ. See
Figure 1.

2.1.1. Calculating the Effective Scattering Angle

We now proceed to derive the effective scattering angle, βe,
following the logic of Stodółkiewicz (1982) and Joshi et al.
(2000). We begin with an array of particles sorted by increasing
radius from the cluster center such that ri< ri+1. Fundamen-
tally we are interested in the average change in energy and
angular momentum, ΔE and ΔJ, particle i experiences during
some time interval ΔT. We begin by considering the change in
velocity squared, vi

2( )D , for a single two-body interaction
between the star with index i and a field star with mass mf. This
expression can be written in terms of β, the angle of deflection
of particle i, or in terms of b, the impact parameter of the

Figure 1. Schematic diagram of the Hénon method. The cumulative velocity change due to many two-body encounters in a realistic cluster can be calculated given the
average local mass, velocity, and density of stars with Equation (9). In Hénon’s method, this is reduced to a single encounter between nearest-neighbor particles, where
the deflection angle is chosen to reproduce the statistical predictions using Equation (12).
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encounter at infinity, as (e.g., Binney & Tremaine 2008,
Equation (3.54))

⎛
⎝

⎞
⎠

v
m

m m
w

4
sin

2
2i

f

i f

2
2

2
2 2( )

( )
( )b

D =
+

G m

w b b b

4 1

1
, 3

f
2 2

2
90
2

90
2( )

( )=
+

where w= |vi− vf| is the relative speed of the particles at
infinity and b90≡G(mi+mf)/w

2 is the impact parameter that
would deflect the particles by β= 90°.

It is straightforward to extend Equation (3) to describe the
effect of many encounters. The change in velocity over time
due to many weak encounters can be calculated by considering
the field particles encountered by particle i as it travels through
the cluster. The number of particles encountered at an impact
parameter b during an interval ΔT is simply the product of the
local number density of particles, n, and the volume swept out
at that impact parameter. For an infinitesimal annulus with
inner radius b and outer radius b+db, this product is
Nenc= 2πbnwΔTdb, where the length of the cylinder is the
relative velocity of the particles, w, times ΔT. To compute the
contribution of this result over all impact parameters, we
multiply Equation (3) by Nenc and integrate over b from zero to
some upper limit bmax:

v
G n T m

wb

b db

b b

8

1
4i

f b
2

2 2

90
2 0 90

2

max

( ) ·
( )

( )ò
p

á D ñ =
D

+

G n T m w b b4 ln 1 5f
2 2 1

max 90
2[ ( ) ] ( )p= D +-

 G n T m w8 ln . 6f
2 2 1 ( )p D L-

The value of bmax to use in Equation (4) is a well-studied
complication to the theory: on the one hand, in a system with
uniform density, equal octaves of b contribute equally to

vi
2( )á D ñ, meaning that for sufficiently large systems
b b ;max 90 on the other hand, star clusters are finite systems

whose densities eventually fall to zero at some finite radii. In
going from Equation (5) to Equation (6), we have introduced
the well-known Coulomb logarithm, defined as

b

b

w b

G m m
, 7

i f

max

90

2
max

( )
( )L º =

+

and used our assumption of the weak-encounter regime to set
b b b bln 1 2 lnmax 90

2
max 90[ ( ) ] [ ]+ . Λ can be approxi-

mately computed at the half-mass radius of the cluster by
equating b rhmax = and replacing w2 with the mean-squared
velocity from the virial theorem, v Gm r0.45 f h

2á ñ (Binney
& Tremaine 2008, p. 361). For a cluster with N stars of mass
mf, this yields

Nln ln , 8[ ] ( )gL =

with γ; 0.2. However, comparisons to direct N-body simula-
tions have suggested a γ of 0.11 (for equal-mass clusters; e.g.,
Giersz & Heggie 1994), 0.02 (for clusters with realistic mass
functions; Giersz & Heggie 1996), or even 0.01 (the current
default in CMC; Freitag et al. 2006; Rodriguez et al. 2018c), to
be more realistic.

Equations (4)–(6) were computed assuming that every field
star has the same mass and relative velocity, mf and w, with
respect to our test star, mi. In realistic clusters, however, nearby

particles will have a range of masses and velocities, determined
by the distribution function, F(r, v, m). Therefore, to accurately
reproduce the cumulative shift vi

2( )á D ñ from Equation (6), we
must replace the m wf

2 1- factor with

v G n T m w8 ln , 9i f F
2 2 2 1( ) ( )pá D ñ = D Lá ñ-

where we use ... Fá ñ to indicate an average over the local phase-
space distribution function

v vm w F F m w d d dm dm , 10f F i f f i f i f
2 1 2 1 3 3 ( )òá ñ º- -

with Fi= F(ri, vi, mi) and Ff= F(rf, vf, mf).
We now reach the crux of the Monte Carlo method: to get

the angle of deflection β in terms of these quantities—and the
correct mean value of m vi i

2( )D —we equate the right-hand side
of Equation (9) to the right-hand side of Equation (2):

⎛
⎝

⎞
⎠

m w

m m

G n T m w

4
sin

2

8 ln , 11

f

i f
F

e

f F

2 2

2
2

2 2 1

( )

( )

b

p

+

= D Lá ñ-

where we have replaced a single deflection angle, β, with an
effective deflection angle, βe, and replaced the mass and
velocity terms with their averaged equivalents. We now solve
for βe, which involves averaging the mass and velocity
quantities over the relevant distribution functions. However,
as Hénon (1971a) pointed out, the most straightforward way to
sample the distribution function near star mi is to pick the mass
and velocity of its nearest neighbor, mi+1. While this is not the
same as a true average, the nearest neighbor represents a fair
draw from the mass and velocity distributions and would
reproduce the true distribution function after a sufficient
number of time steps. Dispensing with the distribution function
averages and substituting mf→mi+1, Equation (11) becomes

⎛
⎝

⎞
⎠

G m m

w
n Tsin

2

2
ln . 12e i i2

2
1

2

3

( ) ( )b p
=

+
LD+

The only quantity that must be explicitly averaged is the local
volumetric density of particles, n. In CMC, this is done with a
moving average over 41 stars, from i− 20 to i+ 20 for each
star i.
For computational convenience, Equation (12) is more easily

expressed in terms of “relaxation timescale” between particles i
and i+ 1:

⎛
⎝

⎞
⎠

T

T
sin

2 4
, 13e

irel,
( )b p

=
D

where

T
w

G n m m32 ln
14i

i i
rel,

3

2
1

2( )
( )p

º
+ L+

is the typical time required for a particle to be deflected by 90°
(Freitag & Benz 2001). Note that, in practice, we clamp the
maximum βe between any two particles at 90°.

2.1.2. Calculating New E and J

With βe computed for each pair of particles, we now convert
these pairwise deflection angles into ΔE and ΔJ for each orbit.
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We follow Hénon’s original approach, placing our two-body
encounter into 3D space. We denote the phase-space
coordinates of the two interacting particles by (ri, vr,i, vt,i) and
(ri+1, vr,i+1, vt,i+1), with masses mi and mi+1, respectively. We
choose our reference frame such that the z-axis is parallel to ri
and the (x, z)-plane contains vi. In Cartesian coordinates, the
two particle velocities are then

v
v

v v

v v v

, 0, ,

cos , sin , , 15
i t i r i

i t i t i r i

, ,

1 , 1 , 1 , 1

( )
( ) ( )f f

=
=+ + + +

where f is a uniform random variate in the range [0, 2π], since
spherical symmetry guarantees isotropic transverse velocities.
The relative velocity is then

w v v
v v v v vcos , sin , . 16
i i

t i i t t i r i r i

1

, 1 , , 1 , 1 ,( ) ( )f f
º -
= - -

+

+ + +

We now define vectors w1 and w2 with magnitude equal to
|w|, such that w1×w2=w. In this right-handed coordinate
system, we have

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

w

w

w w

w

w w

w

w w

w

w w

w
w

, , 0 ,

, , , 17

y

p

x

p

x z

p

y z

p
p

1

2 ( )

º
-

º
- -

where w w wp x y
2 2= + . Since the distribution of field stars is

assumed to be spherically symmetric, we randomly select the
angle ψä [0, 2π] between the plane of relative motion, defined
by (ri+1− ri, vi+1− vi), and the plane containing w and w1. The
relative velocity after the encounter, wnew, is then

w w w
w
cos sin cos

sin sin , 18
e e

e

new
1

2 ( )
b b y

b y
= +

+

where βe is the effective scattering angle of Section 2.1. The
post-interaction particle velocities in the cluster frame, vi

new and
vi 1

new
+ , become

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

v v w w

v v w w

m

m m

m

m m

,

. 19

i i
i

i i

i i
i

i i

new 1

1

new

1
new

1
1

new

( )

( ) ( )

= -
+

-

= +
+

-

+

+

+ +
+

Since we set the z-axis parallel to ri, the new radial and
transverse velocities for the first particle are v vr i z i,

new
,
new=

and v v vt i x i y i,
new

,
new 2

,
new 2( ) ( )= + . The new specific orbital

energy and specific angular momentum are then Ei =
r v vi r i t i

1

2 ,
new 2

,
new 2( ) (( ) ( ) )F + + and J r vi i t i,

new= , respectively,
and similarly for the i+ 1 particle.

2.2. Strong Interactions

Layered onto the basic two-body relaxation calculation is the
possibility for strong interactions to occur between neighboring
particles at each time step. Strong interactions can be separated
into two groups: single–single interactions (which include
physical collisions, tidal disruptions, tidal captures, and
gravitational-wave captures of pairs of BHs) and binary
interactions involving one or two binaries (integrated directly
using fewbody). Strong interactions are sampled following

the method of Freitag & Benz (2002; see also Fregeau &
Rasio 2007), where we evaluate the quantity

P nw T 20strong strong ( )= S D

between each pair of neighboring stars and binaries. Here
Pstrong is the probability for a strong interaction with cross
section Σstrong to occur, n is the local number density of stars, w
is the relative velocity of the pair of objects at infinity
(computed in the same coordinate system as Section 2.1.2), and
ΔT is the time step. Accounting for gravitational focusing,
Σstrong can be written as

⎜ ⎟
⎛
⎝

⎞
⎠

r
GM

r w
1

2
, 21p

p
strong

2
2

( )pS = +

where M is the total mass of the pair of interacting objects and
rp is the maximum distance of pericenter along a hyperbolic for
each strong encounter to occur. At each time step, a random
number X is drawn from a uniform distribution between 0 and
1. If X< Pstrong, a strong interaction occurs; otherwise, the
particles undergo standard two-body relaxation.
The value of rp is determined by the type of interaction, as

described in the following subsections. We note that both the
strong encounters described here and the binary formation
considered in Section 2.3 are actually performed before two-
body relaxation is considered in CMC. Any particles that
participate in strong encounters do not participate in two-body
relaxation during the same time step. This is because, on a
relaxation timescale, the change in a particle’s orbit due to a
strong encounter occurs instantaneously and is often signifi-
cantly greater than the gradual changes due to two-body
encounters. These large changes in velocity render the
calculation in Section 2.1.1 invalid, since the relative velocity
between field and test stars is no longer constant over a given
time interval. However, because our time step is chosen as the
minimum of the relaxation and strong encounter timescales (the
latter of which is typically much smaller than the former), the
deflection by two-body relaxation during a time step where a
strong encounter occurs is typically minimal. See Section 2.8.

2.2.1. Single–Single Collisions

For collisions between single stars, CMC operates under the
sticky-sphere approximation, where any two particles that
touch radii are assumed to have collided. The cross section for
a pair of single stars with masses mi and mi+1 and radii Ri and
Ri+1 can be expressed as

⎜ ⎟
⎛
⎝

⎞
⎠

R R
GM

R R w
1

2
, 22i i

i i
coll 1

2

1
2

( )
( )

( )pS = + +
+

+
+

where M=mi+mi+1.
For main-sequence and/or giant stars, we adopt the classic

sticky-sphere approximation, where zero mass is lost during the
collision. The mass of the collision product, mnew, is simply
computed as mi+mi+1, with the new evolutionary phase of the
star determined self-consistently using the stellar evolution
prescriptions in COSMIC. In GCs, where the relative velocity
of a pair of stars is typically much less than the escape velocity
at the surface of the star, this approximation is reasonable (e.g.,
Lombardi et al. 2002). For compact objects, however, we
employ more conservative assumptions for the mass retained
by merger products. For collisions of white dwarfs (WDs) with
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other WDs, main-sequence stars, or giants, we follow the
prescriptions described in Hurley et al. (2002, Section 2.7). As
described in Kremer et al. (2019b), when a main-sequence star
or giant collides with a BH/neutron star (NS), we assume that
the accretion feedback supplies sufficient energy to unbind the
stellar material from the system completely. In this case,
negligible mass is accreted and the mass of the BH/NS is
unchanged after the collision. We note that this is an extremely
conservative assumption, particularly if the star is significantly
more massive than the BH or NS. However, in practice such
collisions are rare in most typical GC models; see Section 4.3.

2.2.2. Binary Interactions

The maximum pericenter distance at which a dynamical
binary interaction may occur is given by r ap bin=  (for three-
body encounters between a star and a binary with semimajor
axis a) or r a ap bin 1 2( )= + (for four-body encounters
between two binaries with semimajor axes a1 and a2). Here

bin is a free parameter chosen so that all binary encounters of
interest (i.e., those encounters that are energy generating) are
captured. An arbitrarily large value of bin would capture all
binary encounters (the majority of which will be weak flybys);
however, this would come at increased computational cost, as
the global time step would shrink significantly to resolve these
encounters (see Section 2.8). As described in Fregeau & Rasio
(2007), we adopt a fiducial value of 2bin = , a compromise
between capturing all possible encounters and computational
cost. We note that this choice limits the number of weak flyby
encounters that can occur in the cluster. While these encounters
do not typically change the energy of the binaries (and are
therefore irrelevant for the long-term evolution of the cluster),
they can slowly alter the binary angular momentum, driving the
system to higher eccentricities that will eventually result in
mass transfer and even mergers (e.g., Rasio & Heggie 1995;
Hamers & Samsing 2019). Efforts to model this in CMC are
currently underway.

For binary–single encounters, we assume that the test star is
a binary and calculate the probability for it to encounter a single
object following Equation (20). For binary–binary encounters,
we should formally replace the n in Equation (20) with nbinary.
However, the probability for binary–binary encounters to occur
is only considered whenever the field star is also a binary, and
the probability of that being true for any given particle is
proportional to the density of binaries over the density of all
objects, or nbinary/n. By allowing binary–binary encounters to
occur only for neighboring binaries, the probability from
Equation (20) is implicitly multiplied by nbinary/n in true Monte
Carlo fashion.

Binary encounters are integrated directly using the small-N
scattering code, fewbody. These encounters depend on the
relative velocity, w, of the pair of interacting objects (singles or
binaries) and the impact parameter at infinity, b, which is
sampled uniformly in annulus from a disk with maximum
radius set by Equation (21). All interactions are integrated until
they reach either an unambiguous end state or a maximum
integration time (either 106 dynamical times of the encounter or
1 minute of CPU wall-clock time). Encounters that do not
resolve into steady systems within these limits are discarded
and treated as a standard two-body relaxation. See Fregeau &
Rasio (2007) for details.

The version of fewbody in the public release of CMC also
contains pN corrections to the equations of motion, including

the 2.5pN term responsible for GW emission during close
encounters (Antognini et al. 2014; Amaro-Seoane &
Chen 2016; Rodriguez et al. 2018a, 2018b). By default, the
2.5pN term is included in the equations of motion when at least
two BHs are present in an encounter. Note that, to
accommodate the additional integration time required to
resolve the inspiral and merger of BHs, the wall-clock time
limit for these encounters is increased to 10 minutes when pN
terms are included. We do not include the 1pN and 2pN terms
in the integration by default, since they make energy
conservation within the encounters impossible to track with
the standard implementation of fewbody (see Rodriguez et al.
2018a, Figure 2, top panel) and have been shown to have no
impact on the distribution of merging BBH eccentricities
(Zevin et al. 2019).
One possible outcome of a binary–binary encounter is a

stable hierarchical triple (e.g., Mikkola 1983; Rasio et al. 1995;
Fragione et al. 2020b; Martinez et al. 2020). As described in
Fregeau & Rasio (2007), if such a triple forms within a CMC
simulation, we break the triple by unbinding the single star and
inner binary, distributing its energy to nearby particles in the
cluster. Additionally, because these fewbody encounters are
performed in isolation (that is, without tidal forces from nearby
particles), they can form pathologically wide binaries with
separations larger than the typical interparticle distance. We
destroy any such binaries (defined as having semimajor axes
greater than 10% of the average local interparticle separation)
and distribute their binding energy to nearby particles.

2.2.3. Collisions during Binary Interactions

Scattering encounters between stars and binaries can
enhance the rate of stellar collisions by orders of magnitude
(e.g., Verbunt & Hut 1987), largely due to close passages that
can occur during chaotic resonant encounters (e.g., Hut &
Inagaki 1985; McMillan & Hut 1996). Furthermore, hydro-
dynamical simulations have suggested that when a collision
does occur, the merger product can have a radius anywhere
from 2 to 30 times larger than the sum of the two parent stars’
radii (Lombardi et al. 2003). This increase in the collisional
cross section also increases the probability that the merger
product will merge with another star during the same scattering
encounter (e.g., Fregeau et al. 2003). To account for this in
fewbody, we modify the standard sticky-sphere approx-
imation as follows: whenever two stars merge, their merger
product is assigned a mass equal to the sum of the two
component masses, while the new radius is set to
f R Rexp 1 2( )+ , where fexp is a constant factor (3, by default).
The encounter is then allowed to continue to determine whether
the objects will merge again. Whenever multiple collisions
occur in a single encounter, we record the order of the
collisions, and once the encounter is complete, the stars are
then merged one at a time (in that same order) using the
prescriptions in Section 2.2.1.
For BH–BH collisions, we set the collision radius to be 5

times the sum of the Schwarzschild radii of the two BHs (10M
in G= c= 1 units, where M is the sum of the two BH masses);
this ensures that fewbody is operating in a regime where the
pN expansion is valid. For BBH mergers it is useful to know
what the properties of the merging BHs were just prior to
merger (e.g., eccentricity). Because the orbit of inspiraling
BBHs is highly non-Newtonian at 10M, we record the
(Newtonian) semimajor axes and eccentricities of merging
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binaries at separations of 10M, 50M, 100M, and 500M. This
allows the orbit to be integrated forward in post-processing to
determine the eccentricity of the binary at a given GW
frequency. Typically, the user should select the largest
separation where the two BHs are bound, in order to minimize
the error introduced by fitting to a Newtonian orbit (see
Rodriguez et al. 2018a, Figure 2, bottom panel).

Unlike the traditional sticky-sphere approximation, the
behavior of BBH merger products is modeled using detailed
fitting formulae from numerical relativity simulations, with the
final mass, final spin, and recoil kick being calculated from the
set of formulae collected in Gerosa & Kesden (2016). When a
merger occurs during a fewbody integration, the new BH
mass and spin are set using these formulae, and the recoil kick
is applied to the new merger product using the binaryʼs orbital
angular momentum vector to determine the coordinate system
for applying the kick. This is useful for modeling the possibility
of multiple BH mergers during a single scattering encounter, as
well as the post-encounter orbital motion of any binaries in the
cluster. See Rodriguez et al. (2018a, 2018b) for details. Note
that these prescriptions for BH mass, spin, and recoil kick are
also applied to any BBHs that merge inside the cluster.

2.3. Binary Formation

While star clusters are likely born with a nonnegligible
fraction of their stars in binaries (e.g., Ivanova et al. 2005;
Milone et al. 2012), they can also dynamically produce binaries
many Myr after their initial phase of star formation is complete.
Modeling this physics correctly is critical to understanding the
long-term evolution of DSCs.

2.3.1. Three-body Binary Formation

Two-body encounters cannot create bound binaries from
single stars (at least for Newtonian point masses) without some
way to dissipate energy from the encounter. But if a two-body
encounter occurs in the presence of a third body, excess kinetic
energy can be carried away by the interloping particle, leaving
behind a gravitationally bound system. While this process can
involve more than three particles (e.g., Tanikawa et al. 2013),
CMC uses a probabilistic treatment of three-body binary
formation (Morscher et al. 2013) based on the formalism from
Ivanova et al. (2005, 2010) and O’Leary et al. (2006).

Before either two-body relaxation or strong encounters are
considered, the sorted list of stars is parsed three at a time, and
the rate of binary formation for two objects of masses m1 and
m2 from interactions with a third star (m3) is calculated as
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where n is the local stellar density of the cluster at that point,
w 4 3s pá ñ = is the average relative velocity at infinity for
two particles in a Maxwellian distribution, and σ is the local 3D
velocity dispersion. The rate is computed as a function of the

binary hardness ratio, defined as

Gm m

a m
, 24i i 1

2
( )h

s
º

á ñ
+

where a is the semimajor axis of the hypothetical binary, má ñ is
the average local mass, and σ is the average local velocity
dispersion, both computed over the closest 20 particles to the
encounter. Note that this is half the number of particles used for
computing the averages in Section 2.1.1, since three-body
binary interactions are a fundamentally local process. Since
only hard binaries are expected to survive long enough to
influence the long-term evolution of the cluster, we only form
binaries with a minimum hardness of 5minh = . By default,
CMC only considers three-body binary formation for neighbor-
ing triplets of BHs in the cluster. Both of these choices are
available as user parameters in CMC.
We note that Equation (23) differs from the original

presentation in Ivanova et al. (2005, 2010) in two key ways.
In Ivanova et al. (2005) the rate of three-body binary formation
depends on the distinct number densities of the three masses.
We simplify the expression here by replacing n2, n3, and
nc—the number densities of m2, m3, and the overall cluster core
—with n, the local number density of the cluster. But for a
given BH, we only consider Γ3bb whenever both adjacent field
stars are also BHs, meaning that in Monte Carlo fashion the
probability calculated from Equation (23) is implicitly multi-
plied by n nBH

2( ) (or n2n3/n
2 for particles with different

masses); see also the discussion regarding binary–binary
encounters in Section 2.2.2. In practice, the majority of three-
body binary formation occurs in the BH-dominated region of
the core (even when three-body binaries are allowed to form
from any stars), meaning that nc≈ n2≈ n3≈ nBH for most
triple encounters.
The second key difference concerns the relative velocities:

when computing Equation (23), we use wá ñ, the averaged
relative velocity between two particles. But the original
expression from Ivanova et al. (2005) also contains the terms
v w12 á ñ, where v12 is the relative velocity between m1 and m2,
and v w3 á ñ, where v3 is the relative velocity between m3 and
the m1/m2 center of mass. For computing the probability of
binary formation, we assume w v v12 3á ñ = = for computational
convenience. However, when a binary is formed, we explicitly
calculate v12 and v3 using the same coordinate system presented
in Section 2.1.2. This is necessary to determine the relevant
energies of the encounter and to sample the correct distribution
of η for that binary. We draw a random η between minh and 50

using the normalized distribution given by d

d
3bb

h
G , and we use this

to determine the semimajor axis of the new binary (the
eccentricities are assumed to be thermal). The relative
velocities of the binary’s center of mass and the third particle
are then adjusted to conserve energy.

2.3.2. Two-body Binary Formation

While two-body binary formation is impossible when the
two masses are Newtonian point particles, relaxing either of
those assumptions can allow for binaries to form during close
two-body encounters. If at least one of the masses has a
nonnegligible radius (i.e., is not a WD, NS, or BH), close
encounters can raise tides on one (or both) of the objects,
allowing kinetic energy to be deposited into the structure of the
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stars themselves (e.g., Fabian et al. 1975). If this energy
exceeds the overall kinetic energy of the encounter, the two
stars can form a binary through tidal capture. We assume
polytropic stellar models for the main-sequence stars under-
going tidal capture processes and use polytropic index n= 1.5
for low-mass main-sequence stars (<0.7Me) and n= 3 for
higher-mass main-sequence stars. The calculations of the
induced oscillation energy of the main-sequence stars and the
cross sections during tidal capture follow prescriptions in
Portegies Zwart & Meinen (1993) and Kim & Lee (1999),
respectively. We track the first passage of a single–single close
encounter. If a star is tidally captured after this passage, we set
the binary semimajor axis to be twice the pericenter distance
immediately after tidal capture, assuming angular momentum
conservation. Note that giant stars are not included for tidal
capture because of the highly uncertain reaction of their
envelopes to the tidal force. In addition to tidal capture, if a
compact object or a main-sequence star collides with a giant
star during single–single interactions, the compact object/
main-sequence star can form a binary with the giant core by
transferring the orbital energy to the giant envelope and
ejecting it. We treat main-sequence stars as point mass during
this process and calculate the cross sections and final binary
properties from the giant collisions using Equations (4)–(6) in
Ivanova et al. (2006). See C. S. Ye et al. (2021, in preparation)
for a complete description of these processes.

If instead of extended point particles we relax the Newtonian
assumption, it becomes possible to form binaries through GW
emission during close encounters (as occurs during BH mergers
in fewbody). In CMC, the maximum pericenter distance where
the GW emission of the two BHs carries away sufficient energy
to take the two particles from unbound (positive total energy) to
bound (negative total energy) is calculated as (Quinlan &
Shapiro 1987)
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BH binary formation via GW emission is decided probabil-
istically following a similar procedure to the collisions
described in Section 2.3.1, using the above value of rp in
Equation (21). When a binary is formed, its impact parameter at
infinity is sampled uniformly within the area of its capture cross
section. The semimajor axis and eccentricity are calculated
from conservation of energy and angular momentum, account-
ing for the loss due to GW emission. Many of these binaries are
extremely wide (with semimajor axes of hundreds of AU or
more), but their similarly extreme eccentricities (e 0.99)
mean that they may still merge before they interact with
neighboring particles. For these BBHs, we compare the
timescale for GW emission to drive the binary to merge. We
then compute the rate for this binary to encounter other stars
using Equations (36) and (38) (albeit with the actual mass and
semimajor axis of this binary, instead of the averaged
quantities), and in true Monte Carlo fashion, we draw a
random encounter time from an exponential distribution with
that rate. If the encounter occurs before the BBHs would merge
and the binary is pathologically wide (as described in
Section 2.2.2), then the binary is disrupted. Otherwise, its
semimajor axis and eccentricity are evolved by integrating the
orbit-averaged equations for da

dt
and de

dt
from Peters (1964).

2.4. Stellar Evolution

CMC evolves every star and binary in the cluster forward by
time step ΔT using detailed prescriptions for stellar evolution.
These prescriptions, originally from Hurley et al. (2000, 2002),
have been significantly updated over many years and form the
basis for the COSMIC population synthesis package, which is
now directly integrated into CMC. See Section 3.1, Chatterjee
et al. (2010), and Breivik et al. (2020a) for more details.
We perform stellar evolution in CMC after the dynamical

encounters have taken place, but before the new cluster
potential and orbits are computed. This is to ensure that any
dynamical changes to individual stars and binaries (particularly
collisions and mass transfer in post-encounter binaries) can be
accounted for using the same stellar physics, but before the new
cluster orbits are calculated. Collisions in fewbody, where
multiple stars can potentially collide during a single encounter,
are passed to the stellar evolution module in the same order that
they occur after the encounter is complete; see also
Section 2.2.3.

2.5. New Positions and Velocities

At the end of every Monte Carlo time step, a new position
and corresponding velocity are chosen for each particle by
randomly sampling a point on its orbit, weighted by the amount
of time the particle spends at that point along its orbit. We do
so by first computing the orbital pericenter rmin and apocenter
rmax as the two roots of the energy equation:

Q r E r J r2 2 0. 262 2( ) ( ) ( )= - F - =

The probability P(r) of finding the particle at a position r
within interval dr is proportional to the time the particle spends
traversing dr. Therefore,

P r dr
dt

T

dr v

dr v
, 27r

r

r
r

min

max
( ) ∣ ∣
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( )

ò
= =

where T is half the orbital period and v Q rr∣ ∣ ( )= . We draw a
random sample from P(r) and use the resultant rnew as the
particle’s position for the next time step. Note that P(r)∝ 1/|vr|
becomes infinite at the turning points of the orbit, where
|vr|= 0. Changing coordinates by defining a suitable function
r= r(s) solves this problem (see Section 2.6 of Joshi et al.
2000). We must also set a new velocity consistent with the new
orbital position: the new radial velocity is given magnitude
v Q rr

new
new∣ ∣ ( )= with a randomly selected sign, while the

new transverse velocity is given by V J rt
new

new= . Once the
new positions and velocities have been calculated, the particles
are then resorted in order of radial distance.

2.6. Escaping Particles

After new positions and velocities have been sampled, we
remove any particles that are no longer bound to the cluster.
For clusters in isolation, this is accomplished by removing any
particles with positive energy after the dynamics and sorting
steps are complete. Such objects are routinely formed during
strong encounters (which can eject particles from the central
regions of the cluster) or through standard two-body relaxation,
as many particles will slowly diffuse to positive energies.
CMC can also model clusters that are tidally limited,

assuming the clusters to be on circular orbits within their
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galaxies. For a cluster of mass MC on a circular orbit about the
center of a point-mass galaxy, the tidal boundary of a cluster, rt,
can be calculated as

⎜ ⎟
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where MG is the mass of the galaxy and RG is the distance from
the cluster to that galaxy (e.g., Spitzer 1987). Although
sometimes called the Jacobi radius in stellar dynamics,
Equation (28) is identical to the calculation of the Roche
surface in binary stellar physics. As the cluster loses mass, the
initial tidal boundary (specified by the user) decreases at a rate

MC
1 3µ , following Equation (28).15

Of course, the Jacobi surface is not spherical; rt actually
represents the location of the Lagrange points along the line
from the cluster to the galactic center. Since the Hénon method
assumes the cluster to be spherically symmetric, approximate
methods must be used to determine whether a star is stripped
from the cluster by the galactic potential. CMC uses an energy-
based criterion (Giersz et al. 2008) that removes any star with
an energy above the potential at the tidal radius

E r , 29t( ) ( )a> F

where the parameter α is given by

⎛
⎝

⎞
⎠N

1.5 3
ln

. 30
1 4

( )a = -
L

As previously, N is the initial number of stars in the cluster and
lnL is the Coulomb logarithm from Equation (8). Numerical
testing (Giersz et al. 2008; Chatterjee et al. 2010) has shown
that Equation (29) produces significantly better agreement with
direct N-body simulations than simply stripping stars with
apocenters beyond the tidal boundary.

2.7. Potential Calculation

Because we assume the cluster potential to be spherically
symmetric, computing it is straightforward. The potential at
point r, located between two particles at ri and ri+1, is given by
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where M mi j
i

j1º å = is the total mass interior to star i.
While Equation (31) is formally correct, it is computationally

expensive to evaluate whenever the potential at an arbitrary
radius is required (such as when computing new orbital
positions). However, we can accelerate this process by
evaluating the potential at every particle, Φi, and interpolating
the potential between that particle and its nearest neighbor,
Φi+1. Because the stars are already sorted by radius, the
potential at each particle can be computed recursively from the

outermost star inward with
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where M mN i
N

i1= å = is the total mass and Mi−1=Mi−mi.
With Φi evaluated for every particle in the cluster, the potential
at any radius ri< r< ri+1 can be expressed as
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The potential at any r is then computed by finding the index i
such that ri� r� ri+1 and applying Equation (32).

2.8. Global Time Step Selection

In CMC, the time step ΔT is computed as the minimum of
several important physical timescales. The first such timescale
is the local average relaxation timescale—the average time to
deflect a particle by angle e

maxb within a certain localized
region of the cluster. Following Equation (14), we define this as
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where e
maxb can be set by the user, with larger e

maxb
corresponding to larger relaxation time steps. By default,
CMC sets 2e

maxb = (though we typically use 1e
maxb = for

systems of point masses). Whereas Trel,i is defined for pairs of
particles i and i+ 1, T irel, is a broader rolling average over
particles centered on particle i. The local number density n is
calculated using the same rolling average as in Equation (12),
with similar rolling averages used to compute m2á ñ and the
relative velocity between two particles, wá ñ (calculated from the
averaged 3D velocity dispersion, assuming a locally Maxwel-
lian velocity distribution). To accurately capture the overall
relaxation dynamics, we require that T T irel,D < for all i
particles. In Freitag & Benz (2001, Equation (11)), this was
accomplished by selecting a time step in each radial bin that
was smaller than T irel, by a factor of 0.005–0.05. In CMC, we
instead choose a single relaxation time step for the entire
cluster, taken to be the minimum T irel, for all particles i. This
choice ensures that our global time step is sufficiently short for
all particles and to resolve the complicated dynamics in the
cluster core, while making the parallelization of the code
significantly easier; see Pattabiraman et al. (2013).
In addition to the relaxation timescale, we also compute

characteristic timescales for collisions (Tcoll), binary–binary
encounters (Tbb), and binary–single encounters (Tbs). In
general, the rate of collisions can be found by integrating the
cross section for strong encounters over the distribution
function of velocities for the two particles (Freitag &
Benz 2002; Binney & Tremaine 2008):

v v v v
n

F F w d d
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, 35i i i istrong 1 strong
3 3
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where, as before, F is the distribution function (ignoring the
mass and position), v vw i i1∣ ∣= -+ is the relative velocity, and
Σstrong is taken from Equation (21). Assuming a Maxwellian

15 While Equation (28) is only correct for a point-mass galactic potential, the
MC

1 3 scaling is correct for any circular orbit in a spherical potential (e.g.,
Renaud et al. 2011), meaning that this approach is always correct provided that
the orbit remains circular and the correct initial rt is specified.
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distribution for the velocity distribution, Equation (35) can be
evaluated as (e.g., Binney & Tremaine 2008, p. 626)
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and the relevant timescale between encounters is simply
Tstrong strong

1= G- . The timescales of relevance to CMC are then
(see Fregeau & Rasio 2007, for details)
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where all of the averaged quantities above, including the
number densities of single and binary stars, ns and nbin, and the
velocity dispersion σ, are computed over the innermost 300
particles in the cluster (i.e., the central regions of the core).
Note that if no binaries are present within these 300 stars, Tbs
and Tbb are set to infinity for that time step. Conversely, if only
binaries are present, then Tbb is computed normally, while Tbs
is set to infinity.

Finally, while the stellar evolution package has its own
internal time step, the mass loss from stars can drive significant
dynamical changes in the cluster, particularly in the early stages
of evolution. We compute a relevant timescale for stellar
evolution based on the total fraction of mass lost in the
previous time step:

⎜ ⎟
⎛
⎝

⎞
⎠

T
M

M
T0.001 , 40se

cl

se
prev ( )=

D
D

where Mcl is the total cluster mass, ΔTprev is the previous time
step, and ΔMse is the mass lost during the current time step.
CMC uses the minimum individual time step from
Equations (34)–(40) as the global time step for the cluster.
However, we note that for a typical cluster model (such as
those presented in Section 4.2), the central relaxation timescale
is the smallest of the relevant timescales for more than 96% of
the time steps within the first 100Myr.

2.9. Energy Conservation

Finally, to ensure energy conservation, a correction must be
made to the energies of the stellar orbits. While the two-body
relaxation of the Hénon method intrinsically conserves energy,
the process of calculating new orbits and sampling positions
and velocities is done after dynamical encounters have altered
the energy and angular momenta of each orbit, but before the
potential has been updated to account for the changes in the
orbits. In other words, the Φ in Equation (31) is perpetually one
time step behind the new E and J, allowing this time-dependent
shift in the potential to do work on the particle. While the
energy error during a single time step is negligible, this effect
can become significant during long-term integrations, leading
to a spurious drift in the energy of the cluster.

To counter this, we adopt the energy conservation scheme
first developed by Stodółkiewicz (1982) in his update of the

method. First, note that the change in energy for a single
particle is expressible as

E
U r

t
dt. 41i

icorr ( ) ( )òD =
¶
¶

Since we are interested in the work done by the change in
potential between the previous and current time steps,
Equation (41) can be approximated as the average of the
change in potential energy between the positions of the particle
at the previous and current time steps:

U r

t
dt r r 2, 42i

i i
prev curr /

( ) [ ( ) ( )] ( )ò
¶
¶

= DF + DF

where ΔΦ≡Φcurr−Φprev. To implement this conservation
scheme, CMC records the four relevant energies for each
particle every time step— ri

prev prev( )F , ri
prev curr( )F , ri

curr prev( )F ,
and ri

curr curr( )F —and uses them to compute Ei
corrD for each

particle. The velocity magnitudes for each particle are then
scaled to increase or decrease the particle’s kinetic energy by

Ei
corrD (while maintaining the ratio of transverse to radial

velocities as determined by the Hénon method), ensuring that
the cluster conserves energy over many relaxation times.
In addition to the energy drift, a second issue arises from

calculating stellar orbits for the current time step using the
potential from the previous time step. For any given particle,
the potential includes the contribution of that same particle at
its last position in the cluster, and when the new orbit is
calculated, it includes this spurious “self-force” from the
previous time step. While this effect is relatively minor for
clusters with equal-mass particles, it can be significant in
clusters with a realistic mass spectrum, particularly when the
most massive particles (e.g., BHs) are concentrated in the
cluster center, where only a handful of particles determine the
potential (Freitag & Benz 2001; Fregeau & Rasio 2007).
To solve this, we add a correction term to remove the

particle’s own contribution to the previous potential at its
previous position:

⎧
⎨⎩

r
GM r r r

GM r r r

,

.
43

i i

i i i
sf

prev

prev prev( ) ( )F =
<


This self-force correction, Φsf(r), is added to the energy
Equation (26) when the new radial positions are sampled from
the particle orbits (Section 2.5).

2.10. Limitations of the Method

The Monte Carlo method, and Hénon’s method in particular,
has been used for 50 yr for the study of DSCs, starting with the
initial papers by Hénon (1971a, 1971b). The technique was
reintroduced with improvements by Stodółkiewicz (1982), and
it is this version that most modern implementations
(Giersz 1998; Joshi et al. 2000; Freitag & Benz 2001; Sollima
& Mastrobuono Battisti 2014) are based on. While Monte
Carlo methods have enjoyed great success in the modeling of
DSCs, that success relies on a series of assumptions that we
have implicitly or explicitly made in Section 2. We now briefly
describe each of these assumptions and the limitations they
impose on the method.
Underlying nearly all of the formal averages and encounter

rates presented in Section 2 is Boltzmann’s molecular chaos
assumption, where we have assumed that the distribution
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functions of our test stars and field stars are independent and
separable. This assumption is explicitly used in Equations (10)
and (35), where we assume that the joint distribution function
for particles i and i+ 1 can be written as

v v v vF F F, . 44i i i i1 1( ) ( ) ( ) ( )=+ +

Equation (44) can be justified in the following way: since equal
octaves of impact parameter contribute equally to Equation (4),
the majority of two-body encounters will occur at

 b b b90 max. Because of this, it is highly unlikely for
two particles in a sufficiently large cluster to encounter each
other more than once within their lifetimes, or at least before
other encounters have “reset” the velocities of the two particles.
While this assumption is valid for large-N systems, it does
mean that the Monte Carlo method cannot resolve resonant
effects between particles, such as scalar resonant relaxation
(Rauch & Tremaine 1996) around central-massive BHs or
resonant behavior between heavy objects in the centers of GCs
(Meiron & Kocsis 2019).

The assumption of large N is also employed when computing
the two-body diffusion of v 2( )D . When computing
Equation (6), we assumed b b 1max 90L = , which allowed
us to substitute ln 1 2 ln2( ) ( )+ L L and neglect any higher-
order contributions to the change in velocity, e.g., vi

4( )á D ñ.
This neglect of the higher-order terms is known as the Fokker–
Planck approximation and is largely justified because any terms
beyond second order are at least a factor of ln 1( )L - smaller
than the v 2( )á D ñ term (Henon 1973; Binney & Tremaine 2008).
This is also related to our assumption of orbit averaging, where
we assumed that N is sufficiently large that Trelax? Tdyn in
Equation (1), allowing us to treat the orbits as essentially fixed
on dynamical timescales.

Naturally, one may ask how large must N be for the above
assumptions to be valid. While hard to derive explicitly,

N
m

m
10 453 max ( )

á ñ


has been shown to be a decent working criterion (Freitag 2008).
Note that this criterion depends on the ratio between the largest
mass in the cluster, mmax, and the average stellar mass, má ñ. For
clusters with realistic initial mass functions (IMFs), the ratio
can be as large as 100:1 (once stellar evolution has reduced the
mass of the most massive stars). In our experience, N must be
105 initially for such clusters to show acceptable energy
conservation and good agreement with direct N-body results
(Chatterjee et al. 2010).

Hénon’s method also assumes that the cluster is spherically
symmetric. This assumption is not explicitly related to the size
of the cluster or the relaxation timescale, but it is necessary for
computing new particle orbits, determining nearest neighbors,
and computing the potential. While this is an appropriate
assumption for many GCs and some NSCs, this does mean that
clusters with net angular momentum (e.g., rotating GCs, if the
rotation creates a significant departure from spherical symme-
try) or triaxial stellar distributions (e.g., NSCs that have
recently undergone a merger) cannot be modeled with CMC. To
address this, similar techniques, referred to as orbit-following
Monte Carlo methods, have been developed that explicitly
follow the orbits of stars in arbitrary potentials on a dynamical
timescale, either by directly integrating the orbits in a
given potential (the so-called Princeton Monte Carlo, of

Spitzer & Hart 1971; Spitzer & Thuan 1972) or by tracking
the diffusion of orbits over an integer number of orbital periods
(the so-called Cornell Monte Carlo of Marchant & Sha-
piro 1980). These techniques have been used extensively for
the study of triaxial NSCs and central-massive BH dynamics
(see, e.g., Hopman 2009; Madigan et al. 2011; Vasiliev 2015,
for recent examples). We note that the assumption of spherical
symmetry does not mean that we have assumed the velocities
to be isotropic. CMC can model systems with significant
velocity anisotropy, since the ratio of vr to vt is calculated self-
consistently every time step.
Finally, because the Hénon method operates on a relaxation

timescale, we are implicitly assuming that GCs can be modeled
as quasi-adiabatic transitions between different cluster models
in dynamical (virial) equilibrium. While this assumption is
largely valid for the long-term evolution of clusters in most
cases, there are notable exceptions, such as tidal shocking
(Ostriker et al. 1972), or the initial “violent relaxation” of the
cluster after its (potentially highly nonvirialized) birth (Lynden-
Bell 1967). These processes involve clusters that are sometimes
far from equilibrium and evolve to a virialized state on a
dynamical timescale. For these cases, more computationally
expensive orbit-following techniques, such as the aforemen-
tioned Princeton/Cornell methods or direct N-body integra-
tions, must be employed.

3. CMC Package Overview

The public release of CMC coincides with the latest release of
the COSMIC package for binary population synthesis (Breivik
et al. 2020a), which is included directly in the CMC GitHub
repository (and can be compiled simultaneously). Both codes
implement single stellar evolution using SSE (Pols et al. 1998;
Hurley et al. 2000) and binary evolution using BSE (Hurley
et al. 2002), with many major updates having been made to the
physical prescriptions of stellar and binary evolution based on
advances over the past two decades; see Breivik et al. (2020a)
for details.
With the inclusion of COSMIC into CMC, we have also

updated both codes to use similar input/output files and initial
condition generators. Both codes use identical parameters and
initialization files, allowing cluster simulations and population
synthesis to be easily performed with identical physics. The
generation of all initial conditions for both binary populations
and cluster simulations is now included in the latest version of
COSMIC, allowing populations with identical physics to be
created from a simple Python interface.

3.1. Updates to COSMIC Population Synthesis Code

While COSMIC was originally based on the version of BSE
incorporated into CMC, including its updates to compact object
physics (Chatterjee et al. 2010; Rodriguez et al. 2016c), the two
codes have diverged over the past several years, and the use of
COSMIC as a community-driven population synthesis code has
kept it up to date with the latest developments in binary stellar
evolution. Here we review the changes to binary stellar
evolution (and in particular binary mass transfer) in the latest
version of COSMIC (v3.4), which is paired with the release of
CMC. For a complete description of the physics included in
COSMIC and the various options, see Hurley et al.
(2000, 2002) and Breivik et al. (2020a).
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Since the release of COSMIC v3.3, the treatment of Roche
overflow mass transfer from nondegenerate stars has been
expanded to include multiple assumptions for both mass-loss
rates from the donor and mass accretion rates onto the accretor.
The default mass-loss rate is determined using the expression
given by Hurley et al. (2002), which steeply increases with the
ratio of the donor radius to its Roche lobe radius

⎡
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⎤
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 M F M
R

R
Mln yr , 46don don

don

rl,don

3
1( ) ( )= -

where Mdon is the donor mass-loss rate, Mdon is the donor mass
in units of Me, Rdon is the donor radius, Rrl,don is the donor’s
Roche lobe radius, and
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Version 3.4 of COSMIC also includes the Roche lobe overflow
prescription of Claeys et al. (2014), which is calibrated to
binary systems with zero-age main-sequence component
masses less than 10Me. In this case, the mass-loss rate of
the donor is determined similarly to Equation (46), but with an
overall multiplicative factor, f, given by
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where Q≡Macc/Mdon. In both cases, mass loss is always
limited by the thermal timescale such that
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is the Kelvin–Helmholtz time.
Four prescriptions are now included to determine the amount

of mass that the accretor is allowed to gain, in addition to the
original one in Hurley et al. (2002). The original BSE
prescription assumes that stars with radiative envelopes (i.e.,
main sequence, Hertzsprung gap, and core helium burning) can
accrete mass at a rate limited to 10 times the thermal rate of the
star, while stars with convective envelopes (i.e., giant branch,
asymptotic giant branch) can accrete mass at an unlimited rate.
Three of the newly added prescriptions consider modifications
to this prescription: one that limits stars with radiative
envelopes to accrete mass at the thermal rate, one that applies
accretion limits of 10 times the thermal rate for all stars—not
just those with radiative envelopes—and one that applies
accretion limits of the thermal rate for all stars. We also include
another choice where accretion is a fixed fraction of the mass
lost by the donor, as used in Belczynski et al. (2008).

3.2. Cluster Initial Conditions

In COSMIC, initial conditions are generated by sampling
particle positions and velocities from either a Plummer (1911),
Elson et al. (1987), or King (1966) profile. Both the Elson and
Plummer profiles are sampled piecewise, with the particle
positions drawn first from the cumulative mass distribution for

each given profile. To self-consistently sample velocities for
each particle at its given position, we draw velocities from the
distribution function via rejection sampling up to the local
escape speed (Aarseth 2003). For the Plummer profile we use
the analytic form of the distribution function, while for the
Elson profile we numerically solve for the distribution function
in energy space (see, e.g., Grudić et al. 2018, Appendix B).16

The King profile is generated in a similar fashion: the
differential equations for cluster density, potential, and
enclosed mass are solved numerically, with the latter being
used to sample random positions from the cluster center. The
velocities are then sampled from the analytic distribution
function via the aforementioned rejection sampling technique.
By default, COSMIC draws radii and velocities from the

available distributions before converting them into Hénon units
(Heggie & Mathieu 1986; Heggie 2014), where the gravita-
tional constant and initial cluster mass are both set to unity
(G=M0= 1) and the sum of the initial cluster kinetic and
potential energies is E0,kin+ E0,pot=−1/4. (This is not the
same as the total initial cluster energy E0= E0,kin+ E0,pot+
E0,bin, where E0,bin is the initial negative-valued total binding
energy in primordial binaries, if any.) The units of mass, length,
and time are then
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respectively. The above length units are such that the initial
virial radius of the cluster is unity, while the units of time
roughly correspond to the crossing time of a particle at the
virial radius. However, because CMC operates on a relaxation
timescale, we instead use a more appropriate unit of time,
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where N0 is the initial number of particles (single stars or
binaries). These units are the default used throughout CMC.
Once the positions and velocities have been selected, the

user can optionally add additional stellar physics to each of the
particles, such as stellar masses, radii, and binary companions.
All of the options available in COSMIC, including IMFs (e.g.,
Kroupa 2001; Salpeter 1955), binary initial conditions (e.g.,
following Sana et al. 2012; Moe & Di Stefano 2017), and
stellar metallicities, can be used to generate realistic cluster
initial conditions for CMC. When generating binary initial
conditions for cluster simulations, we truncate the upper limit
of the Porb distribution at the hard−soft boundary for each
binary at its respective radius in the cluster (see, e.g.,
Heggie 1975).

3.3. Input/Output

Input in CMC is handled at the command-line level by
passing an initialization file containing all the parameters

16 We note that previous N-body samplers of the Elson profile, such as the one
described in Küpper et al. (2011), have used the 1D Jeans equations to sample
the velocity dispersion of the cluster. While this yields a cluster in virial
equilibrium, it does not produce a cluster consistent with a single distribution
function.
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controlling the physics, parallelization, and runtime options
(unspecified parameters are set to default values). The
parameter files contain many of the same options (particularly
related to stellar evolution) as the parameter files for COSMIC,
allowing initial conditions, population synthesis, and cluster
dynamics simulations to be performed with identical options.
The initial conditions are saved as tables in the Hierarchical
Data Format (HDF5) and passed as input to the initial
parameters file.

Three forms of output are generated during a typical CMC
run. First, a series of tab-separated data files containing specific
parameters of the cluster (e.g., mass, half-mass radius, number
of binaries) are printed every time step and can be easily read in
any scripting language. Second, specific events, such as stellar
collisions, BH mergers, binary–single encounters, etc., are
recorded as they occur in human-readable log files (with a
provided Python parser). Third, snapshots of the full cluster
state are periodically written to several HDF5 tables at user-
specified intervals. Separate files exist for snapshots containing
all stars in the cluster and those containing only the BHs
(allowing the latter to be resolved at shorter intervals). Each
snapshot is saved in its respective file as a pandas-readable
HDF5 table with keys corresponding to the simulation time
when the snapshot was written. These can be directly imported
into Python using the read_hdf command in pandas
(McKinney 2010; Reback et al. 2021).

Finally, CMC periodically saves checkpoints by directly
dumping the state of every processor to a binary file associated
with that processor. These checkpoints allow bit-for-bit
restarting of a CMC run should the run be either interrupted
or terminated owing to computing cluster queue-time limits.
While the checkpoints contain the state of the cluster, stars, and
binaries up to that point, both the physical parameters of the run
(set in the initialization file) and the current random number
seed can be changed by the user at restart.

3.4. Parallelization

CMC is designed to be compiled against the standard libraries
of the Message Passing Interface (MPI; Clarke et al. 1994),
enabling distributed-memory parallelization across multiple
cores and machines. Many of the physical processes in CMC,
such as stellar evolution and nearest-neighbor encounters, are
fundamentally local processes that are amenable to simple
parallelization. However, the radial sorting of stars, the
computation of new stellar orbits in the global cluster potential
(Section 2.5), and even the computation of the potential itself
(Section 2.7) are global processes that require a customized
parallel approach.

Because the calculation of the cluster potential in
Equation (33) and the nearest-neighbor dynamics require the
particles to be sorted radially, the particles are resorted each
time step after new positions are selected (Section 2.5) in order
of increasing radius from the cluster center. CMC uses a custom
parallel sorting implementation, in which the local data on each
processor are sorted using a Quicksort algorithm
(Hoare 1961) before being combined globally across proces-
sors using a parallel Sample Sort algorithm (Frazer &
McKellar 1970). This implementation allows for rapid sorting
and redistribution of particles across multiple distributed-
memory processes. For more details on the parallel sorting
method, see Section 3.4 of Pattabiraman et al. (2013). Once the

sorting is complete, the particles are redistributed across all
MPI processes with a series of all-to-all communications.
The calculation of the stellar orbits is more straightforward

and only requires that every MPI process have access to the
global potential of the cluster at each time step. To that end,
each process maintains a global list of the radial positions and
masses for every star in the cluster, allowing each process to
compute Equation (33) independently. These lists are updated
every time step. For a complete description of this and the other
parallelization strategies employed in CMC, see Pattabiraman
et al. (2013).

4. Examples

Having described the code in detail, we now show two
standard examples of clusters generated with CMC: a Plummer
sphere of point masses evolved from its initial state to core
collapse, and the evolution of 10 realistic King models of GCs
evolved with all available physics for 12 Gyr.

4.1. Plummer Sphere to Core Collapse

The Plummer profile was one of the first used to fit realistic
observations of GCs to a theoretical model, and it remains
popular since, unlike models based on more sophisticated
distribution functions, most of its key features can be expressed
analytically (Heggie & Hut 2003). This also makes it a favorite
tool of the N-body simulator since the enclosed mass, velocity
dispersion, and distribution function can all be expressed
analytically and are easily sampled to generate cluster initial
conditions. Here, we use COSMIC to generate a realization of a
Plummer sphere with 108 initial point-mass particles. We
choose this particular setup because the evolution of a Plummer
sphere to core collapse is a well-studied problem in the
literature (e.g., Freitag & Benz 2001; Freitag et al. 2006;
Binney & Tremaine 2008). We then integrate these initial
conditions twice using CMC: once with no binary physics, and
once with three-body binary formation and strong binary
encounters enabled.
In Figure 2, we show the evolution of the two clusters from

their initial state to core collapse, defined as having< 1000
stars within the theoretical core radius (see Casertano &
Hut 1985, for the description of the latter). We also show the
number of binaries as a function of time, since it is the
formation and hardening of binaries in the core that provide an
energy source to support the cluster against continued collapse.
Since we stop both models at core collapse, we do not show the
post-collapse evolution of either cluster; however, the cluster
model with binary physics has its core collapse time delayed by
0.15 in units of the half-mass relaxation time:
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where we have used the more precise definition from Spitzer
(1987), rather than the approximate Equation (1). Similarly, the
number of binaries in the core increases dramatically during the
final moments of core collapse, as the central density increases
sharply. In both cases the cluster collapses at about 16.8Trlx,
consistent with both theoretical predictions and previous
numerical integrations (Cohn 1979, 1980; Spurzem &
Aarseth 1996; Quinlan 1996; Freitag & Benz 2001).
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It is also well known that the collapse of a cluster proceeds
homologously, with the central density and time to core
collapse evolving at a self-similar rate throughout the cluster’s
central regions (Hénon 1961; Lynden-Bell 1975). Both
homologous models and 1D Fokker–Planck models suggest
that the central density profile of a cluster near collapse should
approach a power law of the form ρ∝ r−2.23 (Cohn 1980;
Lynden-Bell & Eggleton 1980; Heggie & Stevenson 1988). In
Figure 3, we show the density of stars (averaged over 20
nearest neighbors) in our cluster model without binary
formation as it approaches core collapse. The density of the
central regions increases dramatically as the core approaches
final collapse, with the central density increasing by nearly 4
orders of magnitude within the last 10−5Trlx of the evolution.
At the moment of core collapse, CMC reproduces the r−2.23

distribution over more than 15 orders of magnitude. To the best
of our knowledge, this is the largest fully collisional star-by-
star model of a Plummer sphere presented to date.

Finally, a critical test of any N-body scheme is how well it
conserves energy, since this serves as an independent bench-
mark of the self-consistency of the physics. By itself, two-body
relaxation as implemented in the Hénon algorithm automati-
cally conserves energy; in practice, with the energy-conserving
corrections described in Section 2.9, a CMC run typically
conserves energy to within one part in∼ 105 over many
relaxation times. We show the differential change in energy for
both models as a function of time in Figure 4.

Figure 2. The Lagrange radii (radius enclosing a given fraction of the mass) and number of binaries as a function of the initial half-mass relaxation time for the two
N = 108 particle realizations of a Plummer sphere. We show in red the model without three-body binary physics, and in blue the same model, but allowing binaries to
form from single stars. On the top, we show the Lagrange radii as a function of time, with the distinction between the core and halo rapidly developed owing to two-
body relaxation. On the top right, we zoom in at the final moments of core collapse (defined as having less than 1000 objects in the core) and clearly show the (minor)
delay in core collapse caused by binary heating in the cluster core. On the bottom, we show the number of binaries formed over time. As the core shrinks, the central
encounter rate increases, dramatically increasing the number of binaries in the cluster in the final moments before collapse.

Figure 3. The density profile of the Plummer sphere with 108 particles near
core collapse as a function of radius. Both quantities are calculated in terms of
the initial virial radius and the initial density of objects within that radius. We
show the densities from three separate snapshots, whose time is given in terms
of the initial half-mass relaxation time. During the last moments of the cluster’s
evolution, the inner regions rapidly converge to the ρ ∝ r−2.23 power law
expected from Fokker–Planck calculations (Cohn 1980), showing self-similar
behavior over more than 15 orders of magnitude in density.
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4.2. Realistic Globular Clusters

To demonstrate the capability of CMC to generate realistic
cluster models, we generate 10 models of star clusters with
random initial conditions drawn from the same distribution
function. We begin by sampling positions and velocities for 106

particles using a King (1966) profile (with W0= 6) and a virial
radius of 1 pc. The properties for each star and binary are
sampled using the same initial condition generators as
COSMIC: each star is first assigned a mass from a Kroupa
(2001) IMF. We randomly assign 10% of those stars to be
binaries, keeping the initial IMF draw as the primary mass, and
assigning a secondary mass from a uniform distribution
between 0.1 and 1 times the primary mass. For isolated
binaries, the “independent” sampler in COSMIC assigns binary
semimajor axes from any number of user-specified distribu-
tions, e.g., flat in the log-period (Abt 1983), or the distributions
from Sana et al. (2012) and Renzo et al. (2019). However,
cluster environments come with an additional complication:
many wide binaries that are observed in galactic fields (and are
reproduced by the distributions in COSMIC) are significantly
larger than the typical interparticle separation of the cluster and
would be very rapidly destroyed by dynamical encounters (or
simply not formed at all). To avoid this, we truncate the orbital
periods at the local hard−soft boundary for a binary with the
given mass at that position in the cluster (this approximately
corresponds to limiting the minimum orbital velocity to the
local three-dimensional velocity dispersion). For the binaries
considered here, we assume a flat-in-log distribution of
semimajor axes and a thermal distribution of eccentricities
(Ambartsumian 1937; Heggie 1975). We set stellar metalli-
cities equal to Z= 0.0002 (approximately 1% of the solar
value) and do not place the clusters in an external galactic
potential.

In Figure 5, we show a projected snapshot of one of the
cluster models rendered using the fresco package (Rieder &
Pelupessy 2019), which incorporates the stellar positions,
effective temperatures, and radii to construct a mock HST
observation. We also show the surface brightness and velocity
dispersion profiles for that snapshot, calculated using the
cmctoolkit (Rui et al. 2021a, 2021b). The toolkit can
directly convert the HDF5 output snapshots of CMC into
observational quantities, including surface brightness and
velocity dispersion profiles, number density profiles, counts
of blue stragglers and other stellar types, and so on. Combined

with the public release of CMC, these two software packages
contain all the necessary tools to create models of GCs and
SSCs that can be directly compared to observations in the local
universe.
One of the main advantages of N-body modeling is the

ability to study the internal dynamics of lower-luminosity
components of the cluster. In Figure 6, we show the
populations of WDs, NSs, and BHs that are present throughout
the cluster model shown in Figure 5 (each overlaid over the
synthetic observation), as well as the projected and smoothed
2D number densities as calculated with the cmctoolkit. As
expected, the heavier components—the carbon–oxygen and
oxygen–neon WDs, NSs, and BHs—have segregated into the
central regions of the cluster. The BHs, in particular, are highly
concentrated, with 50% of the BHs lying within 0.2 pc of the
cluster center, where the number density of BHs is more than
7000 pc−3.
In a realistic GC, massive stars evolve in∼10–100Myr after

cluster formation, leaving behind a large population of BH
remnants. These BHs rapidly sink to the center, where they
begin to participate in the three- and four-body interactions that
form and dynamically harden binaries. This process continues
without limit until all the BH binaries are either ejected from
the cluster (having each also ejected several single BHs during
three-body encounters) or merge owing to GW emission. The
rate of BH depletion is determined by the energy required to
support the cluster against continued collapse (e.g., Breen &
Heggie 2013), and in clusters with sufficiently small initial
virial radii, this process can completely remove the BH
subsystem from the cluster, producing the core-collapsed
clusters observed in the Milky Way (Kremer et al. 2019a).
Overall, the dynamics of BH subsystems are expected to play a
key role in shaping the overall evolution of DSCs (e.g., Merritt
et al. 2004; Mackey et al. 2007, 2008; Breen & Heggie 2013;
Wang et al. 2016; Chatterjee et al. 2017b; Arca Sedda et al.
2018; Kremer et al. 2018b, 2020b, 2020c; Antonini &
Gieles 2020; Weatherford et al. 2021). The particular cluster
simulation shown in Figure 5 still retains 125 BHs by the
present day, producing the large core radius observed in the
surface brightness profile.

4.3. Binary Black Hole Mergers and GW190521

In addition to the global dynamical and observable properties
of present-day clusters, CMC is ideal for understanding the rate
and properties of many high-energy transients and compact
binary sources that originate in DSCs. As previously stated, the
BHs in the central regions of a cluster will continually form
binaries and undergo hardening encounters, providing a finite
energy source to support the cluster against gravothermal
collapse. While this behavior is critical to understanding the
overall evolution of the cluster and its present-day appearance, it
also produces a large number of BBHs and is thought to provide
a key formation channel for the GW sources detected by LIGO,
Virgo, and KAGRA (LVK). This process has been studied
theoretically for many years (Kulkarni et al. 1993; Sigurdsson &
Hernquist 1993; Portegies Zwart & Mcmillan 2000; O’Leary
et al. 2007; Downing et al. 2010, 2011; Aarseth 2012;
Tanikawa 2013; Bae et al. 2014; Askar et al. 2016; Fragione
& Kocsis 2018), including in several papers using CMC (e.g.,
Rodriguez et al. 2015, 2016a, 2016b, 2018a, 2018b, 2019,
2020, 2021b; Chatterjee et al. 2017a, 2017b; Kremer et al.
2019c, 2020c, 2020a; Martinez et al. 2020; González et al. 2021;

Figure 4. The total energy of the two Plummer sphere models (including the
energy of ejected particles) over time. The sharp downturn at the end arises
from the reduction of the time step near core collapse to better resolve the dense
central regions of the cluster.
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Holgado et al. 2021; Martinez et al. 2021; Weatherford et al.
2021).

With over 50 GW detections so far, much work has been
done trying to determine the origin of the observed population
of merging BBHs. One well-studied technique to discriminate
between BBHs formed dynamically in clusters and those
formed from isolated binary evolution in the field is to measure
the spins of the BHs (e.g., Rodriguez et al. 2016d; Farr et al.
2017, 2018), since dynamically formed BBHs are expected to
have isotropically distributed spin–orbit misalignments (vs. the
relatively small spin–orbit misalignments expected from binary
star evolution). Using the distribution of BBH spins, the latest
catalog from the LVK suggests that between 25% and 93% of
these systems may have been assembled dynamically (The
LIGO Scientific Collaboration et al. 2021), with more
sophisticated analyses of BBH formation models (including
those created using CMC) reaching similar conclusions (Wong
et al. 2021; Zevin et al. 2021).

In addition to statistical evidence, individual BBH events
have also suggested a dynamical origin. One particular system,
GW190521, was detected with at least one component mass
inside the “upper mass gap,” where individual BHs are
prevented from forming by stellar collapse due to pulsational
pair instabilities, which eject large amounts of material from
(and potentially destroy) any star with a helium core mass
between about 40 and 130Me (e.g., Woosley 2017). While it is
extremely difficult (though not impossible) to describe such
systems as the product of isolated stellar evolution (e.g., Farmer
et al. 2019; Belczynski 2020), these systems can be easily
produced in DSCs, through either the repeated mergers of BHs
(e.g., Rodriguez et al. 2018b, 2019; Fragione & Silk 2020;
Fragione et al. 2020a) or massive star mergers occurring prior

to BH formation (e.g., Di Carlo et al. 2019; Kremer et al.
2020a; González et al. 2021; Weatherford et al. 2021).
Figure 7 shows the total masses and spins of all BBHs that

merge within 13.8 Gyr of cluster formation from our 10 GC
models. We subdivide the population according to the
“generation” of the BHs in the binary, with first generation,
or 1G, BHs being those created from stellar collapse, and
second generation, or 2G, referring to those created in a
previous merger. The more massive BHs, particularly those
within the mass range consistent with GW190521, are
predominantly the result of previous mergers, with four of
the six systems being composed of 2G+2G BBHs (that is,
binaries whose components are both the product of previous
mergers). The remaining two BBHs are created from previous
stellar mergers of massive stars prior to their collapse into BHs.
These stellar-merger products can contain unique envelope/
core mass ratios, allowing them to bypass the typical
pulsational pair-instability limits for single massive stars.
While repeated BH mergers are the dominant mechanism for
producing GW190521-like systems in these models, clusters
with higher central densities, fractal initial conditions, or
different stellar binary fractions can prefer formation of
repeated mergers through stellar collisions (e.g., Di Carlo
et al. 2019; Kremer et al. 2020a; González et al. 2021). We note
that while our models also ignore the possibility of accretion
from BH/star collisions, the majority of these occur after the
most massive stars (including stellar-merger products) have
expired, since the BHs typically require ∼100Myr to
dynamically segregate into the cluster center. As such,
MBH>Mstar for the majority of BH/star collisions.
We also show in Figure 7 the distribution of the effective

spins of the cluster BBH population as a function of the mass.

Figure 5. An example snapshot of a realistic cluster model after 12 Gyr of evolution. On the left, we show a synthetic HST observation of the cluster, computing using
the stellar positions, effective temperatures, and radii (via the Fresco package; Rieder & Pelupessy 2019). On the right, we show the V-band surface brightness
profile (at a distance of 5 kpc) and 1D velocity dispersion for the cluster, calculated using the cmctoolkit package (Rui et al. 2021a).
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This mass-weighted projection of the BH spins onto the orbital
angular momentum, L m m m meff 1 1 2 2 1 2

ˆ · [( ) ( )]c cc º + + ,
is the spin parameter most easily constrained by GW detectors
(e.g., Ajith et al. 2011; Abbott et al. 2016). Since we have
assumed that BHs from collapsing stars are born with zero spin,
consistent with recent theoretical studies of angular momentum
transport in massive stars (e.g., Fuller & Ma 2019; Fuller et al.
2019), BBHs whose components are formed from stellar
collapse also have zero effective spins across all masses. On the
other hand, when BHs are created from previous mergers, their
spins inherit the angular momenta of their parent binaries,
producing a population of spinning BBHs. Because the BH
spins are assumed to be isotropically distributed on the sphere,
the median effective spin for all cluster BBHs is still centered at
χeff= 0. This is consistent with the observation of GW190521,
which appears to be consistent with having zero effective spin.
However, as consistent with our previous results (e.g.,
Rodriguez et al. 2018b, Figure 3), any population of 2G+2G
BBHs (like the ones that predominately form GW190521-like
binaries here) should have a range of effective spins centered at
χeff= 0.

As a demonstration of the utility of the CMC/COSMIC
integration, we directly compare the BBH population created
through dynamical processes to that created from the evolution
of isolated stellar binaries. We evolve a population of 5× 104

binaries with masses�18 Me using the same stellar physics,
stellar metallicity, and binary initial conditions (the truncation
in binary orbital period) with COSMIC. In Figure 7, we show
one of the most distinct features of the BBHs produced by GCs:
the production of repeated mergers of BHs in star clusters.
When two BHs merge in a GC, their merger product receives a

recoil kick due to the asymmetric emission of GWs, which
depends on both the mass ratio of the system and the spins of
the BHs (e.g., Merritt et al. 2004; Campanelli et al. 2007;
Lousto & Zlochower 2008). Because three-body encounters
preferentially form BBHs with near-equal-mass components
(e.g., Sigurdsson & Phinney 1993), it is the BH spins that
primarily determine merger retention in GCs. While large spins
(χ∼ 1) leave few second-generation BHs in the star cluster,
mergers of BHs born with smaller spins (χ 0.2) can be
retained in many GCs, where they will continue to participate
in dynamical processes, form binaries, and merge again
(Rodriguez et al. 2019). This process can produce a significant
population of BBHs with large (χ∼ 0.7) spins and masses in
the pulsational pair-instability mass gap.
While an observation of a BBH with χeff< 0 is strongly

suggestive of dynamical formation, isolated binary evolution
can also produce BBHs with spin–orbit tilts greater than 90°
given the right orientation and magnitude of the supernova
kicks (Kalogera 2000; Rodriguez et al. 2016d). Therefore, any
analysis of BBH spin–orbit misalignments must include both
dynamical and binary evolutionary channels using identical
stellar physics. The integration of COSMIC into CMC makes
this trivial; in Figure 8, we show the masses and spin–orbit
misalignments (θLS) from the 10 GC models and 5× 104

isolated massive binaries evolved using COSMIC. In the top
panel, the limit imposed by pulsational pair-instability physics
on the BH mass function is readily apparent, with no BHs
forming with masses greater than 44.5 Me, and no BBHs
forming with total masses greater than 89 Me (a number that is
largely insensitive to choices of accretion and other binary
physics; van Son et al. 2020). Figure 8 also clearly

Figure 6. The same snapshot from the left of Figure 5, but showing the various populations of low-luminosity particles hidden in the cluster’s surface brightness
profile. On the left, we show the distribution of helium, carbon/oxygen, and oxygen/neon white dwarfs (in red, blue, and teal), as well as the NSs (purple) and BHs
(black). On the right, we show smoothed 2D number densities and their uncertainties for these populations, calculated from the same snapshot using the
cmctoolkit.
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demonstrates the difference in the spin–orbit misalignments
between isolated binaries and cluster-formed BBHs. Given the
supernova prescriptions in COSMIC (here we have used the
“rapid” prescription from Fryer et al. 2012), BHs with final
core masses 20 Me form via the “direct collapse” or failed
supernova scenario, where the BHs form without any natal kick
or change to the supernova orbital parameters. For BBHs with
total masses 45 Me, the supernova kicks can still produce
significant spin–orbit misalignments, with the 99th percentile
of allowed misalignments approaching complete anti-alignment
(θLS= 180°). However, as the mass increases, the amount of
spin–orbit misalignment decreases, until eventually all BBHs
are aligned with their orbital angular momenta. Contrast this
with BBHs formed in clusters, which are isotropically
distributed on the sphere (i.e., P d dsinLS LS LS LS( ) ( )q q q qµ ).

These results can be easily reproduced and expanded on using
the apples-to-apples comparisons enabled by the CMC and
COSMIC integration.

5. Discussion and Conclusion

This paper describes the first public release of CMC, a parallel
code for collisional N-body stellar dynamics based on the
original method of Hénon (1971a, 1971b). After nearly two
decades of development, CMC contains all of the necessary
physics for modeling the evolution of DSCs, such as GCs,
SSCs, and certain NSCs, and it allows the user to easily create
detailed models of spherical star clusters with up to∼ 107

particles (when including stellar evolution). In addition to two-
body relaxation, CMC can model the formation and dynamics of

Figure 7. The masses and effective spins for merging BBHs from 10
realizations of a GC model with 106 initial particles (10% of which are
binaries). On the top, we show the distribution of total masses of all BBHs that
merge within 13.8 Gyr of cluster formation. We also indicate the specific
generation of BHs involved in the mergers with the dashed histograms. The
region consistent with GW190521 is populated by 2G+2G BBHs (where both
BHs were formed in previous mergers) and 1G+1G BBHs whose component
progenitors participated in previous stellar mergers. On the bottom, we show
the distribution of effective spins for the full BBH population as a function of
mass. At higher mass, the contribution from 2G BHs increases, and the range
of detectable spins increases as well.

Figure 8. Masses and spin alignments of BBHs produced through dynamical
encounters (from 10 GC models generated with CMC) and through isolated
binary evolution (from 5 × 104 stellar binaries evolved with COSMIC). On the
top, we show the total masses of the BBHs, with the maximum mass from
isolated binaries (89 Me) being clearly visible. On the bottom, we show the
distribution of spin–orbit misalignments for the BBHs as a function of total
mass. While low-mass BBHs from the isolated binary population can
experience significant misalignments from supernova natal kicks, this
decreases as a function of mass, while the spin–orbit misalignments for
dynamically formed binaries are isotropic irrespective of mass.
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binaries, the effects of tidal stripping in a galactic field, detailed
binary star evolution, and more.

The public release of CMC has been coupled to the COSMIC
software package for binary population synthesis (Breivik et al.
2020a). The newest release of COSMIC, v3.4, contains new
initial condition generators to create cluster profiles from
various spherical stellar distributions (Plummer 1911;
King 1966; Elson et al. 1987), which can then be coupled to
all of the stellar and binary initial condition generators in the
population synthesis code. Both the initial conditions and the
output snapshots of CMC are saved in easily readable HDF5
format files and can be analyzed with standard data science
packages (pandas) or with specialty software designed to
compare CMC models directly to observations of real star
clusters (the cmctoolkit; Rui et al. 2021a, 2021b).

The synergy between CMC and COSMIC enables stellar
dynamics and population synthesis studies to be conducted
simultaneously with identical assumptions and prescriptions for
stellar initial conditions. We presented two examples of CMC in
action. First, we studied the collapse of a Plummer sphere with
108 initial particles, the largest fully collisional star-by-star
model integrated to core collapse, and showed that CMC was
able to replicate the self-similar nature of the collapse across
more than 15 orders of magnitude. Then, we presented
examples of realistic clusters and showed how the combination
of CMC with COSMIC makes comparative population studies—
such as our study of GW190521, a BBH that was very likely
formed in a dynamical environment—trivial. It is our hope that
the public release of CMC and the integration of COSMIC will
enable significant advancements in the study of DSCs and the
many transient and high-energy events they produce (such as
BBH mergers).
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Software: The public release of CMC can be accessed,
including source code and documentation, at https://
clustermontecarlo.github.io/. CMC (Joshi et al. 2000, 2001;
Watters et al. 2000; Fregeau et al. 2002, 2003; Chatterjee
et al. 2010; Morscher et al. 2013; Pattabiraman et al. 2013;
Rodriguez et al. 2021a; this work), cmctoolkit

(Rui et al. 2021a, 2021b), fewbody (Fregeau & Rasio 2007;
Antognini et al. 2014; Amaro-Seoane & Chen 2016), COSMIC
(Breivik et al. 2020a, 2020b), matplotlib (Hunter 2007),
SciPy (Virtanen et al. 2020), NumPy (Harris et al. 2020),
pandas (McKinney 2010; Reback et al. 2021).
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