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Abstract 

In Magnetic Resonance Imaging (MRI), depending on the image acquisition settings, a 

large number of image types or contrasts can be generated showing complementary 

information of the same imaged subject. This multi-spectral information is highly 

beneficial since can improve MRI analysis tasks such as segmentation and registration, 

thanks to pattern ambiguity reduction. However, the acquisition of several contrasts is not 

always possible due to time limitations and patient comfort constraints. Contrast synthesis 

has emerged recently as an approximate solution to generate other image types different 

from those acquired originally. Most of the previously proposed methods for contrast 

synthesis are slice-based which result in intensity inconsistencies between neighbor slices 

when applied in 3D. We propose the use of a 3D convolutional neural network (CNN) 

capable of generating T2 and FLAIR images from a single anatomical T1 source volume. 

The proposed network is a 3D variant of the UNet that processes the whole volume at 

once breaking with the inconsistency in the resulting output volumes related to 2D slice 

or patch-based methods. Since working with a full volume at once has a huge memory 

demand we have introduced a spatial-to-depth and a reconstruction layer that allows 

working with the full volume but maintain the required network complexity to solve the 

problem.  Our approach enhances the coherence in the synthesized volume while 

improving the accuracy thanks to the integrated three-dimensional context-awareness. 

Finally, the proposed method has been validated with a segmentation method, thus 

demonstrating its usefulness in a direct and relevant application. 

Keywords: Image synthesis, Magnetic Resonance Imaging (MRI), Convolutional Neural 

Network (CNN), segmentation 
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1.  Introduction 

Magnetic Resonance Imaging (MRI) has gained importance over the years due to its 

capability of acquiring a diverse range of contrasts for the same underlying anatomy in 

the absence of tissue irradiation. Since its early years, neuroimaging has been of the main 

application of MRI thanks to the possibility of visualizing the brain soft tissues in a non-

invasive manner and with high resolution level. The variety of MR image contrasts 

obtainable depending on the image acquisition settings provides complementary 

information of the same imaged subject. For example, T1 brain images clearly delimit 

white and grey matter tissues, whereas T2 images distinguish fluid from cortical tissue, 

and white matter lesions are more easily distinguishable in FLAIR contrasts. This 

increased availability of information leads to a wider perspective into diagnosis 

improving the understanding of the state of the living brain tissues by clinicians. In the 

same manner, automatic segmentation methods results are generally improved when 

receiving a multimodal input feeding.  

 

Unfortunately, the acquisition of several contrasts is not always possible due to time 

limitations and patient comfort constraints. Thus, the ability to synthesize non-existent or 

corrupted contrasts from others successfully acquired has a potential value for enhancing 

MRI analysis. Despite not having yet achieved suitable results for direct clinical use, MRI 

synthesis is useful for the improvement of algorithm performance in relevant image 

analysis tasks such as registration and segmentation (Iglesias et al.,2013). 

 

In neuroimaging, one of the first uses of contrast synthesis was the use of software 

packages designed for a specific input contrast different from the one available. In Iglesias 

et al. (2013) the authors generated T1 images from T2 images to be able to use the 

software Freesurfer in order to segment the whole brain. 

 

Traditionally, two families of methods have been used to generate synthetic images: 

registration-based methods and intensity transformation-based methods. The first group 

originates from the work carried out in Miller et al. (1993), and consists generally in 

applying a geometric transformation to a target modality atlas to obtain the target 

modality image, having computed that transformation from registration of the source 

modality atlas to the source modality image. This approach assumes the relation between 
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images from different subjects is purely geometric, which can lead to significant errors in 

fine brain detail synthesis. Furthermore, registration-based synthesis methods perform 

poorly in the presence of anatomic abnormalities e.g. a tumour, as these are not present 

in the atlases used (Jog et al., 2017). 

 

Intensity transformation-based methods overcome the previous limitations, not relying in 

a strictly geometric relation between subjects. This wide family embraces methods based 

in a variety of techniques, such as the sparse dictionary reconstruction Roy et al. (2013) 

or the image analogies Iglesias et al. (2013) approaches. However, these methods require 

large computational times and their application extent is somehow restricted. 

 

During the last years, machine learning techniques have made their way in the medical 

image analysis field, achieving outstanding results. In MRI synthesis, non-linear 

regression methods represent the state of the art. These methods learn non-linear intensity 

mappings between pairs of image modalities. In Jog et al. (2017) the authors proposed 

REPLICA as a patch-based random forest method. The synthesized contrast depends on 

the average of the predicted outputs from independent random forest trees, which may 

produce a loss of high frequency detail. More recently, deep learning-based methods have 

been proposed to perform this task, Dar et al. (2019) used a conditional generative 

adversarial network to enforce the realism of the produced output. Unfortunately, 

although the produced outputs were highly realistic sometimes they hallucinate structures 

and showed strong inconsistencies between neighbor slices due to the 2D nature of their 

method. Nie et al. (2018), also used an adversarial network but this time using 2D patches 

and a cascade approach. On the other hand, Wei et al. (2019) were one of the first to use 

not only 3D inputs (3D patches) but also multiple input modalities with remarkable 

results. However, the need of using multiple input modalities limits its applicability in 

real world scenarios. Although all these methods showed promising results due to their 

ability to automatically learn structural features. Most of them are slice-based in which 

each slice of the volume is predicted independently (or with limited 3D support) that can 

lead to inconsistencies between neighbor slices. Moreover, the use of a limited spatial 

context may result in suboptimal results due to the lack of context-awareness. 

 

To address the mentioned problem, we propose a 3D variant of the UNet network 

(Ronneberger et al., 2015) to synthesize T2 and FLAIR brain MRI contrasts from a single 
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anatomical T1- contrast. Our network processes the whole volume at once breaking with 

the inconsistency in the resulting output volumes related to 2D slice or patch-based 

methods. In that manner, it is enhancing the coherence in the synthesized volume and 

improving the accuracy via integrated three-dimensional context-awareness. This global 

approach contributes to yield visually and quantitatively more accurate output volumes 

through a maximization in the context information available and then use of a canonical 

intensity space. 

 

 2.  Material and Methods 

2.1. Datasets 

2.1.1. Database I. T1/T2 dataset. 

Paired and registered T1/T2 images in a standard space (MNI152) have been generated 

to train our deep learning-based method for T2 synthesis. For this purpose, the open 

access IXI dataset (https://brain-development.org/ixi-dataset/) has been used. This dataset 

contains images of 580 healthy subjects from several hospitals in London (UK). Both 

1.5T and 3T T1 images were included in our training dataset. 3T images were acquired 

on a Philips Intera 3T scanner (TR = 9.6ms, TE = 4.6ms, flip angle= 8◦, volume  size  = 

256 × 256 × 150 voxels, voxel dimensions = 0.94 × 0.94 × 1.2 mm3). 1.5T images were 

acquired on a Philips Gyroscan 1.5T scanner (TR = 9.8ms, TE = 4.6ms, flip angle = 8◦, 

slice thickness = 1.2mm, volume size = 256 × 256 × 150, voxel dimensions = 0.94 × 0.94 

× 1.2mm3).  The parameters of the 3T T2 images were (TR = 5725 ms, TE = 100 ms, flip 

angle= 90◦, volume  size  = 192 × 187 × 187 voxels, voxel dimensions = 0.94 × 0.94 × 

1.2 mm3) and for 1.5T were (TR = 8178 ms, TE = 100 ms, flip angle= 90◦, volume  size  

= 192 × 187 × 187 voxels, voxel dimensions = 0.94 × 0.94 × 1.2 mm3). Images from 

subjects presenting excessive artefacts were excluded from pair correlation-based 

selection, resulting in the final number of subjects used of 557. This selected set was then 

split into training, validation and testing sets (520, 20 and 17 subjects respectively). 

 

2.1.2. Database II. T1/FLAIR dataset 

Paired and registered T1/FLAIR images in a standard space (MNI152) have been 

generated to train our deep learning-based method for FLAIR synthesis. The lesionBrain 

(Coupe et al., 2018) pipeline database built from images uploaded to volBrain platform 

(Manjón and Coupé, 2016) by users with their express consent for use in research has 
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been used. Thus, it is a highly heterogeneous dataset: first, it includes both healthy 

subjects and subjects presenting different types of lesions (according to their intensity and 

location), and second, images have been acquired in a broad variety of hospitals and 

scanners. Initially, a total number of 5.463 subjects (T1/FLAIR pairs) were available. 

After an exhaustive manual quality-based selection process, a final number of 523 

subjects were used. Those subjects either presenting excessive artefacts or presenting 

insufficient quality in terms of spatial resolution or that did not match the specified image 

modality, were discarded. This selected set was then split into training, validation and 

testing sets (493, 10 and 20 subjects respectively). 

 

2.1.3. Segmentation database 

To evaluate the usefulness of the image synthesis we used the MICCAI 2012 Multi-Atlas 

Labeling Challenge dataset. This dataset has 35 dense manually labeled cases (133 

labels). We increased the number of cases by using also their left-right mirrored version 

resulting in a total number of cases of 70 subjects. We combined the 133 labels into 7 

different tissue labels. These labels were: Cerebral Spinal Fluid (CSF), Cortical Grey 

Matter (CGM), cerebral White Matter (WM), SubCortical Grey Matter (SCGM), 

Cerebellar Grey Matter (CeGM), Cerebellar White Matter (CeWM) and BrainStem (BS). 

This dataset was divided into training, validation and testing sets (44, 6 and 20 

respectively). 

 

2.2. Preprocessing 

Firstly, rigid registration between T1 and T2 images was estimated and concatenated with 

an affine registration of all the dataset to the MNI152 space using the ANTS software 

(Avants et al. ,2008). Afterwards, we performed an inhomogeneity correction of the 

registered images using N4 method (Tustison et al. ,2010). As we previously mentioned, 

our network learns a non-linear mapping between T1 and T2 or FLAIR images. However, 

mapping results are hindered if source and target spaces are not intensity-coherent 

themselves. Unlike other medical image modalities such as CT in which a standardized 

intensity scale (Hounsfield) exists, in MRI intensity distributions exhibit large variations 

depending on many technical factors such as magnetic field strength or acquisition 

parameters (TE, TR, flip angle, etc). Thus, arises the importance of intensity 

standardization of both input and output volumes to a reference canonical intensity space. 

Here we propose the use of histogram matching (Gonzales and Fittes, 1977) as a powerful 
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intensity normalization method. As reference, the non-linear MNI152 T1 and T2 

templates were used for T1 and T2 volumes respectively. The preprocessing for the 

T1/FLAIR dataset was the same than for the T1/T2 dataset. For FLAIR volumes we used 

our own atlas generated by computing the median of 52 FLAIR volumes from database 

II non-linearly registered to the T1 MNI152 atlas and their horizontally flipped version.  

Finally, after this intensity mapping, we applied a mean-ratio normalization consisting in 

dividing the complete volume by its arithmetic mean. The segmentation database images 

(T1) were preprocessed in the same way than the other datasets with the exception of the 

histogram matching step.  

 

2.3. MRI Synthesis Network 

2.3.1. Architecture 

The proposed method is a 3D UNet-like network (see figure 1), which learns non-linear 

mappings between the source volume (T1) and the target volume (T2 or FLAIR). 

However, the use of a full resolution input and output volume (182×218×182 voxels) 

imposes a limitation in the number of filters of the convolutional layers leading to 

suboptimal results (a maximum number of 8 filters could be used in our initial 

experiments). To deal with this limitation, we propose to decompose the input volume 

into 8 sub-volumes by decimating the original volume 8 times with one voxel shift in 

each 3D dimension. The resulting 8 sub-volumes were structured as an input tensor of 

91×109×91x8 containing all the voxels of the original input volume. This channel-wise 

decomposition allows us to use a larger number of filters in the encoding and decoding 

paths as well as use all the information within the original source 3D volume. Particularly, 

the encoder path consists of a 3D convolutional layer (kernel size = 3×3×3 voxels) for 

each resolution level with ReLU activation and batch normalization layers followed by a 

strided convolution pooling layer (stride = 2). Symmetrically, an upsampling layer is used 

after each resolution level in the decoder path. The number of filters used begins with 40 

filters in the first resolution level with an increment by a factor of 2 in the subsequent 

lower resolution levels in order to balance the loss of spatial resolution. In the same 

manner, the number of filters is decreased by a factor of 2 in the decoder path at 

subsequent crescent resolution levels. 

 

Since the use of the same channel-wise decomposition in the output might result in local 

inconsistencies in the synthesized volume, a final reconstruction block was added 
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consisting in a trilinear interpolation layer followed by a 3D convolution layer (with 8 

filters) plus a ReLU and batch normalization layers. Finally, a last 3D convolution layer 

with a single filter of size 1 × 1 × 1 was used to produce the output. Thus, the proposed 

network has a total number of 9.135.865 parameters, of which 9.131.769 are trainable. 

Figure 1:  Proposed 3D network for MRI contrast synthesis scheme. 

To Train the proposed network we used a deep supervision approach (Lee et al., 2015; 

Dou et al., 2017). The first output is the low-resolution channel-wise output and the 

second is the full resolution volume after the reconstruction block (see figure 1). 

For all convolution operations, zero padding is used in such manner that the image is 

completely covered by the filter and specified stride. On the other hand, in reference to 

downsampling, strided convolution layers were chosen over classical pooling because of 

the advantage it provides having trainable parameters as opposed to the fixed operation 

the second performs. In this manner, the network can learn to summarize the data, thus 

improving its accuracy (Ayachi et al., 2018). 

 

 2.4. Training and evaluation 

All the experiments were performed using Tensorflow 1.12.0 and Keras 2.2.4 in a 

NDIVIA GeForce GTX 1080 Ti GPU with 11GB of memory. To train the network we 

used an Adam optimizer (Kingma and Ba, 2014) (learning rate = 0.001) for both T2 and 

FLAIR synthesis and a mean squared error (MSE) loss for the first and a sum of the MSE 

and the mean absolute error (MAE) loss for the second, for being the ones yielding better 

results. 
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A data generator function was used to feed the network during 200 epochs (50 cases per 

epoch). We trained the network providing the 8 T1 sub-volumes as input data and the 

complete target volumes (T2 or FLAIR) as well as the 8 sub-volume decomposition as 

target data. We used data augmentation within the generator consisting in left-right 

flipping both the input and output randomly, thus taking advantage of the pseudo-

symmetry of the brain. 

 

In order to measure the performance of the method based on the quality of the results, 

three different metrics providing information about the similarity between the synthesized 

and the target volumes from different perspectives were used. In addition to classic peak 

signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM), we include 

the Pearson correlation coefficient as a powerful metric to measure the structural 

information shared between ground-truth and predicted brain volumes independently 

from intensity. We consider it a more robust evaluation metric for our purpose, since MRI 

synthesis is about generating the correct contrasts between tissues independently of the 

intensity level. Evaluation metrics were performed both on full-head and skull-stripped 

volumes, as the main target areas of interest to synthesize accurately are the brain tissues. 

 

2.5. Validation on Segmentation 

As mentioned above, one of the most common applications of MRI synthesis is 

segmentation. Therefore, we validated our method by demonstrating the improvement it 

introduces in the accuracy of a volumetric 3D UNet segmentation network. The method 

segments the brain volume into the 7 brain tissues already described. 

We performed 3 experiments to highlight the impact of synthetic data multimodal input 

feeding to the segmentation method. The results for these experiments will allow us to 

quantify the impact of including synthetic T2 and FLAIR volumes in the segmentation 

process. The different inputs received by the segmentation method in each of the 3 

experiments are as follows: 

• Monomodal: the segmentation network was trained and tested with a single original 

T1 input volume. 

• Bimodal: the segmentation network was trained and tested with a dual input: the 

original T1 volume and its corresponding synthesized T2 volume. 

•  Trimodal: the segmentation network was trained and tested with a triple input: the 

original T1 volume and its corresponding synthesized T2 and FLAIR volumes. 
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 In all of the 3 experiments, the network was trained during 400 epochs and subsequently 

evaluated. The classic Dice Coefficient was used to measure the similarity between 

predicted and ground-truth segmentations. It was computed as the average of the values 

for each of the 7 tissues individually. 

 

 3. Results and Discussion 

3.1. Histogram matching intensity normalization impact 

 In our experiments, we tested the impact of histogram matching intensity normalization 

of the dataset in the resulting synthesized volumes. The network showed a clear 

improvement when the images were intensity normalized using histogram matching, as 

can be seen visually in Figure 2. The synthesized images using this intensity 

normalization method were able to better infer fine brain details. This may be explained 

by the fact that the intensity standardization to a common canonical space makes it easier 

for the network to learn the source- to-target mapping, and thus it can deepen into high 

frequency information. 

Figure 2: Target T2 contrasts (left) and synthesized images for non-normalized input (center) and 

histogram matching normalized input (right). 

 

3.2. 3D context impact 

To evaluate the importance of a complete 3D context awareness, we compared the 

proposed 3D method with its corresponding 2D version. To do it, we simply interchanged 

the 3D convolutions by 2D convolutions and used a standard 2D UNet, removing the 

channel-wise decomposition and reconstruction as well as the deep supervision. To make 

a fair comparison, we increased the number of filters to 70 (instead of 40) to have a similar 

number of learnable parameters. 
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In Table 1 the results of this comparison are shown. As can be noticed, the 2D approach 

obtained worse results for all metrics (both full-head and skull- stripped) and the resulting 

images showed the expected inter-slice artefacts due to a lack of context in the third 

dimension, as can be appreciated in Figure 3. Thus, this demonstrates the importance of 

an integrated three-dimensional context awareness for the brain MRI synthesis. 

 

Figure 3: T2 contrasts generated by the 2D UNet (upper row) and by the proposed method (lower row). 

The inter-slice artefacts generated by the 2D UNet can be appreciated, due to the lack of a 3D context (red 

arrows). 

 

3.3. Proposed architecture impact 

Similarly, to evaluate the impact of the proposed 3D architecture, we compared it with a 

plain 3D UNet (no channel-wise decomposition and reconstruction) with the maximum 

number of filters able to fit into memory (nf=8). As shown in Table 1, the 3D plain UNet 
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obtained better results than its 2D counterpart (highlighting the importance of 3D context 

information) but worse than the proposed method, most probably due to the lower number 

of filters (nf = 8 vs nf = 40 with the proposed architecture). Visually, this performance 

difference between both networks can be observed in the resulting output volumes. As 

can be appreciated in Figure 4, different from the proposed method, the 3D UNet is not 

capable of generating the high frequency details in the images due to its restricted number 

of filters. Those fine details are fundamental in brain MRI, as they constitute important 

anatomical structures such as blood vessels. Therefore, the proposed network architecture 

allowed to considerably increase the number of filters, consequently achieving an 

important improvement in the results, mainly in relation to high frequency content. 

Figure 4: T2 contrasts generated by the 3D UNet (upper row) and by the proposed method (lower row). 

The 3D UNet inability of reconstructing fine details can be appreciated (red arrows). 
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Proposed method                  2D UNet                              Plain 3D UNet 

 Full-head Skull-stripped Full-head Skull-stripped Full-head Skull-stripped 

CC 0.974 0.994 0.970 0.991 0.968 0.992 

PSNR 26.057 32.333 22.881 26.881 25.203 31.096 

SSIM 0.844 0.963 0.784 0.954 0.815 0.955 

Table 1: Test results for the comparative among the proposed network, the 2D UNet and the plain 3D UNet. 

Best results in bold (CC: Correlation coefficient, PSNR: Peak Signal To Noise Ratio, SSIM: Structural 

Similarity Image Metric). 

 

3.4. Comparison with state of the art 

 

T1-T2 synthesis 

In order to compare our method performance in the task of synthesizing T2 images given 

T1 input images, two representative state-of-the-art methods were used. The first method 

is REPLICA (Jog et al., 2017), a supervised random forest image synthesis approach that 

learns a non-linear regression to predict intensities of alternate tissue contrasts given 

specific input tissue contrasts.  We trained REPLICA on the IXI dataset using the authors’ 

code.  In this method, different regressors perform feature analysis in a range of resolution 

levels, and eventually the individual outputs are averaged to yield the final output 

contrast. This functioning leads to certain blurriness in the resulting images and an 

important deficit in generating high resolution details as seen in Figure 5.  In addition, 

since each voxel in the output contrast is predicted from 2D image patches in the source 

contrast, the built-up volume from the individually synthesized images tends to neglect 

coherence in the third dimension. 

 

The second method under comparison was pGAN (Dar et al., 2019), a deep learning-

based approach for multi-contrast MRI synthesis based on conditional generative 

adversarial networks. Test images were kindly processed by the authors and they sent us 

the results. The adversarial training strategy is able to generate more perceptually realistic 

images and even replicate the noise present in the source image. In spite of this, significant 

artefacts can be appreciated in the generated volumes (see Figure 5), such as bright areas 

confusing the background with cerebrospinal fluid. Even though the images are 

perceptually the most realistic, the generation of these artefacts results in low values for 

the evaluation metrics (Table 2). This realism has as a drawback that the structural 

information in the synthesized volume is not completely true to reality in the ground-truth 
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volume hallucinating some details. This may be due to a lack of a complete 3-dimensional 

context awareness of the volume. 

 

Quantitative results of the comparison are shown in Table 2. As can be noticed, the 

proposed method outperformed the compared methods for both full-head and skull-

stripped regions. However, we want to clarify that pGAN method was trained by the 

authors using a different dataset so SSIM and PSNR values cannot be exactly compared 

(we included these metrics for orientation purposes). Fortunately, correlation is an 

intensity range independent measure that is a less biased metric to compare structural 

information allowing a direct method comparison.  

 
                    Proposed method                  REPLICA                               pGAN 

 Full-head Skull-stripped Full-head Skull-stripped Full-head Skull-stripped 

CC 0.974 0.994 0.881 0.906 0.842 0.909 

PSNR 26.057 32.333 23.964 27.756 18.147 24.570 

SSIM 0.844 0.963 0.694 0.903 0.602 0.893 

Table 2: Test results for our proposed network, REPLICA and pGAN methods. Best results in bold (CC: 

Correlation coefficient, PSNR: Peak Signal To Noise Ratio, SSIM: Structural Similarity Image Metric). 

 

Figure 5: Upper row: Target T2 contrasts (left), synthesized images with REPLICA, the proposed method 

and pGAN. Bottom row: T1 source image, T2 target image, and images synthesized by pGAN and the 

proposed method. Note that REPLICA is not able to recover dark areas in the center of the brain and pGAN 

introduces slice dependent artefacts (red arrows). 
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Another aspect that is worth to mention is that results of the proposed method were very 

intensity coherent, showing intensity distributions matching the reference MNI152 T2 

template (see Figure 5). Also, a relevant aspect is the fact that the proposed method 

resulting volumes did not exhibit strong artefacts unlike REPLICA and pGAN. 

 

From an efficiency point of view, the proposed method takes around 0.5 seconds to 

predict a 3D T2 volume in the MNI space, while REPLICA takes around 15 minutes and 

pGAN around 10 seconds. 

 

T2-FLAIR synthesis 

When we compare the performance of the proposed method on both T2 and FLAIR 

synthesis tasks, we observe better results for T2 synthesis (see Table 3). The reason 

underlying this difference probably stems from the distinct nature of the two databases 

used to train the method. While the IXI T1/T2 dataset is fairly homogeneous, including 

only healthy subjects and acquired in only two different scanners, the FLAIR dataset is 

much more heterogeneous. The latter presents several variability sources: images from 

subjects both healthy and with diverse lesions are included, and moreover these were 

acquired in multiple different scanners around the world. Thus, the FLAIR synthesis case 

reflects more accurately the problems introduced by the inherent MRI heterogeneity due 

not only to the pathological variability, but also to the acquisition process, which hinders 

automatic MRI analysis tasks. Despite having achieved slightly inferior results compared 

to the T2 synthesis network, the FLAIR synthesis method has been trained on a more 

diverse dataset and thus it should present a higher generalization capability. 

 
                                                                                       

                                         T1/T2                                      T1/FLAIR 

 Full-head Skull-stripped Full-head Skull-stripped 

CC 0.9740 0.9938 0.9634 0.9908 

PSNR 26.0575 32.3327 22.3147 28.1550 

SSIM 0.8445 0.9634 0.7203 0.9239 

Table 3: Test results for our proposed method for the tasks of T2 and FLAIR synthesis (CC: Correlation 

coefficient, PSNR: Peak Signal To Noise Ratio, SSIM: Structural Similarity Image Metric).  
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3.5. Validation on segmentation 

As can be appreciated in Table 4, the Dice coefficient value increases as the number of 

input modalities to the network increases. In Figure 6 it can also be observed visually the 

higher accuracy of the tri-modal segmentation compared to the mono-modal, especially 

in thin tissue areas, being the first more detailed and closer to the ground-truth 

segmentation. 

 

The introduction of synthesized T2 and FLAIR images from a source T1 case as 

additional inputs to the segmentation method, provides complementary information and 

different perspectives of the same underlying tissues. As expected, segmentation results 

are benefited by this increasing in the amount of available information in the form of 

multiple input modalities. Image synthesis is thus a means to take advantage of the wealth 

of information MRI offers through its broad variety of contrasts, being demonstrated the 

usefulness of the proposed T2/FLAIR images synthesis method in the improvement of 

3D brain segmentation accuracy. 

 
 

                                                      Dice Coefficient 

 CSF CGM WM SCGM CeGM CeWM BS Average 

Monomodal (T1) 0.868 0.943 0.967 0.919 0.953 0.941 0.950 0.9348 

Bimodal (T1, T2) 0.872 0.946 0.970 0.922 0.954 0.946 0.951 0.9374 

Trimodal (T1, T2, FLAIR) 0.883 0.949 0.968 0.921 0.956 0.947 0.953 0.9395 

Table 4: Test results for UNet segmentations for monomodal, bimodal and trimodal inputs. Best results in 

bold. 
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Figure 6: Upper row: Original T1 image, and T2 and FLAIR images generated by the proposed method. 

Bottom row: ground truth segmentation and UNet segmentations for mono and tri-modal inputs. Note the 

higher precision of the tri-modal segmentation, which can be clearly appreciated in finer areas. 

 

 

 4. Conclusions 

In this paper we presented a deep learning-based approach to address the task of brain 

MRI contrast synthesis and we demonstrated its performance in the T1 to T2 and T1 to 

FLAIR contrast synthesis cases. The proposed method is based on a memory efficient 3D 

variant of the well-known UNet architecture allowing the whole brain volume processing 

at once while giving the proposed network enough complexity to deal with the synthesis 

task. This has been done thanks to the use of spatial-to-depth decomposition and a final 

reconstruction layer combined with a deep-supervision based training.    
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Our proposed method has been shown to outperform two relevant slice/patch-based state-

of-the-art methods, REPLICA and pGAN, in terms of accuracy and efficiency. The full-

volume nature of the proposed method allowed to obtain consistent predictions with no 

slice-based artefacts yielding improved results by maximizing the 3D context 

information. 

 

More specifically, remarkable improvement in the results accuracy was obtained by using 

an additional intensity normalization via histogram matching. We believe the use of this 

normalization increases the generalization capability of the proposed method via mapping 

into a canonical intensity space and can potentially reduce the domain adaptation problem 

when using images from different scanners or with different acquisition settings. 

 

The utility of the proposed synthesis method has been demonstrated through its 

application to a brain volume segmentation problem. It has been shown the improvement 

introduced in the performance of a 3D segmentation UNet when including as additional 

input the corresponding T2 and FLAIR contrasts generated by the proposed network. This 

complementary information contribution has been found to be useful for the crucial task 

of automatic segmentation of the brain (probably due to a reduction in the tissue pattern 

ambiguity). 

 

The proposed method achieved relevant performance in the task of generating T2 and 

FLAIR contrasts from a T1 source contrast, and these particular synthesized images have 

been proved valuable for improving brain segmentation results. However, generated 

images are still a bit blurred. This probably is related to the used loss function (based on 

L1 norm). In the future we will explore other metrics such as perceptual or texture losses 

and then use of a weighted version of adversarial losses to force pattern consistency 

among image modalities.          

 

Finally, the proposed architecture might potentially be used for generating different target 

contrasts from different acquired source 3D images, with the possibility of making an 

impact on another relevant task’s performance such as registration. Further 

experimentation would be required for alternative potential applications. 
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