
Socio-Economic Planning Sciences 83 (2022) 101339

Available online 21 May 2022
0038-0121/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Dealing with weighting scheme in composite indicators: An unsupervised 
distance-machine learning proposal for quantitative data 
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A B S T R A C T   

There is increasing interest in the construction of composite indicators to benchmark units. However, the 
mathematical approach on which the most commonly used techniques are based does not allow benchmarking in 
a reliable way. Additionally, the determination of the weighting scheme in the composite indicators remains one 
of the most troubling issues. Using the vector space formed by all the observations, we propose a new method for 
building composite indicators: a distance or metric that considers the concept of proximity among units. This 
approach enables comparisons between the units being studied, which are always quantitative. To this end, we 
take the P2 Distance method of Pena Trapero as a starting point and improve its limitations. The proposed 
methodology eliminates the linear dependence on the model and seeks functional relationships that enable 
constructing the most efficient model. This approach reduces researcher subjectivity by assigning the weighting 
scheme with unsupervised machine learning techniques. Monte Carlo simulations confirm that the proposed 
methodology is robust.   

1. Introduction 

Composite indicators have clear advantages that justify their 
increasing use for summarising complex and multidimensional realities 
that are not directly measurable. For instance, they are used to support 
decision makers, make comparisons and assess the progress of units 
(companies, countries, regions, etc.) over time or facilitate communi-
cation with the general public [21,23,31]. 

Composite indices developed by international organizations and in-
stitutions choose simplicity as the best methodological option. The most 
widely used aggregation method is the arithmetic mean. Some examples 
of indices that use the arithmetic mean include the United Nations 
Human Development Index from 1990 until 2010 when it was 
substituted by the geometric mean [35]; the Ease of Doing Business 
ranking, which studies business regulation at country level [36]; the 
Better Life Index developed by the Organisation for Economic Cooper-
ation and Development [27] to visualise well-being; the Canadian Index 
of Wellbeing developed by the Canadian Research Advisory Group 
University of Waterloo [5]; or the Sustainable Development Goals (SDG) 
Index supported by Cambridge University Press to assess where each 
country stands in achieving the SDGs [30]. Other institutions have 

combined the arithmetic mean and principal component analysis (PCA) 
in their indices, such as the World Economic Forum’s Global Competi-
tiveness Index since 2008 [33] and the European Commission’s Euro-
pean Regional Competitiveness Index from 2009 to 2019 [2]. PCA is 
applied to verify whether the indicators within each dimension are 
internally consistent and then aggregate them by an arithmetic mean in 
a second step. In addition to the composite indices developed by inter-
national organizations, it is worth highlighting empirical applications 
that use data envelopment analysis (DEA) in academia. DEA is a meth-
odological approach to evaluate the performance of a set of observations 
referred to as decision making units (DMUs) that subsequently transform 
multiple inputs into multiple outputs. DEA methodology has the 
advantage that it does not depend on the method chosen to normalise 
the data or on the weights used for aggregation. Recent studies in this 
line have constructed composite indicators to assess the level of 
competitiveness of Costa Rican counties [19], evaluate the provision of 
local municipal services in Flanders [9] or to assess the performance of 
public hospitals in Portugal from the perspective of users and providers 
[1]. 

These indices and rankings, some of which are more influential than 
others, are taken as a reference to make comparisons between 
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companies, countries or regions and guide decision-making on public 
policies and in private companies. However, despite the popularity of 
these methods, none of them enables benchmarking because they do not 
provide a mathematical structure to analyse the results through a metric 
that permits comparisons between units. Benchmarking is one of the 
required characteristics in a composite indicator and is broadly defined 
as the capability to interpret results according to a specific frame [21]; 
pp. 106–107). Within the setting of the construction of composite in-
dicators, a metric is the natural way to establish the proximity or dis-
tance between the analysed observations and therefore perform 
benchmarking in a rigorous and reliable way. Additionally, the 
weighting schemes of these methods have serious disadvantages that 
call into question the veracity of their results. Neither the arithmetic 
mean nor the geometric mean avoid the redundant or overlapping in-
formation of single indicators, and PCA only removes the linear 
redundant information [4,13,15,24,26]. 

This study presents a new method for building composite indicators 
that can be applied in formative measurement models [6,10], using 
quantitative data and a partially compensatory aggregation method 
based on the mathematical concept of distance or metric. To this end, we 
draw on the P2 Distance method (hereafter DP2) developed by Pena 
Trapero [28] that has been widely used in very recent applications (see, 
for instance, Refs. [8,22,31,32]. Taking into account the available tools 
when Professor Pena Trapero developed the DP2 method, this method 
constituted a great methodological advance, particularly due to the 
introduction of a metric in the construction of composite indicators. 
Nonetheless, DP2 has some limitations. In this study we address these 
weaknesses using machine learning (ML) techniques. 

More specifically, our composite indicator is the outcome of a 
weighted ℓ2 metric, where the weights are computed using unsupervised 
ML algorithms. Our proposal makes several notable contributions. 
Firstly, our composite indicator is able to measure distances to perform 
benchmarking between the units studied in a rigorous way. Secondly, it 
efficiently eliminates the redundant information provided by the single 
indicators, so that the weights of the single indicators properly reflect 
their relative importance. Thirdly, it satisfies a sufficiently large number 
of mathematical properties to be considered a reliable method. Finally, 
our composite indicator has passed a robustness analysis. 

To achieve our goal, the rest of the paper is structured as follows. In 
section 2, the DP2 method is reviewed and its positive aspects and 
limitations are highlighted. Section 3 introduces the DL2, the method-
ology proposed in this study. Specifically, we analyse the formula to 
calculate DL2 composite indicators, select the best set of disjoint poly-
nomials between the composite indicator and the set of single indicators, 
estimate the weights of the single indicators in the calculation of the 
composite indicator, remove redundant information, and the iterative 
method or algorithm for calculating the values of the DL2 composite 
indicators in each unit. Section 4 analyses the mathematical properties 
the DL2 methodology satisfies and its goodness of fit. Section 5 examines 
three strategies for checking the robustness of the proposed composite 
indicator. Section 6 compares the properties that the DP2 and DL2 
methods satisfy. Finally, section 7 concludes. 

2. Drawing on P2 distance 

As in any empirical analysis in which data are used to test a theory or 
estimate a relationship between variables, the construction of composite 
indicators requires performing a series of stages to ensure a reliable 
result. This is a complex task that involves, at least, the following steps: 
(1) defining the phenomenon to be measured (latent construct), which 
in turn requires identifying the nature and direction of the structural 
relationships between the latent construct and the observed variables; 

(2) selecting a group of variables or single indicators that represent the 
phenomenon to be studied according to the conceptual framework; (3) 
normalising the single indicators; (4) weighting and aggregating the 
normalised indicators using a mathematical method (compensatory, 
partially compensatory or non-compensatory) and (5) validating the 
composite index [15,21,23,26]. Likewise, to maximise the robustness 
and validity of a composite indicator, the most appropriate methodo-
logical choices must be made in each of the previous steps. 

In this section, we review how the DP2 method responds to these 
stages, which will allow us to highlight its strengths and identify some 
weaknesses. Thus, our methodological proposal for constructing com-
posite indicators focuses on overcoming the drawbacks of the DP2 
method while taking advantage of its strengths. 

Let us first introduce some formal technical concepts and definitions 
regarding the metric or distance. Let Λ be a nonempty set and let R be 
the set of real numbers. A function d : Λ × Λ→R+ is said to be a metric or 
distance if for all A, B, C ∈ Λ the following statements are satisfied:  

1 d(A, B) ≥ 0; d(A, B) = 0 if and only if A = B,  
2 d(A, B) = d(B, A),  
3 d(A, B) ≤ d(A, C) + d(C, B) (triangular inequality). 

Let X be an n × m-dimension matrix where columns X⋅1, …, X⋅m 
represent the single indicators and the rows of X refer to the i observa-
tions or units (regions, countries, etc.). Let Xi⋅ = (xi1, …, xim) be an m- 
dimension row vector associated to the i-observation and let X*⋅ = (x*1, 
…, x*m) be a hypothetical unit we call the target vector or baseline. For 
instance, the vector X*⋅ may represent the best or worst case scenario for 
each of the single indicators depending on the phenomenon to be 
measured 1. Let dij = |xij − x*j| be the distance from the i-observation i ∈
{1, …, n} to the j-coordinate of the target vector. For each j ∈ {1, …, m}, 
R2

j,…1 represents the coefficient of determination in the multiple linear 
regression of X⋅j over the preceding indicators X⋅j− 1, …, X⋅1 assuming 
R2

1 = 0. Let ωj = 1 − R2
j,…1 be the weights computed following an iter-

ative process explained below. 
Distance DP2 can be defined as follows: 

DP2(Xi⋅,X∗⋅) =
∑m

j=1

dij

σj
ωj (1)  

where σj is the standard deviation of the j-single indicator j ∈ {1, …, m} 
subject to the standard deviation σj ∕= 0. 

Next, we review how the DP2 solves the main issues in the con-
struction of composite indicators and the drawbacks detected in the DP2 
method. 

1. Under the DP2 framework, the |xij − x∗j |

σj 
term transforms the single in-

dicators into dimensionless numbers because the units of measure in 
the numerator and denominator are cancelled. However, this trans-
formation does not ensure that the scale of measurement is the same 

1 Some single indicators may be positively correlated with the latent variable 
(positive polarity), whereas others may be negatively correlated with it 
(negative polarity). For instance, investment in R&D would be positively 
associated with sustainable development (latent variable), whereas CO2 emis-
sions would be negatively associated. In this case, the target vector would be 
formed by the worst case scenario in all single indicators: the minimum value of 
the indicators with positive polarity and the maximum value of the single in-
dicators with negative polarity. Thus, the greater the distance of one unit from 
the target vector, the higher the value of the composite indicator (i.e. the higher 
the level of sustainable development). 
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for all the indicators, since the transformed indicators have a mini-
mum value of zero but the maximum value is not limited. The 
maximum value depends on the specific distributions of the in-
dicators. To correct this drawback, the indicators must be 
normalised. 

2. Generally, the single indicators that make up the composite in-
dicators are correlated, as they provide information from the same 
constructor. Hence, to perform a composite indicator of a latent 
phenomenon, a partially compensatory or non-compensatory ag-
gregation technique of the single indicators should be chosen. In the 
case of DP2, several studies have tested the results reached with DP2 
using other composite indicators developed under a multi-criterion 
approach (with a double reference point) and concluded that the 
results are very similar to those of weak and mixed indices (see Refs. 
[8,20]. This indicates that DP2 can be considered a partially 
compensatory approach. Regarding this, the method should provide 
an adequate treatment to avoid the overlapping of information. 
Unlike other methods (see Ref. [15], DP2 introduces the coefficient 
factor 1 − R2 for this purpose. Nevertheless, the coefficient of 
determination R2 only detects the linear correlations between single 
indicators. This is one of the limitations of the DP2 method that we 
try to overcome with our proposal.  

3. DP2 provides an iterative method to objectively assign weights to the 
single indicators in the composite indicator. To do so, the Fréchet 
distance (FD) is taken as a starting point. The FD corresponding to 
the i-observation is defined as follows 

FDi(Xi⋅,X∗⋅) =
∑m

j=1

dij

σj
(2) 

All the single indicators in the FD have the same weight or impor-
tance. In a first step, DP2 computes the pairwise correlation coefficients 
between each single indicator and the FD and then sorts the indicators 
from highest to lowest according to the absolute values of the pairwise 
correlation coefficient. The indicators are introduced in the model 
following the previous rank and the weights are calculated according to 
this criterion. The process continues iteratively until the difference be-
tween two average adjacent DP2s is less than a fixed threshold. This 
criterion does not guarantee convergence in the order of the value of the 
composite indicator of the units or observations. In other words, the DP2 
criterion can choose some values of the composite indicator so that the 
average of the difference between these values and the previous ones is 
very small but with large differences in the ranking of the units. This is 
why the criterion to reach the final value of the composite indicator in 
each unit should take into account the order convergence of units rather 
than the convergence in mean.  

4. DP2 allows comparing observations and provides a mathematical 
structure to analyse the results through a metric, except when there 
are collinearity problems among single indicators. More specifically, 
the procedure will not provide a satisfactory result when a single 
indicator is a linear combination of other indicators. In this case, for 
some j ∈ {1, …, m} the weight ωj is equal to zero and, therefore, the 
formula DP2 is not a distance or metric (statement (1) of a metric is 
not satisfied) because the defined weights are not always strictly 
positive. This is an essential aspect in order to inherit the rich 
properties of a metric. For example, let us assume that function 
d defines a composite indicator to measure socio-economic status. 
Let T be the vector of the worst observations of a given set of regions, 
that is, the hypothetical region with the lowest socio-economic sta-
tus. Let us assume that A, B denote two different regions belonging to 
the same set such that d(T, A) = d(T, B) = 1 and d(A, B) = 3. Fig. 1 
shows the measures of the distance between observations where the 

triangle inequality is not satisfied. Accordingly, 3 = d(A, B) > d(T, A) 
+ d(T, b) = 1 + 1. A metric space is a set with an associated distance 
function. This function allows us to establish the concept of prox-
imity, so that for any pair of points of the set we can know the dis-
tance between them and therefore perform a range according to this 
function. In relation to this, the function defined in Fig. 1 is not a 
distance since it does not satisfy the triangular inequality. Therefore, 
we cannot know which units have a higher socio-economic status 
than others. 

3. A new proposal: the DL2 composite indicator 

In this section we present our proposal for constructing a composite 
indicator, Distance-Learning or DL2. This composite indicator is the 
outcome of a weighted ℓ2 metric2 in which the weights are computed 
using iterative ML algorithms. The technique is based on the following 
concepts. Firstly, the measurement model is formative and works with 
quantitative data. Secondly, it is based on benchmarking and, thirdly, it 
is partially compensatory. 

Like the review of the DP2 method in the previous section, this 
section is divided into six parts where we describe how to apply the 
(DL2) method to determine the values of the composite indicator and 
overcome the drawbacks of DP2. 

To clarify the proposed methodology, the pseudo-code of the pro-
posed algorithm is described in what follows. 

Algorithm 1. Computation of the composite indicator D(Zs⋅, Z*⋅) 
withrespect to a reference vector Z*⋅.   

Fig. 1. Triangle inequality is not satisfied.  

2 The metric induced by the norm ‖ Xi ‖=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑∞

i=1|xi|
2

√

associated to ℓ2 spaces 
is the generalised way of expressing the classical Euclidean distance. 

E. Jiménez-Fernández et al.                                                                                                                                                                                                                   



Socio-Economic Planning Sciences 83 (2022) 101339

4

● Normalisation 

In a first stage, we pre-process the set of data X. The quantitative 
variables are normalised by re-scaling (or Min-Max) that converts single 
indicators into a common scale, namely into the interval [0, 1]. This 
prevents some indicators from weighing more than others in the com-
posite indicator (DL2). Let Mj = max(xij), mj = min(xij) denote the 
maximum and minimum corresponding to each j-single indicator j ∈ {1, 
…, m}, then 

zij =
xij − mj

Mj − mj
(3) 

if the single indicator has positive polarity and 

zij =
Mj − xij

Mj − mj
(4) 

if the single indicator has negative polarity. Let Z denote the n × m 
matrix whose columns are the single standardised indicators.  

● DL2 formula 

Definition 1 Let D : Rm × Rm→R+ ∪ {0} be a map and ωj ∈ R+ for all 
j ∈ {1, …, m}. We define DL2 as follows: 

D(Zs⋅,Zt⋅) =

(
∑m

j=1
|zsj − ztj|

2ωj

)1/2

(5)  

where s and t are two compared units or observations3.  

● Fréchet distance. In a third stage, we compute the FD with respect 
to the vector reference Z*⋅ = (z*1, …, z*m) as follows: 

FD(Zs⋅, Z∗⋅) =

(
∑m

j=1
|zsj − z∗j|

2

)1/2

(6) 

The FD does not take into account the overlap of information that 
may exist between the single indicators; however, it provides a first 
approximation to the final composite indicator. The FD depicts the 
initial seed of our supervised algorithm. Note that if the single indicators 
were independent of each other, the information they contribute to the 
composite indicators would not overlap in conceptual terms. In such a 
case, the methodology presented in this article would simply consist of 
calculating the FD.  

● Selecting the best set of disjoint polynomials. In a fourth stage, 
when the iteration is equal to one, the algorithm searches functional 
relationships between the set of single indicators and the FD. To 
perform this task, we use multivariate adaptive regression splines 
(MARS) [12].MARS estimates different regression slopes at different 

3 This formula provides the distance between two observations for any nor-
malisation of data. Note that with the normalisation chosen in this article, z*j is 
the null vector. 
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intervals for each predictor and selects the best set of disjoint poly-
nomials between the composite indicator and the set of single 
indicators. 

Unlike DP2, which selects weights using ordinary linear regression 
(OLS) as a hinge to establish relationships between the composite in-
dicator and single indicators, MARS is a non-parametric method that 
extends the model by looking for non-linear interactions between the 
single indicators and the composite indicator. Moreover, the algorithm 
is insensitive to the basic assumptions of linear regression, which en-
ables it to detect irrelevant indicators in the model [18]. To perform this 
task, the model explicitly includes polynomial parameters or step 
functions. 

Let us shorten Dℓ− 1
i = D(Zi⋅, Z∗⋅) as the composite indicator DL2 

computed in the ℓ − 1 iteration ℓ ∈ {1, …, m} (for more details, see 
Algorithm to determine DL2 below) associated to the i observation or 
unit and the target vector. The set of disjoint polynomials B(zih) are 
functions that depend on the respective variables zih, where each B(zih) h 
∈ {1, …, H} can be written as B(zih) = max(0, zih − c) or B(zih) = max(0, c 
− zih), where c is a threshold value and H represents the number of 
explanatory indicators, which includes interactions of the predictor 
variables. The final model is a combination of the generated set of 
disjoint polynomials including possible interactions between predictors. 
The MARS model can be written as follows: 

Dℓ− 1
i = β0 + β1B(zi1) + ⋯ + βmB(ziH) + ϵi (7)  

where the coefficients βj are estimated by minimising the sum of squared 
errors and the error term ϵ follows a normal distribution N(0, σ2). 

To select the best model, an ML algorithm is used. A first step is to 
start with a model containing only the β0 intercept and iteratively add 
disjoint polynomials to the model. During the training process, MARS 
selects new disjoint polynomials that minimise the sum of squared (re-
sidual) errors (SSE) using OLS. The forward step continues until a matrix 
of predictors B(Z) is completed. In general, at the end of this process, B 
(Z) has a much larger number of columns than the original single in-
dicators H > m (Fig. 2). The second phase of this algorithm uses the 
backward stepwise process. The functions that contribute least to the fit 
are removed through 10-fold cross-validation (CV) [7,11] until the best 
sub-model is found. The entire procedure is executed using the R EARTH 
package (“Notes on the EARTH package”, Stephen Milborrow, personal 
notes, September 15, 2020). The steps explained above are illustrated in 
Fig. 2.  

● Computing the weights of DL2. In a fifth stage, we compute the 
weights of the DL2 (ωj in Equation (5)) corresponding to the variable 
importance (VI) function using the simple feature importance 
ranking measure (FIRM) of the VIP package [14]. This tool provides 
a standardised model-based approach for measuring a single in-
dicator’s importance across the growing spectrum of supervised 
learning algorithms. This function allows us to classify the single 
indicators in terms of their relative influence on the predicted DL2. 
Roughly speaking, VI provides a measure of the strength of the 
relationship between single indicators. Thus, VI quantifies the rela-
tive “flatness” of the effect of each feature zj with respect to the other 
indicators {z1, …, zj− 1, zj+1, zj+1, …, zk}, considering that the esti-
mation is evaluated on the functional relationship B̂ obtained in the 
previous step. The normalised scores provided by VI have a similar 
role as the correction factor 1 − R2

j,…,1 in the DP2 methodology. 

For example, if VI assigns a value close to 0 to the first single indi-
cator, the indicator will contribute very little information to the model. 
When a score is equal to zero, we assign the value min(ωj)/m to the 
corresponding weight, where min(ωj) is the minimum nonzero weight 
and m is the number of single indicators 4. Conversely, if VI assigns a 
value of 1 to a single indicator, then this indicator will be the most 
relevant in the model and the assigned weight will be 1.  

● Algorithm to determine DL2. We now analyse the iterative method 
of calculation. To compute the composite indicator, we begin by 
calculating the FD, for which all single indicators have the same 
relevance, i.e. ω1 = … = ωm = 1. The FD will be the first composite 
indicator for iteration one and is called D(0). Assuming D(0) as a 
response variable, we calculate the set of disjoint polynomials B̂(Z)
that best approximates the single standardised indicators. We then 
compute the variable importance with respect to D(0) and obtain the 
first weights {ω(1)

1 , …, ω(1)
m }. The metric or distance (Equation (5)) 

allows us to calculate a new composite indicator with the previous 
weights we call D(1). This iterative process generates a succession of 
weights {ω(ℓ)

1 ,…,ω(ℓ)
m }

m
ℓ=1 and composite indicators {D(ℓ)}

m
ℓ=1. 

Note that the weights of iteration ℓ have been calculated with respect 
to the composite indicator of iteration ℓ − 1. Therefore, it is necessary to 
decide when the algorithm should be stopped. Each composite indicator 
induces a rank into the observations. We use the non-parametric hy-
pothesis test (the Kendall rank correlation coefficient or Kendall’s τ 
coefficient) as a measure to compute the ordinal association between 
D(ℓ− 1) and D(ℓ). This tool provides the rank similarity of the two com-
posite indicators. In the case that there are no ties between the indicator 
D(ℓ− 1) and D(ℓ), the correlation coefficient is expressed as follows 

τ =

∑
i<j(sign(D(ℓ)

j − D(ℓ)
i ) ∗ sign(D(ℓ− 1)

j − D(ℓ− 1)
i ))

D  

where D = n(n − 1)/2. In the case of ties, the expression D is somewhat 
more complex (see Ref. [16]; chapter 3). Thus, under the null hypothesis 
of no association, the τ statistic provides. Consequently, a τ in the in-
terval [0.9, 1] indicates strong agreement between two consecutive 
composite indicators. Moreover, the algorithm stops when we reject the 
null hypothesis and the τ statistic is greater than 0.9. Intuitively, this 
result will confirm that the weights added to the model have not 
changed the ranking of the composite indicator. 

Fig. 2. Overview of EARTH steps.  

4 Note that the weigths are not completely eliminated to ensure our DL2 
continues to be a metric or distance. 
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4. Properties of the DL2 

The methodology presented in this article is based on a weighted 
distance metric. The mathematical properties of this type of structure 
hold and are listed below.The proofs of all statements can be found in 
the Appendix.  

i Map D defines a metric or distance. Firstly, the distance between 
two observations is positive or zero. In the latter case, the two 
units must be the same. Secondly, the distance from observation 
A to observation B is the same as the distance from B to A. 
Thirdly, according to Fig. 1, the distance from B to T plus T to A 
must be greater or equal than the distance from B to A.  

ii Map D is well defined. The composite indicator assigns a unique 
interpretation or value for each unit or observation. 

iii Monotonicity. If a single indicator (with positive polarity) in-
creases (decreases) while keeping the others constant, the 
computed index should increase (decrease).  

iv Invariance by origin and scale changes. The standardisation is 
invariant by origin and scale changes.  

v Transitivity. The composite indicator satisfies that if A is at least 
as great as B, and B is at least as great as C, then A is at least as 
great as C.  

vi Homogeneity. A proportional increase (decrease) in all the single 
indicators generates a proportional increase (decrease) of equal 
magnitude in the composite indicator.  

vii Symmetry. Permutations of the simple indexers lead to the same 
result. 

Theorem 2 Let D : Rm × Rm→R be a map. The composite indicator 
distance defined as Equation (5) satisfies the properties listed above. 

5. Robustness of the DL2 

This section focuses on the robustness assessment of the DL2 in terms 
of its capacity to produce correct and stable measures. We develop three 
strategies to test whether the composite indicators built with the DL2 
method are able to deal with adversities that may arise due to the se-
lection of single indicators, the way single indicators are introduced in 
the model, and changes in the number of units analysed over time. To 
this end, we use Monte Carlo simulations. We perform a data set Z where 
10 single indicators {Z⋅1, …, Z⋅10} are analysed and 400 random uniform 
observations are generated for each single indicator (i ∈ {1, …, 400}). 

The first strategy to validate the DL2 is to examine the selection of 
single indicators. The selection of single indicators is a fundamental step 
that is closely related to the concept to be modelled and the choice must 
be supported by the theoretical and empirical literature [21]. Never-
theless, some of the single indicators could be a perfect or almost perfect 

linear combination of the rest. We want to know how this situation could 
affect the values of the DL2 composite indicator. Let {Z⋅1, …, Z⋅10} be the 
single indicators generated through uniform random variables and 
Z⋅Added =

∑10
j=1αjZ⋅j a linear convex combination. We built a Monte Carlo 

procedure on 100 random convex linear combinations. For each linear 
combination, we calculated the corresponding weights using the pro-
posed methodology. Fig. 3 shows that the Zadded single indicator is 
irrelevant for the computed iterations. 

However, we observe that if we perform the same computation, but 
this time for the distance P2, the variable Zadded is not eliminated and is 
also the most relevant (Fig. 4). 

The second strategy to validate the DL2 involves checking whether 
the way single indicators are introduced in the model alters the values of 
the composite indicator in the units. Given that our proposal relies on VI 
to estimate the functional relationships between the composite indicator 
(DL2) and the set of single indicators, it is reasonable to test whether 
permutations of the single indicators change their weights or importance 
in the composite indicator. Therefore, we calculated the DL2 corre-
sponding to 100 different permutations according to the rank of the 
single indicators Z⋅j j ∈ {1, …, 10}. The results provided the same 
weighted scheme, producing equal values of DL2. Therefore, the algo-
rithm is invariant to how single indicators are introduced in the model 
and the calculated weights are not altered by these permutations (results 
are available upon request). 

Finally, the third strategy checks to what extent an uncertain number 
of units (in the future) would affect the units’ rank. This is a situation 
that can arise when companies that are part of a database in one year 
leave the market in other years (e.g. due to closure), when there are 
administrative changes that affect the number of units (e.g. recognition 
of new municipalities) or simply when for one year or several years the 
information of the single indicators is not available for some of the units 
analysed. When studying the robustness of a method for constructing 
stable composite indicators, it is essential to check if the method will still 
be able to provide a reliable and comparable measurement over time in 
the event any of these situations occur. 

To check whether composite indicators built with the DL2 method 
are able to deal with such situations, we analyse the variability in the 
range of scores of the DL2 when some units are removed at random. To 
perform this test, we again use a Monte Carlo procedure. Firstly, 10 
random observations or units are deleted from the database and the 
composite indicator DL2 is calculated with the remaining 390 obser-
vations. Secondly, we use the original database with the 400 units to 
calculate the DL2. Once computed, we remove the DL2 values corre-
sponding to the same 10 observations that were eliminated in the pre-
vious step. As a result of the two steps, two composite indicators are 
obtained and compared using Spearman’s, Kendall’s and robust range 
correlation statistics. Assuming that the probability of a type I error is α 
= 0.05, a 100 data set was analysed, for which 10 observations were 

Fig. 3. Weights of single indicators in 100 iterations for DL2 (n = 400).  
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randomly deleted. Fig. 5 shows the three correlation tests computed. All 
the tests show evidence of a strong correlation between the two com-
posite indicators. Thus, the random elimination of observations does not 
produce significant differences in the units’ ranking in the composite 
indicator. Consequently, the composite indicators constructed with the 
DL2 method are stable over time even if there are changes in the units 
analysed. 

6. Comparison between DL2 and DP2 methods 

In this section, we compare the DL2 and DP2 methods in terms of the 

results that would be achieved in an empirical application and the 
mathematical properties that verify the composite indicators con-
structed with both methodologies. 

For the first comparison, a Monte Carlo algorithm was designed to 
analyse the ranking of the units in terms of the composite indicator 
values using both methods. One hundred databases with 400 observa-
tions or units and 10 single indicators were generated. The single in-
dicators follow a normal distribution with randomly chosen mean and 
variance parameters. In addition, each database was designed to have 
strong, intermediate and weak correlations between the single in-
dicators to ensure that the algorithm presents extreme cases and to 

Fig. 4. Weights of single indicators in 100 iterations for DP2 (n = 400).  

Fig. 5. Results of simulations of DL2 when 10 observations are randomly deleted (n = 390).  

Fig. 6. Montecarlo simulation to compare DL2 and DP2 composite indicators 
(a) Simulations Spearman test 
(b) Boxplot Spearman test. 
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highlight the differences in the methodologies. Fig. 6 shows the results 
of the comparison. 

The boxplot of Spearman’s test (part b of Fig. 6) indicates that 75% of 
the simulations have a Spearman’s correlation between the values of 
both composite indicators (DL2 and DP2) greater than 0.6, but only 25% 
of them showed correlations above 0.85. Two plausible explanations can 
be given for these divergences in the ranking of both composite in-
dicators, which is why Spearman’s correlations appear so low. Firstly, as 
analysed in a previous section, the methodology presented in this paper 
(DL2) introduces improvements that allow solving the collinearity 
problems that may occur in some databases, whereas DP2 is unable to 
detect single indicators with multicollinearity problems. Secondly, some 
simulations in both methods can reach the maximum number of itera-
tions introduced to stop the algorithm and, therefore, the optimal so-
lution is not reached. In these cases of non-convergence, the rankings of 
the two methods show a larger difference. 

Additionally, for the second comparison between the DL2 and DP2 
methods, we consider the bigsalary data set [3] available in the 

Wooldridge R software package. The total number of observations is 
246. The variables considered for this comparison are the identifier of 
each faculty member (id), the annual salary measured in dollars (salary), 
an indicator of publications (publiindex), and the standardised total 
article pages (artpages). Fig. 7 shows high correlations among the var-
iables analysed. These correlations make it necessary to eliminate 
redundant information to avoid overestimates in the calculated com-
posite indicator. We compute DL2 and DP2. It is worth highlighting that 
DP2 calculates weights that are not a convex linear combination. If this 
were the case, the weights would correspond to 0.3102296, 0.3623602, 
0.3274103, that is, they would be very similar to those provided by DL2. 

We also tested for associations between the DL2 and DP2 indicators 
using Pearson’s product-moment correlation coefficient, Kendall’s τ or 
Spearman’s ρ (see Table 1). The null hypothesis for which the parameter 
corresponding to each test is zero is rejected, obtaining correlations of 
0.9544713, 0.8417787 and 0.9659782, respectively. Table 2 shows the 
first 10 observations where dell2 denotes the DL2 composite indicator, 

Fig. 7. Correlogram with ggpairs (n = 246).  

Table 1 
Weights of aggregation methods.   

Salary Pubiindex artpages 

DL2 0.3684520 0.2296465 0.4019016 
DP2 0.7685526 0.8976993 0.8111156  

Table 2 
First 10 observations ranked by DL2  

id salary publiindex artpages dell2 dell2_rank dp2 dp2_rank 

154 30813.67 2.24 29.00 0.05 1 0.06 1 
17 38770.00 0.00 0.00 0.19 2 0.23 2 
139 38934.50 4.86 65.00 0.22 3 0.38 3 
182 45533.33 6.87 105.00 0.39 4 0.64 4 
146 45319.00 15.19 110.50 0.40 5 0.72 8 
54 47113.00 4.29 105.00 0.43 6 0.66 5 
148 41748.33 71.44 112.00 0.45 7 1.14 35 
164 49890.00 7.51 71.00 0.47 8 0.72 9 
48 46492.00 10.67 193.50 0.49 9 0.84 15 
122 50971.00 9.38 129.00 0.53 10 0.86 17  

Table 3 
Comparison of aggregation methods.   

Distance Existence Monotonicity Invariance 

DP2 ⨯ ⨯ ✓ ✓ 
DL2 ✓ ✓ ✓ ✓  

Transitivity Homogeneity Symmetry Exhaustiveness 
DP2 ✓ ⨯ ✓ ✓ 
DL2 ✓ ✓ ✓ ✓  
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dp2 denotes the DP2 composite indicator and dell2_rank and dp2_rank 
denote the rank obtained from the worst numbering in each of the 
methods. 

The third comparison between the DP2 and the proposed DL2 
methodologies focuses on the mathematical properties a composite in-
dicator should fulfil to assess its goodness of fit. Table 3 summarises the 
comparison between DL2 and DP2 in terms of these properties. 

In a previous section we showed that since the DL2 is a weighted 
metric distance, it satisfies the following seven properties: distance, 
well-defined, monotonicity, invariance by origin and scale changes, 
transitivity, homogeneity and symmetry. To these seven properties, we 
add the concept of exhaustiveness. Exhaustiveness refers to the fact that 
a composite indicator should take full advantage, and in a useful way, of 
the information provided by the single indicators. In this vein, a com-
posite indicator is better than another one if it provides more useful 
information about the phenomenon being studied, but it must also be 
able to eliminate duplicate information [28,29,37]. Composite in-
dicators built with DL2 are exhaustive because the weights of the single 
indicators are computed according to their relevance through VI scores, 
and the model is able to avoid overlapping information. 

As regards the composite indicators built with the DP2 method, it 
should be noted that they fulfil all the properties except for distance (in 
all cases), existence and homogeneity. These weaknesses have been 
analysed in a previous section. Composite indicators constructed with 
DP2 would not be a metric or distance if there were a collinearity 
problem. In such a case, R2

j,…,1 = 1 for some j ∈ {1, …, m}, thus indi-
cating that statement (i) in section 2 is not satisfied. If the standard 
deviation of a single indicator were equal to zero (i.e. the single indi-
cator has the same value in all the units), problems of existence could 
occur since Equation (1) would not be well defined. Let α be a positive 
real number. The non-homogeneity would be due to the fact that DP2 
(αXi⋅) = DP2(Xi⋅). Lastly, it is worth noting that DP2 would be considered 
exhaustive, although it only detects relationships between single and 
composite indicators of a linear nature. 

7. Conclusions 

The increasing use of composite indicators in economics and the 
social sciences is warranted because they allow comparisons to be made 
between units (companies, territories, etc.) and assess the progress or 
evolution of units over time [21,23,31]. Consequently, for composite 
indicators to be effective, they must be developed with robust methods 
that ensure that the two objectives of benchmarking and stability over 
time are achieved. However, the mathematical approach in which the 
most widely used techniques to build composite indicators are grounded 
(i.e. arithmetic and geometric means, PCA and DEA) does not enable 
addressing these issues in a reliable way. Indeed, the weighting and 
aggregation aspects of these techniques have received much criticism in 
the most recent literature (see Refs. [4,13,15,17]. 

In addition to weighting scheme and aggregation, in this paper we 
showed that none of these techniques provide a mathematical structure 
for analysing results through a metric or distance. Consequently, it is 
unfeasible to establish proximity or distance between the units analysed, 
so that both quantitative and ordinal comparisons (unit rankings) lack a 
solid basis. This paper has proposed a new method for building com-
posite indicators called DL2. This method is based on the mathematical 
concept of distance or metric that enables comparisons between the 
units being studied. Its application is intended for quantitative data in 

formative measurement models in the context of compensatory 
aggregation. 

Our proposal took as a starting point the Distance P2 or DP2 method 
developed by Pena Trapero [28] given its remarkable advantages 
studied in a previous section: it provides a mathematical structure 
(except in extreme cases) that enables the units to be ranked according 
to distance, it avoids linear overlapping information between single 
indicators and the composite indicator, it fulfils most of the mathe-
matical properties required to assess goodness of fit, and it is quite 
versatile, thus allows the analysis of a wide range of multidimensional 
phenomena (see, for instance, Refs. [8,22,25,31,32]. 

Likewise, we identified the limitations of the DP2 method and 
improved them by taking advantage of ML techniques, as well as the 
growing computational capacity. Our improvements included, firstly, 
correcting cases in which DP2 is not a metric since the defined weights 
are not always strictly positive. Secondly, because the DP2 method 
inherently relies on linear models, it does not behave efficiently when 
single indicators are poorly correlated with the composite indicator. The 
proposed DL2 method corrects this weakness by means of unsupervised 
ML algorithms. From the composite indicator generated by the un-
weighted metrics, the algorithm optimizes the best functional relation-
ship (not necessarily linear) between the composite indicator and the 
single indicators. By means of ML, DL2 ranks the single indicators in 
order of importance by assigning weights to the metric based on this 
relationship. The algorithm stops when the order of the units (in terms of 
composite indicator values) remains unchanged. 

We also analysed the mathematical properties of our proposed 
method to study its goodness of fit and concluded that it is a distance, it 
is well-defined, and it satisfies the properties of monotonicity, invari-
ance by origin and scale changes, transitivity, homogeneity and sym-
metry. To the best of our knowledge, this kind of analysis has been 
scarcely addressed in the literature. Furthermore, we compared the DP2 
to our method and identified the properties that DP2 might not fulfil in 
some cases. In this regard, the method we have proposed overcomes 
these weaknesses of the DP. 

Finally, the Monte Carlo simulations and real data set confirm that 
the proposed methodology DL2 is robust for building composite in-
dicators. The results of the composite indicator or unit rankings remain 
stable over time, even when the number of analysed units changes. The 
method detects and eliminates multicollinearity problems among the 
single indicators. Likewise, the weighting scheme is not altered by 
permutations in the order in which the single indicators are computed. 
The requirement of robustness should be a mandatory step in any 
composite indicator proposal, since the results can guide public de-
cisions regarding the allocation of economic resources, which can be 
scarce and susceptible to alternative uses. Nevertheless, little attention 
has been paid to this step in empirical applications [13]. 

Appendix 

Proofs of the mathematical properties listed in 8. 
iMap D defines a metric or distance. Firstly, the distance between two 

observations is positive or zero. In the latter case, the two units must be 
the same. Secondly, the distance from observation A to B is the same as 
the distance from B to A. Thirdly, according to Fig. 1, the distance from B 
to T plus T to A must be greater or equal than the distance from B to A. 

Verification is immediate for all statements except for triangular 
inequality (statement 3). 
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Proof i 

D(Zs⋅,Zp⋅) =

(
∑m

j=1
|zsj − zpj|

2ωj

)1/2

=

(
∑m

j=1
|zsjω1/2

j − zpjω1/2
j |

2

)1/2 

=

(
∑m

j=1
|zsjω1/2

j − ztjω1/2
j +ztjω1/2

j − zpjω1/2
j |

2

)1/2 

≤*

(
∑m

j=1
|zsj − ztj|

2ωj

)1/2

+

(
∑m

j=1
|ztj − zpj|

2ωj

)1/2 

=D(Zs⋅,Zt⋅)+D(Zt⋅,Zp⋅).

in which the inequality (*) is obtained through Minkowski and 
Holder inequality. 

iiMap D is well defined. The composite indicator assigns a unique 
interpretation or value for each unit or observation. 

Proof ii 
For any Zi⋅, i ∈ {1, …, n}, map D exists and belongs to R+ ∪ 0. 

iiiMonotonicity. If a single indicator (with positive polarity) in-
creases (decreases) while keeping the others constant, the computed 
index should increase (decrease). DL2 is monotone. 

Proof iii 
Let D(Zi⋅) = (zi1, …, zim) be the m-vector of an observation corre-

sponding to the i observation and let D(Z*⋅) be the vector reference. 
Without loss of generality, let us assume that for j = 1 z*1 < zi1 < zi1 + ϵ, 
where z*1 is the best scenario and varepsilon is some positive constant, 
then |zi1 − z*1| < |zi1 + ϵ − z*1|. 

D(Zi⋅,Z∗⋅) =

(
∑m

j=1
|zij − z∗j|

2ωj

)1/2

=
(⃒
⃒zi1 − z∗1|

2ω1 + |zi2 − z∗2|
2ω2 + ⋯ + |zim − z∗m|

2ωm

)1/2

<
(⃒
⃒zi1 + ϵ − z∗1|

2ω1 + |zi2 − z∗2|
2ω2 + ⋯ + |zim − z∗m|

2ωm

)1/2

= D(Z ′

i⋅,Z∗⋅)

where Z′

i⋅ is the m-dimension vector whose first coordinate corresponds 
to the increment zi1 + ϵ. 

Conversely, assuming that the Z1* single indicator has negative po-
larity, zi1 < zi1 + ϵ < z*1, where z*j is the worst scenario is some positive 
constant, then |zi1 − z*1| > |zi1 + ϵ − z*1|. 

D(Zi⋅,Z∗⋅) =

(
∑m

j=1
|zij − z∗j|

2ωj

)1/2

=
(⃒
⃒zi1 − z∗1|

2ω1 + |zi2 − z∗2|
2ω2 + ⋯ + |zim − z∗m|

2ωm

)1/2

>
(⃒
⃒zi1 + ϵ − z∗1|

2ω1 + |zi2 − z∗2|
2ω2 + ⋯ + |zim − z∗m|

2ωm

)1/2

= D(Z ′

i⋅,Z∗⋅)

On the other hand, an increase in a single indicator with negative 
polarity must generate a decrease in the composite indicator, responding 
positively to a positive change in any indicators and negatively to a 
negative change. The proof is symmetric with respect to the positive 
polarity. 

ivInvariance by origin and scale changes. The standardisation tool is 
invariant by origin and scale changes. 

Proof iv 

Let Mj = max(xij), mj = min(xij) denote the maximum and minimum 
corresponding to each j-single indicator, then 

zij =
xij− mj

Mj − mj
(8) 

for each j ∈ {1, …, m}. It is sufficient to check that the stand-
ardisation is invariant by change of scale for each single indicator. Let νij 
= αxij + β denote a origin and scale changes, where α is a positive real 
number and β any real number. For all j ∈ {1, …, m} 

min{νij} = min{αxij + β} = αmin{xij} + β.
max{νij} = max{αxij + β} = αmax{xij} + β.

hence, 

νij − min{νj}

max{νj} − min{νj}
=

αxij + β − min{αxij + β}
max{αxij + β} − min{αxij + β}

=
xij− mj

Mj − mj
= zij (9) 

Therefore, it is immediate to check that the standardisation is 
invariant by origin and scale changes. 

vTransitivity. 
Proof v 
Let Zs⋅,Zt⋅, Zℓ⋅ ∈ R+ be three observations and let Z∗⋅ ∈ R+ be the 

vector reference. We assume that D(Zs⋅, Z*⋅) < D(Zt⋅, Z*⋅) and D(Zt⋅, Z*⋅) <
D(Zℓ⋅, Z*⋅) then D(Zs⋅, Z*⋅) < D(Zℓ⋅, Z*⋅). 

viHomogeneity. A proportional increase (decrease) in all the single 
indicators generates a proportional increase (decrease) of equal 
magnitude in the composite indicator. 

Proof vi 
Let α be a real positive constant. Then 

D(αZs⋅,αZt⋅) =

(
∑m

j=1
|αzsj − αztj|

2ωj

)1/2

= αD(Zs⋅, Zt⋅). (10)   

viiSymmetry. 

Proof vii 
In the proposed method, the value of the composite indicator does 

not depend on the rank of the indicators introduced in the n × m X 
matrix data. 
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