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A B S T R A C T

Multiple instance learning (MIL) deals with data grouped into bags of instances, of which only the global
information is known. In recent years, this weakly supervised learning paradigm has become very popular in
histological image analysis because it alleviates the burden of labeling all cancerous regions of large Whole
Slide Images (WSIs) in detail. However, these methods require large datasets to perform properly, and many
approaches only focus on simple binary classification. This often does not match the real-world problems
where multi-label settings are frequent and possible constraints must be taken into account. In this work, we
propose a novel multi-label MIL formulation based on inequality constraints that is able to incorporate prior
knowledge about instance proportions. Our method has a theoretical foundation in optimization with log-
barrier extensions, applied to bag-level class proportions. This encourages the model to respect the proportion
ordering during training. Extensive experiments on a new public dataset of prostate cancer WSIs analysis,
SICAP-MIL, demonstrate that using the prior proportion information we can achieve instance-level results
similar to supervised methods on datasets of similar size. In comparison with prior MIL settings, our method
allows for ∼ 13% improvements in instance-level accuracy, and ∼ 3% in the multi-label mean area under the
ROC curve at the bag-level.
1. Introduction

In the supervised learning paradigm, deep learning methods have
shown promising performance in a wide range of medical imaging ap-
plications. Nevertheless, these methods usually require large amount of
data for training, which must be labeled by expert clinicians. Obtaining
these labeled datasets is a time-consuming process and is susceptible
to inter-annotator variability, which complicates the use of these mod-
els in practice. This is the case for histology image analysis, whose
large size of tissue images magnified on whole slide images (WSIs),
patterns heterogeneity, and the high level of expertise required to
annotate the data make this learning paradigm unfeasible. Considering
these limitations, the most popular choice in this field has become
the use of weakly supervised learning strategies under the multiple
instance learning (MIL) paradigm. In particular, typically the training
dataset is composed of bags (WSIs) that are known to have cancer
or not. Each bag consists of instances (tissue tiles), of which the
label is not accessible during training. Under this setting, different
works have demonstrated outstanding results for both WSI-level cancer
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detection [1] and instance-level cancer localization [2]. Nevertheless,
these methods require very large datasets (i.e. thousands of biopsies) to
compensate for the absence of greater supervision. One common limi-
tation is that these methods tend to focus on only a limited number of
instances of each bag during training. Very recent literature has resort
to instance-dropout [3] during training to alleviate this issue. Despite
the improvement it produces, this solution does not involve classifying
more positive instances systematically, but depends on the samples
randomly discarded in the dropout, without prior knowledge. To im-
prove the performance of MIL models with the help of prior knowledge,
constraint deep learning has been proposed using previously estimated
tumor size [4] to guide the weakly supervised optimization. Although
this method shows a promising performance, in this case the tumor
size estimation is a tedious task, which can be as costly as performing
instance-level annotations. All these limitations are accentuated in
the multi-label scenario, where it is desired to differentiate between
different types of tissues, which may coincide in the same bag. In
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contrast to the binary scenario classification, multi-label MIL literature
still remains scarce in histology image analysis [5].

Based on these observations, we propose a novel formulation for
MIL in the multi-label scenario, applied to histology prostate cancer
grading in WSIs. The key contributions of our work can be summarized
as follows:

• A novel constrained formulation for instance-level MIL, which
integrates an auxiliary term that forces to increase the number
of instances classified on positive classes.

• In addition, our formulation leverages prior knowledge in terms
of relative tissue proportions (i.e. primary cancerous grade in the
WSI) by imposing inequality constraints on bag(WSI)-level class
proportions.

• We benchmark the proposed model against a relevant body of
literature on SICAP-MIL, a new publicly available dataset contain-
ing 350 prostate WSIs with global labels, as well as instance-level
labels to test weakly-supervised methods on tumor localization.

• Comprehensive experiments demonstrate the superior perfor-
mance of our model. By simply incorporating relative propor-
tion information during training (easily accessible from medical
records in many cancer types) we found improvements of nearly
∼ 3% in mean AUC for bag-level classification and ∼ 13% for
instance-level cancer grading accuracy compared to prior MIL
methods.

. Related work

.1. Multiple instance learning

In computer vision, multiple instance learning (MIL) is a learn-
ng paradigm that works with independent images (instances) that
orm groups (bags), and only bag-level information is known. In the
ulti-label scenario, each instance belongs to one class, but different

lasses could coincide at bag level [6]. Modern MIL methods using
onvolutional neural networks (CNNs) for feature extraction usually
rocess each instance independently, and then combine the instance-
evel information into one bag-level output. Methods that combine
nstance-level features are known as embedding-based, which require a
ubsequent classification layer. In contrast, instance-based architectures
ombine directly instance-level predictions into the bag classification.
eyond the basic mean and maximum aggregation functions, recent
ethods have proposed the use of weighted-averaged embeddings,
sing instance-specific attention weights learned via a multi-layered
erceptron projection [7] or recurrent neural networks [1]. It is note-
orthy to mention that, although embedding-based approaches have
ielded slightly better bag-level results in previous literature, they
o not provide instance-level probability outputs. In this work, we
re interested in both: instance and bag-level classification. Since we
im to include prior knowledge referred to class-wise proportions, our
roposed method follows the instance-based learning paradigm.

.2. Constrained classification

Constrained classification aims to guide the training of a CNNs to-
ards a solution that satisfies a given condition, which takes advantage
f additional knowledge to the main labels. This learning paradigm
as gained popularity on weakly supervised scenarios (e.g. weakly
upervised segmentation or MIL), since it allows to incorporate local
nformation to the global annotations. In a usual constraint weakly
upervised setting, an additional loss term enforces the sum of the
nstance-level predictions to match a given proportion using an L2
enalty [8]. Similarly, it has been applied in unsupervised anomaly seg-
entation, to force attention maps to focus on all patterns of training
2

mages [9], or in semi-supervised learning, to match the predicted size
distributions to the ones observed in the supervised subset using a KL-
divergence term [10]. While the aforementioned equality-constrained
formulations proposed in weakly supervised settings are very promis-
ing, they demand exact knowledge of the prior. For instance, in the case
of histology tumor grading, this would require to know the cancerous
tissue proportion extent. Therefore, recent works have preferred the
use of inequality constraints to relax the prior assumptions, allowing
more flexibility. This approach allows, for example, to set some toler-
ance margins on target size using L2 penalties [11,12], or Lagrangian
optimization [13]. Following the example above, these works would
require approximate knowledge of tumor size, and a tolerance margin
would be applied to smooth the constraint. Unlike these works on
weakly supervised classification, our formulation does not require prior
information on the absolute size of the target. In contrast, we seek
to constrain the training to account for relative relationships between
proportions within the same global image. In the case of histological
whole slide image classification in a multi-label setting, this formu-
lation incorporates information about which tumor grade is in the
majority (primary) and which is in the minority (secondary), so that
the proportion of the primary grade must be greater than that of the
secondary grade. Thus, we use inequality constraints to (i) encourage
classification of instances to positive classes at the bag level, and
(ii) incorporate relative relationships between class proportions within
bags.

3. Methods

An overview of our proposed method is depicted in Fig. 1. In
the following, we describe the problem formulation, and each of the
proposed components.

Problem formulation. In the paradigm of Multiple Instance Learning
(MIL), instances are grouped in bags of instances 𝑋 = {𝑥𝑛}𝑁𝑛=1, that ex-
hibit neither dependency nor ordering among them, and its number 𝑁
is arbitrary for each bag. In the multi-label scenario, there are multiple
labels per bag, 𝑌 = (𝑌1,… , 𝑌𝑘,… , 𝑌𝐾 ), where 𝑘 ∈ {1,… , 𝐾} denotes
each one of the 𝐾 categories. Also, individual labels, 𝑦𝑛,𝑘 ∈ {0, 1}, exist
for each instance in the bags, but they remain unknown during training.
In the standard MIL formulation, a bag label is considered positive if
at least one instance in the bag is positive for that category. We can
rewrite this assumption in the following forms:

𝑌𝑘 =

{

1, iff ∑

𝑛 𝑦𝑛,𝑘 > 0
0, otherwise

(1)

≡ 𝑌𝑘 = max
𝑛

{𝑦𝑛,𝑘} (2)

Instance-based MIL. In this work, we aim to training a model capable
of extracting both: instance and bag-level labels, which falls into the
instance-based MIL paradigm.1 Let us denote a neural network model,
𝜽(⋅) ∶  → 𝐾+1, parameterized by 𝜽, which processes instances 𝑥 ∈ 
o predict softmax instance-level class scores, {ℎ𝑘}𝐾𝑘=0 ∈ , such that
∈ [0, 1]. Note that 𝑘 = 0 represents a category for instances negative

t all classes. Also, we use a parameter free aggregation function, 𝑓𝑎(⋅),
n charge of pooling the instance-level scores into one global score

= (𝐻1,… ,𝐻𝑘,… ,𝐻𝐾 ) such that 𝐻 = 𝑓𝑎({𝑓𝜽(𝑥𝑛)}𝑁𝑛=1). Then, the
optimization of 𝜽 is driven by the minimization of cross entropy loss
between reference and predicted bag-level score.

𝑐𝑒 = − 1
𝐾

𝐾
∑

𝑘=1
𝑌𝑘𝑙𝑜𝑔(𝐻𝑘) + (1 − 𝑌𝑘)𝑙𝑜𝑔(1 −𝐻𝑘) (3)

1 Based on the denomination proposed in [7]
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Fig. 1. Method overview. In this work, we face weakly supervised histology image classification under the Multiple Instance Learning (MIL) paradigm. Each biopsy is a bag,
while its patches are the instances conforming it. In the case of prostate analysis, expert labels are conformed by the Gleason score, that are the sum of the two most predominant
tumor grades (i.e. G3, G4 or G5). In order to extract both instance and bag-level labels, an standard instance-level MIL with max aggregation is trained via cross-entropy loss, 𝑐𝑒
(see Eq. (3)). Then, prior information is incorporated via inequality constraints that (i) force the classifier to predict instances that are present in the biopsy (𝑃𝐸 , see Eq. (5)),
and (ii) ensure that the proportion of the primary grade is superior than the secondary grade (𝑃𝐶 , see Eq. (7)). Colored tissue indicates: blue: Gleason grade 4; red: Gleason
grade 5. Circles in instance-level predictions indicate soft-max scores, 𝑦𝑛,𝑘. The more intense the color, the higher the score.
3.1. Inequality constraints for MIL

Previous literature on instance-level MIL have proposed aggregation
functions 𝑓𝑎(⋅) based on mean or maximum operator. The second
solution is used based on the direct interpretation of maximum op-
eration on MIL formulation (Eq. (2)). Nevertheless, training a neural
network via this aggregation produces well-known problems such as
gradient vanishing of non-maximum instances. This limitation produces
the network to focus only on discriminative instances during training,
which leads to poor generalization performance on unseen samples. To
alleviate this issue, we focus on the MIL formulation in Eq. (1), which
interpretates a positive bag via an inequality that forces the sum of in-
stances scores to be greater than zero. In this line, we incorporate to the
base instance-based MIL training a term that increases the proportion of
positive instances classification for a given class 𝑘, 𝑝𝑘 =

1
𝑁

∑𝑁
𝑛 ℎ𝑛,𝑘, by

minimizing −𝜆𝑙𝑜𝑔(𝑝𝑘). Nevertheless, this log-term is non-differentiable
when 𝑝𝑘 → 0. To solve this limitation we resort to a smooth, duality-
gap bound approximation. Concretely, we use the formulation proposed
in [13] on constrained optimization that models inequality constraints
using the approximation of log-barrier that is formally defined as:

𝜓̃𝑡(𝑧) =

{

− 1
𝑡 log(𝑧) if 𝑧 ≥ 1

𝑡2

−𝑡𝑧 − 1
𝑡 log(

1
𝑡2
) + 1

𝑡 otherwise,
(4)

where 𝑡 controls the barrier during training, and 𝑧 is the objective term.
This log barrier extension is applied on the proportion term 𝑝𝑘 of

the bags that are positive for the class 𝑘 at bag level (i.e. 𝑌𝑘 = 1). It
is noteworthy to mention that this proportion is the objective term 𝑧
in Eq. (4). Hereafter, we refer to this term as positives expansion (PE)
constraint.

𝑃𝐸 =
∑

𝑘∶𝑌𝑘=1
𝜓̃𝑡𝑃𝐸 (𝑝𝑘) (5)

Thus, we propose a MIL loss that combines the maximum formula-
tion in Eq. (2) via the aggregation function 𝑓𝑎(⋅) = max

𝑛
{𝑦𝑛,𝑘}, and the

PE term as follows:

 = 𝑐𝑒 + 𝜆𝑃𝐸𝑃𝐸 (6)

where 𝜆𝑃𝐸 ∈ R+ weights the importance of each term during training.
Note that the positives expansion term, 𝑃𝐸 , is only applied for those
positive categories at bag-level.
3

3.2. Incorporating proportion information

In some applications, prior knowledge of the bags is known. In
this work, we focus on an information usually recorded on medical
domains: data regarding the proportion of categories in the image
(i.e. primary or secondary tumor grades in the tissue). This information
can be formulated as an inequality constraint between categories pro-
portions such that: 𝑝𝑘′ > 𝑝𝑘′′ , where 𝑘′ denotes the larger proportion
category, and 𝑘′′ its respective counterpart. Note that this relation
can be established between any pair of positive categories in the bag
for which we have this information available. Thus, we contemplate
an arbitrary number of conditions 𝐼 for each bag, which could give
complete or partial information (i.e. the formulation could be applied
for only few known inequalities). For each condition 𝑖, both major (𝑘′)
and minor (𝑘′′) categories should be indicated. Again, we make use of
extended log-barrier (see Eq. (4)) to solve this inequality constraint,
which has demonstrated good performance when multiple constraints
are used [13]. In this case, the objective term 𝑧 in Eq. (4) is the different
between major and minor proportions in a given bag: (𝑝𝑘′𝑖 − 𝑝𝑘′′𝑖 ).
Hereafter, we refer to this additional term as proportion constraint
(PC).

𝑃𝐶 =
𝐼𝑏
∑

𝑖
𝜓̃𝑡𝑃𝐶 (𝑝𝑏,𝑘′𝑖 − 𝑝𝑏,𝑘′′𝑖 ) (7)

where 𝑏 indicates the bag index over the complete dataset, 𝜆𝑃𝐶 ∈ R+

weights the relative importance of the proportion term during training,
𝑡𝑃𝐶 controls the barrier slope over time. It is noteworthy to mention
that the proportion term is not taken into account for bags with only
one positive category, or which the proportion information is unknown.

Taking into account the different terms previously detailed, 𝜽 is
trained to solve the multi-label MIL formulation using the following
optimization criteria via standard Gradient Descent:

 =  + 𝜆  + 𝜆  (8)
𝑐𝑒 𝑃𝐸 𝑃𝐸 𝑃𝐶 𝑃𝐶
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Table 1
SICAL-MIL dataset. Whole slide images partition and Gleason scores (GS) distribution.
NC: non-cancerous.

Partition NC GS6 GS7 GS8 GS9 GS10 Total

Train 77 10 61 7 25 8 188
Validation 19 2 26 5 10 2 64
Test 17 9 28 13 27 4 98

Total 111 21 115 25 62 14 350

Fig. 2. SICAP-MIL dataset description. The confusion matrix shows the distribution of
global labels in terms of primary and secondary Gleason grades per Whole Slide Image.
GG: Gleason grade. NC: non-cancerous.

4. Experiments and results

4.1. Experimental setting

Datasets. In this work, we present a new dataset for prostate histo-
logical image analysis: SICAP-MIL.2 This dataset is an extension of the
previously published SICAP versions [14,15], which is expanded with
168 new WSIs. The dataset introduced is composed of 350 WSIs from
271 patients. The samples were digitized using the Ventana iScan Coreo
scanner at 40𝑥 magnification. The slides were analyzed by a group of
expert urogenital pathologists at Hospital Clínico of Valencia, and a
combined Gleason score (GS) was assigned per biopsy. The Gleason
score is the sum of the two main (primary and secondary) Gleason
grades (GG) in the biopsy regarding its extent and severity. The clinical
report specifies both the score and the primary and secondary grades
that constitute the score. SICAP-MIL is specially design to serve as a
benchmark for MIL methods. Each WSI is considered as a bag, from
which instances are obtained by tiling the images using non-overlapped
moving-windows of 5122 pixels at 10× of resolution level. Note that tiles
with less than 20% of tissue were excluded. The dataset is divided into
three class-wise balanced groups for training, validation and testing.
A summary of the dataset in terms of the labeled Gleason scores and
proposed partitions is presented in Table 1

From the WSI-level Gleason scores, bag-level labels referred to the
presence of each Gleason grade in the WSI are inferred. Also, the
relative-proportion information of the primary and secondary grades is
obtained from this score. We show in Fig. 2 the information regarding
the primary and secondary Gleason grades for each WSI. It is observed
that most cases present at least two tumor types, and thus two pro-
portion expansion (PE) constraints and one proportion constraint (PC)
in the proposed formulation. Also, the difficulty of training a classifier
capable of distinguishing between different Gleason grades in a weakly
supervised manner is appreciated, since the biopsy rarely presents a
single tumor type.

2 SICAP-MIL is available at https://cvblab.synology.me/PublicDatabases/
SICAP_MIL.zip or on the GitHub repository of the project: https://github.com/
jusiro/mil_histology
4

Table 2
Datasets with patch-level Gleason grade annotations used for testing.
Distribution of the patches among non-cancerous (NC) and the different
Gleason grades (GG).

Partition NC GG3 GG4 GG5

Test 448 289 632 132

In addition, SICAP-MIL includes instance-level annotations, which
allow to test the capability of MIL methods to leverage instance classi-
fications in a weakly-supervised manner. To do so, annotated WSIs are
kept into the test subset. Note that instance-level labels are obtained
from pixel-level annotations done by expert pathologist. Non-cancerous
patches are obtained only from benign WSIs, while cancerous patch-
level labels are obtained by majority voting of segmentation masks. The
distribution of instance-level annotated subset from the test cohort is
presented in Table 2.

Implementation details. The proposed methods were trained using
the train subset from SICAP-MIL. The backbone 𝑓𝜽(⋅) used was a
VGG16 [16] pre-trained on Imagenet [17], which takes as input in-
stances resized to 224 × 224 images. First, the PE setting was trained
by empirically fixing 𝜆𝑃𝐸 = 0.1 and 𝑡𝑃𝐸 = 15. Training was carried out
during 100 epochs using a batch size of 1 bag and the SGD optimizer
with a learning rate 𝜂 = 1 ⋅ 10−2. After 50 epochs, 𝜂 is decreased
in a factor to 10×. During training, bag-level mAUC is monitored
in the validation set, and early stopping is applied if this figure of
merit does not improve during 20 epochs. Then, the PC formulation
is trained keeping constant the PE hyperparameters, and empirically
setting 𝜆𝑃𝐶 = 1 and 𝑡𝑃𝐶 = 5. The training is carried out using the
same training conditions as the PE setting. Nevertheless, instead of
using mAUC from validation subset as early stopping criterion, we
use the average proportion constraint satisfaction, 𝑧 = 𝑝𝑏,𝑘′𝑖 − 𝑝𝑏,𝑘′′𝑖
in Eq. (7) from the training set to determine the best model. The
hyperparameters and early stopping criterion used are further justified
by means of ablation experiments. The code and trained models are
publicly available on https://github.com/jusiro/mil_histology.

Instance-level student . In this work, we complement the proposed
models for instance-level prediction with a second model, Student,
trained with instance-level hard pseudo-labels as described in [2]. This
second stage has demonstrated to increase model performance without
any modification of the architecture as described in [2]. Note that we
use as Teacher any trained instance-level classifier 𝑓𝜽(⋅) under the MIL
paradigm with the proposed methodology. A Student model with the
same complexity as the Teacher is trained following the Noisy Student
paradigm on semi-supervised learning [18]. Concretely, a dropout rate
of 0.20 is applied over the instance embedding, and data augmentation
is applied to all instances using random rotations, translations, Gaussian
blur and color jittery. Student is trained during 60 epochs with mini-
batches of 32 images using SGD optimizer and a learning rate of 𝜂 =
1 ⋅ 10−2.

Baselines. With the aim of comparing our approach to state-of-the-art
methods, we implemented and tested prior methodologies on MIL for
both instance-level and bag-level classification on SICAP-MIL dataset.
Instance-based MIL. First, we compare our method with other inst-
ance-based MIL aggregation. Concretely, we use basic mean and max
operations over the instance-level predictions to obtain the bag-level
prediction. Embedding-based MIL. Secondly, we included embedding-
based methods, which aim to obtain a bag-level embedding, on which a
classifier is trained to predict bag-level labels. Aggregation methods of
instance-level features include mean, max, attention mechanism, and
recurrent neural networks (RNN). AttentionMIL [7] aims to obtain a
weighted feature representation, which highlights positive instances in
the bag. The weights are obtained using a multi-layered perceptron as
detailed in [7]. We implemented the gated attention mechanism with

https://cvblab.synology.me/PublicDatabases/SICAP_MIL.zip
https://cvblab.synology.me/PublicDatabases/SICAP_MIL.zip
https://github.com/jusiro/mil_histology
https://github.com/jusiro/mil_histology
https://github.com/jusiro/mil_histology


Computers in Biology and Medicine 147 (2022) 105714J. Silva-Rodríguez et al.
Table 3
Quantitative comparison to prior literature at instance level on SICAP-MIL dataset. Results derived from
the proposed methods in gray. Best results in bold. NC: non-cancerous; GG: Gleason grade; 𝜅: Cohen’s
quadratic kappa.

Method Acc F1-score 𝜅
NC GG3 GG4 GG5 Avg.

mean 0.458 0.312 0.383 0.548 0.411 0.413 0.431
max 0.484 0.604 0.295 0.411 0.199 0.377 0.262
max (Student) [2] 0.573 0.716 0.398 0.529 0.320 0.490 0.454
max - w. PE 0.535 0.644 0.259 0.533 0.217 0.413 0.296
max - w. PE (Student) 0.610 0.748 0.302 0.616 0.341 0.502 0.481
max - w. PE w. PC 0.639 0.706 0.686 0.611 0.309 0.578 0.450
max - w. PE w. PC (Student) 𝟎.𝟕𝟎𝟓 𝟎.𝟖𝟏𝟖 𝟎.𝟔𝟗𝟐 𝟎.𝟔𝟗𝟏 𝟎.𝟒𝟏𝟕 𝟎.𝟔𝟓𝟓 𝟎.𝟔𝟓𝟓
Table 4
Quantitative comparison to prior literature at instance level. Results derived from the proposed methods in gray. TMAs: tissue micro arrays; WSIs:
whole slide images; NC: non-cancerous; GG: Gleason grade; 𝜅: Cohen’s quadratic kappa.

Method Paradigm Training
Dataset Acc F1-score 𝜅

TMAs WSIs NC GG3 GG4 GG5 Avg.
Arvaniti et al. [19] (2018)* supervised 508 - - - - - - - 0.67∕0.55
Nir et al. [20] (2019)* supervised 333 - - - - - - - 0.61
Silva-Rodrguez et al. [15] (2020) supervised - 160 0.67 0.86 0.59 0.54 0.61 0.65 0.77
Otálora et al. [21] (2020)* semi-supervised 508 171 - - - - - - 0.59∕0.55
Silva-Rodrguez et al. [2] (2021) MIL - 10, 000 0.797 0.901 0.714 0.798 0.601 0.754 0.830
max - w. PE w. PC (Student) MIL - 188 0.705 0.818 0.692 0.691 0.417 0.655 0.655
* Results reported on different patch size and resolutions, on private datasets.
an intermediate layer with 𝐷 = 128 neurons. Campanella et al. [1]
proposed a RNN based aggregation over the top-k positive instances
of each bag to produce bag-level classifications. We increased 𝑘 = 10
to support the multi-label scenario, and a RNN with a hidden state of
128 neurons was trained. All methods are train under the same training
setup (i.e. backbone, learning rate, scheduler, batch size, etc.) as our
baseline. Only the learning rate of the methods based on attention
mechanisms was changed to 𝜂 = 1 ⋅ 10−3. Note that embedding-based
method do not make instance-level predictions, and is therefore only
used as a comparison of the results at the bag level. Although attention-
based methods include instance-level importance weights, these are
not true predictions at the instance level, as they are sensitive to the
number of instances in the bag.

Evaluation metrics. We evaluate the different models in this work
using standard metrics on MIL for both instance and bag-level perfor-
mance on the test subset. Concretely, for instance-level validation we
obtain accuracy (Acc), and f1-score per class and micro-averaged. Also,
as the Gleason grades constitutes a set of ordered classes, we obtain
Cohen’s quadratic kappa (𝜅) as figure of merit. Regarding the bag-
level predictions, we evaluate them using the area under ROC curve
(AUC). In the multi-label scenario, AUC is obtained class-wise, and it is
averaged (mAUC). In order to facilitate the comparison of our methods
with previous literature at the bag level, we also obtained the AUC
for binary cancer vs. non-cancer detection by combining each class
prediction and target via max-aggregation. For each experiment, the
metrics shown are the mean of three consecutive repetitions (with its
respective standard deviation) of the model training, to account for the
variability of the stochastic factors in the process.

4.2. Results

Comparison to the literature. The quantitative results obtained by
the proposed model and baselines on the test cohort are presented at
instance level in Table 3, and at bag level in Table 5 and Fig. 3. Also, we
include results reported in a relevant body of literature for both tasks,
using different datasets and experimental settings for instance level in
Table 4, and at bag level in Table 6.
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Table 5
Quantitative comparison to prior literature at bag level in SICAP-MIL dataset. The
metric presented is the Area Under ROC curve (AUC). Results derived from the proposed
methods in gray. Best results in bold.

Method Cancer
Detection Multilabel

Embedding + mean 0.952(0.013) 0.844(0.009)
Embedding + max 0.951(0.019) 0.834(0.002)
Embedding + RNN [1] 0.967(0.014) 0.855(0.011)
Embedding + AttentionMIL [7] 0.961(0.006) 0.848(0.007)
Instance + mean 0.701(0.090) 0.769(0.071)
Instance + max 0.955(0.012) 0.867(0.005)
Instance + max w. PE 0.962(0.009) 0.873(0.019)
Instance + max w. PE w. PC 𝟎.𝟗𝟕𝟗(𝟎.𝟎𝟎𝟓) 𝟎.𝟖𝟗𝟗(𝟎.𝟎𝟎𝟕)

Instance-level results. The proposed constrained formulation using
a positive expansion constraint term (PE) to enhance positive instances
prediction outperforms in ∼ 5% the accuracy for instance-level clas-
sification of max-aggregation baseline. Adding the Student stage, the
model reaches an accuracy of 0.610, which outperforms on SICAP-
MIL the Teacher–Student strategy using only max aggregation in [2].
The observed improvement could be caused by the larger number
of instances classified using the inequality constraint, which avoids
over-fitting the model to focus only on very discriminative instances.
Note that, although still the results reported in [2] in prior literature
are better, the training dataset required to accomplish these results
is too large: around 10,000 WSIs. Once we introduce the proportion
information in terms of primary and secondary classes in the bag via
the proportion inequality constraint (PC), results reach an accuracy of
0.705 and average F1-score of 0.655. It is noteworthy to mention that
these results are similar to the ones obtained in prior literature under
full supervision on similar sized datasets [15,19–21]. Under our pro-
posed formulation, the model is capable of grading cancerous patches
at the same performance of using pixel-level annotated datasets, by
providing only WSI-level information about the most abundant grade.

Bag-level results. Regarding the MIL bag-level results obtained, our
PE formulation improved around ∼ 0.7% the baseline instance-based
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Table 6
Quantitative comparison to prior literature at bag level. Results reported on different
datasets, patch size and resolutions. The metric presented is the Area Under ROC curve
(AUC). Results derived from the proposed methods in gray. WSI: whole slide image
[22,23].

Method Training
WSIs

Cancer
Detection Multilabel

Campanella et al. [1] (2019) 24, 859 0.994 −
Ström et al. [22] (2020) 6, 682 0.997 −
Bulten et al. [23] (2020) 5, 759 0.990 −
Li et al. [3] (2021) 9, 638 0.982 −
max - w. PE w. PC (Student) 188 0.979(0.005) 0.899(0.007)

Fig. 3. Overall receiver operating characteristic (ROC) curves for the multilabel
bag-level prediction of proposed methods and baselines on SICAP-MIL dataset.

maximum aggregation. This modest improvement may be due to the
fact that, because of the maximum-based inference, it is only necessary
to locate one positive sample to get the bag-level prediction right. These
observations are in line with previous literature, which highlights that
the best classifier at the bag level need not be the best classifier at the
instance level [24]. Once we incorporate the proportion information
during training, the proposed model increases the multilabel mAUC in
∼ 3.3% from the baseline, and reaches mAUC of 0.899 in the multi-label
scenario and 0.979 in the binary prediction (see Table 5). Note that
this result almost reaches the ones reported in previous literature (see
Table 6), which use thousands of WSIs during training. However, it is
worth noting the limitations of this indirect comparison. The methods
used in previous works may have different levels of supervision, and the
datasets used are larger. Next, we perform a direct comparison of the
weakly supervised methods in the database used in this work, SICAP-
MIL (see Table 5). Specifically, we pay attention to embedding-based
methods performance at bag level. The obtained results using mean
and max aggregation are similar to the baseline instance-based max
approach. However, in the multi-label scenario, these methods perform
worse. Moreover, since they cannot provide instance-level labels, they
cannot take advantage of the information referred to the proportion
during training. It is notable that deep-learning based aggregation
modules such as AttentionMIL or RNN do not perform properly in this
training setting. This could be due to the complexity of having multiple
classes in some bags, the over-fitting tendency of neural networks, and
the incapacity of AttentionMIL to get class-specific attention weights.
Finally, We would like to point out that a significant body of previous
work validates multi-class methods at the bag level on the basis of
Gleason scores. However, this score is beyond the scope of MIL. Its
derivation involves a decision making according to the severity of the
grades in the tissue by the clinical expert, which does not fit a proper
formulation of MIL (see Eq. (1)), based on the presence of each class in
the bags of instances.

Ablation studies. In the following, we provide comprehensive ablation
6

experiments to validate several elements of our model, and motivate
Fig. 4. Ablation studies on positive expansion (PE) MIL formulation. Hyperparameters
study for 𝜆𝑃𝐸 and 𝑡𝑃𝐸 are performed for bag-level mAUC on validation set (a), and
instance-level accuracy (b).

the choice of the values employed in our formulation, as well as our
experimental setting.

First, we optimized the proposed formulation only with the inequal-
ity constraint term in Eq. (6). Using the training setting previously
described, validated different values of 𝜆𝑃𝐸 = {0.01, 0.1, 1} and slopes
of the log-barrier inequality 𝑡𝑃𝐸 = {1, 5, 10, 15}. Using the mAUC on
validation subset as an early stopping criteria, we obtained bag-level
mAUC from the validation subset and instance-level accuracy from
the test cohort. Results are presented in Fig. 4. These show that the
inclusion of the PE term improves both the performance at both bag-
level and instance-level under most of the settings. Thus, we selected
𝑡𝑃𝐸 = 15 and 𝜆𝑃𝐸 = 0.1, which led the best results at bag level in the
validation cohort.

Then, using the best configuration reached for the PE term, we
optimized the proportion constraint configuration (PC) in Eq. (8).
During empirical experimentation, we appreciated that the instance-
level model performance on the test subset did not always correlate
with the bag-level performance on the validation or test cohort when
applying early stopping based on mAUC metric. As the proposed PC loss
term provides information about the correct prediction of proportions,
we evaluated this term as an early stopping criterion. Thus, we also kept
track of the epoch average of 𝑧 = 1

𝐵
∑

𝑏 𝑝𝑏,𝑘′𝑖−𝑝𝑏,𝑘′′𝑖 . Among the full range
of hyperparameter values, the ones that showed best stability during
training were 𝜆𝑃𝐶 = {0.1, 1} and 𝑡𝑃𝐶 = {1, 5, 10}. We show the results
obtained at bag-level and the instance-level accuracy on test cohort,
as well as the proportion constraint satisfaction on the train subset for
both early stopping criterion in Fig. 5.

The figures of merit indicate that the criterion based on con-
straint satisfaction (dashed lines) consistently outperforms the valida-

tion mAUC criteria (solid line) at both instance and bag level for all
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Fig. 5. Ablation studies on proportion constraint (PC) MIL formulation. Hyperparameters study for 𝜆𝑃𝐶 and 𝑡𝑃𝐶 are performed for bag-level mAUC on test set (a) and instance-level
accuracy on test set (b). Also, two early stopping criterion are validated: mAUC on validation set (solid lines) and proportion constraint satisfaction 𝑧𝑃𝐶 (dashed lines), which
values are illustrated in (c).
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Fig. 6. Visualization of the embedding space produced by baselines and the proposed
method models on the labeled instances from SICAP-MIL test cohort. (a) instance-max;
(b) instance-max w. PE; (c) instance-max w. PE w. PC. Red: non-cancerous; light blue:
Gleason grade 3; dark blue: Gleason grade 4; purple: Gleason grade 5.

settings. This could be explained by the possibles bias introduced using
the validation subset due to class imbalance. Likewise, maximizing the
difference in proportion between the majority and minority classes can
help to better distinguish between them. The results obtained are in
line with these observations, since lower values of 𝑡𝑃𝐶 seem to obtain
better results. Due to the formulation of the barrier extension (Eq. (4)),
low values of t contribute not only to fulfill the constraint, but also to
maximize it by using a slope proportional to 1∕𝑡. Therefore, we selected
the setting that gives the largest proportion of difference between the
primary and secondary grade on the train cohort: 𝑡𝑃𝐶 = 5 and 𝜆𝑃𝐶 = 1.

Qualitative evaluation. Finally, we want to get a more intuitive view
of how the different terms of the proposed methodology are influencing
the extraction of discriminative features. For that purpose, we depict
the feature representation of the embedding space produced by the
encoder networks on the instance-level labeled test cohort using the
t-sne [25] in Fig. 6. Concretely, we obtained the two-dimensional t-sne
embedding using a perplexity value of 40, and 300 iterations. The t-sne
representation is obtained on the instance-max setting 6(a), instance-
max with PE term 6(b) and instance-max with PE and PC terms 6(c)
after Student model training.
7

Features obtained using the basic max aggregation are quite over-
lapped on the cancerous classes. Although the PE term slightly im-
proves this condition, only once the PC term is included it is possible to
distinguish class-wise clusters between Gleason grades 3 and 4. These
rades tend to coincide in WSIs, with Gleason score 7 (whole slide

images that include both tumor growth patterns of grade 3 and 4)
eing the most common in the database used (see Table 1 and Fig. 2).
his fact produces noise during training, as many bags are positive for
oth classes simultaneously, making it difficult to distinguish between
he two types of instances. However, when we introduce the relative
roportion information of both classes during training, this facilitates
he network to promote a distinction between them.

Also, we introduce in Fig. 7 visualizations of the obtained instance-
evel classifications, compared to pathologists annotations and base-
ines. Instance-level predictions are performed on the test subset biop-
ies using an overlap of 75% between instances, to gain spatial resolu-
ion. Then, the instance-level scores are assigned to each pixel of the
atch, and they are averaged among the overlapped patches. From the
elected representative examples, it is observed how once the different
roportion constraints are introduced, the model is able to differentiate
est between the different Gleason grades (first and second rows), and
ocates more cancerous regions (third row).

. Conclusions

In this work, we have presented a novel constrained multi-label
nstance-based MIL formulation that encourages the network to focus
n many positive instances, and allows to impose restrictions about rel-
tive proportions of class size within the bag. In particular, we combine
standard instance-based max aggregation with additional inequality

onstrains terms via a flexible log-barrier extension. We validate the
roposed formulation on a new publicly available dataset of prostate
istology cancer WSIs images, SICAP-MIL. In the experimental stage,
ur method shows that forcing the network to classify more positive
nstances, the results improve in ∼ 5% at instance level classification ac-
uracy. By simply incorporating relative proportion information about
he primary grade in the WSI, which is usually easily accessible from
edical records, our method reports improvements of ∼ 9% accuracy

t instance level, and ∼ 3.3% mAUC at bag level. In addition, the target
elative proportion difference between primary and secondary classes
n the bag has proven to be a good criterion when optimizing the
odel, obtaining more generalizable results than using the mAUC at

he bag level. The obtained results are comparable to prior works using
imilarly-sized datasets under the supervised paradigm, which require
edious instance-level annotations.
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Fig. 7. Visual examples of the proposed model performance on instance-level prostate cancer grading. In particular, the pathologists annotations are depicted with the instance-based
MIL baseline using max aggregation, and the results when we introduce the proportion priors. In green: Gleason grade 3; blue: Gleason grade 4; red: Gleason grade 5.
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