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Abstract – This paper aims to present a methodology for 
optimizing the customers’ portfolio of an aggregator by analysing 
the compatibility between prosumers (clients). The methodology 
evaluates two main components: energy and socioeconomic. With 
this, the intention is to maximise the economic benefits of the 
aggregator and to establish a personalised tariff according to the 
user profile. 
Since this figure was conceived, efforts have been mainly aimed 
at meeting only and exclusively the energy demand requirements 
without taking into consideration prosumers socio-economic 
profiles and the synergies among them. 
This paper, therefore, presents a methodology in which a 
compatibility index based on the energy and socioeconomic 
profile of each client is defined. In addition, the application of this 
methodology to a practical case is presented. 
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1. Introduction 
 

The European Union is undergoing numerous changes at 
all scales [1], [2]: the high penetration of renewables in the 
energy mix [3], [4], micro power generation [5], self-supply 
[6], [7] and, above all, the exchange of energy between 
users [8] presents a revolution in the energy market never 
seen before. As in any sector, with the possibilities that this 
scenario presents, new business models are appearing. We 
are talking about virtual power plants [9] and, in particular, 
aggregators [10]. 
An aggregator (Fig. 1) is defined as a market agent that 
combines energy demand and generation to satisfy a 
portfolio of customers [11], [12]. In this case, users can 
self-supply, dump their surplus energy into the grid, and the 
aggregator is responsible for energy planning to supply its 
portfolio and obtain an economic return for it [13]. This 
figure has been in force in Europe since the beginning of 
the 20th century [14], with examples such as the demand 
management that countries such as Belgium, France and 
Great Britain offer on a commercial level [15]. However, it 
was not until the approval of RDL23/2020 that it became 
legally valid in Spain. 
Among the different business activities, we can highlight 
the following: 

 Sending control signals to prosumers to reorganise 
their consumption or generation profiles. 

 Offering prosumers flexibility through the energy 
market. 

In this sense, it is vitally important that the aggregator 
controls the following pillars on which its business model 
is based: i) customer characterisation, ii) prediction of 
energy consumption and generation, iii) market prediction, 
iv) optimisation of energy planning and v) market and 
customer portfolio management [16]. 
 

 
Fig. 1. Aggregator 

 

2. Methodology 
 

In accordance with the basis described in the introduction, 
the methodology (Fig. 2) is structured in five blocks:  
i) energy and socioeconomic characterisation of the 
customer, ii) analysis of compatibility between users using 
the AHP technique, iii) hourly energy demand management 
of the customers´ portfolio, iv) hourly energy price and 
demand prediction model and v) optimisation of the energy 
planning (supply and demand). 
 

 
Fig. 2. Methodology 
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A differentiating condition of the energy matching and 
planning process that other aggregators can address is the 
characterisation of the customer based on their socio-
economic and energy profile. Their employment status, 
gender, age, income or the year in which their home was 
built have a strong influence on the behaviour of the users 
of an aggregator's customer portfolio. 
Until now, efforts were focused on bill optimisation or 
energy planning [17], [18]. However, as Kotsis, G 
comments in [16], the aggregator's work goes beyond 
energy planning and economic profit. It also has a social 
and interconnection role between users. 
 
A) Characterisation of the customer 
 

Different customer profiles were considered for customer 
characterisation: residential, industrial, commercial and 
tourism. Each profile was characterised through three sub 
profiles: geographical, socio-economic, constructive and  
one energetic profile. In order to obtain the required 
information, forms and surveys were developed and filled 
in. Since the function of the aggregator is to maximise 
social welfare and obtain an economic return, optimisation 
is focused on maximising the economic benefit of its 
portfolio through energy exchange. For this reason, users 
whose generation and demand curves differ will get a better 
rating than those who match more in terms of energy. 
 

Geographical sub profile (𝐹 ) 
 

Depending on the user's location, the temperature will have 
an impact on consumption. Three climates were 
considered: peninsular, Atlantic and Mediterranean. 
 

Socio-economic sub profile (𝐹ௌ) 
 

Among the most significant socio-economic parameters, 
the following have been considered: Number of people, 
simultaneity factor, age segmentation, household income 
and teleworking. 

 

Constructive sub profile (𝐹஼) 
 

In the constructive sub profile, the type of premises, the size 
in m2 and the year of construction were considered. 

 

Energy profile (D and G) 
 

Once the customer weighting index has been defined, a 
customer portfolio compatibility index is established. For 
this purpose, a generation and consumption profile of the 
total customer portfolio must be defined. 
The energy profile consists of the demand profile and the 
generation profile. While the Generation Profile (𝑃 ) is 
dependent on the type of source being used, the Demand 
Profile (𝑃஽) follows a pattern throughout the year marked 
by the level of productive activity. Temperature, the work 
calendar and economic activity are some of the factors that 
have a major impact on the behaviour of energy demand, 
but there are many more. According to this criterion, these 
factors were classified as: temporary (t), economic (e), 
climatological (c) and random or occasional (ra). 

 
𝐷்  =  𝐷௜  ·  𝐸௧  ·  𝐸௘  ·  𝐸௖  ·  𝐸௥௔ (1) 

Variables such as peak power, storage capacity, type of 
renewable energy (RES) and installed RES power were 
considered. 
A general model to characterise prosumer demand was 
developed. Each consumer has a flexible and an inflexible 

load. We denote the inflexible load for consumer 𝑖 at time t 
as 𝑏௜

௧. Consumer i can change the flexible load over time 
and we denote it as 𝑥௜

௪ = {𝑥௜
௪,௧ , ∀𝑡𝜖𝑇}, where 𝑥௜

௪,௧ is the 
flexible load of consumer i at exchange time t under a 
renewable generation scenario ω. Flexible load planning 
should satisfy the following constraints: 

 ෍ x୧
୵,୲ = D୧, i ∈  ℵ t

୲஫ ୻

 (2) 

 d୧
୲ି ≤  x୧

୵,୲  ≤  d୧
୲ା, ∀t ∈ Γ, i ∈ ℵ (3) 

Where the first constraint specifies that consumer i must 
consume a total demand 𝐷௜  to maintain his daily activities. 
The second constraint specifies the lower 𝑑௜

௧ି and upper 
𝑑௜

௧ାbounds for the consumer's flexible load 𝑖 in the time 
interval 𝑡. 
After changing the flexible load, consumer 𝑖 will 
experience a disparity, which can be measured by the 
following expression: 

 𝐶௜(𝑥௜
௪) = 𝛽௜ ෍൫𝑥௜

௪,௧ − 𝑦௜
௧൯

ଶ

௧ఢ௰

 (4) 

Where 𝛽௜ is a sensitivity parameter and 𝑦௜ = {𝑦௜
௧ , ∀𝑡𝜖𝑇} is 

the preferred energy consumption profile of the consumer 
𝑖. If consumer 𝑖 changes the flexible load and the current 
energy consumption 𝑥௜

௪,௧  deviates from the preferred 
energy consumption profile 𝑦௜

௧, then the disparity 𝐶௜(𝑥௜
௪) 

occurs. It is this disparity that we must satisfy by 
exchanging energy with our system or the grid. 
At the end a demand and generation profiles were defined 
as follows: 

 
𝑃஽ = 𝐷 · 𝐹 · 𝐹ௌ · 𝐹஼ (5) 

 𝑃 = 𝐺 · 𝑃௜ (6) 

 
B) Analysis of compatibility between users 
 

Since the input variables of the system change hourly, the 
AHP method (Table 1) has been chosen for its simplicity 
and speed of application and considers all alternatives. 
When a new user wants to belong to this portfolio, a small 
survey is carried out to estimate their generation and 
consumption profile and, at the same time, to obtain this 
compatibility index with variables other than purely energy 
variables. Three main criteria have been considered: socio-
economic, constructive and energetic. Once the importance 
of  each parameter is defined, the coefficients for each sub-
criterion were calculated and a value was assigned to each 
of the responses. Finally, a customer compatibility index is 
obtained. 
 

Table 1. Saaty Fundamental Scale 

Value Definition 

1 Equally important 

3 Moderate importance 

5 Major importance 

7 Very high importance 

9 Extreme importance 

2, 4, 6 and 8 intermediate values 
 
C) Demand management 
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The demand management covers a one-stage stochastic 
programming problem to minimise the total cost of energy 
price and customer portfolio as described in [5]. The 
aggregator coordinates energy supply and demand to 
minimise the daily operating cost and maximise profits. 
The energy demand comes from a number of consumers 
ℵ = {1, . . . , 𝑁}. The aggregator is responsible for energy 
balancing in its customer portfolio. A planning horizon of 
several days has been considered, with 𝛨 = {1, . . . , 𝐷} of 𝐷 
days. The daily operation by the microgrid will be 𝛤 =
{1, . . . , 𝑇} consisting of T trades of energy per day. A 24-
hour profile with a combination of solar and wind power 
generation has been considered as time intervals. 𝐸𝐻𝐴, 
𝐸𝐻𝐸, 𝐸𝐻𝑅, 𝐴 and B were used as primary variables, where: 
 𝐸𝐻𝐴: Self-consumed energy (kWh) 
 𝐸𝐻𝐸: Surplus Energy (kWh) 
 𝐸𝐻𝑅: Energy obtained from grid (kWh) 
 𝐴: Energy storage (kWh) 
 𝐵: Balance between surplus energy and energy 

obtained from grid (kWh) 
In order to calculate the energies and powers for billing and 
settlement purposes for collective self-consumption or self-
consumption associated with an installation through the 
grid, the following expression has been used: 

 𝐸𝑁𝐺௛,௜  =  𝛽௜ · 𝐸𝑁𝐺௛ (7) 

Where 𝐸𝑁𝐺 is the total hourly net energy produced by 
generator(s) and 𝛽௜ is the allocation ratio of generated 
energy among consumers. These parameters change 
hourly. 
 
D) Market forecasting 
 

A generalized linear ML model was used to forecast the 
market price. Previous year's hourly variables (8760 
values) for training and testing the model were: Market 
price (€/𝑀𝑊), 𝐶𝑂ଶ price (€/𝑡𝑜𝑛), Total demand of the 
country (𝐺𝑊ℎ), temperature (º𝐶), Precipitation (𝑙/𝑚ଶ), 
Wind speed (𝑘𝑚/ℎ) and Irradiance (𝑊/𝑚ଶ).  
 
E) Economic optimisation 
 

The power purchase and sale instants are defined through 
the methodology carried out in the Fig. 3-4 considering two 
variables: market price (𝑃஼ோ) and generation purchase price 
(𝑃஼ீ) 

 
Fig. 3. Energy planning (PCR>PCG) 

 
Fig. 4. Energy planning (PCR<PCG) 

 

Fig. 5 depicts the evolution of the grid purchase price and 
generation leading to the situations described in Fig 3-4. 
 

 
Fig. 5. Evolution of daily PCR and PCG (€/kWh) 

 

The aggregator's profit is given by (8).  
𝐵 = 𝐸𝐻𝑅(𝑡) · ൫𝑇௜(𝑡) − 𝑃𝐶𝑅(𝑡)൯ − 𝐸𝐻𝐸௜(𝑡)

· 𝑃𝐶𝐺(𝑡) 
(8) 

Where: 
 EHR(t): hourly network energy of each consumer 
 𝐸𝐻𝐸𝑖(𝑡): hourly surplus energy of each consumer 
 𝑇𝑖(𝑡): tariff associated to each user on an hourly basis 
 𝑃𝐶𝑅(𝑡): hourly grid purchase price 
 𝑃𝐶𝐺(𝑡): purchase price of surplus generation energy. 
In accordance with [13], an economic optimisation was 
carried out to maximise the economic benefit of the 
aggregator. 
 
3. Case study 
The methodology was applied to a case study, involving 19 
users, of which 11 belonged to the residential sector, 3 to 
the industrial sector, 2 to the tourism sector and 2 to the 
commercial sector, with an average energy demand of 25 
MWh/day for the customer portfolio. 
The energy planning and purchasing moments can be seen 
in Fig. 6. 
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Fig. 6. Energy balance 

 

 
4. Results 
Results of the implementation showed an average profit of 
approximately 300 €/day obtained by the aggregator and a 
2% reduction of the consumers’ energy price (tariffs) 
(Table 2). 
 

Table 2. one day's portfolio benefit 

Hour 
Payments 

(€) 
Receipts 

(€) 
Benefit 

(€) 

0 1.39 103.52 4.82 

1 1.42 99.60 4.55 

2 1.49 98.95 4.45 

3 1.92 99.10 4.02 

4 2.27 98.07 3.61 

5 2.75 104.95 3.54 

6 2.59 109.92 4.00 

7 2.26 145.64 6.48 

8 1.57 180.66 9.27 

9 0.16 246.17 14.61 

10 0.30 250.56 14.73 

11 0.42 249.40 14.54 

12 0.49 249.32 14.47 

13 0.45 241.11 14.01 

14 0.41 246.62 14.39 

15 0.35 247.41 14.50 

16 0.26 245.84 14.49 

17 0.15 248.77 14.78 

18 0.04 230.55 13.80 

19 - 194.92 11.69 

20 - 191.48 11.49 

21 - 167.97 10.08 

22 - 134.56 8.07 

23 - 106.57 6.39 

TOTAL 20.69 4,291.66 236.78 

 

 

Fig. 5. Risk analysis 

It can be highlighted that the more energy purchased from 
the grid, the higher the profit. This is due to the volume of 
energy exchanged is greater and the profit margin 
associated with the exchange. There is also a dependence 
on surplus energy, since the purchase price of generation is 
lower than the market price. What is noteworthy about this 
parameter is that, in spite of this, due to the prediction 
model used, the profit obtained is lower than through an 
increase in energy purchased from the grid. 

 

5. Conclusion 
The aggregator plays a vital role in the energy management 
of its customer portfolio, from energy planning to the 
establishment of the different tariffs to be applied. For this 
reason, it is vital that not only energy optimisation, but also 
individualised optimisation, based on the socio-economic 
situation of each user, is carried out properly. It can be 
noted that: 
 For proper energy planning, it is necessary to obtain as 

close a prediction of the market price as possible, as 
the estimation of tariffs and the timing of buying and 
selling energy is based on it. Zero net balance does not 
exist in demand-side management systems. It is very 
difficult for demand and generation to coincide.  

 There are always deviations that the aggregator must 
deal with and that must be considered when setting 
tariffs, establishing an adequate margin. 
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