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A Technical Appendix
This supplementary material serves as technical appendix with sec-
tions given detailed information about 1) how difficult the different
datasets are; 2) the distribution of class levels within each difficulty
range across all datasets; 3) an illustrative selection of images in each
difficulty bin and 4) performance comparison of Morig and MSAdv on
a per-instance basis for each difficulty level.

A.1 Class difficulty

Figure 2 shows the difficulty distribution per dataset and class, sorted
by difficulty. Of course, the difficulty level of the classes for the dif-
ferent datasets can vary depending on the population of systems used
to solve the classification tasks. Still, in our case, we are using a large
population of systems (1000 for MNIST, 449 for FashionMNIST and
156 for CIFAR10), using the data from [19], which in turn comes
from the OpenML platform1.

Starting with MNIST, this is a dataset of handwritten digits from
0 to 9. The images in the MNIST dataset are normalised and centred,
which makes the dataset less challenging (for image classification
tasks) compared to other datasets such as CIFAR-10. In general, all
the classes in the MNIST dataset are considered relatively easy to
classify, as the images are well-segmented and have a clear contrast.
However, some digits such as 5, 8 seem to be slightly more difficult
to classify (probably because they are more similar to other digits
like 6 or 9 respectively).
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Figure 1: Difficulty distribution per dataset. Sorted by average diffi-
culty.
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Newer datasets such as FashionMNIST (a dataset of images of
clothing and accessories) are considered to be more challenging than
MNIST in terms of complexity and diversity. However, we see that
FashionMNIST does not make a great difference in terms of the
aggregated distribution of difficulty compared to MNIST (see Fig-
ure 1). In general, some classes in the FashionMNIST dataset are
more difficult to classify than others. For example, the trousers, bags,
sneakers or sandals classes are relatively easy to classify, while the
shirt, pullover, coat or t-shirt are considered more difficult (see the
tail to the right of their difficulty distributions). This is probably due
to the similarities in the images of these classes and the variations in
the texture, shape, and color.

Finally, we see higher average difficulties and differences between
classes for CIFAR10. The images in this dataset are relatively com-
plex, with objects that are often occluded, partially visible or in non-
frontal poses. These factors make the dataset more challenging than
the above datasets. What we see in Figure 2 is that, in general, the
vehicle-related images for CIFAR10 are considered relatively easy,
while the animal-related images are considered more difficult. This
is due to the similarities in the images of these classes, which can
make them hard to distinguish. Some images of deer and horse are
similar and can cause confusion to a model.

A.2 Class distribution

Figure 3 shows the class distribution for each difficulty range for the
original and all adversarial datasets.

For the original dataset DOrig, we see that some classes are easy,
and have a high proportion of very easy instances: class 1 (digit 1)
for MNIST, classes 1 (trouser), 8 (bag) and 7 (sneaker) for Fashion-
MNIST, and class 8 (ship) for CIFAR10. Other difficult classes are
more dominated by difficult instances: class 5 (digit 5) for MNIST,
class 6 (shirt) for FashionMNIST, and class 3 (cat) for CIFAR10.

For the Simple Adversarial dataset (DSAdv), the number of difficult
instances has increased, but in an uneven way for some classes over
others (note that the y-axis changes across plots).

For the Balanced Adversarial dataset (DBAdv), is constructed in the
same way as DSAdv, we see how they have increased the number of
difficult instances for all classes, but now the number of instances
for each class is the same (which does not mean of course that the
distribution of difficulty is the same for all classes).

For Double Adversarial dataset (DDAdv), as we undersample the
easiest instances, there are no instances in the lower bins for all
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Figure 2: Difficulty distribution per dataset and class. Classes sorted by average difficulty.

classes.

A.3 Sample images for each difficulty bin

Figure 4 shows sample images from each difficulty bin for MNIST,
FashionMNIST and CIFAR10. Images belonging to the first three
bins are relatively easy instances, but the images of the two hardest
bins (d and e) are sometimes really challenging even from a human
perspective. A human will find it difficult or will misclassify the ex-
amples provided in this figure for the hardest bin (Figure 4 (e)).

A.4 Morig VS. MSAdv confusion matrix

Figure 5 compares the performance of MOrig and MSAdv on a per-
instance basis for each difficulty level on the dataset constructed from
MNIST, FashionMNIST and CIFAR10. We can observe that MOrig

performs equally good or in most cases better than MSAdv in the first
4 bins when tested on MNIST and FashionMNIST and only performs
worse in the last bin. We see almost the same trend for CIFAR10 with
the difference of MSAdv performing slightly better in the fourth bin,
too.



Figure 3: Proportion of each class for each difficulty range for all modified datasets constructed from MNIST (left), FashionMNIST (centre),
and CIFAR10 (right), for DOrig (a), DSAdv (b), DBAdv (c), DDAdv (d). Class names for FashionMNIST and CIFAR10 in Figure 2.



Figure 4: The figure presents sample images from the MNIST (top), FashionMNIST (centre), and CIFAR10 (bottom) datasets organised by
difficulty bin. The bins are designated (a) through (e); (a) represents the easiest bin, (b) the difficulty level between 2 and 4, (c) the difficulty
level between 4 and 6, (d) the difficulty level between 6 and 8, and (e) the hardest bin which covers difficulty level between 8 and 10.



Figure 5: This graph compares the performance of Morig and MSAdv on a per-instance basis for each difficulty level on MNIST ((a) using CNN
and (b) using NN), FashionMNIST ((c) using CNN and (d) using NN), and CIFAR10 ((e) using CNN and (f) using NN).
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