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ABSTRACT

Turbulence is a complicated phenomenon because of its chaotic behavior with multiple spatiotemporal scales. Turbulence also has
irregularity and diffusivity, making predicting and reconstructing turbulence more challenging. This study proposes a deep-learning
approach to reconstruct three-dimensional (3D) high-resolution turbulent flows from spatially limited data using a 3D enhanced super-
resolution generative adversarial networks (3D-ESRGAN). In addition, a novel transfer-learning method based on tricubic interpolation is
employed. Turbulent channel flow data at friction Reynolds numbers Res ¼ 180 and Res ¼ 500 were generated by direct numerical simulation
(DNS) and used to estimate the performance of the deep-learning model as well as that of tricubic interpolation-based transfer learning. The
results, including instantaneous velocity fields and turbulence statistics, show that the reconstructed high-resolution data agree well with the
reference DNS data. The findings also indicate that the proposed 3D-ESRGAN can reconstruct 3D high-resolution turbulent flows even with
limited training data.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0129203

I. INTRODUCTION

High-resolution flow data are required to visualize and analyze
turbulent flows in experimental and computational fluid dynamics
(CFD). With the rapid development of various methods, high-fidelity
turbulent flow data have been produced more effectively than before.
In the field of CFD, direct numerical simulation (DNS) has been used
to accurately simulate various cases of turbulent flows at a specific
range of Reynolds numbers, where the Navier–Stokes equations are
solved numerically.1–3 As for experimental measurements, some prac-
tical measuring techniques, such as particle-image velocimetry (PIV),4

tomographic PIV,5 and the four-dimensional time particle-tracking
velocimetry (PTV),6,7 have been successfully employed to visualize
and quantify the intricate instantaneous structure of turbulence, pro-
ducing multidimensional turbulent flow data spatiotemporally.
However, in turbulent flows, the flow velocity varies significantly and
irregularly in both position and time.8 Furthermore, turbulent flows

have multiple spatiotemporal flow scales. Thus, a large prior invest-
ment in experimental and computational equipment is a prerequisite
for generating high-resolution turbulent-flow data using state-of-the-
art methods such as DNS and PIV.

Deep learning (DL), a subfield of machine learning in artificial
intelligence, is extraordinarily focused on by researchers from various
fields. Because of its ability to solve highly nonlinear problems using
deep neural networks (DNNs), DL has been implemented in various
fields, including computer vision, language processing, automatic driv-
ing, and medical diagnosis.9–11 In addition, with the rapid development
of graphics-processing units (GPUs), the training and prediction pro-
cesses of DL algorithms have been significantly accelerated, benefiting
from the parallel-computing capabilities in GPUs.12 In other words, the
GPU guarantees efficiency when DL is applied to complex problems.

Regarding fluid dynamics, with the highly nonlinear mapping
ability of DNNs, various DL-based methods exhibit a considerable
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potential to deal with problems regarding turbulent flows,13,14 such as
generating the temporal data of turbulent flows based on turbulence
modeling,15,16 simulating fluid flows,17 reduced-order modeling,18–20

prediction of turbulent flows based on information from flow fields at
previous time steps,21–26 turbulent-flow control for drag reduction,27,28

and reconstruction of turbulent flows.29–31,63 Another important
application that needs to be focused on is the high-resolution recon-
struction of turbulent flows using DNNs. DL-based approaches have
outperformed conventional reconstruction methods in this field, such
as the bicubic interpolation method.32,33 Fukami et al.34 used models
based on convolutional neural networks (CNNs) and multiscale
CNNs with skip connections to map the coarse flow fields to super-
resolution fields. Their results showed that the models could remark-
ably improve the spatial resolution of extremely low-resolution flow
data in both flow regimes (laminar and turbulent). Liu et al.35 pro-
posed a CNN-based model with multiple temporal paths to recon-
struct high-resolution turbulent flow data. Their results revealed that
this method has a better reconstruction effect than static CNN-based
models. Kim et al.36 used a cycle-consistent generative adversarial net-
work (CycleGAN) to reconstruct turbulent flow from low-resolution
DNS and large-eddy simulation data, where they used unpaired low-
and high-resolution data in the training process. Their results illus-
trated that CycleGAN outperforms the bicubic interpolation method
and CNN-based models.

Furthermore, another generative adversarial networks (GANs)-
based model named enhanced super-resolution generative adversarial
network (ESRGAN)37 has shown a greater capability to reconstruct
high-resolution data than other models in the fields of computer vision
and fluid dynamics, which benefits from the help of deeper layers and
special loss functions like the perceptual loss. Deng et al.38 compared
the high-resolution turbulent-flow reconstruction from a super-
resolution GAN (SRGAN) and ESRGAN using PIV measurement
data. Their reconstruction results agreed well with the actual measure-
ment data, and ESRGAN exhibited a better reconstruction ability than
SRGAN.

Yousif et al.39 recently used an ESRGAN-based model with a
multiscale convolution part (MS-ESRGAN) to reconstruct high-
fidelity turbulent flows from spatially limited data. Meanwhile, they
also employed this DL model to reconstruct high-resolution data
based on turbulent flows at various Reynolds numbers.40 In addition
to its remarkable ability to reconstruct high-resolution turbulent flows
from low-resolution data, they found that MS-ESRGAN could recon-
struct turbulent flows at the specific range of Reynolds numbers, even
if the flow data at these Reynolds numbers were not included in the
training process.

In summary, the above-mentioned previous literature shows that
the GANs-based models have a powerful ability to reconstruct the res-
olution of turbulent flows. However, all the turbulent flow cases men-
tioned in the above studies are based on two-dimensional (2D) data.
Compared to 2D data, three-dimensional (3D) turbulent flows are
more complicated and practical. On the other hand, the general DL-
based models are designed for 2D data like images, which is unsuitable
for processing 3D turbulent flow data. In this study, we aim to use a
specific DL-based model to reconstruct 3D high-resolution turbulent-
flow data from low-resolution data. This DL-based model is a 3D
form of the original MS-ESRGAN, termed 3D-ESRGAN. This method
is particularly used in reconstructing high-resolution flow fields from

spatially limited 3D experimental data. In addition, it is expected to
improve the detail of the 3D flow obtained from CFD, where the com-
putational mesh is very coarse. Moreover, inspired by the idea of trans-
fer learning (TF) employed to tackle turbulence problems,19,41–43 we
propose a transfer-learning method for the DL-based model based on
tricubic interpolation. Generally, the traditional transfer-learning
method can save some training times but still need huge paired train-
ing data to conduct pre-training. Regarding this issue, we propose tri-
cubic interpolation-based transfer learning. We aim to apply tricubic
interpolation to prepare the pre-training data for transfer learning so
that the training process can be more efficient. To evaluate the perfor-
mance of 3D-ESRGAN and the effect of the proposed transfer-
learning method, we have used 3D turbulent channel-flow data at two
different Reynolds friction numbers generated by performing DNS
with their low-resolution data. The results have also been plotted to
show the performance of the DL model and the transfer-learning
method based on the channel flow’s instantaneous velocity fields and
physical statistics.

The remainder of this paper is organized as follows: Sec. II intro-
duces how to generate turbulent flow data through DNS and the
method for obtaining the low-resolution data of turbulent flows. The
methodology of super-resolution reconstruction using 3D-ESRGAN
and tricubic interpolation-based transfer learning is explained in Sec.
III. In Sec. IV, the testing results of the model are discussed. Finally,
the conclusions of this study are summarized in Sec. V.

II. GENERATION OF TURBULENT-FLOWDATA

In this study, we use fully developed incompressible turbulent
channel flow data at Res ¼ 180 and 500 generated by performing DNS
as a test case. The governing equations are the incompressible continu-
ity and momentum equations expressed as follows:

@u
@t

þ u � ru ¼ �rpþ 1
Res

r2u; (1)

r � u ¼ 0; (2)

where u, t, and p represent velocity, time, and pressure, respectively.
The variables in both equations are non-dimensionalized using the
channel half width d, friction velocity us calculated as us ¼

ffiffiffiffiffiffiffiffiffiffi
sw=q

p
,

where sw is the wall-shear stress, and q is the fluid density. The friction
Reynolds number is calculated as Res ¼ usd=�, where � represents
the fluid kinematic viscosity. The LISO code44 is used to perform the
DNS. This code has been developed to solve the incompressible
Navier–Stokes equations, similar to the one used by Lluesma-
Rodr�ıguez et al.45 This code has been successfully used to simulate
wall-bounded turbulent flows.46–48 The code uses the same strategy as
that described by Kim et al.2 but employs a seven-point compact-
finite-difference scheme in the wall-normal direction y direction with
fourth-order consistency and extended spectral-like resolution.49 The
temporal discretization is a third-order semi-implicit Runge–Kutta
scheme.50 The wall-normal grid spacing is set to 4y � 1:5g, which is
adjusted so that the grid is constant in terms of the local Kolmogorov
scale g ¼ ð�3=eÞ0:25, where e represents the isotropic dissipation of
turbulent kinetic energy.

The dimensions of the computational domain for flows at the
two Reynolds numbers are set to 8pd; 2d, and 3pd in the streamwise
(x), wall-normal (y), and spanwise (z) directions, respectively.
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The other parameters for the simulations are summarized in Table I.
The streamwise and spanwise grid points are uniformly distributed,
and a non-uniform mesh is used in the wall-normal direction.
Periodic boundary conditions are imposed in the x and z directions. In
addition, the no-slip condition is applied to the top and bottom walls
of the channel. Furthermore, 1000 3D snapshots are separately col-
lected at two different Reynolds numbers.

To reduce the computational cost of the training process and
increase the training and testing data, each 3D flow snapshot is split
into 12 parts (a total of 12 000 snapshots) with sizes of 2pd; 2d, and
pd. The grid size of each part is reduced from the original one to 64
� 48� 48 by interpolation, which is more suitable for training the DL
model. For the flow at the two Reynolds numbers, 80% and 20% of the
data are used to train the DL model and evaluate its performance. We
generate low-resolution data artificially by selecting discrete points in
the flow domain, as shown in Fig. 1. The points are selected uniformly
with an interval of four grid points along the x and z directions, and
uniformly along the y direction (more points are selected near the
walls). After selecting these points, the grid size of low-resolution data
is reduced from 64� 48� 48 to 16� 12� 12. To improve the train-
ing process of the DL model, all data are normalized using the min-
max normalization function to scale the values between 0 and 1.

III. METHODOLOGY
A. 3D-ESRGAN

Since the development of the GAN architecture by Goodfellow
et al.,51 various GAN-based models have been developed to solve
image-based problems such as synthetic image generation and resolu-
tion improvement problems.37,52,53 Compared with the traditional
GAN, the ESRGAN has shown an excellent capability to reconstruct
high-resolution turbulent flows from low-resolution data.38–40 A GAN

typically includes two adversarial networks: generator (G) and dis-
criminator (D). The working process of G and D is called a two-player
minimax game with a value function that can be expressed as

min
G

max
D

VðD;GÞ ¼ Evr�PdataðvrÞ logDðvrÞ½ �
þEn�PnðnÞ logð1� DðGðnÞÞÞ½ �; (3)

where vr represents the real image, and n represents the random noise
input into G to generate artificial images GðnÞ. Here, PdataðvrÞ and
PnðnÞ represent the distributions of the real image data and the input
noise variables, respectively, where vr denotes the real image data, and
n represents a random vector. Furthermore, DðvrÞ represents the
probability (from 0 to 1) that an image is real rather than a generated
artificial image. Inversely, DðGðnÞÞ represents the probability of
whether GðnÞ comes from real images or not. We attempt to make G
generate images more similar to the real data in the training process.
Meanwhile, we also train D, enabling D to distinguish real images
from generated artificial images. In this case, the value of DðvrÞ will
increase (tends to be 1), and the value of DðGðnÞÞ will decrease (tends
to be 0) so that the value of V(D, G) would increase.

The present study develops a 3D-ESRGAN based on two-
dimensional MS-ESRGAN39 to reconstruct 3D turbulent flow fields
from coarse data. Figure 2 depicts the architecture of the 3D-
ESRGAN. As illustrated in Fig. 2(a), G mainly includes a deep CNN
called residual in residual dense blocks (RRDBs),54 where several dense
blocks are used, consisting of convolutional and leaky ReLU (LReLU)
activation-function layers with skip connection. In addition, the struc-
ture of 3D-ESRGAN comprises a multiscale part (MSP), which maps
features from RRDBs to more complex features through a series of
convolutional layers with filters of various sizes.55 More details about
the MSP are summarized in Table II. Figure 2(b) shows the architec-
ture of D. The main part of D is represented by CBLs, consisting of
three layers: convolutional, batch normalization, and LReLU
activation-function layers.

Regarding the calculation process, first, low-resolution data are
introduced to G and passed through a convolutional layer, RRDBs,
and MSP. Then, the output from MSP is passed through a convolu-
tional layer to generate the reconstructed high-resolution data called
artificial data (xa), whereas the real data (xr) are the original data from
DNS, as mentioned in Sec. II. After generating xa, both real and artifi-
cial data are fed into D and passed through the corresponding layers
of D to output the non-transformed discriminator output: CðxrÞ and
CðxaÞ. Based on CðxrÞ and CðxaÞ, we can calculate the relativistic
average discriminator value DRa, which is formulated as

DRaðxr ; xaÞ ¼ rðC xrÞð Þ �Exa CðxaÞ½ �; (4)

DRaðxa; xrÞ ¼ rðC xaÞð Þ �Exr CðxrÞ½ �; (5)

where r represents the sigmoid function. Unlike the general D in the
standard GAN, which estimates the probability that input data are real
or artificial, the D in ESRGAN attempts to predict the probability that
real data are relatively more realistic than artificial data.37,56 The dis-
criminator loss is then defined as

LRaD ¼ �Exr logðDRaðxr ; xaÞÞ½ � �Exa logð1� DRaðxa; xrÞÞ½ �: (6)

The adversarial loss of the generator can be expressed in a sym-
metrical form as

TABLE I. Some salient parameters for the DNS cases, where N represents the
number of grid points in the streamwise (x), wall-normal (y), and spanwise (z) direc-
tions. The superscript “þ” means that the quantity is dimensionalized using us and
�. Furthermore, Dyþw and Dyþc denote the distance of the first mesh point away
from the wall and the maximum spacing at the centerline of the channel,
respectively.

Res Nx � Ny � Nz Dxþ Dzþ Dyþw Dyþc Dtþ

180 576� 432� 201 8.55 4.27 0.53 2.53 0.07
550 1536� 1152� 251 8.33 4.16 0.74 5.45 0.09

FIG. 1. Distribution of selected points in the 3D flow domain.
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LRaG ¼ �Exr logð1� DRaðxr; xaÞÞ½ � �Exa logðDRaðxa; xrÞÞ½ �: (7)

Note that D is trained to predict the probability that the real data
are relatively more realistic than the artificial data during the training
process. In this case, DRaðxr ; xaÞ tends to be 1, and DRaðxa; xrÞ tends
to be 0, which decreases LRaD to 0. On the other hand, G is trained to
generate more realistic artificial data, based on which real data are less
realistic than artificial data. Then, DRaðxr; xaÞ starts to decrease from 1
to 0, and DRaðxa; xrÞ begins to increase from 0 to 1, which decreases
LRaG to 0. In this adversarial process, D and G compete with each other

even though they also improve each other. In the end, G will generate
the constructed high-resolution data, which are very similar to the real
DNS data.

In addition to the adversarial loss, the loss function of G ðlGÞ
includes four additional loss terms: voxel loss (Lvoxel), perceptual loss
(Lperceptual), continuity loss (Lcontinuity), and momentum loss
(Lmomentum). Lvoxel represents the error calculated by comparing the
voxel (volume pixel) difference between the reconstructed high-
resolution data and real DNS data. Lperceptual represents the error in
features extracted from the real and artificial data by the feature extrac-
tor (FE). This study develops a 3D FE to extract features from 3D data
using a pre-trained 3D convolutional auto-encoder. As shown in
Fig. 3, data are passed through the encoder part. Then, various features
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FIG. 2. The architecture of 3D-ESRGAN: (a) the architecture of the generator, where b represents the residual scaling parameter set to 0.2, and (b) the architecture of the
discriminator.

TABLE II. MSP architecture.

First branch Second branch Third branch

Conv3D.(3, 3) Conv3D.(5, 5) Conv3D.(7, 7)
UpSampling(2, 2) UpSampling(2, 2) UpSampling(2, 2)
Conv3D.(3, 3) Conv3D.(5, 5) Conv3D.(7, 7)
LeakyReLU LeakyReLU LeakyReLU

UpSampling(2, 2) UpSampling(2, 2) UpSampling(2, 2)
Conv3D.(3, 3) Conv3D.(5, 5) Conv3D.(7, 7)
LeakyReLU LeakyReLU LeakyReLU

UpSampling(2, 2) UpSampling(2, 2) UpSampling(2, 2)
Conv3D.(3, 3) Conv3D.(5, 5) Conv3D.(7, 7)
LeakyReLU LeakyReLU LeakyReLU
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FIG. 3. Schematic of the feature extractor based on 3D convolutional auto-encoder.
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are extracted and output from several convolutional layers. Lcontinuity
and Lmomentum indicate errors calculated using the continuity and
momentum equations. The above additional loss terms are computed
using the mean-squared error

Lvoxel ¼ 1
N

XN
n¼1

xr � xað Þ2n; (8)

Lperceptual ¼ 1
N

XN
n¼1

fFEðxrÞ �fFEðxaÞð Þ2n; (9)

Lcontinuity ¼ 1
N

XN
n¼1

r � ur �r � uað Þ2n; (10)

FIG. 4. Overview of tricubic interpolation-based transfer learning process.

FIG. 5. Reconstructed instantaneous velocity fields of channel flow at Res ¼ 180 (x–y plane at z ¼ 0:5pd).
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Lmomentum ¼ 1
N

XN
n¼1

@ur
@t

þ ur � rur

� �
� @ua

@t
þ ua � rua

� �� �2

n
;

(11)

where N represents the number of the paired training samples in a
training mini-batch, set to 8 in this study, andfFE of Eq. (9) is a map-
ping function of the FE. Finally,lG is defined as

lG ¼ b1L
Ra
G þ b2Lvoxel þ b3Lperceptual þ Lcontinuity þ Lmomentum;

(12)

where b1, b2, and b3 denote the coefficients used to balance the
loss terms, the values of which are set to 10, 1000, and 2000,
respectively.

The training process of 3D-ESRGAN includes the following
steps. First, the batched low-resolution data are inputted into G to out-
put xa, where the batch size is set to 8 in this study. Then, xa and xr are

calculated to get a generator loss based on Eqs. (7)–(12). Second, the
xa and xr pass through the D and are calculated to get a discriminator
loss based on Eqs. (4)–(6). After obtaining losses, the optimization
algorithm will update the model weights attempting to decrease losses
during training, where the optimization algorithm used in this study is
adaptive moment estimation (Adam).57 In addition, this study uses
the open-source library TensorFlow 2.3.0 to implement the deep-
learning model. The customized sample Python code for the proposed
3D-ESRGAN is available on the web page (https://fluids.pusan.ac.kr/
fluids/65416/subview.do).

B. Tricubic interpolation-based transfer learning

The capability, generalization, and computational cost of the DL
model are greatly affected by the amount of training data. Developing
a DL model with high capability, great generalization, and less compu-
tational cost is a hot pursuit of researchers. Transfer learning (TF)41

FIG. 6. Reconstructed instantaneous velocity fields of channel flow at Res ¼ 180 (y–z plane at x ¼ pd).
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has been widely applied in turbulent-flow research.19,42,43 TF also
shows a good advantage when successful training results are obtained
but with fewer data and less computational time. The basic idea of TF
could be understood as enabling a new DL model to learn some
knowledge transferred from some pre-trained models in terms of their
weights. On the other hand, regular DL training starts with the initiali-
zation of random values of weights.

This study employs two methods to train and test the 3D-
ESRGAN. The first one is developed classically. As mentioned in
Sec. II, 9600 snapshots of paired low-resolution and DNS data are
used to train the DL model. Then, we use 2400 extra snapshots of low-
resolution flow data to evaluate the model performance. Another
method based on tricubic interpolation and TF is used when paired
DNS training data are insufficient. For instance, only 1000 snapshots
of paired DNS training data are available, whereas 10,000 snapshots of
low-resolution data are without any corresponding high-resolution
DNS data. The second method is denoted tricubic interpolation-based
transfer learning.

Tricubic,58 also called tricubic interpolation, is a numerical
approximation for the mathematical problem of obtaining values at
arbitrary points in a 3D space of a function defined on a regular grid,
which is expressed as follows:

f ðx; y; zÞ ¼
X3
i¼0

X3
j¼0

X3
k¼0

aijkx
iyjzk: (13)

This formulation has 64 coefficients aijk, which require the func-
tion to have a given value or directional derivative at some points,
such as the peaks around a cube with 3� 3� 3 grids, so that a single
linear constraint can constrain the 64 coefficients.

In terms of the principle, bicubic interpolation is widely applied
to image-resolution enhancement.59,60 Tricubic interpolation can also
reconstruct the resolution of 3D data, such as magnetic-resonance
imaging data.61 The reconstruction obtained using tricubic is less accu-
rate than that obtained using DL-based models. Nevertheless, as previ-
ously mentioned, tricubic interpolation is a purely mathematical
method without any data-based training work. Thus, we can directly
use tricubic to reconstruct the 10 000 snapshots of low-resolution
flow data in our work and obtain tricubic interpolation-based high-
resolution data.

As Fig. 4 shows, in the transfer-learning process, the 3D-
ESRGAN model is trained with a large dataset consisting of 10 000
snapshots of low-resolution data and the corresponding tricubic
high-resolution data obtained by tricubic interpolation. After
the pre-training process, the model can gain a rough knowledge

FIG. 7. Reconstructed instantaneous velocity fields of channel flow at Res ¼ 180 (x–z plane at yþ ¼ 16:78).
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of the approximate mapping of low-resolution data to high-
resolution data. In the fine-training process, the model is trained
to learn a high-fidelity mapping based on the limited DNS data-
set (1000 snapshots), enabling the model to reconstruct
high-resolution turbulent-flow data from coarse data more
accurately.

In Sec. IV, we show that the model with tricubic interpolation-
based transfer learning (case 2) performs better than the one without
tricubic interpolation (case 3) when the DNS training datasets are
identical (1000 snapshots for each case). Meanwhile, the reconstruc-
tion performance in case 2 is similar to the normal training result,
whose training DNS database includes 9600 snapshots (case 1).

FIG. 8. Isosurfaces of the instantaneous flow structure (Qþ¼ 0.006) of channel flow at Res ¼ 180 colored by uþ. (a) 3D orthogonal view. (b) Front view. (c) Side view. (d)
Top view.

FIG. 9. Probability density functions of the velocity components of channel flow at Res ¼ 180 as a function of wall-normal distance. The isoline levels are in the range
10%–90% of the maximum PDF with an increment of 20%. Each figure indicates the probability density functions of velocity component (a) u, (b) t, and (c) w.
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IV. RESULTS AND DISCUSSION

In this section, the turbulent channel flow data will be validated
to demonstrate the ability of the 3D-ESRGAN, which would be able to
reconstruct high-resolution wall-bounded turbulent flow fields from
low-resolution turbulent flow fields. The results are presented and dis-
cussed. Figures 5–7 show the reconstructed instantaneous fields of the
streamwise velocity (uþ), wall-normal velocity (tþ), and spanwise
velocity (wþ) from different sections in the 3D domain of the channel
flow at Res ¼ 180. As illustrated in the figures, the reconstructed
velocity fields of cases 1 and 2 agree well with the DNS data, with most
of the detailed flow structures reconstructed. Nevertheless, the

reconstruction performance in case 3 is worse than in the other cases.
In particular, the reconstructed velocity of the streamwise component
(u) in case 3 is widely different from the DNS data, which is also
observed in another figure (see Fig. 8). Figure 8 shows the turbulent-
flow structure in the channel by applying the Q criterion for vortex
identification.62 As shown in this figure, the reconstructed instanta-
neous velocity fields of cases 1 and 2 represented in terms of the vorti-
cal structure (Qþ) are identical to those obtained from DNS data,
whereas the reconstruction data in case 3 are less similar to the DNS
one. This indicates that the proposed model can successfully recon-
struct flow fields with an actual structure for both cases 1 and 2.

FIG. 10. Scatter plots of the maximum values within the x–z plane at yþ¼ 16.78 of the (a) streamwise velocity, (b) wall-normal velocity, and (c) spanwise velocity based on
DNS, for the various reconstruction cases in channel flow data at Res ¼ 180. The contour colors (from blue to red) are proportional to the density of points in the scatter plot.
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In Fig. 9, the probability density function (PDF) of each velocity
component is plotted as a function of the wall-normal location to eval-
uate the capability of the 3D-ESRGAN model to reconstruct velocity
fields with accurate spatial distributions. In terms of cases 1 and 2, the
PDF plots of the reconstructed velocity components agree consider-
ably with the results obtained from DNS data. In case 3, the PDF plots
significantly deviated from the DNS ones.

Figure 10 shows the scatter plots of the extreme values of velocity
fields based on the x–z plane at yþ¼ 16.78. As can be observed from
the figure, the results from cases 1 and 2 correlate well with the DNS
data. Thus, the 3D-ESRGAN model with tricubic interpolation-based
transfer learning can adequately reconstruct the true extreme values of
turbulent flows.

Moreover, the turbulence statistics of reconstructed velocity fields
are compared with the fields obtained from the DNS data in Fig. 11. In
Fig. 11(a), the mean streamwise velocity profiles from all the cases
agree with the results obtained from DNS data within the considered
wall-normal range. The root mean square (RMS) of the velocity com-
ponents is defined as: arms ¼ a0a0 1=2, where a represents the velocity
component. The statistically averaged quantities in x and z denoted by
an overbar can be defined as

�/ ¼ 1
Lxiðt1 � t0Þ

ðt1
t0

ðLxi
0

/ dxi dt; (14)

whereas fluctuating quantities are denoted by primes, that is,
u ¼ �u þ u0. As shown in Figs. 11(b)–11(d), the results obtained from
cases 1 and 2 agree well with the DNS results. However, results from
case 3 show obvious offsets. The above results indicate that, in case 3,
the 3D-ESRGAN model can roughly reconstruct high-resolution flow
fields but cannot reconstruct detailed turbulent features, such as the
fluctuation part when yþ is greater than 15. Figure 11(e) depicts the
Reynolds shear-stress profile �u0t0 þ. Although the results of cases 1
and 2 are in better agreement than the results of case 3, there exists a
slight deviation near yþ ¼ 45� 125. Similarly, the RMS streamwise
vorticity profile (wþ

x;rms) also shows similar results to RMS velocity
fluctuation and mean shear stress, which means that in cases 1 and 2,
3D-ESRGAN can reconstruct the turbulence statistics of flows with
remarkable precision.

In addition, this study uses premultiplied streamwise and span-
wise wavenumber spectra to investigate the capability of the model to
reconstruct the premultiplied power-spectral densities of these flows,
that is; kþx U

þ
aa and kþz U

þ
aa, where kx and kz represent the streamwise

and spanwise wavenumbers, respectively;Uaa denotes the correspond-
ing power-spectral density; and a represents the velocity component.
Figure 12 shows kþx U

þ
aa and kþz U

þ
aa as a function of yþ and the corre-

sponding wavelength kþ. Except for case 3, the energy spectra of the
reconstructed velocity fields match well with the DNS results even
though offsets exist at high-wavenumber regions. However, the results

FIG. 11. Turbulence statistics of the turbulent channel flow at Res ¼ 180. (a) Mean streamwise velocity profile, (b) RMS profile of the streamwise velocity, (c) RMS profile of
the wall-normal velocity, (d) RMS profile of the spanwise velocity, (e) mean shear stress profile, and (f) RMS profile of the streamwise vorticity.
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from case 3 show extremely poor agreement with the DNS results, par-
ticularly at the wavelength range of less than 102. This figure also
shows that the DL-based model can reproduce energy spectra well and
accurately reconstruct the spatial distribution of turbulence velocity
fields.

The flow at high Reynolds number (Res ¼ 500) is more chaotic
than the lower Reynolds number. The high-resolution flow data can
be reconstructed using the 3D-ESRGAN model with commendable
accuracy. Figure 13 shows turbulence statistics for the flow at
Res ¼ 500. Generally, the statistical results from cases 1 and 2 are in
acceptable agreement with the DNS results; however, similar to the
previous discussion, in case 3 the performance is worse than in the
other two cases.

Finally, the performance of the proposed 3D-ESRGAN model
and different training methods are further evaluated using the L2-
norm relative error

e ¼ 1
N

XN
n¼1

jjaDNSn � aRECn jj2
jjaDNSn jj2

� 100%; (15)

where aDNSn and aRECn represent the DNS and reconstructed instanta-
neous velocity components at a specific wall-normal distance, yþ, and
N represents the number of the test flow data. In Figs. 14(a) and 14(b),
we can find that the L2-norm relative errors of cases 1 and 2 are

similar, even if the error of case 1 is slightly lower than that of case 2.
However, the error of case 3 shows a rapid increase. This result also
indicates that tricubic interpolation-based transfer learning method
can help the DL-based model to reconstruct high-resolution flow fields
well, even using limited DNS training data. The figure shows that the
errors at yþ¼ 25–75 of the case at Res ¼ 180 and yþ¼ 10–100 of the
case at Res ¼ 500 are larger than in other positions. In these wall-
normal regions, beyond the buffer layer, the flow is more difficult to
reconstruct because the velocity fluctuations are associated with fluctu-
ations of many different scales. In addition, the error of the case at
Res ¼ 500 is larger than that of the case at Res ¼ 180 because the tur-
bulent flow at Res ¼ 500 is more chaotic than that at Res ¼ 180.

V. CONCLUSIONS

This study proposed a DL-based method to reconstruct 3D high-
resolution turbulent flows from low-resolution data. We developed a
DL neural network named 3D-ESRGAN, a 3D version of the general
MS-ESRGAN. The 3D-ESRGAN was used to reconstruct 3D channel
flows from spatially coarse data at two different friction Reynolds
numbers (Res ¼ 180 and 500). Unlike previous two-dimensional reso-
lution–reconstruction works, continuity and momentum equations
were included in the physics-based loss terms of G so that the DL-
based model could achieve better and more physical reconstruction
results. Moreover, the pre-trained network VGG19 could not be used

FIG. 12. Premultiplied streamwise (a) and spanwise (b) power-spectral density of velocity components from the turbulent channel flow case Res ¼ 180 as a function of wall-
normal distance and wavelength. The isoline levels are in the range 10%–90% of the maximum kþx U

þ
aa and k

þ
z U

þ
aa, with increments of 10%.
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FIG. 13. Turbulence statistics of the turbulent channel flow at Res ¼ 500. (a) Mean streamwise velocity profile, (b) RMS profile of the streamwise velocity, (c) RMS profile of
the wall-normal velocity, (d) RMS profile of the spanwise velocity, (e) mean shear stress profile, and (f) RMS profile of the streamwise vorticity.

FIG. 14. Profiles of L2-norm error of reconstructed velocity fields based on inner-scaled wall-normal distances yþ. (a) Turbulent channel flow at Res ¼ 180, and (b) turbulent
channel flow at Res ¼ 500.
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in this study because of its limited capacity to handle 3D data. Thus,
we trained an FE using a 3D convolutional auto-encoder to extract fea-
tures from real and artificial data. Finally, we proposed a new training
method similar to transfer learning, that is, tricubic interpolation-
based transfer learning. This method reconstructed low-resolution
data roughly and was used to train the 3D-ESRGANmodel to improve
its generalization. Then, limited DNS data were used to train the
model finely, enabling the DL-based model to achieve more accurate
results.

We used turbulent channel flows at two different Reynolds num-
bers to evaluate the reconstruction ability of 3D-ESRGAN based on
three different training methods. The results from instantaneous veloc-
ity fields, isosurfaces of the instantaneous flow structure, and turbu-
lence statistics demonstrated that with limited paired DNS training
data 3D-ESRGAN could effectively reconstruct high-resolution chan-
nel-flow data at Res ¼ 180 from spatially limited flow data. In addi-
tion, 3D-ESRGAN could reconstruct high-resolution channel flows at
Res ¼ 500 even though the Reynolds number is higher and flows are
more chaotic than at Res ¼ 180. Moreover, the L2-norm relative error
was investigated in this study. In addition to the previously mentioned
results, fluctuating region of channel flows was more difficult to recon-
struct than non-fluctuating region.

This study has demonstrated that the 3D-ESRGAN model can
reconstruct high-resolution turbulent-flow data efficiently and accu-
rately. By applying tricubic interpolation-based transfer learning, we
can train the DL-based model with limited paired data while maintain-
ing the results and the regular training method.
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