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Abstract: The robustness and flexibility of a feature-based parametric CAD model determines the 

extent to which the geometry can be modified and reused in other design scenarios. The ability of 

a model to successfully adapt to changes depends on the type and sequence of the modeling 

operations selected to build the geometry, the parent-child dependencies defined during the 

modeling process, and the type and scope of the desired geometric change. Several formal 

modeling methodologies have been proposed to maximize model reusability, which have been 

shown to outperform unstructured approaches when designers need to manually modify the 

geometry. However, the effect of these parametric model strategies on the generation of valid 

solutions in heavily automated tasks has not yet been investigated. In this paper, we compare and 

analyze the performance of three well-established parametric modeling methodologies in various 

design optimization scenarios that involve the automatic generation of a large number of geometric 

variations. We discuss the results of a study with four parametric models of varying complexity 

and identify the limitations of each strategy in relation to the internal structure of the model. Our 

results show that explicit references and resilient modeling strategies are relatively robust for 

simple parts, but their effectiveness decreases significantly as the complexity of the model 

increases. In addition, we introduce the concept of intrinsic variability, which impacts the 

effectiveness of the methodology, and thus the quality of the parametric model, based on how the 

methodology is interpreted and executed. 
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1. Introduction 

Advances in computing and industrial technologies are transforming how design and 

manufacturing organizations operate and conduct their businesses. Modern Computer-Aided 

Design (CAD) tools, the exponential growth in our ability to capture data, and increasingly more 

powerful artificial intelligence algorithms are enabling the creation and simulation of sophisticated 

virtual product representations as well as the automation of many aspects of the engineering design 

process. The importance of the digital model in a product’s lifecycle is evident through the variety 

of scenarios and activities where the model is used, such as analysis, Computer-Aided 

Manufacturing (CAM), and process planning, to name a few. It is particularly relevant in the 

context of a Model-Based Enterprise (MBE), where the virtual representation becomes the single 

source of truth and the central element around which all other activities revolve. The 3D model 

serves as the vehicle for managing, communicating, and sharing design information.  

The authoring of digital product models for engineering typically involves the use of feature-based 

parametric CAD systems, usually history-based [1,2]. Parametric technology has become the 

industry standard paradigm in engineering design partly due to its ability to add semantics to the 

model and enable the rapid alteration and reuse of existing geometry. In an environment where the 

majority of design information is stored within the digital product model, CAD reusability enables 

design reusability [2], a key factor to reduce product development time [3]. The costs and 

implications of parametric modeling change in the broader context of engineering change 

management were recently discussed by Camba et al. [4]. 

Parametric feature-based models are built by combining high-semantic level geometric elements 

(i.e., features) in an associative hierarchical manner via parent/child relationships, which define a 

graph data structure of feature interdependencies that control the geometry. The specific definition 

of the feature dependencies and the internal structure of the model depend on the modeling process 

used to build the geometry, which is entirely the designer’s responsibility [5]. In fact, it is not 

uncommon for two geometric models of the same part built by two different designers to have 

very different internal structures. When feature dependencies are defined effectively, any 

geometric change performed to a particular feature in the model will propagate automatically to 

all the features that depend on it, regenerating the geometry accordingly. When not defined 

properly, however, feature dependencies can be the source of many regeneration problems and 

drastically limit model reuse, even when the desired modifications are minor. 

Theoretically, an unlimited number of approaches can be used to build a geometric model. From 

a purely geometrical point of view, any of these solutions is valid, as they all produce identical 

geometry and topology. However, the solutions may not necessarily produce comparatively 

reusable internal structures, and the models may react very differently to changes when 

modifications are made [2].  

The vast majority of the strategies that can be applied to build a model, including the “trial and 

error” approaches that are often prevalent in industry [6], result in low-quality models that do not 

perform effectively in design reuse scenarios. Only a few strategies can maximize the flexibility 

and reusability of the parametric associative structure. Identifying the most appropriate modeling 

approach for a particular problem and devising the most effective way to organize the parametric 

dependencies are critical.   

Throughout the years, some researchers and practitioners have attempted to formalize parametric 

modeling practices to maximize reusability, and various modeling methodologies have been 
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proposed to ensure a certain level of consistency and standardization. Engineering organizations 

often develop internal modeling guidelines, which in many cases are not shared publicly for 

confidentiality and intellectual property reasons. Formal modeling methodologies have been 

shown to outperform non-structured approaches in terms of model robustness and flexibility to 

changes [1,2]. However, the benefits and impact of formal methodologies have almost exclusively 

been studied through the lens of manual design changes. For example, it has been shown that 

models created according to a formal modeling strategy, specifically the resilient modeling 

approach, can be modified by designers more quickly and easily than when other approaches are 

used [2]. Other similar studies have focused exclusively on parametric sketches [7–9]. 

In this paper, we examine the impact of the modeling methodology in design scenarios that involve 

automated processes. More specifically, we focus on design optimization tasks that require the 

generation of multiple design variations to find valid solutions to a problem. We present a series 

of experiments aimed at comparing three well-established modeling strategies used in feature-

based parametric design (i.e., horizontal modeling, explicit reference modeling, and resilient 

modeling) by using four industrial CAD models with different levels of complexity in a design 

optimization study. To quantify their impact, we studied the behavior of the models when the 

geometry is modified, emphasizing the correctness of the models after changes, the number of 

successful variations generated with respect to unsuccessful variations, and the total processing 

time required to produce the solutions. 

2. Background 

2.1 CAD model complexity metrics 

In order to determine the quality and reusability of a parametric 3D model, it is critical to measure 

its complexity [10–12]. However, there is no consensus on a formal definition of 3D model 

complexity [6,13,14]. The concept is multifaceted with many interrelated dimensions. Some of the 

dimensions that have been proposed include, for example, the coupling between parts in an 

assembly and the exclusive specifications of assembly joints  [15,16], the effort required to 

manufacture or design the part [17], the number of features and entities in each sketched feature 

[18–20], aspects related to the complexity of the design process [11], size, interconnectivity, and 

decomposition of the corresponding connectivity graph [21], the number of sketched and edge 

features [22], dimensional constraints [23], faces [1], and the number of each unique paths between 

each pair of nodes [24], the degree to which nodes are grouped within the system to measure 

interconnectedness between features [25], the number of independent paths through the graph 

(Cyclomatic complexity) [26], the string length when the graph is encoded as a binary string 

(Kolmogorov complexity) [27], and the graph entropy measure, which describes the uncertainty 

of a system using the algorithm of Li et al. [28].  

The previous list is not exhaustive. Authors Camba et al. [2] compiled and analyzed various 

metrics that can be used to quantify the complexity of a 3D CAD model. In their study, the authors 

concluded that the number of faces, edges and vertices are reliable indicators of geometric 

complexity, but other metrics such as the number of features, the number of dependencies, and the 

number of leaf nodes and average node connectivity in the corresponding graph are needed to 

describe the complexity of the structure of a parametric model. 
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Amadori et al. [6] claimed that flexibility is an important aspect of model quality, which is related 

to the robustness and size of the design space of the model. The flexibility of a geometric model 

refers to the ability to represent a wide range of different product configurations, layouts, and sizes. 

The wider the range of geometries the model can create, the greater the flexibility. Robustness 

refers to the errors or instability problems that can be caused by changes in the geometric model. 

Fewer errors lead to greater robustness. The size of the design space is determined by the designer, 

who decides the range of input variables. It is crucial to define all input variables from the start, as 

these variables will affect the future behavior of the model. By defining a concise/limited design 

space, designers can create models that are robust and flexible. 

The adaptive nature of the design tree allows designers to model complex parts quickly and with 

relative ease, while increasing the flexibility and reusability of their designs. In order to fully 

leverage the reusability benefits enabled by parametric feature-based CAD, models must 

effectively react to the most likely geometric variations. When feature dependencies are defined 

efficiently, alterations made to a parent node will automatically propagate to its child nodes, and 

the CAD model will react to changes in a predictable manner [2]. 

Unfortunately, parent/child feature interdependencies are at the root of many regeneration 

problems in parametric modeling. The size and complexity of a parametric CAD model can grow 

rapidly depending on the scenario. As the number of dependencies grows, so does the 

interconnectedness of the design tree, which can negatively affect the maintainability and 

reusability of the model [2]. When feature interdependencies are not properly defined, even minor 

alterations can cause the CAD model to become unstable, forcing designers to rebuild part of or 

the entire model to restore the intent of the new design [2]. 

While many options exist to generate a geometric solution, the robustness and reusability of the 

model depends greatly on the experience of the designer and the methodology. The “desirable 

range” is the optimal point at which the designer achieves a robust and flexible parameterized 

model that can accommodate a wide range of variations, and effectively communicates design 

intent  [29]. The concept is illustrated in Fig. 1. 

 

Fig. 1. Solution space identifying the desirable range where the optimum relationship between flexibility 

and reusability and the variation range of the model is achieved [29] (adapted from [1, 6]) 

2.2 Formal modeling methodologies 

Various formal modeling methodologies have been proposed to maximize model quality, 

robustness, and flexibility against changes, most notably horizontal modeling [30], explicit 
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references modeling [1], and resilient modeling [31]. In this section, we review the basic principles 

of each of these strategies. 

2.2.1 Horizontal Modeling 

The Horizontal Modeling Methodology is a modeling strategy patented by Delphi Technologies 

[30]. The goal of the methodology is to prevent propagation problems resulting from design 

changes by eliminating all dependencies between the elements in the design tree. Landers and 

Khurana [30] stated that the problems caused by parent/child relationships originate from the 

classic vertical tree structure. They proposed minimizing or eliminating interdependencies by 

ensuring all features are generated independently from the others and always referenced to datum 

planes. Through these datum planes, features are positioned at the same level within the tree, 

creating the horizontal structure. The concept is illustrated in Figure 2. This scheme minimizes the 

potential errors caused by modifications to a feature, reducing regeneration errors. 

 
Figure 2. Horizontal Modeling process (adapted from [30]). 

In addition to the “horizontalization” of the tree structure, the construction of horizontal models 

must also consider how the part will be manufactured. All features that comprise the main body 

are modeled first, followed by subtraction features. 

The creation of datum planes adds an additional level of complexity and reduces parameterization. 

The chain of feature dependencies is usually short and easy to trace, but systematically eliminates 

parent-child relationships. The horizontal methodology has been criticized for making it difficult 

to convey design intent in the feature tree, and for the eliminating the automatic propagation of 

geometric changes, a functionality that is at the core of the feature-based parametric paradigm. In 

addition, there are no specific guidelines on how to organize or name the elements in the design 

tree. 

2.2.2 Explicit Modeling Methodology  

The Explicit Reference Modeling (ERM) methodology was proposed by Bodein et al. [1] to 

address the second level of their CAD Efficiency Roadmap [32]. The authors proposed minimizing 

the number of possible solutions to generate a model (i.e., standardize model creation) by 

minimizing the constraints or relationships associated with existing geometries. 
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To apply this methodology, the number of parent/child dependencies must be reduced as much as 

possible without “un-parameterizing” the associativity of the model (as in horizontal modeling). 

To this end, the authors distinguish between two types of constraints: 

• Category 1 associations/constraints: Associations that can avoid being related to existing 

geometries. To avoid references to existing geometries, explicit reference entities such as 

planes or lines must be generated. Reference entities can be created as explicit references 

using elementary parametric elements such as points instead of vertices, or planes or 

surfaces instead of existing faces. 

• Category 2 associations/restrictions: Associations to existing geometry are mandatory.  

The goal in this category is to reduce parent/child relationships as much as possible to 

minimize dependencies between operations. Consequently, operations such as rounding, 

chamfering or hollowing/shelling should be applied as close as possible to their original 

primitives in order to reduce the degrees of feature dependency [1], as illustrated in Figure 

3. 

 
Figure 3. Example of graph structure in a parametric model: unstructured methodology (left) vs. 

ERM (right) [1]. 

Constrained features in Category 2 can cause models to become unstable or cause problems if 

modified or removed due to the parent/child relationships. The goal is to reduce feature 

dependencies by placing operations with category 2 constraints as close as possible to their parent 

or primitive operations. 

Bodein et al. [1] also proposed the implementation of a functional approach in the methodology, 

which focuses on the identification of the functional aspects of the part so they can be addressed 

independently. The approach consists in four steps: (i) functional breakdown of the geometry, (ii) 

creation of explicit references for each functional part, (iii) creation of the necessary solids for 

each functional part, and (iv) linking the functional bodies with Boolean operations. The strategy 

concentrates error propagation on one functional part, in case errors occur. 

2.2.3 Resilient Modeling Strategy 

The resilient modeling methodology (RMS) [34] was proposed by Gebhard [31] and focuses on 

creating robust and reusable models by optimizing parent-child dependencies and structuring 

easily understandable design trees. The methodology is based on four main principles: 

- Renaming elements (so that they are intuitive) to improve communication. 
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- Tree structure organized into eight groups. 

- Categorization and associations of the features according to their volatility. 

- Stress testing by modifying the critical parameters and verifying the behavior of the model. 

These four principles ensure that the communication of design intent is effective and easy to 

understand by third party designers. By organizing the tree in the same manner, access to the 

information is consistent in all models. The structuring of the design tree into eight groups 

describes what type of operations should be part of each group and what rules should be followed 

when creating each group. The eight groups are summarized in Table 1. 

Table 1. Feature groups defined in the resilient modeling strategy [34]. 

Group Description Typical features Notes Links 

1. Skeleton 

Is the specification 

sheet for the solid 

model 

· Ref Bodies, Layouts, Sketches, Ref 

Planes, Coord. Sys, Images, Surfaces, 

Project, Extend, 3D Curves, Trim, Split 

· No solid features 

· No duplicate dimensions 
Allowed 

2. Core 

It captures the model’s 

basic shape, size and 

orientation 

· The first group to contain solid features 

· Only profile-based features: Extrude, 

Sweep, Thin Wall, Revolve, Loft, Shell 

· Shell feature as an exception 

· No local profiles 

· No numeric extents 

· Add material 

Allowed 

3. Surface 

It contains surface or 

curve features that 

would normally be in 

the skeleton group, but 

they must be linked to 

the Core Group 

· No solid features: Surfaces, Project, 

Extend, 3D Curves, Trim, Split 

· Must depend on the “2. Core Group” 

 

· Surface group feature are used as 

boolean in the 4. Detail Group 

· A “final feature” in the modify group 

· A “deferred feature” 

Allowed 

4. Detail 

Features are for add 

definition to a model 

using local geometry 

· No reference features 

· No links to other “Detail” features 

· Extrude, Sweep, Hole Revolve, Loft, 

Thread 

· Use hole features instead of a cut 

· Detail features can me moved or 

suppressed without causing an error 

No link 

between 

detail 

features 

5. Holes 

Are a cylindrical 

cavity created by an 

extrude cut, revolved 

cut or a hole feature 

· No reference features 

· No links to other “Hole” features 

· Use hole features instead of a cut 

· Those features can be moved within 

the group or suppressed without 

causing an error 

No link 

between 

hole 

features 

6. Modify 

Features that replicate 

or transform groups of 

features 

· First Mirror, Pattern, etc. 

· Followed by transform features: Draft, 

Pattern, Mirror, Final Features 

·Final features are last: add or remove 

· Don’t pattern Core features 

· Suppressible Draft features 

material from the modified model 

Allowed 

7. Quarantine 

Those features 

consume their 

defining hard edge, 

replacing them with 

derived edges 

· Don’t consume a defining face 

· Chamfer, Blend, Round 

· Chambers are first. 

· Rounds & Fillets are next 

· Use caution when linking to other 

quarantine features 

· If creation error occurs, change the 

feature order 

· Split the features 

Allowed 

8. Variant 

Used to generate 

versions of the base 

part by suppressing or 

unsuppressing the 

group 

·Multiple groups are allowed 
· Direct editing features are common 

in this group 
Allowed 

2.3. Design optimization and automatic generation of geometric variations 

The responsiveness of 3D models to geometric variations in a stable manner is of considerable 

relevance in automated design tasks [35]. This is particularly the case in design tasks where 

multiple design variations are required to explore, optimize, or generate new designs. The most 
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common of these tasks in industry include [35] i) design optimization, ii) simulation, iii) 

product/part families and configurations, and iv) generative design algorithms. 

i) Design optimization tools facilitate the alteration of a CAD model based on user input. By 

specifying a set of criteria, engineering constraints and the design objective to be achieved, 

geometric variations from a source 3D model are automatically generated. When parameters and 

dimensions of the 3D model are changed, the tool evaluates different design scenarios and 

optimizes the design by selecting the best scenario from a number of possible combinations. To 

explore all possible design scenarios the models must be efficiently parametrized, robust, and 

flexible. If not, the optimization will run unsuccessfully (due to regeneration errors), or even 

worse, potentially valuable design alternatives may be ruled out. 

ii) Simulation tools assist designers to assess key design and manufacturing factors by evaluating 

and predicting the performance and behavior of parts/products based on physical laws. Simulating 

3D models, designers can verify whether the design requirements are converging into the 

objective, which delimits the part/product design space to explore in each iteration [36]. We say 

iteration since each simulation (unless it is the last one) results in a minor or major design change. 

Such changes frequently require alterations to the geometry of the model, particularly when these 

tools are used in the early stages of the design process.  

Inefficient modeling practices can significantly contribute to costly geometrical changes. In a 

recent study, Nerenst et al. [37] identified the lack of robust CAD as a critical barrier for effectively 

completing simulation tasks. The use of low-quality models often leads to issues during simulation 

stages. Indeed, it is estimated that roughly half of all engineers spend over four hours a week fixing 

design data, and 15% spend more than 24 hours a week on the same design activity [38]. The 

complexity of engineered products is increasing, and the most up-to-date software can analyze the 

overall performance of a product simulating all influences simultaneously. As a result, simulation 

is used to analyze thousands of possible alternatives until the optimal design is identified. In this 

context, to meet the demands of geometrical variation the digital model must be flexible and 

robust.  

iii) Parametric model configurations are derived versions of an original part/product made after 

the first model has been validated. It is necessary to identify the parameters and features that will 

change and assign values for each scenario. This quickly establishes a family of similar parts or 

assemblies responding to new needs or other cases of application. Those configurations can be 

defined and controlled internally within the geometry of the original model, or externally, through 

a spreadsheet-like data grid stored as a separate file. As in previous cases, the successful generation 

of configurations mainly depends on the robustness of the parametric model. If the model is not 

robust enough, it will need to be extensively edited and/or built from scratch. 

iv) Generative design techniques assist in the creative process in a more integrated manner [39] by 

helping the user to make design decisions. The approach involves the use of algorithms to 

automatically construct optimal geometry [40]. As an example, the algorithm of Krish [41] is able 

to explore design options in the conceptual stage without human intervention. However, the nature 

of parametrization tasks can make a big design space problematic to explore. Two approaches exist 

to address this problem: the first is a strategy proposed by Khan and Awan [40] where important 

features are first parametrized with a large number of geometric parameters. After some iterations, 

problematic parameters which might be or are less relevant to the overall variation, are eliminated. 

The second strategy proposed by Khan et al. [36] is intended for the conceptual stage and is focused 
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on capturing user preferences using geometric constraints and reducing the design space in each 

iteration.  

Finally, if a cost-effective strategy can be defined to parametrize detailed and robust 3D parametric 

models, models can be built to deliberately address geometric variations and be used as the basis 

for generative design techniques. Such algorithms could contribute beyond the conceptualization 

phase and have applications in sectors such as naval (e.g., the parametrization of the hull geometry 

[42]) and railway (e.g., the aerodynamic design of the heads of high-speed trains [43]). 

In this paper, we examine how the modeling strategy impacts the robustness and flexibility of a 

parametric model when the geometry needs to be modified for tasks that involved the iterative 

generation of design variations, such as the scenarios described above. 

3. Experimental procedure 

To determine how the modeling methodology influences the generation of valid geometric 

variations, we conducted a series of tests with four representative parametric models of varying 

complexity. All tests were completed in a computer laboratory environment equipped with a 

workstation (CPU, Intel Xenon 2295 @ 3.00GHz; RAM, 64,00 GB Dual-Channel @ 1462MHz; 

and Graphic card, 4083MB NVIDIA RTX A5000) and a commercial parametric associative CAD 

system (i.e. DS SolidWorks). In order to generate geometric variations automatically and evaluate 

the success of specific design scenarios, we leveraged the tool Design Studies, which is fully 

integrated within the SolidWorks environment. Similar tools are available in other CAD packages 

(e.g., Design Studies in Creo Parametric, or Geometry Optimization in Siemens NX). The tool 

iterates through all possible geometric combinations of a particular model within a design space 

based on varying geometric parameters within a particular range, which are predefined by the 

designer. 

In our study, Design Studies was used to evaluate the robustness of a series of models built 

according to three formal parametric modeling methodologies. For each model, we defined a series 

of dimensional changes and compared the percentage of design scenarios that were successfully 

regenerated for each methodology. By analyzing how a model responds to changes as well as the 

processing time required to regenerate the parametric geometry, we can determine robustness as 

well as identify key factors in the construction of the model. 

3.1 Sample 

Four representative industrial parts were selected to test and compare the modeling methodologies: 

(A) a connecting rod, the part of a piston engine which connects the piston to the crankshaft; (B) 

a pump housing, the part where the pump is located and through which the liquid is directed; (C) 

a steering knuckle, the component which contains a wheel hub and is connected to the suspension 

and steering components; and (D) a bell housing, the part of a transmission that covers the flywheel 

and the clutch. The parts were intentionally selected to reflect increasing levels of geometric 

complexity according to various metrics. The level of detail of each part is based on its functional 

requirements and the number of connecting or interacting parts in their respective sub-assemblies. 

The parts are depicted in Fig. 4. 

https://www.amazon.com/RMS-Basics-Resilient-Modeling-Book-ebook/dp/B01CRGQK4E
https://www.amazon.com/RMS-Basics-Resilient-Modeling-Book-ebook/dp/B01CRGQK4E
https://grabcad.com/library/pump-housing-9
https://grabcad.com/library/pump-housing-9
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Fig. 4. Parts used in our study: connecting rod (A), pump housing (B), steering knuckle (C), and bell 

housing (D). 

3.2 Methodologies and model complexity metrics 

For each part depicted in Fig. 4, four different feature-based CAD models were created, each 

according to the guidelines of the different methodologies discussed in Section 2.  Although the 

objective of a formal modeling methodology is to ensure consistency and obtain quality models 

regardless of the level of expertise of the designer, the structure of the model may depend on how 

the methodology is interpreted and executed during the modeling process (i.e., intrinsic 

variability). In our case, all the models were created manually by expert engineers with significant 

industry experience and extensive knowledge of the various methodologies. In addition, after each 

model was created, it was carefully reviewed by other design engineers to verify that the 

methodology was applied correctly and rigorously. 

The characteristics of each model are summarized in Table 2, including geometric properties 

(number of faces, edges, and vertices) [2], the three basic metrics to assess parametric features and 

dependencies (number of features, dependencies and average node connectivity) [2], Li entropy 

(the uncertainty of the graph) [28], Kolmogorov complexity (string length when the graph is 

encoded as a binary string) [27] and Cyclomatic complexity (the number of independent paths 

through the graph) [26].   

https://www.amazon.com/RMS-Basics-Resilient-Modeling-Book-ebook/dp/B01CRGQK4E
https://grabcad.com/library/pump-housing-9
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Table 2. Complexity of the models used in our study 
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A 

 

Horizontal v1 78 203 124 36 59 2.66 171.84 714 40 

Horizontal v2 78 203 124 31 50 2.62 140.51 505 34 

Explicit 78 203 124 39 101 2.47 266.01 1218 73 

Resilient 78 203 124 37 95 2.26 246.98 1146 69 

B 

 

Horizontal 384 806 414 52 89 2.96 281.03 1074 66 

Explicit 384 806 414 52 119 2.83 350.33 1434 90 

Resilient v1 410 872 454 49 101 2.66 300.61 1218 75 

Resilient v2 416 883 459 48 102 2.62 299.71 1230 76 

C 

 

Explicit 622 1,481 851 277 731 3.56 2,976.75 13,167 574 

Simpl. Explicit 195 506 303 188 533 3.32 1,992.14 8,536 404 

Resilient 646 1530 877 249 731 3.28 2,863.54 11,704 567 

Simpl. Resilient 195 516 314 179 547 3.07 1,995.02 8,760 410 

D 

 

Explicit 3,658 8,275 4,617 327 640 3.74 2,694.28 11,529 469 

Simpl. Explicit 853 2,329 1,485 177 429 3.54 1,633.40 6,872 311 

Resilient 3,603 8,130 4,530 361 779 3.92 3,435.62 14,139 566 

Simpl. Resilient 849 2,311 1,473 221 484 3.61 1,956.79 7,752 328 

 

Each part in our study was modeled four times, instead of three, because a particular modeling 

method could be interpreted in two different ways, resulting in differences that were deemed 

significant. For example, for Part A, two horizontal models were created (v1 and v2), both of which 

fully comply with the guidelines of the methodology. However, differences in how the sketches 

are created and related to other elements may result in differences in the respective design trees 

and thus in the resulting solution spaces, as shown in Fig. 5. Likewise, two resilient modeling 

approaches were considered for part B. In this case, the decision was based on the construction 

and placement of the cavity within the design tree. In the first version of the resilient model (v1 in 

Fig.6), the shell feature (called “M2-Shell 2 mm”) used to create the cavity is located in the 

“modify” group. However, it is also possible to place this feature in the “core” group (as shown in 

v2 in Fig. 6). Since no explicit guidelines are defined regarding this scenario, a decision was made 

to consider both cases.  

We define the term intrinsic variability of a modeling methodology as the inherent variances in 

the structure of a parametric model that may result from differences in how the methodology is 

interpreted and executed during the modeling process. The intrinsic variability of a methodology 

can be significant as well as impact its effectiveness. From a quality standpoint, methodologies 

with low intrinsic variability yield more consistent results. 

No horizontal models were created for parts C and D. The intrinsic complexity of these parts 

requires the creation of many datum planes, even before creating solid bodies, which quickly 

becomes unmanageable and impractical. In addition, the lack of parameterization enabled by the 

elimination of parent–child relationships, results in design changes that do not propagate 

automatically even when the geometry regenerates successfully. This situation is particularly 
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problematic as errors may easily go unnoticed, making the model appear robust even when the 

design intent is not maintained. Instead, we constructed additional versions of the explicit and 

resilient models by simplifying details such as chamfers, fillets, and other features that are highly 

dependent on the main geometry but are located towards the bottom of the design tree. 

 

 

Fig. 5. Design trees of horizontal models v1 and 

v2 for Part A (connecting rod). 

Fig.6. Design trees of resilient models v1 and v2 

for part B (pump housing). 

3.3 Solution space constraints 

To limit the design space for the parts in our study, we identified a set of functional dimensions 

that were most likely to change for these types of parts in an industrial setting. The dimensions 

and the respective ranges of variation for all the parts are shown in Tables 3-6, respectively. 

Table 3. Functional variables and range of values for Part A (connecting rod). 

 

Parameter 

Minimum 

value 

(mm) 

Maximum 

value 

(mm) 

Step 

(mm) 

Scenarios 

per 

parameter 

A-Dist. between axis 80 140 20 4 

B-Dist. between bolts 22 26 2 3 

C-Radius axis A 18 24 2 4 

D-Thickness axis A 7,5 9,5 1 3 

E-Diameter axis B 16 22 2 4 

F-Thickness axis B 2 4 1 3 

Total scenarios 1,728 

Solution space to explore 1,729 

Table 4. Functional variables and range of values for Part B (pump house). 
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Parameter 
Minimum 

value (mm) 

Maximum 

value (mm) 

Step 

(mm) 

Scenarios 

per 

parameter 

A-Bolt hole Z 87 89 1 3 

B-Bolt hole X 41 43 1 3 

C-Main axis length 80 140 20 4 

D-Thickness 2 3 1 3 

E-Stepped axis length 38 46 4 3 

F-Base height 25 50 12.5 3 

G-Small axis angle 30 45 15 2 

H-Draft angle 1.5 deg. 4.5 deg. 1.5 deg. 3 

Total scenarios 3,888 

Solution space to explore 3,889 

Table 5. Functional variables and range of values for Part C (steering knuckle). 

 

Parameter 
Minimum 

value (mm) 

Maximum 

value (mm) 

Step 

(mm) 

Scenarios 

per 

parameter 

A-Lateral Flange Y 19,03 31,03 4 4 

B-Long Axis Angle 104.23 109.23 2.5 3 

C-Inner Bolts Diam. 105.02 109.02 2 3 

D-Outer Bolts Rad. 76.77 82.77 2 4 

E-Long Axis Rad. 31 33 1 3 

F-Draft Ang. 4 6 1 3 

Total scenarios 1,296 

Solution space to explore 1,297 

Table 6. Functional variables and range of values for Part D (bell housing) 

 

Parameter 
Minimum 

value (mm) 

Maximum 

value (mm) 

Step 

(mm) 

Scenarios 

per 

parameter 

A-Main axis height 187 189 1 3 

B-Dist. b/w main axis 88 91 1 4 

C-Aux. axis1- Y 76.98 78.98 1 3 

D-Aux. axis1 - Z  87 89 1 3 

E-Aux. axis2 - Y 31.5 33.5 1 3 

F-Aux axis 2 - Z 89.75 91.75 1 3 

Total scenarios 972 

Solution space to explore 973 

4. Results 

The results of our experiment are shown in Table 7.  
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Table 7.  Experimental results for each part. 

Part Methodology 

Total 

scenarios 

(T) 

Successful 

scenarios 

(S) 

Success rate 

(𝑺 𝑻⁄ · 𝟏𝟎𝟎 ) 

Total 

scenarios 

analyzed for 

Design Intent 

(Z) 

Design 

Intent is 

maintained 

(X) 

Design 

Intent 

Success rate 

(𝑿 𝒁⁄ · 𝟏𝟎𝟎) 

Regeneration 

time (s) 

A 

Horizontal v1 1,729 49 2.83% 49 1 0.08% 0.17 

Horizontal v2 1,729 37 2.14% 37 1 0.08% 0.27 

Explicit 1,729 1,297 75.01% 297 297 100% 0.20 

Resilient 1,729 1,297 75.01% 297 297 100% 0.37 

B 

Horizontal 3,889 100 2.57% 100 12 0,003% 1.27 

Explicit 3,889 1,189 30.57% 291 241 82.82% 1.53 

Resilient v1 3,889 262 7.73% 262 200 76.34% 3.12 

Resilient v2 3,889 197 5.07% 197 155 78.68% 4.37 

C 

Explicit 1,297 15 1.15% 15 15 100% 6.06 

Resilient 1,297 1 0.08% 1 1 100% 6.54 

Explicit (simpl.) 1,297 1,297 100.00% 297 0* 0% 1.74 

Resilient (simpl.) 1,297 866 66.77% 266 266* 100% 2.37 

D 

Explicit 973 33 3.39% 33 33 100% 16.96 

Resilient 973 30 3.08% 30 30 100% 17.32 

Explicit (simpl.) 973 973 100% 276 276* 100% 2.99 

Resilient (simpl.) 973 972 99.90% 276 276* 100% 4.45 

* NOTE: design intent results for simplified versions of Parts C and D are not comparable. 

 

In our study, an error is defined as any event that fails to regenerate the geometry correctly, i.e. a 

failure in one or more features in the model, as reported by the system. It is important to note that 

a priori we do not know whether the geometric changes performed to a model will be feasible or 

not. However, these cases do not affect our study, since we are conducting a relative comparison 

of the performance of the methodologies, and not an absolute comparison of the corresponding 

design spaces. If a particular change is not geometrically realizable, it will not be realizable in any 

of the methodologies, regardless of the modeling approach. 

We understand design intent as a CAD model’s anticipated behavior when altered, as discussed 

by Otey et al. [44]. The preservation of design intent for the successful cases was verified 

manually, as this dimension of CAD quality is extremely difficult to check automatically and even 

represent in an explicit manner [46]. For models where the number of successful scenarios was 

more than 300, a simple random sampling strategy was applied [45], as follows:  

 𝑛 =
𝑁 · 𝑍2 · 𝑝 · 𝑞

𝑑2 · (𝑁 − 1) · 𝑍2 · 𝑝 · 𝑞
 (1) 

Where: 

• n = sample size 

• N = total number of scenarios 

• Z = confidence level (95%) 

• d = precision (5%) 

• p and q = estimated proportion (0.5) 

 

The preservation of design intent was determined by comparing the resulting scenarios (Z), i.e., 

the modified models, with the original (unmodified) one. For the comparisons, we considered 

whether topological inconsistencies were present in any of the functional elements of each part, 
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such as the incorrect removal of features (e.g., ribs, holes, fillets, etc.). 

We note that the simplified models for parts C and D are not comparable in terms of design intent. 

These models are simplified versions of the final geometries for each methodology and not 

intermediate models at an earlier stage of construction. More specifically, they are models without 

fillets. In the resilient modeling strategy, the removal of these features is not critical, as fillets are 

created at the end of the process, and thus they are always at the bottom of the model tree (they 

have no child features). However, in the explicit references modeling strategy, the removal of 

fillets can affect the parent-child structure of the features as well as the sequence of operations, 

which can affect the preservation of design intent.  

For Part A (connecting rod), a total of 49 variations were generated with no errors for the horizontal 

model v1, but design intent was not maintained.  In the case of horizontal model v2, 37 variations 

were generated successfully, but design intent was also lost. For all successful scenarios in both 

models, design intent had to be verified manually, as many geometric problems were difficult to 

identify. Only two scenarios (one in v1 and one in v2) maintained design intent. Some examples 

that illustrate loss of design intent in these models are shown in Fig.7. 

 

Fig. 7. Geometric variations generated successfully but with loss of design intent (circled in red). 

The explicit methodology produced 1,297 successful geometric variations out 1,729, which is 

75.01% of the design space. For the variations that failed to regenerate, we identified a sketch in 

one of the cutting features that flipped direction unexpectedly for certain values of one of the 

dimensions, as illustrated in Fig. 8. 
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Fig. 8. Source of errors in the explicit model of the connecting rod 

For Part B (pump house), the horizontal modeling approach was the least effective with 100 

geometric variations generated successfully in a design space of 3,889 (2.57% success rate). 

Furthermore, design intent was only maintained in 12 of these cases (verified manually), which 

were generated based on three parameters: thickness, small axis angle, and stepped axis length. In 

all cases where design intent was not maintained, there was error propagation within the same 

feature. 

The explicit modeling method for part B resulted in 1,189 successful scenarios out of 3,889 

(30.57% success rate), and 82.86% success rate maintaining the Design Intent, which was the 

highest. The first version of the resilient model resulted in 262 successful scenarios (8.82% success 

rate and 76.34% maintained the Design Intent), whereas the second version produced 197 

successful scenarios (5.07% success rate and 78.68% maintained the Design Intent). For this 

particular part, a significant number of errors were caused by the regeneration of cosmetic features, 

such as fillets, as certain changes to the main body of the part resulted in differences in the edges 

in which fillets are referenced. 

Fillets were also problematic in Part C (steering knuckle), as the explicit and resilient 

methodologies require fillets—and to a lesser extent chamfers—to be modeled differently. These 

differences are significant because approximately 70 features in the steering knuckle (~15% of the 

total) are fillets. Indeed, in models where multiple fillets intersect, overlap, and/or meet at a vertex, 

it is virtually impossible to construct the exact same geometry with both methodologies. For this 

reason, both explicit and the resilient models of part C were analyzed with and without fillet 

features. 

For the models with fillets, the explicit methodology yielded the highest success rate (1.15%) with 

15 out of 1,297 successful scenarios (100% maintained the Design Intent), whereas only one 

successful scenario was generated with the resilient strategy. For the version of the models without 

fillets (simplified), the explicit methodology once again yielded the best results with 1,297/1,297 

successful scenarios (100% success rate). The resilient model yielded 866/1,297 successful 

scenarios (66.77% success rate). It is clear that fillets are at the root of a significant number of 

unsuccessful scenarios. In the simplified version of the explicit model, we considered that design 

intent was not maintained in any scenario because two ribs could not be rebuilt when the fillets 
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were removed. In resilient modeling, however, fillets are defined at the bottom of the design tree 

(and thus have no child features), which allows the successful regeneration of these ribs when 

fillets are suppressed, preserving design intent. 

Finally, the Part D (bell housing) results show that the explicit methodology is slightly more robust 

than resilient modeling, with the former giving rise to 33 successful cases out of 973 (3.39%), and 

the latter 30 successful cases out of 973 (3.08%). In the versions where the rounding features are 

removed, the models achieved robustness of 100%, or close to it. However, this result must be 

understood in the context that the models have around 100 fillet and chamfer features, which means 

that 34% percent of the operations were eliminated. Thus, it is evident that the tested 

methodologies lose their effectiveness when presented with models with numerous operations and 

increased numbers of fillets and chamfers. Design intent is maintained in all scenarios, including 

the explicit modeling methodology. Unlike the explicit model for Part C, where the removal of 

fillets caused problems in the regeneration of the ribs, design intent in maintained in part D as the 

removal of fillets does not involve a functional change in the part.  

5. Discussion 

The results of our study show that for the first part (the connecting rod) comparable levels of 

robustness can be achieved by both explicit and resilient modeling methodologies and that the 

horizontal modeling strategy is inefficient and significantly underperforms when compared to the 

other two. However, the structure of the resilient model is less complex, as shown by the 

complexity metrics of the model: reductions of 9% in Li entropy; 8% in the number of 

dependencies, average node connectivity, and Kolmogorov complexity; 7% in cyclomatic 

complexity; and 5% in the number of features. However, the regeneration time for the explicit 

models is 45.95% less in part A.  

Our results show that resilient modeling is a robust methodology and models are the most reusable 

in the face of manual changes, as confirmed by other authors [2]. However, in automated processes 

where large numbers of models need to be produced without human intervention, the explicit 

references modeling methodology yields comparable results in terms of robustness but has faster 

regeneration times, making the automated processes more efficient. 

For more complex parts (parts B and C), explicit models once again have more complex internal 

structures than their resilient counterparts, but significantly higher levels of robustness are 

achieved (4 to 6 times better than resilient models for part B, and 435 times better than resilient 

models for part C). For part B, the regeneration time of the explicit models is between 50.96% and 

65% less than resilient models. In the case of part C, the differences in regeneration times are not 

so pronounced (7.34% less in the explicit model than the resilient model). For part C, both the 

simplified explicit and resilient models have very high levels of robustness (100% for explicit and 

66.67% for resilient), but the regeneration time is lower in the explicit models (32.3% less than in 

resilient).  

Our results could initially suggest that working with resilient models could be more agile, since 

disabling all fillets and making significant changes to the model should be easier. However, as in 

explicit models, fillets may not always be directly associated with the geometric features that are 

going to change. Therefore, the behavior of geometrical changes is unexpected due to 

modifications that are not propagated to directly related dependent features. In resilient models, 

the geometry is developed and finished in edges. While in explicit models, the geometry is 
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developed progressively including fillets. Therefore, the initial topology to apply the fillets is 

completely different in certain areas that have required a considerable group of operations to create 

a geometry. The different strategies used to manage fillets in the two methodologies makes it 

impossible to generate exactly the same geometry as illustrated in Fig.9. In the figure, the 

SolidWorks function “Body Compare” was used to analyze two topologies of the models of Part 

C. This tool is used to compare CAD models (B-Rep or parametric models) in reverse engineering 

activities or to compare CAD models with manufactured and scanned parts for deviation analysis 

in quality tests. The deviations are calculated by selecting a body to compare and a source body. 

The differences between selected bodies are shown by a color gradient that represents where they 

match (or not) and how much the differences are. 

      

Fig.9. Geometric comparison analysis between explicit (left) and resilient (right) models of part C. 

For part D, the level of robustness and the regeneration times are similar for the explicit and 

resilient models. In contrast to part C, the fillets and rounds in the models for part D do not affect 

the results. However, during modeling, the resilient strategy was found to be the least effective 

solution for model four of part D, as the intrinsic limitations of the methodology made it difficult 

to place the various operations in the proper categories. Specifically, the resilient methodology 

defines seven folders to organize the features, but the construction of this particular model does 

not begin with a single main body in the core folder. In this case, the part is generated by several 

bodies that in parallel must subsequently be associated with other features without being related 

to each other, as shown in Fig.10. The methodology requires a significant amount of planning 

because the possible routes for creating new features are greatly reduced as the modeling process 

progresses. In particular, the large number of dependencies within the shelled features, the various 

Boolean operations, and the ribs made the model structure difficult to manage, as many operations 

had to be grouped in the “modify” folder. As mentioned earlier, the independent bodies, which are 

modeled first, are later joined and completely defined in the modify layer, which is similar to what 

happens in the explicit methodology. However, the resilient modeling process becomes much more 

complicated because the design tree is structured by layers, instead of functional bodies, which 

creates uncertainty as there is not a well-defined procedure that describes how to operate in such 

cases. 
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Fig. 10. Simplified associative structure of the resilient model of Part D. Each square represents a feature 

or a group of features, the lines are dependencies, the rows are folders in the design tree of the Resilient 

Methodology, and the colored areas represent different bodies. 

The explicit modeling methodology allows for additional combinations of features, which can 

differ significantly from the ones used to build the models in our study. In fact, it is likely that the 

combination used for the level of shell, Boolean operations, fillets, and drafts was not the most 

efficient one. In addition, we also tested different ways to combine the Boolean operations and the 

order of the fillets, which significantly affect the regeneration time. Therefore, the results for this 

part of the study may have been influenced by the assumptions considered during the modeling 

process. 

It is also important to note that the results of our study are based on only two possible outcomes in 

the generation of geometric variations: successful and unsuccessful. However, there are various 

design scenarios in which a particular geometry might be generated with no errors but represent 

an incorrect and/or invalid model. These possible scenarios are described as follows:  

• The geometric model generates successfully, and design intent is maintained. This is the 

desirable case. 

• The geometric model regenerates successfully but design intent is not maintained. This 

case is especially problematic as some design intent errors may easily go unnoticed, as 

illustrated in Fig. 11. The left figure shows the initial state before modifications. The 

parameter to be varied in this case is the length of the connecting rod. When the geometry 

is changed by reducing the distance, the hole and the external cylindrical face of the part 

cease to be concentric (Fig.11. Right). This outcome is due to the disassociation that occurs 

between the sketches of the hole and the external shape of the upper axis. As a result, the 

parameter that controls the length of the connecting rod is duplicated to constrain the 
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sketches of the internal and external circles. For this reason, the solution space deviates 

from the original design intent. 

 

Fig. 11. Example of a model that regenerates correctly but does not maintain design intent (i.e., 

concentricity of the hole and the cylindrical face). 

• The geometric model regenerates (partially) in a stable manner and design intent is not 

maintained. Some references (but not all) of a fillet/chamfer feature may be lost during 

modification or part of the feature cannot regenerate in a precise area. In our study, the 

software’s feedback in this case is a warning. Therefore, it is counted as a successful 

scenario due to stable regeneration. 

• The geometric model regenerates successfully but at a lower level of parametric quality. 

Design intent may or may not be maintained. Certain features may go missing or become 

redundant or even unnecessary. For example, Fig.13 illustrates a subtraction feature to 

create a cavity to accommodate the head of a bolt. When the distance between the bolt 

holes increases, as shown in Fig.12. right, the model maintains its design intent. However, 

the subtraction feature used to round up the vertical face to make room for the bolt heads 

becomes unnecessary, which causes the model to become not concise, according to the 

dimensions of CAD quality proposed by Company et al. [46]. 

 

Fig. 12. The subtraction feature in different variations and in the “d” case without material to subtract. 
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6. Conclusions and future work 

In this paper, we generated a set of parametric models of various parts according to different 

modeling methodologies to determine how the internal structure of the resulting models impacts 

the automatic generation of geometric variations and affects design intent. A deliberate effort was 

made to ensure all modeling strategies were applied rigorously and accurately, and the models 

were evaluated in terms of robustness and flexibility. 

Our results showed that a less complex graph in a parametric model does not necessarily mean that 

the model is more robust, as observed with horizontal and resilient models. As the geometric 

complexity of a model increases, the number of features also tends to increase, making it 

exceedingly difficult to control and process the network of dependencies between features. In 

general, it was shown that the horizontal modeling methodology is not an efficient strategy for 

automated environments and the resilient methodology is most effective for simple parts without 

shelled features and scenarios that involve manual changes. The Explicit Reference Modeling 

methodology appears to be the most effective strategy to create robust models when the complexity 

is high, but it must be refined further so the intrinsic variability (i.e., the level of variability in the 

resulting parametric model due to the interpretation and execution of the methodology) is reduced 

and more detailed modeling cases are addressed. It is of interest to explore the level at which fillets 

and rounds need to be created in the design tree, when to apply them, how to handle shelled 

features, and how to determine the most robust Boolean scheme, are factors that have yet to be 

analyzed. 

Although the results of our study are quantitative, our variable is dichotomous 

(successful/unsuccessful), which limits the level of detail of our observations. For more 

comprehensive measures of robustness and flexibility, it would be necessary to extract, analyze, 

and quantify all the errors in each modeling scenario and calculate the effort required to complete 

the design changes. The latter observation is of particular interest as we speculate that explicit and 

resilient strategies do not require the same level of effort to achieve the same degree of model 

robustness.  

Finally, we found that formal modeling methodologies can still yield different results depending 

on how they are interpreted or because detailed explanations are not provided as to how to solve 

specific cases. Methodologies have an intrinsic variability due to not being concise. As future 

work, we are interested in performing similar studies with a more diverse set of models created by 

different users to determine the time required to reach different levels of robustness with each 

methodology. In addition, it would be interesting to conduct similar studies with different CAD 

software, especially with systems that have different underlying solid modeling kernels, to 

determine how different software handles the model regeneration process. 
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