
Vol.:(0123456789)

Machine Learning (2023) 112:2053–2082
https://doi.org/10.1007/s10994-022-06259-9

1 3

Can language models automate data wrangling?

Gonzalo Jaimovitch‑López1 · Cèsar Ferri1 · José Hernández‑Orallo1 · 
Fernando Martínez‑Plumed1   · María José Ramírez‑Quintana1

Received: 25 January 2022 / Revised: 16 August 2022 / Accepted: 29 September 2022 /  
Published online: 1 December 2022 
© The Author(s) 2022

Abstract
The automation of data science and other data manipulation processes depend on the inte-
gration and formatting of ‘messy’ data. Data wrangling is an umbrella term for these tedi-
ous and time-consuming tasks. Tasks such as transforming dates, units or names expressed 
in different formats have been challenging for machine learning because (1) users expect 
to solve them with short cues or few examples, and (2) the problems depend heavily on 
domain knowledge. Interestingly, large language models today (1) can infer from very few 
examples or even a short clue in natural language, and (2) can integrate vast amounts of 
domain knowledge. It is then an important research question to analyse whether language 
models are a promising approach for data wrangling, especially as their capabilities con-
tinue growing. In this paper we apply different variants of the language model Generative 
Pre-trained Transformer (GPT) to five batteries covering a wide range of data wrangling 
problems. We compare the effect of prompts and few-shot regimes on their results and how 
they compare with specialised data wrangling systems and other tools. Our major finding 
is that they appear as a powerful tool for a wide range of data wrangling tasks. We provide 
some guidelines about how they can be integrated into data processing pipelines, provided 
the users can take advantage of their flexibility and the diversity of tasks to be addressed. 
However, reliability is still an important issue to overcome.

Keywords  Data science automation · Data wrangling · Language models · Machine 
learning pipelines

Editors: Tijl De Bie, Jose Hernandez-Orallo, Joaquin Vanschoren, Gaël Varoquaux, Chris Williams.

 *	 Fernando Martínez‑Plumed 
	 fmartinez@dsic.upv.es

	 Gonzalo Jaimovitch‑López 
	 gonjailo@dsic.upv.es

	 Cèsar Ferri 
	 cferri@dsic.upv.es

	 José Hernández‑Orallo 
	 jorallo@dsic.upv.es

	 María José Ramírez‑Quintana 
	 mramirez@dsic.upv.es

1	 VRAIN, Universitat Politècnica de València, Valencia, Spain

http://orcid.org/0000-0003-2902-6477
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06259-9&domain=pdf


2054	 Machine Learning (2023) 112:2053–2082

1 3

1  Introduction

Data wrangling refers to repetitive and time-consuming data preparation tasks, including 
the transformation of data presented in different formats into a standardised form for easy 
access, understanding and analysis. The (semi-)automation of these manual and non-sys-
tematic tasks can impact the costs of data preparation significantly. If language models (on 
their own or integrated within other systems) are able to solve a significant proportion of 
these problems in the next years, the transformative effect on society and the marketplace 
would be huge, given how widespread these formatting chores happen (from spreadsheet 
manipulation to data science projects) (Furche et al., 2016).

One key difficulty of some data wrangling problems such as standardising a field into 
a single format stems in the context of interaction (Terrizzano et al., 2015). For automa-
tion to be really useful, the amount of information given by the users and their degree of 
involvement must be low enough so that there is a net gain in the process. For instance, 
in a standardisation of dates, the tool should be able to infer the transformation pattern 
from very few examples (or no examples at all), and complete the rest automatically. The 
second challenge for data wrangling is that data manipulation operations are very differ-
ent. One project may require the integration of measurement units from different countries, 
while another project may involve identifying the order of a level of studies variable col-
lected for thousands of customers. In many cases, the domain is not very specialised. For 
instance, in a date field, the day can be the first, second or third number, and these numbers 
can be delimited by different symbols. However, dates happens in the myriad of different 
transformations that we can find on the Internet or any other non-specialised source. This 
knowledge is general, but critical for data wrangling. An Artificial Intelligence (AI) system 
based only on basic string transformations may never find the right solution given just one 
example without domain constraints or background knowledge. For instance, the transfor-
mations needed for dates are very different from those used for addresses or emails, but 
these are domains generally well-known by humans.

There seems to be a great potential in language models (Bengio et al., 2003) for data 
wrangling precisely because they compress huge amounts of human knowledge about 
many different domains, and have recently shown reasonably good performance in con-
textualising this knowledge for few-shot inference (Puri & Catanzaro, 2019; Schick & 
Schütze, 2020; Brown et al., 2020; Gao et al., 2020). It is then very important to determine 
whether language models could be used in the future for data wrangling tasks, and whether 
they get better as the number of parameters increase, a question subject to recent debate 
(Bender et  al., 2021; Tamkin et  al., 2021). The applicability of language models for the 
automation of other parts of data science (including the machine learning pipelines) may 
also be affected by the progress in data wrangling, especially as we move towards more 
domain-dependent and more open-ended tasks, as shown in the quadrants of Figure 1 in De 
Bie et al. (2022).

In this paper we test experimentally whether language models can be used to solve typi-
cal problems in data wrangling, using different kinds of prompts. Some (few-shot) prompts 
will have input-output examples and a single input ending the prompt, for which the lan-
guage model will have to provide the output as a continuation of the prompt (e.g., Input: 
‘marshap@gmail.com’ ∖ nOutput: ‘marshap’∖ n∖ nInput: ‘alant@hot-
mail.com’∖ nOutput:). For the transformation datasets, we compare the inference 
power of GPT-3 with other specialised tools on a benchmark of simple data wrangling 
problems. Other (zero-shot) prompts simply describe the question or give instructions 



2055Machine Learning (2023) 112:2053–2082	

1 3

directly, without the need of extra examples (e.g., Is (’bronze’, ‘gold’, ’sil-
ver’) an ordinal?). A combination of few-shot and instruction-based prompts is 
also possible, and also some fixed examples in the prompt, as we will explore.

For this reason many data wrangling tools not using language models combine the avail-
able information in the examples given by the user with some domain knowledge (‘any 
information the learner has about the unknown transformation before seeing the exam-
ples’ Singh and Gulwani 2015), in an attempt to reduce the hypothesis space. Different 
approaches have been proposed relying on the coupling of ‘few examples’ and ‘background 
knowledge’. One of them is based on Inductive Programming Gulwani et al. (2015), learn-
ing transformations from very few examples by incorporating prior knowledge about the 
domain in a declarative way. This domain knowledge is used to reduce the hypothesis space 
making the generalisation process effective even from very few examples. As this approach 
suffers from intractability when background knowledge becomes large, the use of ad-hoc 
domain-specific languages (DSLs) (see Cropper et al., 2015; Wu et al., 2012) restricts the 
search space, and has led to the first commercial products such as Microsoft Excel with 
FlashFill (Gulwani, 2011). Even with domain-specific languages, many constraints on 
the transformations are added to make things work, or very specific collections of built-in 
facilities or functions. For instance, Amazon SageMaker Data Wrangler1 contains over 300 
built-in data transformations. Other Data Analytics tools such as Trifacta Wrangler (Kan-
del et  al., 2011) even allow the user to define their own transformations. Many systems 
combine some of these ideas or apply ad-hoc optimisations (Ham, 2013; Bhupatiraju et al., 
2017; Ellis & Gulwani, 2017; Petrova-Antonova & Tancheva, 2020; Gulwani, 2011; Singh 
& Gulwani, 2016, 2015). On the other hand, in Contreras-Ochando et al. (2019a, 2019b), 
general-purpose inductive programming systems can still be employed with domain-
specific background knowledge that is selected or ranked from contextual information or 
meta-features about the examples to be transformed. Still, this background knowledge has 
to be added to the system.

While we will make some comparisons, it is not the goal of this paper to see for each 
and every task whether current language models are better than the specialised tools above. 
The great advantage of language models is their versatility, and the power of dealing with 
a wide ranging of data wrangling problems, provided the user (e.g., a data scientist) comes 
up with the right way of prompting the language model. It is then more important to under-
stand how the operation with language models can be inserted into the data processing and 
analysis pipeline, rather than just comparing what tool is best at each specific task. This 
would not even be realistic because (1) the best prompts are not always available for gen-
eral users, especially because different prompts are needed for different tasks and (2) com-
paring a general system against dozens of specific systems may be unfair when considering 
the learning curves and other costs associated with dealing with these tools. Of course, the 
analysis assumes that new generations of language models will be generally accessible and 
more sustainable in the ratio between performance and compute. The progress and initia-
tives in the past year (Smith et al., 2022; Reed et al., 2022; Wei et al., 2022) suggest more 
generalised access to powerful language models may soon become commonplace.

To our knowledge, this is the first paper analysing the potential of language models for 
data wrangling systematically,2 determining the influence of the type of data wrangling 

1  https://​aws.​amazon.​com/​sagem​aker/​data-​wrang​ler/.
2  A preliminary version of this paper, only including the manipulation battery, was presented in Jaimov-
itch-Lopez et al. (2021).

https://aws.amazon.com/sagemaker/data-wrangler/


2056	 Machine Learning (2023) 112:2053–2082

1 3

task, the relevance of the semantic content, the size of the model, the type of prompt and 
the number of examples.

The paper is organised as follows. Section 2 presents the problem of data wrangling in 
the context of data science and other tasks that involve data manipulation, the diversity of 
these tasks, a taxonomy and an analysis of the role of semantic information. Section 3 sets 
the experimental goals, the batteries and metrics we will use (and how they correspond 
with the taxonomy), the language models, prompts and few-shot regimes we will use. Sec-
tion 4 discusses the results for each battery, including some examples and in some cases 
comparisons with some other systems or baselines. Finally, Sect. 5 summarises the con-
tributions and the limitations. It also gives some guidelines for a general use of language 
models in data wrangling and other data processing pipelines and closes with future work.

2 � Data wrangling: taxonomy of tasks and the role of knowledge

Many daily tasks that involve computers entail the conversion of data from one format to 
another, so that an application can duly digest the data. In a discipline such as data science, 
where data takes centre stage, this is even more so. It is widely recognised that a large pro-
portion of the data analyst’s time will be taken up with data preparation and transformation 
challenges appearing in messy datasets, what is generally referred to as data wrangling. 
Nazabal et  al. (2020) provide a comprenhensive taxonomy of such problems into three 
main groups: those issues related to organising the data; those related to improving the 
quality of the data; and those related to feature engineering. Each of these large groups of 
tasks is subdivided into specific tasks according to the nature of the data wrangling prob-
lem they face (see Table 1). Under data organisation we find data parsing, data dictionary, 
data integration and data transformation tasks, all focused on obtaining the best data rep-
resentation for the tasks to be solved. Data quality tasks include canonicalisation, missing 
data, anomalies and non-stationarity tasks related to cleaning corrupted entries in the data. 
Finally, feature engineering is a more diverse group that includes a more diverse range of 
operation with the features, from simple combinations and non-linear mappings to more 
sophisticated operations, such as embeddings.

However, what determines whether a particular data wrangling task is a candidate for 
automation by language models? To approach this question we have to know what lan-
guage model are and what type of interface we have with them. Language models are con-
ceptually simple systems: they estimate the probability p(y|x) of a given sequence of char-
acters or tokens y following another sequence x, in the spirit of efficient coding (Shannon, 
1949). Today, these models are usually based on large deep learning architectures such as 
transformers (attention-based architectures, Vaswani et  al., 2017), but they still estimate 
this same probability. They are trained over massive natural language corpora and hence 
exploit the extrinsic patterns borrowed from humans. However, beyond making plausible 
continuations following the inputs (the so-called ‘prompts’), or as part of this capability, 
recent systems such as BERT (Devlin et al., 2018), GPT-2 (Radford et al., 2019), GPT-3 
(Brown et al., 2020), and PanGu-� (Zeng et al., 2021) can also be employed as ‘few-shot 
learners’, trying to exploit intrinsic patterns in the prompt. Few-shot inference happens 
when the models are able to extrapolate from previous examples in the ‘prompt’, with-
out being retrained or fine-tuned. Extensive experimental research (Hendrycks et al., 2021, 
2021; Xu et al., 2020; Izacard & Grave, 2020) is showing remarkable extrapolations from 
small prompts.



2057Machine Learning (2023) 112:2053–2082	

1 3

Ta
bl

e 
1  

T
ax

on
om

y 
of

 d
at

a 
w

ra
ng

lin
g 

pr
ob

le
m

s (
ad

ap
te

d 
fro

m
 N

az
ab

al
 e

t a
l. 

20
20

).

Ta
sk

s 
ca

te
go

ris
ed

 b
y 

th
e 

le
ve

l o
f a

gg
re

ga
tio

n 
of

 th
e 

da
ta

 to
 w

hi
ch

 th
ey

 m
ay

 b
e 

ap
pl

ie
d 

(ta
bl

e,
 fe

at
ur

e 
or

 v
al

ue
). 

W
e 

in
di

ca
te

 w
ith

 ∙  
th

at
 m

os
t o

f t
he

 in
st

an
ce

s 
of

 th
e 

ta
sk

 m
ay

 
be

 a
ut

om
at

ab
le

 w
ith

 la
ng

ua
ge

 m
od

el
s, 

w
hi

le
 ∙  

re
pr

es
en

ts
 th

at
 o

nl
y 

so
m

e 
of

 th
e 

in
st

an
ce

s o
r v

ar
ia

tio
ns

 m
ay

 b
e 

ap
pr

op
ria

te

Pr
ob

le
m

G
ro

up
D

es
cr

ip
tio

n
Le

ve
l

A
ut

om
at

ab
le

Ta
bl

e
Fe

at
ur

e
Va

lu
e

D
at

a 
or

ga
ni

sa
tio

n
D

at
a 

Pa
rs

in
g

Id
en

tif
y 

th
e 

str
uc

tu
re

 o
f t

he
 ra

w
 d

at
a 

so
ur

ce
 so

 th
at

 it
 c

an
 b

e 
re

ad
 p

ro
pe

rly
 (e

.g
., 

cs
v 

or
 

xm
l fi

le
s, 

re
la

tio
na

l d
at

ab
as

es
, e

tc
.)

∙

D
at

a 
D

ic
tio

na
ry

U
nd

er
st

an
d 

th
e 

co
nt

en
ts

 o
f t

he
 d

at
a 

(e
.g

., 
pr

ofi
le

 o
f t

he
 d

at
a,

 m
ea

ni
ng

 a
nd

 ty
pe

 o
f e

ac
h 

at
tri

bu
te

, e
tc

.)
∙

∙
∙

D
at

a 
In

te
gr

at
io

n
C

om
bi

ne
 re

la
te

d 
in

fo
rm

at
io

n 
fro

m
 m

ul
tip

le
 so

ur
ce

s (
e.

g.
, i

n 
di

ffe
re

nt
 ta

bl
es

) i
nt

o 
a 

si
ng

le
 

da
ta

 st
ru

ct
ur

e 
(e

.g
., 

a 
ta

bl
e,

 o
r t

im
e 

se
rie

s, 
et

c.
)

∙

D
at

a 
Tr

an
sf

or
m

at
io

n
M

an
ip

ul
at

e 
th

e 
sh

ap
e 

of
 th

e 
da

ta
 (e

.g
., 

sw
itc

hi
ng

 th
e 

fo
rm

at
 o

f t
he

 ta
bl

e 
fro

m
 a

 “
w

id
e”

 to
 

a 
“l

on
g”

 fo
rm

at
 o

r v
ic

e 
ve

rs
a)

 a
nd

 e
xt

ra
ct

io
n 

of
 re

le
va

nt
 p

ie
ce

s o
f i

nf
or

m
at

io
n 

fro
m

 it
 

(e
.g

., 
na

m
es

 o
f p

eo
pl

e 
or

 p
la

ce
s, 

re
la

tio
ns

hi
ps

, e
tc

.)

∙
∙

∙
∙

D
at

a 
qu

al
ity

C
an

on
ic

al
is

at
io

n
St

an
da

ris
e 

fe
at

ur
es

 a
nd

 u
ni

ts
 o

bt
ai

ni
ng

 a
 c

om
m

on
 re

pr
es

en
ta

tio
n 

(e
.g

., 
(e

.g
. U

.K
., 

U
K

 a
nd

 
U

ni
te

d 
K

in
gd

om
; o

r s
pe

ci
fic

 fo
rm

at
s f

or
 d

at
es

, a
dd

re
ss

es
, e

tc
.)

∙
∙

∙

M
is

si
ng

 D
at

a
D

et
ec

t m
is

si
ng

 e
nt

rie
s a

nd
 u

nd
er

st
an

d 
m

is
si

ng
 d

at
a 

pa
tte

rn
s f

or
 re

pa
ir 

(i.
e.

, i
m

pu
tin

g 
th

os
e 

m
is

si
ng

 e
nt

rie
s w

ith
 o

th
er

 v
al

ue
s a

cc
or

di
ng

 to
 d

iff
er

en
t r

ul
es

)
∙

∙
∙

A
no

m
al

ie
s

D
et

ec
t p

at
te

rn
s t

ha
t d

oe
s n

ot
 c

on
fo

rm
 to

 e
xp

ec
te

d 
no

rm
al

 b
eh

av
io

ur
s (

e.
g.

, d
ue

 to
 sy

ste
m

-
at

ic
 e

rr
or

s i
n 

m
ea

su
re

m
en

t d
ev

ic
es

 o
r m

al
ic

io
us

 a
ct

iv
ity

 o
r f

ra
ud

)
∙

∙

N
on

-s
ta

tio
na

rit
y

D
et

ec
t c

ha
ng

es
 in

 b
eh

av
io

ur
 o

f d
at

a 
(e

.g
., 

da
ta

se
t s

hi
ft,

 p
ro

to
co

l c
ha

ng
es

, e
tc

.)
∙

Fe
at

ur
e 

en
gi

ne
er

in
g

M
an

ip
ul

at
e 

or
 c

re
at

e 
fe

at
ur

es
 b

as
ed

 o
n 

ex
ist

in
g 

on
es

 (e
.g

., 
ag

gr
eg

at
in

g 
se

ve
ra

l f
ea

tu
re

s 
in

to
 a

 u
ni

qu
e 

fe
at

ur
e,

 o
ne

-h
ot

 e
nc

od
in

g 
re

pr
es

en
ta

tio
ns

 o
f c

at
eg

or
ic

al
 v

ar
ia

bl
es

, e
tc

.)
∙

∙



2058	 Machine Learning (2023) 112:2053–2082

1 3

Going back to Table 1, given a set of tabular data, which of these tasks can be per-
formed at the level of columns (features) and/or instances (values)? If that is the case, 
the limited window (number of input tokens) of a language model (of the order of hun-
dreds of tokens) could be sufficient for these tasks, which could be excellent candidates 
for automation by language models. Indeed, the state of the art of language models sug-
gest they can be a promising tool for data wrangling precisely because they (1) capture a 
wide range of domain background knowledge, and contextualise it to the problem quite 
effectively, without the need of extra knowledge (e.g., we do not have to tell them that 
‘23/12/2021’ is a date), and (2) they not only infer from very few examples (e.g., pairs 
of date transformations ‘Input: 23/12/2021, Output: 12-23-2021 ’), but 
we can also add hints to the prompt to make few-shot learning more effective, or even 
zero-shot learning possible (e.g., ‘The conversion of 23/12/2021 into US 
format is:’).

All this makes prompt-commanded language models very versatile, because they can 
do many things by just choosing an appropriate prompt. In this regime, they are able to 
perform a wide variety of ‘few-shot’ tasks when the prompt wraps several examples, which 
are ‘continued’ with textual data that can also contain transformed values or the answer to 
factual questions about the input data. Of course, many integration tasks (e.g., merging two 
tables) or those that require some sort of temporal analysis are not suitable (today) for this 
type of prompt-commanded AI systems, because of the size or structure of the data or the 
lack of memory of language models beyond what is expressed in the prompt.

According to these considerations, Table  1 discusses good candidate tasks to be 
addressed by language models. However, we are also interested in the reasons why lan-
guage models can make a difference in these tasks. The answer to this question is the 
high domain knowledge associated with them, their semantics. Knowledge is key in data 
transformation and cleaning, as well as other data-intensive tasks such as schema match-
ing or data integration, data discovery, etc. (Zhang et al., 2019). For instance, automated 
data cleaning processes usually employ transformation and validation rules that depend on 
data types (Kandel et  al., 2011; Raman & Hellerstein, 2001). Most commercial systems 
(Sleeper, 2021; Trifacta, 2022; Ferrari and Russo, 2016) attempt to detect semantic types, 
typically using a combination of rule-based approaches and dictionary lookup. However, 
these approaches are limited to a few data types or to those where it is possible to specify 
strict validations, and are often not robust enough to process dirty or missing data. For 
instance, a particularly difficult data wrangling task to automate is the semantic detec-
tion of ordinal data types, where the variables have natural, ordered categories, and thus a 
direction (e.g., quality ∈ { bad, average, good, excellent} ) and a myriad 
of variations of these labels –including typographical errors– depending on the source and 
situation.

Looking at those tasks in Table  1 indicated as automatable, we recognise the use of 
domain knowledge in all of them. Data dictionary tasks require some knowledge about 
the data many data wrangling tools simply lack (e.g., identifying that undergraduate, 
postgraduate and PhD are values of a data type that may represent study level). Data 
transformation also needs knowledge, to determine, for instance, that 12/18/2022 is 
a date that can only refer to 18th December 2022. Canonicalisation is even more clearly 
knowledge-dependent. For instance, statistical analysis does not suffice to tell whether 
U.K., UK and United Kingdom are simply the same thing. Missing data imputation 
can be done through models, but on many occasions it depends on knowledge as well, 
such as imputing that the country for the city of Venice is Italy. Similarly, we know that a 
negative age is an anomaly that is clearly wrong, but an unusual negative temperature (in 



2059Machine Learning (2023) 112:2053–2082	

1 3

Celsius) might still be okay. Finally, for feature engineering, knowledge can do easily what 
learning representations may require enormous amount of data. For instance, we can only 
suggest that density is a more meaningful feature than area and total popula-
tion because we know the semantics of the features. In the end, in all these examples 
there is a striking commonality: this is general knowledge that large language models have 
been able to capture and can use appropriately if prompted in the right way. This is what 
we want to explore in this paper.

The last column in Table 1 (column “Automatable”) actually lists the data wrangling 
tasks we will analyse in this paper. The possibilities for automation will be illustrated 
with some experiments. Regarding the automatable tasks, those related to data cleans-
ing, data quality, as well as the construction of new features, involve different types 
of transformation, standardisation, extraction or generation of information. These are 
easy to configure in input/output prompts (as strings), as we will see in the following 
sections. According to the taxonomy shown in Table  1, we will focus our study on 
five main tasks: First, data transformation involves the extraction of relevant pieces 
of information from multiple features, while discarding any unnecessary information. 
Also, we will analyse the automation of canonicalisation tasks where the objective is 
to standardise representations in characteristics, metrics and units. We will work on 
tasks for the detection and imputation of missing values; and, the detection of anoma-
lies in the data that do not fit the normal patterns. Finally, we will see examples of the 
process of selection, manipulation and transformation of raw data into new features 
with different examples (feature engineering).

Overall, in this work we completely cover the set of problems in Nazabal et  al. 
(2020) that can be candidates for automation by language models, leaving out those 
tasks that, due to their size, access requirements and temporal nature, cannot be 
addressed by language models at present.

3 � Experimental design

Data wrangling can appear in many different moments of the data processing pipeline 
and can be handled by very different users, from non-expert users to advanced data sci-
entists. The fundamental element of data wrangling is its non-systematic occurrence, 
and so are their solutions. When data wrangling tasks are identified in isolation, e.g., 
following Table 1, then some tools can use specific procedures for each of them. How-
ever, as a result, many variations or non-standardised data wrangling problems are left 
out of the range of these tools. In this paper, we want to study how language models 
can be used in a flexible way to attempt any data wrangling task, trying to emulate a 
scenario where a user has general access to an off-the-shelf language model and has 
some practice writing prompts. This mimics the situation of a programmer that has 
to solve many different problems by writing code with the same programming lan-
guage. Determining what programming languages and environments can lead to effec-
tive solutions more easily is hard to evaluate, but this should not be an excuse to criti-
cise the efforts to produce imperfect, yet still valuable assessment methodologies. This 
rationale guides our experimental setting.

Our experimental goals are: (1) determine to which extent a state-of-the-art lan-
guage model can obtain good results on those data wrangling problems in Table  1 
under the few-shot setting, (2) analyse the effect of the number of instances given in 
the few-shot setting, (3) explore the effect of the number of parameters of the language 



2060	 Machine Learning (2023) 112:2053–2082

1 3

model to better understand the future potential, (4) analyse the performance of a state-
of-the-art language model on those data wrangling problems in Table  1 under the 
zero-shot setting using different prompts; (5) study the variation of performance for 
different batteries and domains, and (6) compare the results with some other systems 
specifically designed for data wrangling.

3.1 � Batteries and metrics

For the experimental setting, we employ five batteries of data wrangling problems. Some 
of them were collected in previous studies. These allow us to compare the results given by 
language models with some other (data wrangling) tools. Other batteries have been col-
lected for this paper. In this case, we have taken datasets from very different sources with 
the main criterion of diversity for inclusion. The five batteries that we use are:

3.1.1 � Manipulation battery

This battery contains several common data wrangling problems (see, e.g., Ellis and Gul-
wani, 2017) of very different domains that require to convert an input into an output that 
has to meet a standard or canonical format, or extract part of it. This battery is built over 
the most comprehensive benchmark for data-wrangling transformation problems to date, 
the Data Wrangling Dataset Repository3 (Contreras-Ochando et al., 2019b), which we have 
extended considerably4 BIG-bench collaboration (2022).

The tasks are mostly of the Data Transformation, Canonicalisation and Feature Engi-
neering groups in Table 1. Overall, the battery contains 117 different tasks divided into 7 
different domains (dates, emails, freetext, names, phones, times and units). For every task 
we have 32 examples (we use 3744 instances in total) composed by an input string and an 
output string, and performance is evaluated with average accuracy: exact matching with the 
correct output. We provide further details about the tasks in each domain in Table 2 and 
some illustrative examples in Table 3.

3.1.2 � Types battery

The types battery deals with semantic type detection tasks, which are mostly of the Data 
Dictionary group in Table  1. Therefore, this battery aims to automatically detect the 
semantic data type of some columns in a given dataset. To build this battery, we followed 
a similar procedure to Hulsebos et al. (2019). Firstly, we selected 11 semantic types from 
the DBpedia ontology5 (an ontology that describes semantic concepts extracted from web 
pages such as “Address”, “Affiliation” and “Country”). Then, we collected 5 datasets from 
well-known machine learning repositories (Kaggle6 and OpenML7) and selected from 
them those columns whose header names match the selected semantic types from DBpedia 
(such as Age or Gender) or are closely related to them (such as the header ScheduledDate 

3  http://​dmip.​webs.​upv.​es/​dataw​rangl​ing/.
4  https://​github.​com/​google/​BIG-​bench/​tree/​main/​bigbe​nch/​bench​mark_​tasks/​mult_​data_​wrang​ling.
5  https://​dbped​ia.​org/​ontol​ogy/.
6  https://​www.​kaggle.​com/.
7  https://​www.​openml.​org/.

http://dmip.webs.upv.es/datawrangling/
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/mult_data_wrangling
https://dbpedia.org/ontology/
https://www.kaggle.com/
https://www.openml.org/


2061Machine Learning (2023) 112:2053–2082	

1 3

Table 2   Manipulation Battery: Datasets included in the data wrangling repository and extended in this bat-
tery

Task description Expected output

Add punctuation The date in numeric format split by a punctuation sign
Change format The date in one particular format
Change punctuation The date in one particular format
Get day The day in numeric format
Get day ordinal The day in numeric ordinal format
Get month name The name of the month
Get week day The name of the weekday
Reduce month name The name of the month reduced to three letters
Set format The date split in DMY format
Generate email An email account created with the name and the domain
Get after at Everything after the at symbol
Get domain The domain before the dot
Before at Everything before the at symbol
After symbol Everything after a symbol
Between symbols Everything between a pair of symbols
Delete punctuation Remove punctuation
Delete spaces Remove blanks
Digit to end Everything after the first digit if exists
First character Get first character
Get after comma Everything after a comma
Get caps Capitalise each word in a text
To upper Convert text to upper case
Add title The name with a title
Get title The title attached to the name, if exists
Generate login A login generated using the name
Reduce name The name reduced before the surname(s)
Add prefix by country Phone numbers with the prefix of the countries
Delete parentheses The list of phone numbers without parentheses
Get number A phone number presented in the string, if exists
Set prefix The list of phone numbers with the prefix
Set punctuation A phone number split by a punctuation sign
Add time The time increasing the hour by the integer
Append o’clock time The time appending an o’clock time
Append time The time appending the integer as new component
Convert time The time formatted to 24 hours format
Convert time The time formatted to a given format
Convert time The time formatted to 12 hours format
Convert time The time changed from the first time zone to the second
Delete time The time deleting the last component
Get hour The hour component
Get minutes The minutes component
Get time A time presented in the string
Convert units The value transformed to a different magnitude
Get system The system represented by the magnitude



2062	 Machine Learning (2023) 112:2053–2082

1 3

which is related to the semantic type “date/time”). That allows us to use the semantic types 
as the real type labels for the columns. With all of this, the type battery is conformed by 17 
columns. The list of datasets, the characteristics of the selected columns, and their (real) 
semantic types can be found in Table 4. Performance is evaluated by averaging accuracy by 
considering a success if the output given by GPT-3 contains the real semantic type of the 
column (in singular or plural).

3.1.3 � Ordinal battery

This battery is concerned with detecting and sorting ordinal attributes, tasks that are mostly 
of the Data Dictionary group in Table 1. This battery includes the identification of whether 

Table 2   (continued)

Task description Expected output

Get units The units of the system
Get value The numeric value without any magnitude

Table 3   Examples of data wrangling tasks of different domains included in the Manipulation Battery

Domain # Tasks Example (input → output)

Dates 21 74-03-31 → 31
Email 10 Jan.Kotas@litwareinc.com → litwareinc.com
Freetext 25 Association of Computational Linguistics → ACL
Names 15 Prof. Kathleen S. Fisher → Fisher, K.
Phones 18 John DOE 3 … [TS]865-000-0000 … → 865-000-0000
Times 24 3:40 PM → 15:40
Units 10 12.20 dg → 1220.0 mg

Table 4   Types Battery: Datasets used for detecting the semantic type, with the number of numerical and 
categorical columns selected for the experiments and their real semantic types

In some datasets there are more than one column with the same semantic type. We used four datasets from 
Kaggle and one dataset from OpenML

Dataset # Examples # Selected col-
umns

Semantic types

Numerical cat-
egorical

MedicalNoShows 110527 1 4 Age, gender, time/date, neighbourhood
GenderByName 148022 0 2 Name, gender
CountriesWorld 227 0 2 Country, region
SpeedDating 8378 1 3 Age, gender, race
Zillow 10730 0 4 City, state, metropolitan area, country



2063Machine Learning (2023) 112:2053–2082	

1 3

an attribute is ordinal or non-ordinal. In the case of being ordinal, we want to determine the 
order. For instance,  bronze,  silver,  gold, and  platinum should be identified 
as ordinal and given the order  bronze < silver < gold < platinum. For compos-
ing the battery, we looked at the literature dealing with ordinal attributes, in particular (Shi 
et al., 2016; Bellmann & Schwenker, 2020). These papers cover the attributes in the UCI 
datasets Cars, Nursery, BreastCancer, Hayes-Roth, Balance and CMC. In Hayes-Roth, Bal-
ance and CMC the attributes are represented by numbers, so we excluded these for being 
trivial. We also add some other datasets with a good number of categorical attributes with 
a higher proportion of non-ordinal cases, such as SoyBean and Mushroom, to have a more 
balanced battery of ordinal and non-ordinal attributes. All these were integrated into our 
battery. The full list of datasets and attributes, and their characteristics can be found in 
Table 5, and we will show all the attributes in Table 9. We will evaluate whether a system 
can distinguish between ordinal and non-ordinal attributes (just from their labels), sum-
marised as accuracy, and then whether it orders them correctly (we will consider all the 
pairwise comparisons between attributes, aggregated into a single metric, Spearman cor-
relation between the inferred order and the correct order).

3.1.4 � Anomalies battery

This battery, which deals with semantic outlier detection tasks, clearly corresponds to the 
Anomalies group in Table 1. It aims to detect the existence of values in the data that appear 
to be inconsistent with the remainder of that set of data. This is one of the hardest problems 
in data wrangling since anomalies are not normally encoded explicitly in the data. The 
related concept of outlier is purely statistical, but an anomaly may not be an outlier and 
vice versa. Outliers can be univariate (e.g., a person who is 2.2 meters tall), bivariate (e.g., 
in a survey of a human population, a 5-year-old is not an outlier and a person who weighs 
90 kg is not an outlier, but a 5-year-old who weighs 90 kg is an outlier) or multivariate. 
Here we focus on univariate outliers or, more precisely, anomalies. Lots of methods exist 
to analyse numerical data that has outliers in it (see e.g., Ben-Gal, 2005 for a good review), 
and much less for categorical data, most of them based on frequencies (He et al., 2005; Das 
& Schneider, 2007) where the rare values are usually (wrongly) treated as outliers. Anoma-
lies can simply refer to a value that does not fit, not to their statistical frequency, such as 
having three rows with the value ‘Umbrella’ in a column of countries.

We will separate our analysis based on the type of attribute. For numerical attributes, 
as ground truth we will use boxplots to detect outliers (i.e., a data point that is located out-
side the whiskers of the box plot). For categorical attributes, given the difficulty of finding 

Table 5   Ordinal Battery: 
Datasets used for ordinal 
attribute ordering, with the 
number of non-numerical non-
binary features that are ordinal 
and non-ordinal in each of them

Dataset # Examples # Features (non-numerical)

Ordinal Non-ordinal

SoyBean 47 6 11
PostOperative 90 8 0
Nursery 12960 8 0
Mushroom 8124 2 16
Cars 1728 7 0
BreastCancer 699 4 1



2064	 Machine Learning (2023) 112:2053–2082

1 3

labelled anomalies, we will create synthetic anomalies by randomly altering attribute val-
ues, as it is done in related work (see, e.g., Das et  al. 2008; Lazarevic & Kumar, 2005; 
Chen et  al., 2008). Anomalies will be introduced in 1% of the values of each categori-
cal attribute and randomly picked values of each of the other attributes of the dataset will 
be used for this purpose. For instance, if a particular dataset has 5 attributes and we are 
inserting anomalies in one of them, this process will be repeated 4 times inserting random 
values of the rest of the attributes, one in each turn. The idea is that the inserted anomalies 
have a different semantic meaning than the original attributes, and using values of the other 
attributes for this purpose is a straightforward solution that allows us to experiment with 
different types of values but in a similar context. Finally, for composing the battery, we 
looked at the literature dealing with detecting outliers in tabular data, in particular (Ashok 
& Nawaz, 2016; Porwal & Mukund, 2017; Noto et al., 2012), which cover the attributes 
in the UCI datasets Wine, Ozone, Mpg, Iris, Glass, Ecoli and BreastCancer. The full list 
of datasets and attributes, and their characteristics can be found in Table 6. For evaluating 
performance, we will calculate the outlier detection hit rate per column of each dataset 
compared with the set of outliers proposed with those obtained using the boxplot method 
or the ground truth depending on the type of attribute.

3.1.5 � Imputation battery

The tasks here are mostly of the Missing Data group in Table  1, namely finding miss-
ing values in data and trying to impute these values. Traditionally, there are several ways 
of dealing with missing values (Rubin, 1976; García et al., 2016; Fernando et al., 2021). 
Replacing the missing values by a fictitious value (imputation) is usually a better practice 
than ignoring or removing the row. The new value is computed by means of simple strate-
gies such as employing the mean or median (for numerical values) or mode (for categorical 
values) of the feature. More sophisticated methods of imputation are used by estimating 
the value from the other attributes with predictive models. In order to test the utility of 

Table 6   Anomalies Battery: 
Datasets used for semantic 
outlier detection, with the 
number of features with and 
without outliers

All features are numerical except for the dataset indicated by △ , with 
categorical features

Dataset # Examples # Features

w outliers w/o Outliers

Wine 178 7 5
Ozone 366 4 6

Mpg△ 234 2 3

Iris 150 1 3
Glass 178 8 1
Ecoli 336 4 3
BreastCancer 699 6 4



2065Machine Learning (2023) 112:2053–2082	

1 3

language models to impute missing values, we are going to employ different datasets. For 
the experiments, we consider three well-known datasets that are frequently used by the 
machine learning literature from the UCI repository (Dua & Graff, 2017): Adult, Iris and 
Mpg. Additionally, we also employ databases with information in specific fields such as 
the UK Postcode Address FILE,8 tennis players from ATP,9 and a simplified version of 
the UCS Satellite Database.10 These are three databases that can be seen as examples of 
specific domains. Apart from numerical and categorical features, in these three datasets 
we can find features that are textual. We believe these datasets are representative of real 
databases that could present missing data, and thus they can be especially useful to show 
the capacity of GPT-3 to impute data with respect to other classical predictive techniques, 
since classical imputation methods do not work correctly with textual features as an output 
(structured prediction models would be needed, or generators, which is why language mod-
els may be a good option). The list of datasets and attributes can be found in Table 7.

We will use a traditional imputation method for comparison. A DecisionTreeClassifier 
from the scikit learn library (Pedregosa et al., 2011) with the default configuration using 99 
rows of the table to train a model that is used to predict the missing value in another row 
(not included in the 99 rows).

For each example, we repeat the procedure 10 times, and we measure the performance 
of the imputation comparing the predicted value with the actual value. In the case of the 
categorical attributes, we show the mean accuracy in imputing missing values. For the 
numerical attributes, we divide the estimated mean absolute error (MAE) by the standard 
deviation ( � ) of the values of the feature. To make it more comparable with accuracy, we 
calculate its complementary, i.e., 1 − MAE

�

.

3.2 � Language models and prompts

As we discussed at the beginning of this section, despite the taxonomy in Table 1, there 
are thousands of variants of data wrangling tasks, and success or failure may depend on 
formats, domains, extra data availability, and many other factors that make each situation 
unique. For instance, standardising addresses in an international context is very different 
from discovering the order of a feature expressing martial arts levels. Having hundreds 

Table 7   Imputation Battery: 
Datasets used for imputing 
missing values, with the number 
of numerical, categorical, and 
textual features

We used three datasets from UCI and three databases with information 
from specific fields

Dataset # Examples # Features

Numerical Categorical Textual

Adult 48842 6 8
Mpg 234 6 0
Iris 150 4 0
PAF-address 26 0 1 7
ATP players 550 8 2 6
UCS-satellite 4852 8 4 4

8  Extracted from: https://​www.​power​edbyp​af.​com/​produ​ct/​paf/.
9  Source: https://​datah​ub.​io/​sports-​data/​atp-​world-​tour-​tennis-​data.
10  Extracted from: https://​www.​ucsusa.​org/​resou​rces/​satel​lite-​datab​ase.

https://www.poweredbypaf.com/product/paf/
https://datahub.io/sports-data/atp-world-tour-tennis-data
https://www.ucsusa.org/resources/satellite-database


2066	 Machine Learning (2023) 112:2053–2082

1 3

of specific tools or domain-specific languages is not a scalable solution for this diversity. 
Accordingly, we want to consider data wrangling pipelines where a user has access to an 
off-the-shelf language model and plays with a few prompts to explore whether the specific 
data wrangling at hand can be solved. It is not our goal to find the optimal prompt for each 
task and language model, but some prompts that users (not necessarily expert data scien-
tists) can come up for making this data wrangling process. We do not want to overfit to the 
best prompt for each task and language models, as both tasks and language models evolve 
and change constantly. We want to have a general understanding of areas of higher poten-
tial in terms of results versus the effort of thinking of a good prompt and the associated 
examples.

We use four versions of OpenAI GPT-3 (Brown et al., 2020) of increasing capabilities: 
Ada, Babbage, Curie and DaVinci which line up closely with 350M, 1.3B, 6.7B, and 175B 
parameters, respectively. We mostly focus on one architecture, GPT-3, since it is still con-
sidered state of the art and highly representative. Although there are other large language 
models in the literature, the access to them has issues about open access to the source code, 
the cost per token, the necessary infrastructure, the privacy of the APIs or public use of 
results. Some collaborative initiatives are starting to test other large language models to 
evaluate their capabilities, making evaluation data public, but access to the language mod-
els directly is limited. In particular, the BIG-bench collaboration (BIG-bench collabora-
tion, 2022) has trained and evaluated Google’s latest language models (Big-G) (BIG-bench 
collaboration, 2022), and we could include our Manipulation Battery. Although we do not 
have access to the models, we have access to the results up to 3-shot (see Fig. 1). The com-
parison shows that GPT-3 is representative of the state of the art in language models. In 
particular, the most advanced GPT-3 model, Da Vinci, has very similar results to other top 
language models for this battery.11

Fig. 1   Average accuracies per language model and domain on the Manipulation Battery tasks up to 3-shot. 
Language models sorted by average accuracy across all domains. The y-axis shows the id of the architecture 
(OpenAI GPT-3 or Google BIG-G models) and, in each case, whether the model is dense or sparse (Zoph 
et al., 2022), and the number of parameters

11  For the sake of replicability and reproducibility, all the code and results can be found in https://​github.​
com/​gonza​lojai​movit​ch/​lm-​dw.

https://github.com/gonzalojaimovitch/lm-dw
https://github.com/gonzalojaimovitch/lm-dw


2067Machine Learning (2023) 112:2053–2082	

1 3

Focusing, therefore, on the use of GPT-3, we first analysed several possible prompts. 
Since our aim is not to find the optimal input prompt for each task and model, but rather to 
provide illustrative (simple) prompts, we explore a few choices that could be considered by 
a user that is familiar with language models and the prompt samples that are recommended 
in the language models APIs.12 Also, in Table 10 we show the templates used and the alter-
natives we tried for some batteries which were discarded due to its low specificity (making 
it more difficult for GPT3 to understand the task) and, therefore, their poorer results in our 
initial experiments. In the end, what we want to show is that, in a simple way, any practi-
tioner can use a pretrained language model to semi-automate many data wrangling tasks 
that appear in the data-processing pipeline, without the need to train predictive models or 
fine-tune pretrained models for each different task.

As a result, for each of the data wrangling tasks we will use different input prompts, try-
ing to keep them as natural and simple as possible. Depending on the task, we may use dif-
ferent few-shot or zero-shot schemas. For instance, for the manipulation battery we will use 
a few-shot approach, while for the rest of tasks, we will not provide exemplars, but rather 
simple instructions about the task that we expect the language model to perform, thus fol-
lowing a zero-shot scenario.

3.2.1 � Manipulation battery

As all the examples in this battery are input-output pairs, prompts are easy to figure out 
here. Simply, the main prompt we will use follows an input-output style, where the string 
‘Input:’ is used to indicate the start of the input, and the string ‘Output:’ is used to 
indicate the start of the output. The line break ∖ n separates the input from the output of an 
example, as well as the examples in the prompt (when one or more examples are provided). 
The instance will have one (one-shot) or more (few-shot) input-output pairs. They will be 
randomly selected (without considering the possible order sensitivity of GPT-3 (Lu et al., 
2021) from the same problem and domain, and one single input will end the prompt. The 
language model will have to provide the output by continuing the prompt. Our intention is 
that GPT-3 generalises the concept only from the instances provided in new instances of 
the same task with no other information or description of the task at hand in the prompt. 
The prompts given below are two one-shot examples (from different domains):

Input: ‘290386’∖ nOutput: ‘29-03-86’∖ n∖ nInput: ‘250374’∖ nOutput:
Input: ‘08:50-09:30’ ∖ nOutput: ‘09:30’ ∖ n ∖ nInput: ‘09:50-

08:30’ ∖ nOutput:

3.2.2 � Types battery

In this battery we use two prompts to determine the type of a column. We follow a zero-
shot strategy in that the first prompt asks the system for the “domain” that best describes a 
set of values randomly chosen from the column. Since “domain” is a broad term with sev-
eral meanings, the second prompt directly asks the system for the “semantic type” of the 
selected values. Examples of each prompt are:

12  For instance, OpenAI collects many different examples: https://​openai.​com/​blog/​openai-​api/.

https://openai.com/blog/openai-api/


2068	 Machine Learning (2023) 112:2053–2082

1 3

What is the best domain that describes the values in 
{2016-04-29T18: 38:08Z,2016-04-29T16:08:27Z,2016-04-
29T16:19:04Z,2016-04-29T17:29:31Z, 2016-04-29T16:07:23Z,2016-
0 4 - 2 7 T 0 8 : 3 6 : 5 1 Z , 2 0 1 6 - 0 4 - 2 7 T 1 5 : 0 5 : 1 2 Z , 2 0 1 6 - 0 4 -
27T15:39:58Z,2016-04-29T08:02:16Z,2016-04-27T12:48:25Z}? What 
is the best semantic type that describes the values in {male, 
female,female,female,male,male,male,male,female,female}?

For the experiments, the number of values to be included in each prompt has been set 
to 10, as shown in the above examples. To mitigate the effect that the random selection of 
these 10 examples could have on the performance of the task, we have repeated the experi-
ments with each prompt and column 5 times, and then, the results were averaged.

3.2.3 � Ordinal battery

Here we will try two different ways (prompts) to distinguish ordinal and non-ordinal fea-
tures. In the first prompt we will ask the system if a given value is greater than another, 
repeating this for all possible combinations of values in each attribute of a dataset and 
computing whether the final order between all the unique values is consistent. An exam-
ple of a prompt follows:
Is “house” higher than “apartment”? Yes∖ n Is “apartment” 

higher than “house”? No∖ n Is “red” higher than “ blue”? No∖ n Is 
“blue” higher than “red”? No ∖ n Is “old” higher than “young”? Yes∖ 
n Is “young” higher than “old”? No∖ n Is “totally agree” higher 
than “agree”? Yes∖ n Is “agree” higher than “totally agree”? No∖ 
n Is “New York” higher than “Chicago”? No∖ n Is “Chicago” higher 
than “New York”? No∖ n Is “Heavy rain” higher than “Showers”? Yes∖ 
n Is “Showers” higher than “Heavy rain”? No∖ n Is “gold” higher 
than “platinum”?

While this is a 12-shot, followed by the real question at the end (the 13th line), it 
does not really need any real example. The context is always the same for all the exam-
ples, while only the 13th line changes. This long context is added because it helps to 
frame the question and gives better results. We do compare all pairs in the attribute (and 
in both directions), and calculate the rank of each value depending on how many times 
it compared favourable against the rest. This gives us a ‘rank’ for each value. Taking 
this rank as the derived order, we check how many times the comparisons follow this 
order, and if this is greater than 75% then we say the attribute is ordinal, otherwise it is 
non-ordinal.

Alternatively, we will try an even simpler version of the prompt where we will 
directly ask if the unique values of a given attribute of a dataset are of ordinal type:
Is (low, medium, high) an ordinal? Yes∖ n Is (door, win-

dow, wheel) an ordinal? No∖ n Is (‘2’, ‘4’, ‘more’) an ordinal? 
Again, the first two lines are fixed and only the last one changes depending on the 

attribute. This prompt is much easier, but does not give us an order, just whether the 
attribute is ordinal or not.



2069Machine Learning (2023) 112:2053–2082	

1 3

3.2.4 � Anomalies battery

Here we will follow a zero-shot strategy where we will provide the language model with 
a prompt asking directly whether there are any outliers in a given set of data. For this 
battery we only include one prompt. We performed many preliminary tests to get good 
results. While we were looking for anomalies and not outliers, in the end we saw that 
the results were similar when we modified the prompt by asking for anomalies, oddities 
or abnormal phenomena in the data instead of using the word ‘outliers’. A couple of 
examples of the prompt follow:
Are there any outliers in {70◦ F, 71◦ F, ..., 74◦ F}? 
Are there any outliers in {audi, chevrolet, dodge, ford, 

..., volkswagen}? 

3.2.5 � Imputation battery

We use two prompts to make the language model infer the missing value from a set of 
examples. We use instances without missing values in the prompt and we leave the last 
line for the instance with the missing value. We have explored two alternatives. In the 

Fig. 2   Average results for the seven domains in the Manipulation Battery and the four versions of GPT-3. 
Each plot represents how many examples are given (from zero-shot to 10-shot). The dashed horizontal lines 
show the average results per system. Disaggregated results for all tasks shown in Fig. 8 in the supplemen-
tary material



2070	 Machine Learning (2023) 112:2053–2082

1 3

first one, Full prompt, we use all the available features in the data set. This is an exam-
ple of the Full prompt:
City: Detroit, State: Michigan, County: Wayne ∖ n City: 

Fargo, State: North Dakota, County: Cass ∖ n ..., City: Ath-
ens, State: Georgia, County:

The second approach, 1-Feature prompt, is much shorter usually. We select the most 
useful feature13 For example, for the same dataset as above, if we determine City as the 
most relevant feature for inferring County, an example of the 1-Feature prompt would be:
 City: Detroit, County: Wayne ∖ n City: Fargo, County: Cass ∖ 

n ..., City: Athens, County:
As we can see, the Full prompt strategy will make prompts very large (requiring many 

tokens from the language model) as soon as the instances have many features. Because of 
that we will employ a nine-shot approach, so only nine complete rows will be used. We 
will also explore a zero-shot approach with this configuration, which is simply the full row 
where the missing value appears. The second strategy (1-Feature prompt) allows us to pro-
vide more training examples without using too many tokens. Additionally, given that only 

Table 8   Examples of problems 
in the domain ‘units’

Problem Input → Output

‘getUnits-1’ 56.77cl → cl
‘getValue-1’ 56.77cl → 56.77
‘getSystem-1’ 56.77cl → Volume
‘convert-1’ 1441.8mg; g → 1.4418001

Fig. 3   Average accuracies for the tasks in the units domain for all GPT-3 systems and learning settings. 
Complete details of all domains and descriptions of all tasks are presented in Fig. 8 and Table 2, respec-
tively, in the supplementary material

13  We compute the most useful attribute according to the attribute importance of a random forest model 
learned from the whole table using the attribute with the missing value as an output.



2071Machine Learning (2023) 112:2053–2082	

1 3

one input feature is employed we need to increase the information provided to the language 
model, specifically we will employ 99 examples.

4 � Results and discussion

We start by analysing the performance of the different GPT-3 family of models (Ada, Bab-
bage, Curie and DaVinci). The models are employed on the various data wrangling bat-
teries described in the previous section. The result metrics are assessed using the differ-
ent few-shot learning settings, including zero-shot regimes for some of the batteries, as 
explained in the previous section.

Let us start with the Manipulation Battery. In this case, the models are given several 
input examples in the ‘input-output’ prompt and no other further information or descrip-
tion of the task at hand. Figure  2 shows the results obtained by using the four different 
models (Ada, Babbage, Curie and DaVinci) and different few-shot learning settings, from 
zero-shot to ten-shot for all domains (which make a total of 11 configurations per task). 
Regarding the results, we see the sharp increase from zero-shot learning to 1-shot learning, 
and a more moderate increase that stabilises around 9-shot inference. In general, the results 
show that GPT-3 can be employed to learn simple transformations from few examples, 
and, as expected, the accuracy improves when we provide more instances. We also see 
that, as expected, the most powerful engine is DaVinci. Nevertheless, the performance is 
not uniform across the analysed domains. The domain emails is the one where the GPT-3 
models obtain the highest performance, whereas units is the domain with the lowest perfor-
mance. This may be related to the need of semantic information about the domain but also 
some reasoning or calculation capabilities (e.g., multiplication in the case of units). We 
include further details in the supplementary material: disaggregated results in Fig. 8 and a 
set of illustrative examples of wrong answers obtained by GPT-3 for problems with differ-
ent types of inputs (Tables 11 and 12).

With the intention of getting more insight into how the models fail, we perform a fine-
grain analysis of the ‘units’ domain in the Manipulation Battery. Table 8 includes examples 
of some of these tasks to better understand the differences in performance shown in Fig. 3. 
The problems in tasks getUnits-i and getValue-i (see Table 2 for details) can be translated 
as ‘extracting a part of the string’, a transformation that the GPT-3 models can solve. 

Fig. 4   Average accuracies 
of GPT-3 (DaVinci version), 
FlashFill Gulwani et al. (2015), 
Trifacta Wrangler and DBK 
Contreras-Ochando et al. (2019b) 
for a 1-shot learning setting. 
Results of the compared systems 
are obtained from Contreras-
Ochando et al. (2019a, 2019b). 
The tasks addressed are a subset 
of those in Fig. 8. Coloured, 
horizontal lines show the aver-
age results per system across 
domains



2072	 Machine Learning (2023) 112:2053–2082

1 3

Hence, we see that GPT-3 presents good results in domains where tasks can be solved by 
simple string transformations. However, getSystem-i and convert-i are much more complex 
tasks. Thus, getUnits-i requires the identification of the unit acronym (e.g., ‘cl’ for centi-
litres) and relating it with its dimension (e.g., volume), while convert-i needs to perform 
an arithmetic operation (e.g., a division), in addition to the identification of the conversion 
coefficient to the target unit (e.g., a coefficient of 1000 to convert milligrams into grams).

Finally, in order to compare the performance of GPT-3 with other data wrangling sys-
tems, we consider the subset of 26 problems in the Manipulation battery, for which there 
are results in the literature. We make the comparison for the 1-shot setting, which is the 
same setting used by the other systems. We compare GPT-3 DaVinci and the following 
data wrangling tools: FlashFill (Gulwani et al., 2015), TrifactaWrangler (Petrova-Antonova 
& Tancheva, 2020) and Dynamic Background Knowledge (DBK) (Contreras-Ochando 
et al., 2019b). The results (displayed in Fig. 4) show that general-purpose language models 
are competitive with first-generation data wrangling tools such as FlashFill, and are getting 
closer in performance to more sophisticated tools such as DBK. Again, we see that the 
performance of the compared systems is related to the types involved in the target func-
tions. The best results are obtained in domains where the problems are solved by simple 
string operations, while in other domains like units where some functions include arith-
metic operations the results are much worse. The exception is DBK, which can induce the 
domain of the problem and then select proper base functions to address it.

We now move on to the rest of the experimental batteries. Figure 5 shows the results 
obtained by using the most powerful GPT-3 engine, DaVinci, for the Types and Ordinal 
Batteries. It is interesting to note that there is, in many cases, a notable difference depend-
ing on the prompt.

For the case of the Types Battery, GPT-3 is more accurate the more informative the 
prompt is: asking for the “domain” seems to be less specific than asking for the “semantic 
type” of the values. In general, the results for the type detection using the second prompt 
are very satisfactory, with a mean success rate of 0.7 in front of a mean accuracy of 0.2 
obtained with the first prompt.

Let us analyse in more detail the answers given by GPT-3 for this battery. First of all, 
we must be aware of the expressive power of natural language, which implies that there is 
no unique way to name a concept. In terms of solving the semantic type task, this means 

Fig. 5   Average results for different datasets and the types and ordinal batteries, using different prompts



2073Machine Learning (2023) 112:2053–2082	

1 3

that some values can be assumed as belonging to different but related types. For instance, 
Palmira and Verona could be considered as values of the type City, but also of the type 
Town or even Place. Although it can be argued that a city, a place and a town are not 
exactly the same concept (there exist some differences among them), it is clear they are 
related (all of them are locations). That is what we observe in the experiments, with GPT-3 
giving all these answers for one of the columns of the Zillow dataset depending on the 
prompt, as shown in Table  13 in the Supplementary material. Given that for evaluating 
the performance of the system we set the real semantic type of this column as “city”, the 
rest of the answers were considered as failures. This fact explains the increase in accuracy 
we got with the second prompt since it directly asks for the “semantic type” allowing the 
system to focus on the least general concept (type) to which the observed values belong. 
Note that, “place” could be considered a much too general type for denoting Palmira and 
Verona, whereas “town” could perhaps be too much specific). Another way to solve the 
problem of having a set of possible answers (e.g., all possible column names with some 
a priori probabilities) would be to consider the conditional probabilities (“logprobs”) pro-
vided by the language models (i.e., how likely some word can appear in the text given the 
other one in this text.) for each possible output and combine them with the a priori prob-
abilities to determine the most likely column name.

Apart from these considerations related to the performance of the system on the Types 
Battery, we would like to highlight that the flexibility of GPT-3 providing several differ-
ent answers as potential types is a feature rather than being a drawback. It is evident that 
language models can work as effective tools for solving this kind of Data Dictionary tasks, 
since they do not need (predefined) type ontologies to solve them. In fact, from a general 
point of view, a user could consider that any of the three answers given by GPT-3 for the 
above example are acceptable (i.e., they are valid types for the column), since with any of 
them the user is able to know that the values of such column are related to locations and 
not with other concepts such as names and countries.

Finally, the differences observed in the results of the Types Battery when GPT-3 deals 
with nominal and numerical attributes should be discussed. It is relatively easier for GPT-3 
(and also for other language models) to infer the right type for a nominal attribute than for 
a numerical one. The reason is clear; the values of nominal attributes are usually different 
(and specific) depending on the real concept (i.e., names, cities, countries, … ) to which the 
values belong to. However, it is much more difficult to determine whether a few numerical 
values such as {2, 4, 15, 23} correspond, for instance, to ages or Celsius degrees without 
any additional information. In the experiments we carried out, for both prompts, GPT-3 
fails in determining that the semantic type of the two numerical attributes in the battery is 
“age”, being “numbers” the most common type returned by the system (see Table 13 in the 
Supplementary material). It could be interesting to explore prompts that include a descrip-
tion of the dataset domain, and observe whether with this information the language model 
is successful. For instance, if we give information that the table is about customers, then 
given some numbers, the language model could infer that the type might be “age”.

In the case of the Ordinal Battery, it also depends on the prompt and domain. In general, 
however, asking whether there is an ordering between the unique values of an attribute 
(prompt 2) seems to be more effective. The results for telling ordinal vs non-ordinal are 
very satisfactory, with an average success rate of 0.83 for this prompt. However, if we look 
at how good the orderings are, the picture is a bit more elaborate. Table 9 shows all cases, 
with the Spearman correlation of the predicted ordering and the actual ordering using 
prompt 1, whether the method predicted ORDINAL or NON-ORDINAL with prompt 1 
and prompt 2 and the actual value of ORDINAL/NON-ORDINAL. When the Spearman 



2074	 Machine Learning (2023) 112:2053–2082

1 3

Table 9   Quality of orderings for the Ordinal Battery: Spearman correlation of the predicted ordering using 
prompt 1, the predicted types (with prompts 1 and 2) and the actual type

Dataset Attribute Spearman Pred. w. Prompt1 Pred. w. Prompt2 Actual

Breastcancer Age 0.95 ORDINAL ORDINAL ORDINAL
Breast-quad – NON-ORDINAL ORDINAL NON-ORDINAL
Inv-nodes 0.80 NON-ORDINAL ORDINAL ORDINAL
Menopause – NON-ORDINAL ORDINAL ORDINAL
Tumor-size 0.90 ORDINAL ORDINAL ORDINAL

Cars Buying 1.00 ORDINAL ORDINAL ORDINAL
Class 1.00 ORDINAL ORDINAL ORDINAL
Doors 0.70 NON-ORDINAL ORDINAL ORDINAL
Lug-boot 0.87 ORDINAL ORDINAL ORDINAL
Maint 1.00 ORDINAL ORDINAL ORDINAL
Persons 0.50 NON-ORDINAL NON-ORDINAL ORDINAL
Safety 1.00 ORDINAL ORDINAL ORDINAL

Mushroom Cap-color – NON-ORDINAL NON-ORDINAL NON-ORDINAL
Cap-shape 0.09 NON-ORDINAL NON-ORDINAL NON-ORDINAL
Cap-surface – NON-ORDINAL NON-ORDINAL NON-ORDINAL
Gill-attachment – NON-ORDINAL ORDINAL NON-ORDINAL
Gill-color – NON-ORDINAL NON-ORDINAL NON-ORDINAL
Gill-spacing 1.00 ORDINAL ORDINAL NON-ORDINAL
Habitat 0.93 ORDINAL NON-ORDINAL NON-ORDINAL
Odor 0.28 NON-ORDINAL NON-ORDINAL NON-ORDINAL
Population 0.14 NON-ORDINAL NON-ORDINAL ORDINAL
Ring-number 0.87 ORDINAL ORDINAL ORDINAL
Ring-type 0.38 NON-ORDINAL NON-ORDINAL NON-ORDINAL
Spore-print-color – NON-ORDINAL NON-ORDINAL NON-ORDINAL
Stalk-color-above-

ring
– NON-ORDINAL NON-ORDINAL NON-ORDINAL

Stalk-color-below-
ring

– NON-ORDINAL NON-ORDINAL NON-ORDINAL

Stalk-root 0.45 NON-ORDINAL NON-ORDINAL NON-ORDINAL
Stalk-surface-above-

ring
– NON-ORDINAL NON-ORDINAL NON-ORDINAL

Stalk-surface-below-
ring

– NON-ORDINAL NON-ORDINAL NON-ORDINAL

Veil-color – NON-ORDINAL NON-ORDINAL NON-ORDINAL
Nursery Children 0.74 NON-ORDINAL ORDINAL ORDINAL

Cass 0.78 ORDINAL ORDINAL ORDINAL
Form 0.20 NON-ORDINAL NON-ORDINAL ORDINAL
Has-nurs 0.70 NON-ORDINAL ORDINAL ORDINAL
Health 0.50 NON-ORDINAL ORDINAL ORDINAL
Hhousing 0.50 NON-ORDINAL ORDINAL ORDINAL
Parents 0.00 NON-ORDINAL ORDINAL ORDINAL
Social 0.50 NON-ORDINAL ORDINAL ORDINAL



2075Machine Learning (2023) 112:2053–2082	

1 3

Table 9   (continued)

Dataset Attribute Spearman Pred. w. Prompt1 Pred. w. Prompt2 Actual

Postoperative BP-STBL – NON-ORDINAL ORDINAL ORDINAL

CORE-STBL – NON-ORDINAL ORDINAL ORDINAL

L-BP 1.00 ORDINAL ORDINAL ORDINAL

L-CORE 1.00 ORDINAL ORDINAL ORDINAL

L-O2 0.63 NON-ORDINAL ORDINAL ORDINAL

L-SURF 1.00 ORDINAL ORDINAL ORDINAL

SURF-STBL – NON-ORDINAL ORDINAL ORDINAL
Soybean Area-damaged 0.74 NON-ORDINAL ORDINAL NON-ORDINAL

Canker-lesion 0.32 NON-ORDINAL NON-ORDINAL NON-ORDINAL
Crop-hist 0.32 NON-ORDINAL ORDINAL ORDINAL
Date 0.73 NON-ORDINAL ORDINAL ORDINAL
Fruit spots 0.11 NON-ORDINAL NON-ORDINAL NON-ORDINAL
Fruit-pods 0.40 NON-ORDINAL NON-ORDINAL NON-ORDINAL
Fermination 0.87 ORDINAL ORDINAL ORDINAL
Leafspot-size – NON-ORDINAL NON-ORDINAL NON-ORDINAL
Leafspots-halo 0.87 ORDINAL ORDINAL NON-ORDINAL
Leafspots-marg – NON-ORDINAL NON-ORDINAL NON-ORDINAL
Mycelium 1.00 ORDINAL ORDINAL NON-ORDINAL
Precip – NON-ORDINAL ORDINAL ORDINAL
Roots 1.00 ORDINAL ORDINAL NON-ORDINAL
Seed-tmt 0.50 NON-ORDINAL NON-ORDINAL NON-ORDINAL
Severity 1.00 ORDINAL ORDINAL ORDINAL
Stem-cankers 0.80 NON-ORDINAL ORDINAL NON-ORDINAL
Temp – NON-ORDINAL ORDINAL ORDINAL

Fig. 6   Average results for the Anomalies Battery for different datasets using numerical features (left), and 
categorical ones for Mpg dataset (right)



2076	 Machine Learning (2023) 112:2053–2082

1 3

correlation is ‘-’ the first prompt gave some unresolved comparisons, and the order could 
not be calculated. All these were assigned to NON-ORDINAL systematically.

In all those cases where an ordinal attribute is correctly classified as ordinal (14 out of 
63) the average Spearman correlation is very high: 0.95. These are highly reliable cases 
where the order of attributes is perfectly determined (8 out of 14) or reasonably good 
(worst case is 0.78 correlation). Some of these attributes have a textual representation of 
numbers or intervals (e.g., age, tumor-size, etc.) or are very easy (‘high’, ‘mid’, ‘low’) so it 
is not surprising that language models do well. Many discrepancies not due to unresolved 
comparisons happen in cases where the correlations are high, but not high enough (e.g., 
inv-nodes, doors, children, has-nurs, health, housing, social, L-02), all of which are well 
categorised by the second prompt. In these cases we can say that recognising whether an 
attribute is ordinal or not is doable, but the order might not be good enough. Then there are 
some cases where the correlation is low and both prompts fail to recognise it is an ordinal 
(persons, population, form) or just the first prompt (parents, L-O2). Finally, there are some 
non-ordinal features that get high scores and are categorised as ordinal by one or both of 
the prompts (gill-spacing, habitat, leafspots-halo, mycelium, roots, stem-cankers). Some of 
these have an ‘absent’ value, which is usually recognised as having a lower order than other 
values, or other elements that could suggest that are partially ordinal.

Moving to the Anomalies Battery, and starting with the analysis of numerical attributes, 
Fig. 6 (left) shows the poor performance of GPT-3, with a median success rate of 0.16. 
Some examples of its operation are shown in Table 14 in the Supplementary material. Why 
this poor performance? This may be due to the fact that in many of these cases the role 
of semantic information is limited, and most especially as we take the outlier detection 
(boxplot whiskers) as ground truth (when it may be wrong for many datasets). It is not 
only that these methods ignore semantics, but also that different outlier detection methods 
may return different sets of outliers depending on the approach they implement (distance 
and density of data points, statistical models to predict the probability of a dataset distribu-
tion, etc.). On the other hand, the performance of GPT-3 is sometimes erratic, obtaining as 

Fig. 7   Average results for the Imputation Battery for domain databases (left), and UCI datasets (right). 
Dataset results are split by numerical features (Reg) and categorical attributes (Class) when they have fea-
tures of both types. For the those databases representing specific domains (“domain databases”), we employ 
the Full prompt with 9-shot and zero-shot configurations. For the UCI datasets, we show the performance 
of the imputation with the Full prompt with 9-shot and zero-shot configurations, the 1-Feature prompt with 
99-shot and finally a decision tree trained with 99 examples



2077Machine Learning (2023) 112:2053–2082	

1 3

answers the same set of values it takes as input, possibly indicating that GPT-3 has not cor-
rectly understood the task to be performed.

Analysing now the categorical attributes, Fig. 6 (right) shows the average results. In this 
case, although the average accuracy results are somewhat better than in the previous case 
(0.35), if we analyse the attributes individually, we can observe that GPT-3 is not able to 
correctly use their semantic information to detect the anomalies. Some examples of this are 
shown in Table 15 in the Supplementary material. It seems that when we insert anomalies 
to the attributes with a low number of unique values, anomalies, GPT-3 is able to detect 
them (see, e.g., attributes “drv” and “fl” in Table 15). However, for more complex attrib-
utes, such as the car “model”, which includes a many unique alphanumeric terms of differ-
ent lengths, when trying to detect the introduced anomalies, GPT-3 performs very poorly. 
In general, from this and the previous experiments we have seen that GPT-3 works well for 
simple examples of anomaly detection where the context is clear (e.g., {flat, house, 
apartment, dinosaur } or {70◦ F, 71◦ F, 71◦ F, 110◦ F, 71◦ F}). However, for 
real datasets, it is (still) much more difficult to obtain acceptable results.

Finally, in Figure 7 we show the experimental results for the Imputation Battery. Fig-
ure 7 (left) shows the results for those databases representing real cases of specific domains 
(which we call “domain databases”), namely, the UCs-Satellite, PAF-Address and ATP 
Players datasets. ‘Reg’ stands for ‘regression’ imputation (the output is a numerical value) 
and ‘Class’ stands for ‘classification’ imputation (the output is a a nominal or a textual 
value). Here, we focus on two learning strategies: zero-shot and 9-shot. We employ the Full 
prompt described in Sect.  3.2. We discard the use of traditional imputation methods for 
comparison since some of the attributes are textual and they cannot be directly processed 
by the DecisionTreeClassifer. If we analyse the performance for GPT-3, we see that, in 
general, the results are positive, with 0.48 and 0.80 as average performance for, respec-
tively, zero-shot and 9-shot strategies. Focusing on the 9-shot, the exception to the good 
results is the dataset PAF-Address. In this case, the instances are formed by different com-
ponents of actual addresses in the UK and, for most of the features, the model was not able 
to correctly infer the individual values of one feature given the others. In some cases lan-
guage models following a zero-shot learning strategy failed because they were not able to 
properly identify the task to be performed.

Figure 7 (right) shows the results for the UCI datasets (Mpg, Iris and Adult). Here, we 
analyse four different strategies: 1-Feature prompt with 99 examples; Full prompt with 
9-shot; Full prompt with zero-shot; and a DecisionTreeClassifer trained with 99 exam-
ples and only one feature (the most relevant one with respect to the target). The results 
in Fig.  7(right) show that language models have a comparable effectiveness to imputa-
tion methods based on simple predictive models (decision trees). This is specially the case 
when following the 1-Feature prompt strategy with 99-shot, which seems to be the best 
option in all datasets except for MPG.

5 � Conclusions

Large language models based on transformers and trained on enormous datasets have 
recently disrupted artificial intelligence thanks to an unexpected abstraction capacity that 
has expanded their applicability to fields and problems not originally anticipated. In this 
work we have analysed different configurations and prompts, as well as the effect of the 



2078	 Machine Learning (2023) 112:2053–2082

1 3

number of examples (from zero-shot to 99-shot, depending on the problem) to see their 
performance for a wide range of data wrangling problems. To our knowledge, this paper is 
the first one that explores the possibilities of language models for data wrangling problems. 
The results show the capacity of these systems to learn transformation functions from few 
examples, to detect data types and domains, determine when there is an order in the attrib-
utes and in many cases give the order as well, complete missing data based on semantic 
components, rather than statistical properties and, to some extent, detect anomalous data. 
The performance of the studied language models is comparable to well-known systems 
specialised in data wrangling for some of the batteries, and a good complement that fills 
new niches for others. These results open a promising research direction to explore the 
possible applications of language models when used freely through their Application Pro-
gramming Interfaces (APIs) or when integrated into specialised tools for data wrangling. 
This is not limited to data wrangling, but could well be used for other tasks in data science, 
especially those that can be learnt from very few examples and require extensive domain 
knowledge (De Bie et al., 2022).

Even so, access to large language models is still limited because of cost, infrastructure, 
privacy issues or lack of training. It is infeasible to use them locally and therefore differ-
ent subscription models are provided to users via APIs, but this access is still restricted 
or expensive. We think that this paper comes at the right time, as new open initiatives are 
emerging to universalise the use of such systems. A notable example is the BigScience14 
consortium consisting of 900 researchers from 60 countries and more than 250 institutions. 
They are jointly creating very large multilingual language models for universal and free 
access by the scientific community and other professional users. This will make the sce-
nario and pipelines we are describing more common.

All in all, throughout the paper we have tried to understand how we can include lan-
guage models in the data processing and analysis pipeline. Note that it was not our goal to 
see for each and every task whether current language models are better than those systems 
that are specialised in solving data wrangling tasks. Our paper mostly focuses on a general 
assessment of the possibilities, the range of tasks and prompts data scientists should use 
for particular cases in their data processing pipelines. The integration of each particular 
solution into specific tools that maximise performance would end up with a large number 
of systems the user would need to know and the effort of realising which one serves each 
particular problem.

Coping with variability with a general and flexible approach instead comes at the cost of 
some familiarity and maturity of the users. Part of this will come from experience, as they 
start using language models successfully. For instance, in Table 10 we show the data-wran-
gling tasks where GPT-3 can help automate according to our experiments, under which 
conditions the systems are most and least useful. While this only applies for the tasks and 
GPT-3, it is also possible to set some basic guidelines that can be followed for the general 
use of language models in data wrangling and other data processing pipelines (see Table 16 
in the Supplementary material).

As future work, we would like to analyse how data wrangling automation can be 
improved by giving more information to the user about the reliability of the results given 
by the language models, using their probabilities and determining cutoffs. Some assis-
tance for choosing examples or prompts could also be useful. It is also necessary that other 

14  https://​bigsc​ience.​huggi​ngface.​co/

https://bigscience.huggingface.co/


2079Machine Learning (2023) 112:2053–2082	

1 3

researchers, especially those in human-computer interaction, perform studies with real data 
scientists and machine learning practitioners using language models for data wrangling. 
Questionnaires should be conducted to evaluate how effective the automation or assistance 
is. This is necessary to determine how useful these systems are, since the way they are used 
is very different from other data wrangling systems, and a comparison solely based on per-
formance –ignoring many other factors– will always be partial.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10994-​022-​06259-9.

Acknowledgements  We thank Lidia Contreras for her help with the Data Wrangling Dataset Repository. 
We thank the anonymous reviewers from ECMLPKDD Workshop on Automating Data Science (ADS2021) 
and the anonymous reviewers of this special issue for their comments.

Author contributions  All authors contributed equally to this work.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. 
This work was funded by the Future of Life Institute, FLI, under grant RFP2-152, the MIT-Spain - INDI-
TEX Sustainability Seed Fund under project COST-OMIZE, the EU (FEDER) and Spanish MINECO 
under RTI2018-094403-B-C32  and  PID2021-122830OB-C42, Generalitat Valenciana under PROME-
TEO/2019/098 and INNEST/2021/317, EU’s Horizon 2020 research and innovation programme under grant 
agreement No. 952215 (TAILOR) and US DARPA HR00112120007 ReCOG-AI.

 Data availability  The Manipulation Battery is publicly available at https://​github.​com/​google/​BIG-​bench/​
tree/​main/​bigbe​nch/​bench​mark_​tasks/​mult_​data_​wrang​ling and https://​github.​com/​gonza​lojai​movit​ch/​
lm-​dw.

 Code availability  All the code and results can be found in https://​github.​com/​gonza​lojai​movit​ch/​lm-​dw.

Declarations 

Conflict of interest  No conflicts of interest or competing interests.

Consent for publication  Not applicable.

Ethical approval  Not applicable.

Consent to participate  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Ashok, P., & Nawaz, G. K. (2016). Outlier detection method on uci repository dataset by entropy based 
rough k-means. Defence Science Journal, 66(2), 113–121.

Bellmann, P., & Schwenker, F. (2020). Ordinal classification: Working definition and detection of ordinal 
structures. IEEE Access, 8, 164380–164391. https://​doi.​org/​10.​1109/​ACCESS.​2020.​30215​96

https://doi.org/10.1007/s10994-022-06259-9
https://doi.org/10.1007/s10994-022-06259-9
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/mult_data_wrangling
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/mult_data_wrangling
https://github.com/gonzalojaimovitch/lm-dw
https://github.com/gonzalojaimovitch/lm-dw
https://github.com/gonzalojaimovitch/lm-dw
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ACCESS.2020.3021596


2080	 Machine Learning (2023) 112:2053–2082

1 3

Ben-Gal, I. (2005). Outlier detection. In Data mining and knowledge discovery handbook (pp. 131–146). 
Springer.

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic par-
rots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, 
Accountability, and Transparency (pp. 610–623). FAccT ’21.

Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A neural probabilistic language model. The 
Journal of Machine Learning Research, 3, 1137–1155.

Bhupatiraju, S., Singh, R., Mohamed, A. R., & Kohli, P. (2017). Deep API programmer: Learning to pro-
gram with APIs. arXiv preprint arXiv:​1704.​04327.

BIG-bench collaboration. (2022). Beyond the imitation game: Measuring and extrapolating the capabilities 
of language models. arXiv preprint arXiv:​2206.​04615. https://​github.​com/​google/​BIG-​bench/

Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., 
Sastry, G., Askell, A., & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint 
arXiv:​2005.​14165.

Chen, Y., Dang, X., Peng, H., & Bart, H. L. (2008). Outlier detection with the kernelized spatial depth func-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 288–305.

Contreras-Ochando, L., Ferri, C., & Hernández-Orallo, J. (2019a). Automating common data science matrix 
transformations. In ECMLPKDD workshop on Automating Data Science. ECML-PKDD ’19.

Contreras-Ochando, L., Ferri, C., Hernández-Orallo, J., Martínez-Plumed, F., Ramírez-Quintana, M. J., & 
Katayama, S. (2019b). Automated data transformation with inductive programming and dynamic back-
ground knowledge. In Proceedings of the European Conference on Machine Learning and Knowledge 
Discovery in Databases, ECML PKDD 2019. ECML-PKDD ’19.

Cropper, A., Tamaddoni, A., & Muggleton, S. H. (2015). Meta-interpretive learning of data transformation 
programs. In Inductive Logic Programming (pp. 46–59).

Das, K., & Schneider, J. (2007). Detecting anomalous records in categorical datasets. In Proceedings of 
the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 
220–229).

Das, K., Schneider, J., & Neill, D. B. (2008). Anomaly pattern detection in categorical datasets. In Proceed-
ings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 
(pp. 169–176).

De Bie, T., De Raedt, L., Hernández-Orallo, J., Hoos, H. H., Smyth, P., & Williams, C. K. I. (2022). Auto-
mating data science: Prospects and challenges. Communications of the ACM, 65(3), 76–87.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint arXiv:​1810.​04805.

Dua, D., & Graff, C. (2017). UCI machine learning repository. http://​archi​ve.​ics.​uci.​edu/​ml.
Ellis, K., & Gulwani, S. (2017). Learning to learn programs from examples: Going beyond program struc-

ture. In IJCAI (pp. 1638–1645).
Fernando, M. P., Cèsar, F., David, N., & José, H. O. (2021). Missing the missing values: The ugly duckling 

of fairness in machine learning. International Journal of Intelligent Systems, 36(7), 3217–3258.
Ferrari, A., & Russo, M. (2016). Introducing Microsoft Power BI. Microsoft Press.
Furche, T., Gottlob, G., Libkin, L., Orsi, G., & Paton, N. W. (2016). Data wrangling for big data. Challenges 

and opportunities. EDBT, 16, 473–478.
Gao, T., Fisch, A., & Chen, D. (2020). Making pre-trained language models better few-shot learners. arXiv 

preprint arXiv:​2012.​15723.
García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J. M., & Herrera, F. (2016). Big data preprocessing: 

Methods and prospects. Big Data Analytics, 1(1), 1–22.
Gulwani, S. (2011). Automating string processing in spreadsheets using input-output examples. In Procs. 

38th Principles of Programming Languages (pp. 317–330).
Gulwani, S., Hernández-Orallo, J., Kitzelmann, E., Muggleton, S. H., Schmid, U., & Zorn, B. (2015). Induc-

tive programming meets the real world. Communications of the ACM, 58(11), 90–99.
Ham, K. (2013). OpenRefine (version 2.5). http://​openr​efine.​org.​free/ Open-source tool for cleaning and 

transforming data. Journal of the Medical Library Association: JMLA, 101 (3), 233.
He, Z., Xu, X., Huang, Z. J., & Deng, S. (2005). Fp-outlier: Frequent pattern based outlier detection. Com-

puter Science and Information Systems, 2(1), 103–118.
Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D., & Steinhardt, J. (2021). Measuring 

massive multitask language understanding. In ICLR.

http://arxiv.org/abs/1704.04327
http://arxiv.org/abs/2206.04615
https://github.com/google/BIG-bench/
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1810.04805
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/2012.15723
http://openrefine.org.free/


2081Machine Learning (2023) 112:2053–2082	

1 3

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., & Steinhardt, J. (2021). 
Measuring mathematical problem solving with the MATH dataset. In CoRR. arxiv:​2103.​03874.

Hulsebos, M., Hu, K., Bakker, M., Zgraggen, E., Satyanarayan, A., Kraska, T., Demiralp, Ç., & Hidalgo, C. 
(2019). Sherlock: A deep learning approach to semantic data type detection. In Proceedings of the 25th 
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1500–1508).

Izacard, G., & Grave, E. (2020). Leveraging passage retrieval with generative models for open domain ques-
tion answering. arXiv preprint arXiv:​2007.​01282.

Jaimovitch-Lopez, G., Ferri, C., Hernandez-Orallo, J., Martinez-Plumed, F., & Ramirez-Quintana, M. J. 
(2021). Can language models automate data wrangling?. In ECML/PKDD Workshop on Automated 
Data Science (ADS2021). https://​sites.​google.​com/​view/​autods.

Kandel, S., Paepcke, A., Hellerstein, J., & Heer, J. (2011). Wrangler: Interactive visual specification of data 
transformation scripts. In Proceedings of the SIGCHI Conference on Human Factors in Computing 
Systems (pp. 3363–3372). ACM.

Lazarevic, A., & Kumar, V. (2005). Feature bagging for outlier detection. In Proceedings of the Eleventh 
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (pp. 157–166).

Lu, Y., Bartolo, M., Moore, A., Riedel, S., & Stenetorp, P. (2021). Fantastically ordered prompts and where 
to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint arXiv:​2104.​08786.

Nazabal, A., Williams, C. K., Colavizza, G., Smith, C. R., & Williams, A. (2020). Data engineering for data 
analytics: A classification of the issues, and case studies. arXiv preprint arXiv:​2004.​12929.

Noto, K., Brodley, C., & Slonim, D. (2012). Frac: A feature-modeling approach for semi-supervised and 
unsupervised anomaly detection. Data Mining and Knowledge Discovery, 25(1), 109–133.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, 
M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning 
Research, 12, 2825–2830.

Petrova-Antonova, D., & Tancheva, R. (2020). Data cleaning: A case study with OpenRefine and Trifacta 
Wrangler. In International Conference on the Quality of Information and Communications Technology 
(pp. 32–40). Springer.

Porwal, U., & Mukund, S. (2017). Outlier detection by consistent data selection method. arXiv preprint 
arXiv:​1712.​04129.

Puri, R., & Catanzaro, B. (2019). Zero-shot text classification with generative language models. arXiv pre-
print arXiv:​1912.​10165.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsuper-
vised multitask learners. OpenAI Blog, 1(8), 9.

Raman, V., & Hellerstein, J. M. (2001). Potter’s wheel: An interactive data cleaning system. In VLDB 
(Vol. 1, pp. 381–390).

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G., Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky, 
Y., Kay, J., Springenberg, J. T., & Eccles, T. (2022). A generalist agent. arXiv preprint arXiv:​2205.​
06175.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581–592.
Schick, T., & Schütze, H. (2020). Exploiting cloze questions for few-shot text classification and natural lan-

guage inference. arXiv preprint arXiv:​2001.​07676.
Shannon, C. E. (1949). Communication theory of secrecy systems. The Bell System Technical Journal, 

28(4), 656–715.
Shi, Y., Li, W., & Sha, F. (2016). Metric learning for ordinal data. In Proceedings of the AAAI Conference 

on Artificial Intelligence (Vol. 30).
Singh, R., & Gulwani, S. (2015). Predicting a correct program in programming by example. In International 

Conference on Computer Aided Verification (pp. 398–414). Springer.
Singh, R., & Gulwani, S. (2016). Transforming spreadsheet data types using examples. In Proceedings of 

the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (pp. 
343–356).

Sleeper, R. (2021). Tableau Desktop Pocket Reference. O’Reilly Media Inc.
Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhandari, S., Casper, J., Liu, Z., Prabhumoye, S., 

Zerveas, G., Korthikanti, V., & Zhang, E. (2022). Using deepspeed and megatron to train megatron-
turing nlg 530b, a large-scale generative language model. arXiv preprint arXiv:​2201.​11990.

Tamkin, A., Brundage, M., Clark, J., & Ganguli, D. (2021). Understanding the capabilities, limitations, and 
societal impact of large language models. arXiv preprint arXiv:​2102.​02503.

Terrizzano, I. G., Schwarz, P. M., Roth, M., & Colino, J. E. (2015). Data wrangling: The challenging jour-
ney from the wild to the lake. In CIDR.

Trifacta (2022): Trifacta Wrangler. https://​www.​trifa​cta.​com

http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2007.01282
https://sites.google.com/view/autods
http://arxiv.org/abs/2104.08786
http://arxiv.org/abs/2004.12929
http://arxiv.org/abs/1712.04129
http://arxiv.org/abs/1912.10165
http://arxiv.org/abs/2205.06175
http://arxiv.org/abs/2205.06175
http://arxiv.org/abs/2001.07676
http://arxiv.org/abs/2201.11990
http://arxiv.org/abs/2102.02503
https://www.trifacta.com


2082	 Machine Learning (2023) 112:2053–2082

1 3

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. 
(2017). Attention is all you need. arXiv preprint arXiv:​1706.​03762.

Wei, J., Bosma, M. P., Zhao, V., Guu, K., Yu, A. W., Lester, B., Du, N., Dai, A. M., & Le, Q. V. (2022). 
Finetuned language models are zero-shot learners. https://​openr​eview.​net/​forum?​id=​gEZrG​CozdqR

Wu, B., Szekely, P., & Knoblock, C. A. (2012). Learning data transformation rules through examples: Pre-
liminary results. In Information Integration on the Web (p. 8).

Xu, S., Semnani, S. J., Campagna, G., & Lam, M. S. (2020). AutoQA: From databases to QA semantic pars-
ers with only synthetic training data. In EMNLP.

Zeng, W., Ren, X., Su, T., Wang, H., Liao, Y., Wang, Z., Jiang, X., Yang, Z., Wang, K., Zhang, X., & Li, 
C. (2021). Pangu-� : Large-scale autoregressive pretrained chinese language models with auto-parallel 
computation. arXiv preprint arXiv:​2104.​12369.

Zhang, D., Suhara, Y., Li, J., Hulsebos, M., Demiralp, Ç., & Tan, W. C. (2019). Sato: Contextual semantic 
type detection in tables. arXiv preprint arXiv:​1911.​06311.

Zoph, B., Bello, I., Kumar, S., Du, N., Huang, Y., Dean, J., Shazeer, N., & Fedus, W. (2022). Designing 
effective sparse expert models. arXiv preprint arXiv:​2202.​08906.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=gEZrGCozdqR
http://arxiv.org/abs/2104.12369
http://arxiv.org/abs/1911.06311
http://arxiv.org/abs/2202.08906

	Can language models automate data wrangling?
	Abstract
	1 Introduction
	2 Data wrangling: taxonomy of tasks and the role of knowledge
	3 Experimental design
	3.1 Batteries and metrics
	3.1.1 Manipulation battery
	3.1.2 Types battery
	3.1.3 Ordinal battery
	3.1.4 Anomalies battery
	3.1.5 Imputation battery

	3.2 Language models and prompts
	3.2.1 Manipulation battery
	3.2.2 Types battery
	3.2.3 Ordinal battery
	3.2.4 Anomalies battery
	3.2.5 Imputation battery


	4 Results and discussion
	5 Conclusions
	Anchor 20
	Acknowledgements 
	References




