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The surface charge regulation in nanoscale volumes is a subject of wide interest to biological 

and chemical soft matter systems. Also, electrolyte mixtures with monovalent and divalent 

ions are commonplace in practical applications with micro and nanoporous ion-exchange 

membranes. We have studied experimentally and theoretically the conductance of conical 

nanopores functionalized with negative and positive surface charges that are bathed by 

electrolyte mixtures of  the monovalent ions K+ and Cl and the divalent ions Mg2+, Ba2+, 

Ca2+, and SO4
2. Small concentrations of these ions can modulate the nanopore selectivity and 

conductance because of their interaction with the charged groups on the pore surface. We 

have also given a qualitative description of the surface charge regulation using a simplified 

model for multivalent ion mixtures. 
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1. Introduction 

Surface charge regulation by multivalent electrolytes is crucial to the electrophoresis 

of macromolecules such as DNA [1] and the conductance of the ion channel proteins in 

biological membranes that regulate physiological processes such as the cell cycle, 

tumorigenesis, and neuronal excitability [26].The external tuning of the pore surface charge 

density by mixtures of salts including divalent ions can modify also the ionic selectivity and 

conductance of artificial nanopores [710].  

We report pore conductance data for a series of electrolyte mixtures containing the 

divalent ions Mg2+, Ba2+, Ca2+ and SO4
2. The conical nanopores are functionalized with 

negative or positive surface charges that strongly interact with the mobile divalent ions in the 

pore solution. The experimental data provide new physical insights on the surface charge 

regulation phenomena over nanoscale volumes and may suggest new applications in 

biosensing. The high surface-to-volume ratio typical of nanopores enhances the interaction of 

the mobile divalent ions with the pore charges and thus small concentrations of these ions in 

the electrolyte solution can modify the nanopore selectivity and conductance [1013]. We 

have also presented theoretical calculations that qualitatively explain the observed 

phenomena.  

The surface charge regulation of nanofluidic systems by salt mixtures is crucial in 

current biological and chemical problems [3,5,6,9,10]. For instance, magnesium and calcium 

cations are commonplace in biological cells and the carboxylic acid and amine groups at the 

pore surface are the chemical moieties found in most protein ion channels. Also, mixtures of 

asymmetric electrolytes with monovalent and divalent ions are typical in practical operations 

with ion-exchange [14] and solid-state [15] membranes.  
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2. Experimental 

The membranes containing the single nanopores were obtained from stacks of 12.5 μm 

thick polyimide (PI) foils (Kapton50 HN, DuPont) that were irradiated at the UNILAC linear 

accelerator (GSI, Darmstadt) with Au swift heavy ions of energy 11.4 MeV per nucleon. In 

order to achieve single-ion irradiation, a metal mask with a 200 m diameter centered 

aperture was located in front of the stack. The ion beam was immediately blocked after a 

single ion passed through the foil stack and was registered by a particle detector behind the 

samples. By using asymmetric track-etching techniques, the membrane tracks were converted 

into pores of approximately conical geometry [1619]. SEM images of the nanopore fracture 

and gold replicas of the nanopores, together with nanopore conductance data, gave radii in the 

ranges 300800 nm (base) and 1040 nm (tip) [19]. Also, carboxylate residues were obtained 

at the pore surface because of the track-etching process. These pore groups are negatively 

charged in aqueous solutions at neutral pH [16,20]. The nanopore can also be functionalized 

with poly(allylamine hydrochloride) (PAH) or ethylene diamine chains by electrostatic or 

covalent attachment, respectively, which gives positively charged pore groups in aqueous 

solutions at neutral pH [21]. 

The input potential was a triangular wave signal. The resulting current was measured 

with a Keithley 6487 picoammeter (Keithley Instruments, Cleveland, Ohio). Aqueous 

solutions of mixtures of KCl and MgCl2, BaCl2, CaCl2 or K2SO4 were used at approximately 

neutral pH values in the two bathing solutions, unless otherwise stated. Ag|AgCl electrodes 

were employed for the input potentials and output currents. The negatively-charged pore 

showed current-voltage curves characterized by high resistances when the current entered the 

cone base (negative voltages) and low resistances when the current entered the cone tip 

(positive voltages) [16,20], contrary to the case of the positively-charged pore. 
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3. Results and Discussion  

3.1 Experimental data 

The single-pore conductance G = I/V shown in Fig. 1(a)(d) is obtained at V = 1 V and 

2 V for electrolyte mixtures involving a monovalent cation (K+) and different divalent cations 

(Mg2+, Ba2+ and Ca2+) with a common anion (Cl) at pH = 7 approximately. Fig. 1(a) 

corresponds to the fixed 10 mM KCl concentration while the MgCl2 concentrations are in the 

range cMgCl2
 = 0–100 mM. At low MgCl2 concentrations, the conductance G decreases with 

increasing cMgCl2
 and reaches a minimum. Because this conduction regime is dominated by 

the pore surface charges [9,10,22], the conductance minimum suggests that the divalent cation 

Mg2+ strongly interacts with the negative carboxylic acid groups giving a decreased absolute 

value of the pore charge density. No evidence of pore charge inversion was however observed 

[23]. The interaction of the negative pore charges with divalent anions rather than cations has 

been studied previously [24]; no charge inversion occurs in this case because of the exclusion 

of the divalent ions from the pore solution.  

For high MgCl2 concentrations, G increases quasi-linearly with cMgCl2
 suggesting a 

bulk conduction regime regulated by the pore volume electroneutral solution [9,10,22]. In this 

regime, the surface charges are partially screened by the excess of mobile ions in the pore 

solution [25,26]. Note that the conductance minimum is not apparent for the case V = 1 V 

(Fig. 1(a), inset). This different behavior arises from the asymmetric geometry of the conical 

pore and the different concentration profiles that are obtained along the axial position for 

opposite pore directionalities [20].  
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In Fig. 1(b), the KCl concentration is fixed to 50 mM instead of 10 mM in Fig. 1(a). 

The minima in the G vs. cMgCl2 curves are now shifted to higher concentrations with respect to 

Fig. 1(a) because the higher KCl concentration can screen more effectively the interaction 

between the divalent cations and the pore charges. Also, the inset of Fig. 1(b) shows that no 

minima are obtained in the G vs. cKCl curves when we fix cMgCl2
 = 10 mM and it is the KCl 

concentration that is changed, emphasizing again the crucial role of the divalent cations in the 

surface charge regulation of the pore conductance. These results are in agreement with 

previous IV curves showing that the positive currents and the pore rectification decrease at 

intermediate concentrations with respect to the values obtained at low Mg2+ concentrations 

[23]. 

The above results deviate significantly from the pore conductance observed in 1:1 

electrolytes [25] and suggest that small amounts of divalent cations can decrease the effective 

pore charge. The resulting counter-intuitive effect is that the conductance decreases rather 

than increases with the salt concentration in the surface-regulated conductance regime, which 

is also confirmed here with other divalent cations. In Fig. 1(c), it is the Ba2+ cation that 

produces the minimum under experimental conditions similar to those of Fig. 1(a). Also, the 

inset suggests that the interaction of the negative pore charges with the divalent cations is 

crucial: no conductance minimum is observed at low pH value [7] because the carboxylic 

groups at the pore surface are not ionized. The cases of the Ca2+ cation in Fig. 1(d) and its 

inset show that the observed surface regulation phenomena are common to different salts and 

nanopores. Note also that the conductance minimum is shifted to higher concentrations for 

V = 2 V compared with the case of V = 1 V (Fig. 1(a)), consistent with the potential-

dependent concentration profiles that occur along the axial position [20]. 

The conductance minima observed in Fig. 1(a), (c), and (d) can be characterized 

quantitatively [9,10]. In particular, G takes minimum values around 20 nS at a concentration 
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of ca. 5 mM for the divalent cation salts. In this conductance regime the value of G is dictated 

by the pore charges. Hence, the above minima can be roughly associated with significant 

decreases in the effective pore charge density with respect to the case of the lowest divalent 

cation concentration used. This experimental fact shows that the divalent cations can regulate 

the effective surface charges, and then the conductance of nanofluidic systems, at relatively 

low salt concentrations [2,9,10]. 

Similar conclusions have previously been obtained by other authors using different 

single-pore polymeric membranes [7] and solid-state nanochannels [10]. Also, the usual mole 

fraction experiments conducted in ion channel proteins have studied the current obtained with 

a mixture of two ions at constant total concentration in the external electrolyte solutions [2,7]. 

An anomalous mole fraction effect (AMFE) is observed when the current shows a minimum 

for a particular mole fraction [2,7]. While this minimum is usually ascribed to coordinated 

single filing effects due to the narrow pores characteristic of ion channels [6], other 

explanations invoke preferential binding of divalent over monovalent cations within the pore 

resulting in depletion zones of mobile ions (see Refs. 2, 7, 27, and 28 and references therein). 

We note that, for the relatively wide pores typical of most artificial nanopores, a systematic 

description of the AMFE phenomena have been given previously [7]. 

To better characterize the different pore conductance regimes, the case of aqueous 

mixtures composed of 10 mM KCl and 1 mM (Fig. 2(a)), 10 mM (Fig. 2(b)), 100 mM 

(Fig. 2(c)) and 200 mM (Fig. 2(d)) of MgCl2, CaCl2 and BaCl2 have also been studied. 

Remarkably, opposite trends are obtained for the pore conductance order of the divalent 

cation salts at low and high concentrations in Fig. 2(a)(d). We ascribe this reversal of the 

conductance order to the differences in the counterion hydration [22] and the distinct transport 

mechanisms characteristic of the surface and bulk regimes. In particular, we note that both the 

Pauling radii and the estimated water substitution rates around ions follow the increasing 
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understanding [22] of the different results shown in Fig. 2(a)(d) for the low concentration 

surface regime where G(Mg2+) > G(Ca2+) > G(Ba2+) and the high concentration bulk regime 

where G(Mg2+) < G(Ca2+) < G(Ba2+). 

To check further the general nature of the observed phenomena, we studied also the 

conductance minima for the opposite case of divalent anions and a positively charged 

nanopore. To this end, aqueous electrolyte solutions with salt mixtures of KCl and K2SO4 

were used. For the sake of comparison, Fig. 3(a) and (b) show the different IV curves 

measured with positively (Fig. 3(a)) and negatively (Fig. 3(b)) charged pores for a series of 

monovalent and divalent ions. Note the different rectifications obtained for the two pore 

charges as well as the distinct behavior of monovalent and divalent ions. Although no 

evidence of pore charge inversion is observed in the IV curves, the proximity of the divalent 

cations to the pore surface negative charges should decrease the effective value of this charge 

experienced by the counterions. We address this question in the modeling section [23]. 

Figures 3(c) and (d) show the pore conductances at V = 1 V and 1 V obtained with 

positive and negative pores, respectively, in the case of electrolyte mixtures involving 

monovalent (Cl) and a divalent (SO4
2) anions with a common cation (K+) at pH = 7. The 

comparison of Fig. 3(c) with Fig. 1(a) and (b) shows that the conductance G also reaches a 

minimum for the positive pore and divalent anion both at positive and negative voltages. On 

the contrary, this minimum is not observed with the negative pore (Fig. 3(d)), as it could be 

expected due to the exclusion of the divalent anion from the pore solution in this case. 

As observed for the divalent cation and the negatively charged pore, the existence of 

the conductance minimum in the case of the divalent anion and the positively charged pore 

(Fig. 3(c)) suggests that the divalent anion (SO4
2) strongly interacts with the respective 

oppositely charged surface groups giving a decreased absolute value of the pore charge. 
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3.2 Model results 

A simple model can be used to analyze qualitatively the above experimental data. To 

allow a direct comparison with the salt concentrations used here, we use the equivalent 

volume concentration 0X  of fixed-charge groups rather than the surface charge density . 

This pore characteristic can be estimated from the local electroneutrality condition, which 

establishes that the mobile ion charge concentration must be equal to the equivalent fixed-

charge concentration, which gives 0 2 /( )X Fa  where a is the pore radius and F is the 

Faraday constant [20,22]. The concentration 0X  of fixed-charge groups is central to the 

Donnan distribution equilibria relating the external and pore ionic concentrations [22,29]. 

Consider an equivalent cylindrical pore of radius a and concentration 0X  of fixed-

charge groups. Both compartments contain the same electrolyte mixture: a concentration 1c  of 

KCl and a concentration 2c  of a 2:1 electrolyte MCl2, where M2+ is a generic divalent cation. 

The ionic species are denoted by subscripts i = 1 (K+), 2 (M2+), and 3 (Cl). The nanopore 

conductance G is proportional to the sum 
3 2

1 i i ii
z D c

  where the overbar indicates nanopore 

solution. Consistent with the qualitative nature of the model, we write its dimensionless value 

as 

 D D D2
0 1 0 r 2 0 1 2 0/ ( / )e 4 ( / )e ( 2 )/ eG G c c D c c c c c        (1) 

where the reference conductance G0 contains pore and solution general characteristics such as 

the radius a. To allow a comparison with the experimental results, the constant that scales the 

concentrations in Eq. (1) has been given the value c0 = 7 mM. The divalent cation M2+ has a 

relative diffusion coefficient [30] r 2 3/ 0.25D D D   with respect to those of K+ and Cl, 

1 3D D . The ionic concentrations are calculated from the Donnan equilibrium distribution 

between the external and nanopore solutions [29] 
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De iz
i ic c   (2) 

where iz  is the charge number of ionic species i, 3 1 22c c c   as already used in Eq. (1), and 

D  is the dimensionless Donnan potential, i.e., the Donnan potential scaled to RT/F, where R 

is the molar gas (or molar Boltzmann) constant and T is the thermodynamic temperature.  

The divalent cations tend to accumulate in the vicinity of the negative charges at the 

pore surface so that they produce a decrease in the effective pore charge [31,32].This surface 

charge regulation is approximately described by the phenomenological equation 

0 2/(1 )X X Kc    (3) 

where 0X  is the value in absence of regulation and K is a binding constant. Equation (3) 

implicitly involves chemically-based adsorption and complex formation phenomena [31] 

rather than physically-based ionic pair correlation phenomena [32] to surface charge 

regulation (see Ref. 31 for a detailed comparison of these two approaches). We envisage here 

a transient ion-pair formation resulting in an effective pore charge of volume concentration 

0X X . 

 The dimensionless Donnan potential is calculated from the electroneutrality condition 

D D D2
1 2 1 2e 2 e ( 2 )ec c c c X      

 (4) 

where X  depends on D  through D2
2 2ec c  , as described by Eq. (3). Typical values of 

0X  can be estimated as 2/(Fa)  which gives concentrations in the range 1001000 mM for 

charge densities in the range 0.11 e/nm2 and radii in the range of nanometers, where F = 

96 500 C/mol and e = 1.602  1019 C. Thus, for the regulation of the pore surface charge to 

be significant at the divalent cation concentrations 1050 mM used here, a scale value of the 

binding constant K should be of the order of 20100 M1 in Eq. (3). These values are close to 

the binding constant 100 M1 found for magnesium binding to the carboxyl groups of the 
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conditions in the inset of Fig. 1(c) for a pH-dependent surface charge density . (b) At fixed 

50 mM KCl, the minimum of the conductance curve is more pronounced. The inset shows 

that no minimum in the conductance curve as a function of the KCl concentration at fixed 

10 mM of the generic 2:1 (MCl2) electrolyte. Both predictions are in agreement with the 

experimental observations in Fig. 1.  

 

The above results suggest that the conductance minima observed in our experiments 

do not arise because of the inhomogeneous electric field in the conical nanopores nor because 

of the fact that the equivalent charge concentration depends on the axial position (see, for 

example, Ref. [34]). Rather, the minima arise from the experimental fact that the divalent 

cations tend to accumulate in the vicinity of the negative charges at the pore surface so that 

they produce a decrease in the effective charge of narrow pores, regardless of the pore 

geometry. 

 

4. Conclusions 

We have provided new experimental data and physical insights concerning the surface 

charge-regulated conductance of a conical nanopore immersed in electrolyte mixtures of 

monovalent and divalent salts [7,9,10]. Small concentrations of Mg2+, Ba2+, Ca2+, and SO4
2 

ions can allow the external tuning of the pore conductance due to their strong interaction with 

the charged groups at the pore surface. The experimental data of Fig. 1(a)(d), Fig. 2(a)(d), 

and Fig. 3(a)(d) show surface charge regulation characteristics that should be of wide 

interest to biological and chemical processes occurring in nanoscale volumes [2,9,10,1315]. 

We have also given a simple qualitative description of the observed phenomena that can now 

be extended for other multivalent ion mixtures. In particular, future work can now address 

other ionic selectivity effects concerning divalent ions by studying e.g. the pore reversal 

potential [10,3537]. 
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