

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/196324

Guillén-Navarro, MA.; Llanes, A.; Imbernón, B.; Martínez-España, R.; Bueno-Crespo, A.;
Cano, J.; Cecilia-Canales, JM. (2021). Performance evaluation of edge-computing platforms
for the prediction of low temperatures in agriculture using deep learning. The Journal of
Supercomputing. 77:818-840. https://doi.org/10.1007/s11227-020-03288-w

https://doi.org/10.1007/s11227-020-03288-w

Springer-Verlag

Noname manuscript No.
(will be inserted by the editor)

Performance evaluation of edge-computing platforms
for the prediction of low temperatures in agriculture
using deep learning

Miguel A. Guillén · Antonio
Llanes · Baldomero Imbernón ·
Raquel Mart́ınez-España · Andrés
Bueno-Crespo · Juan-Carlos Cano ·
José M. Cecilia

Received: date / Accepted: date

Abstract The Internet of Things (IoT) is driving the digital revolution. Al-
most all economic sectors are becoming ”Smart” thanks to the analysis of data
generated by IoT. This analysis is carried out by advance artificial intelligence
(AI) techniques that provide insights never before imagined. The combination
of both IoT and AI is giving rise to an emerging trend, called AIoT, which is
opening up new paths to bring digitization into the new era. However, there
is still a big gap between AI and IoT, which is basically in the computational
power required by the former and the lack of computational resources offered
by the latter. This is particularly true in rural IoT environments where the
lack of connectivity (or low-bandwidth connections) and power supply forces
the search for ”efficient” alternatives to provide computational resources to
IoT infrastructures without increasing power consumption. In this paper, we
explore edge computing as a solution for bridging the gaps between AI and IoT
in rural environment. We evaluate the training and inference stages of a deep-
learning based precision agriculture application for frost prediction in modern
Nvidia Jetson AGX Xavier in terms of performance and power consumption.
Our experimental results reveal that cloud approaches are still a long way off
in terms of performance, but the inclusion of GPUs in edge devices offers new
opportunities for those scenarios where connectivity is still a challenge.

Keywords Edge computing · LSTM · Deep learning · Precision Agriculture

Miguel A. Guillén, Antonio Llanes, Baldomero Imbernón, Raquel Mart́ınez, Andrés Bueno-
Crespo
Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos S/N,
30107, Murcia, Spain
E-mail: {maguillen, allanes, bimbernon, rmartinez, abueno}@ucam.edu

Juan-Carlos Cano and José M. Cecilia
Universitat Politécnica de València, Camino de Vera S/N, 46022 Valencia, Spain
E-mail: {jucano, jmcecilia}@disca.upv.es

2 Miguel A. Guillén et al.

1 Introduction

Smart agriculture is an emerging field where the concepts, techniques and
systems of Industry 4.0 are applied to the agrarian world [10]. The combination
of both IoT and AI are providing sustainable procedures to optimise crops,
reduce the use of pesticides, optimize irrigation and, in general, avoid the most
egregious problems in agricultural processes [6,28,29,38]. Of particular interest
to us is the prevention of frost. In Mediterranean areas, low temperatures at
certain times of the agricultural cycle are a major problem that can result in
losses of millions of euros1. However, it is not an easy task as it depends on
several factors, such as temperature, humidity, wind speed, etc. [30], but also
on the particular location of the plot. Actually, the global weather forecast
provides coarse grain information which is not valid to predict frost at the
plot level.

Some palliative measures are available to avoid crop loss, such as connecting
windmills and stoves or connecting heating in a greenhouse to avoid crop
losses. However, these measures need to be activated some time in advance,
between 2 and 4 hours, to be really effective. Therefore, this is a scenario
where both; accuracy and performance are equally critical. A false positive,
i.e. the application predicts a frost but eventually does not occur, means an
economic and environmental impact, as these techniques are often too costly
in both terms. A false negative, i.e. the application does not predict a frost but
eventually occurs, can mean the loss of the crop which usually has dramatic
consequences. Equally important is to predict the frost early enough in order
to be able to take palliative actions, because otherwise, the consequences would
be the same.

Deep Learning is a area within machine learning which relays on a set of
artificial neural networks organized as complex hierarchical levels [11]. Deep
learning models are being applied in agriculture to deal with problems such
as the automatic identification of plant disease through images or yield pre-
dictions in crops [19]. In the field of deep learning, Long short-term memory
(LSTM) [18] is a recurrent neural network (RNN), first proposed by Hochre-
iter and Schmidhuber, which has feedback connections. LSTM goes beyond
processing single data points such as images, but also entire sequences of data
such as speech, video or time-series data in general. Thus, they are well-suited
to classifying, processing and making predictions based on data capture from
IoT infrastructures [26].

In our previous work, an IoT system was proposed to obtain fine-grained
information from a particular plot area [15] and some prepossessing task where
carried out to remove outliers and out-of-range values. Moreover, we develop a
deep learning model for the frost prediction based on a long short-term mem-
ory (LSTM) with satisfactory accuracy results, i.e. an average quadratic error
of less than a Celsius degree and a determination coefficient R2 greater than
0.95 [14]. However, the computational cost of this model was too high and

1 https://www.laverdad.es/murcia/ultimas-heladas-region-20190404113101-nt.html

Edge-computing evaluation 3

therefore it should be executed offline. This limits the succeed of this tech-
nique because several reasons. The IoT infrastructure should be connected to
the Internet with high-speed connection or, at least, with a minimum number
of cloud outages. This is actually not the scenario in rural areas where IoT
infrastructures are often found in inhospitable conditions, where high temper-
atures, lack of connectivity and security are just a few examples that limit the
existence of responsive web services. With a low-bandwidth connection plus
the training and inference time of the LSTM model in the cloud, the maxi-
mum prediction window allowed for decision making (i.e. 2-3 hours) would be
difficult to achieve.

Edge computing [32] is an emerging area where processing in close proxim-
ity to mobile devices or sensors may provide energy savings, highly responsive
web services for mobile computing, scalability, and privacy-policy enforcement
for the Internet of Things, as well as the ability to mask transient cloud out-
ages. Indeed, edge computing platforms are designed to be energy efficient
and therefore performance is not their primary objective. Some computing
platforms are emerging to enable edge computing with a reduced power bud-
get and ever-increasing performance. Among them, we may highlight Nvidia
Jetson family which can run between 7.5-10 watts of power, offering a good
performance ratio [17]. In this article, we provide a performance and energy
evaluation of edge Vs. cloud computing platforms for a LSTM deep learning
model to predict the possibility of frost in crops, taking as input data cap-
tured from an IoT system. The main contributions of this paper include the
following:

1. The LSTM model for frost prediction previously published in [14] has been
adapted to be executed on high-end and low power GPUs.

2. CPU and GPU code is evaluated in terms of performance and power on the
Nvidia Jetson AGX Xavier to find out whether the inclusion of GPUs on
the edge devices is a compelling alternative for running heavy workloads
like the LSTM model. The GPU-based code of out LSTM model shows
1.6x speed-up factor compare to multicore counterpart version.

3. We also compare the edge solution with its cloud-based counterpart for
both stages; training and inference, showing that Nvidia Jetson may offer
enough computational horsepower to create an autonomous decision sup-
port systems for frost prediction. Training could be developed during the
warmest part of the day when frost is unlikely to occur and inference can
be made from midday.

4. The quality of the results obtained is also evaluated to ensure that our
version of the GPU draws similar conclusions to its CPU counterpart.

The rest of the paper is structured as follows. Section 2 shows the necessary
background to better understand our proposal. Section 3 introduces the deep
learning model based on LSTM to predict temperature. Section 4 includes
the empirical results in which both quality and performance evaluation are
presented. Section 5 summarizes the conclusions and gives some directions for
future work.

4 Miguel A. Guillén et al.

2 Background

2.1 Edge vs. cloud computing

Since the early days, computing has alternated between centralization and de-
centralization. At the beginning, batch processing and time-sharing prevailed
in a centralized fashion. With the advent of personal computing in the eight-
ies, we then move to a decentralized approach that was centralized again in
the mid-2000s through the cloud. Nowadays, cloud computing has established
as the most obvious infrastructure to leverage from a mobile device. However,
the optimal cloud infrastructure may be too far away from the mobile device.
Li et al. show the average round-trip time from 260 global vantage points to
their optimal Amazon EC2 instances was 74 ms [24]. In addition, the latency
of the wireless first hop should be added. Therefore, in some emergent applica-
tions this latency is not tolerable and some authors pointed out the necessity
of moving again towards distribution. Satyanarayanan et al. [32] propose two-
level architecture to look for mobile applications interactive performance. The
first level was the unmodified cloud computing architecture and a second level
was a network of dispersed elements called cloudlets with state cached from
the first level [33]. Moreover, Bonomi et al, motivated by IoT infrastructure
scalability instead, introduced the term fog computing that consist again of
a multilevel hierarchy of fog nodes spanning from the cloud to IoT edge de-
vices [4]. As stated in [32], the proximity of cloudlets (or fog nodes) provides
different benefits but of particular interest to us are two of them:

1. Highly responsive cloud services, achieving low end-to-end latency, high
bandwidth and low jitter to services located on the edge. Edge computing
brings, through cloudlets, computational power within one wireless hop
of sensors or mobile devices. Indeed, applications that are both latency-
sensitive and computation-intensive would not become possible without
this technology. Interactive mobile applications such as virtual or aug-
mented are leading examples.

2. Scalability via edge analytics, lowering the bandwidth required by high-
data-rate IoT sensors processing applications. Reducing the amount of in-
formation to be transferred to the cloud through a data analytics on the
edge may avoid network overloading as well as may provide energy saves.
A leading example of this is GigaSight framework [35] where video from
mobile devices only goes to the nearby cloudlet. The cloudlet runs com-
puter vision application, and sends the results and some metadata to the
cloud, reducing drastically the application bandwidth.

Edge computing is a compelling alternative to enable smart environments
in agriculture ubiquitously. Actually, agriculture procedures are usually de-
veloped in rural areas where several technological challenges often cohabit.
Among them, we may highlight technical issues such as bandwidth, connec-
tivity, power supply, and scaling sensors but also environmental issues that
complicate the deployment of IoT, such as extreme weather conditions. Some

Edge-computing evaluation 5

recent works have carried out studies considering edge computing for smart
agriculture or farming. For instance, Zamora-Izquierdo et al. [36] proposes a
platform to deal with soilless culture needs in full recirculation greenhouses
using moderately saline water. Edge computing here is in charge of monitor-
ing and managing main PA tasks near the access network to increase system
reliability against network access failures. However, they do not introduce
computationally heavy workloads such as deep learning models at this level as
they require higher computational horsepower. Singh, Chana and Buya pro-
pose Agri-Info, a cloud Based Autonomic System for Delivering Agriculture
as a Service. They do provide intelligent procedures to diagnose the agricul-
ture status automatically using Fuzzy Logic but they execute so in the cloud,
offering a mobile interface to see the output. Indeed, this is a good approach
as long as high-connectivity is guarantee. Moreover, the do not use informa-
tion from the ground, they use expert knowledge taken from their mobile or
tablets where connectivity is somehow guarantee. Finally, a Survey on the role
of IoT in agriculture for the implementation of smart farming is provided in
[9]. They clearly state that IoT based solutions are at the forefront of auto-
matically maintaining and monitoring agricultural farms with minimal human
involvement. Indeed, this requires the involvement of AI models that can pro-
vide predictions in real time.

2.2 Deep learning in precision agriculture

Deep learning is made up of a set of techniques that allow the construction
of models with great potential and outstanding results [19]. Recurrent Neural
Networks (RNN) architectures have been widely applied for regression [20].
RNNs are a type of artificial neural networks (ANNs) in which connections
between nodes create a graph directed over a time sequence, allowing to have
a temporal dynamic behavior. The main difference between RNNs and other
ANNs architectures is that they use their internal state (memory) to process
input sequences. RNNs works well in problems with short-term dependencies
where the model only need to look at recent (or close) information to carry out
with the current task [12]. However, there are some problems that require less
recent or more distant information to perform the current task. This is call
long-term dependency and RNNs does not work well in such scenarios. The
Long-Short Term Memory (LSTM) is type of RNNs which is designed to deal
with long-term dependencies such as those within time series where based on
learning from previous observations to predict the next value in the sequence
[18]. While Standard RNNs are based on chain of very simple ANNs, such as
a single tanh layer, LSTMs are also based on chain of ANNs, but the ANNs
has a different structure.

Deep learning models have drastically improved the state of the art in
many sectors of industry including agriculture [25]. In the field of agriculture,
different deep learning techniques (mainly convolutional neural networks for
image classification and LSTM for the prediction of temporal variables) are

6 Miguel A. Guillén et al.

applied to multiple problems such as plant diseases [27], the classification of
plant species [13], identification of soil cover and classification of crop type [22],
estimation of yields [23], identification of weeds [3], predictions on climatology
[31], just to mention a few recent studies within the umbrella of precision
agriculture.

Focusing on the problem of climatology, some works have been published
for climatic prediction, showing very good results. For instance, Salman et al.
[31] proposes the construction of a robust statistical model to predict meteoro-
logical visibility based on other intermediate variables (temperature, pressure,
humidity and dew point). They use two and four-layer LSTM networks. The
data is normalized and re-scale in the range of [0, 1] and using a moving av-
erage. Here, the multilayered LSTM model was most effective. However, this
work was not applied to precision agriculture but for forecasting visibility
based on temperature, pressure, humidity, dew point in airport area context.
LSTM was also used to predict climate variables in [37]. The targeted vari-
ables used as an input were temperature, humidity and wind speed. In this
case, the network architecture consists of two LSTM layers with the activa-
tion function being the RELU and the optimizer RMSProp. The data were
also normalized and rescaled in the range of [-1, 1]. The results were generated
for a coarse-grained prediction in cities. Again, it is not applied to precision
agriculture context and therefore data was obtained for historical datasets in-
stead of real-time information like us. Kratzert et al. [21] proposed a model
for rain and runoff also using LSTM, which predict discharge for a variety of
watersheds. The authors demonstrate the potential of this method by using
some variables such as day length, rainfall, temperature or humidity. Here, the
LSTM was composed of 2 LSTM layers and between them a Dropout layer
to avoid overtraining of the network but in the context of water management
scheduling not in precision agriculture.

Finally, we have explore the bibliography of combining deep learning meth-
ods with edge computing architectures. Chen et al. [7] propose ThriftyEdge;
a resource-efficient edge computing for intelligent IoT applications and one of
the case studies is precision agriculture. However, this work is not tailored to
deep learning based applications. Boubin et al. [5] explores fully autonomous
precision agriculture where fully autonomous aerial systems (FAAS) map crop
fields frequently. They develop the full-stack architecture, including a software
driven by reinforcement learning and ensemble models. The early results pre-
sented in this paper does not show any relevant results in the field of edge
computing. Actually, they work at simulation level, running their experiments
in a Laptop. Finally, we refer the reader to [39] for a review in Edge Intel-
ligence, where efforts for bridging the gaps between deep learning and edge
computing are summarized. Even though the area of precision agriculture is
cited as one of the main domains for edge intelligence, it worth highlighting
that any work is cited for this domain.

Edge-computing evaluation 7

3 LSTM model for temperature prediction on IoT infrastructures

This section introduces the proposed LSTM model for the temperature pre-
diction in IoT infrastructures. First of all, we briefly introduce the IoT infras-
tructure to capture information from a plot that was previously introduced
in [15]. Next, the proposed LSTM model for the prediction of temperature is
explained in depth.

3.1 The IoT infrastructure

Fig. 1 The IoT System Architecture

Figure 1 shows the IoT architecture previously presented in [15]. This in-
frastructure is deployed in two different crops at Murcia (South East Spain).
The system monitors the hydro-climatological information of a plot and, de-
pending on the data and models developed, the system can alert farmers to
take appropriate action if necessary. The infrastructure is based on three main
components: (1) hydro-climatological sensors, (2) an intelligent data process-
ing system and (3) a monitoring component. The intelligent data processing
system only performs a preprocessing of outliers values to avoid showing in-
correct values to the farmer.

In this article, we are evaluating the possibility of introducing the com-
putation of intelligent algorithm at the edge of the network. Therefore, the
intelligent data processing system would be physically at the edge or in the
cloud, depending on the requirements set by the users. The algorithm will
allow farmers to obtain a temperature prediction in real time at their plots.

The workflow begins at the sensor level in which the climate data is cap-
tured. The sensor network is the 4H remote control system of Hidroconta2.
Figure 2 shows the IoT node composed of temperature, humidity and wind

2 http://www.hidroconta.com/

8 Miguel A. Guillén et al.

speed sensors. They are connected to the analog inputs available on the IoT
node. In our case we only use the information provided by the temperature
sensor. Sensors provide information every 10 minutes.

Fig. 2 The IoT node (We refer the reader to [15] for insights)

The IoT node has connectivity capabilities. For this study, there are three
IoT nodes where one of them is acting as a gateway to send data to the
cloud via GPRS connection. The slave nodes connect to the gateway using
LoRa technology 3. Moreover, all of them have a 6 volts (V) and 12 amp (A)
battery and a 12V and 5 watts solar panel. Finally, each IoT node has a micro
controller with 256 KB of firmware storage and 96 KB of volatile memory for
data, and it is able to store up to 20.000 records. Therefore, the IoT nodes
store the information in their internal memory for fault tolerance.

Figure 3 shows the different computing schemes under evaluation for air
temperature prediction using LSTM deep learning model. On the one hand,
a centralized computing system has been used where the IoT nodes have sent
the temperature by means of GPRS to the centralized module, in which an
outliers cleaning has been carried out to be able to estimate the temperature
using the LSTM. Also, this module allows to visualize the data (3(a)). The
second scheme presents the computational component within the IoT module.
In this way, the LSTM is executed locally, which allows temperature prediction
without the need to send the information to a centralized module. Finally, the
prediction is sent by GPRS to a module that allows data to be displayed (3(b)).

3.2 The LSTM model for temperature prediction

Analysis of sensor data from IoT infrastructures as the one described above
can provide valuable information for creating new applications to deal with the
emergent problems that are currently unsolved. We are particularly interested

3 https://lora-alliance.org/

Edge-computing evaluation 9

(a) Centralized computing model

(b) Edge computing model

Fig. 3 Two computing models are presented; (a) a cloud-based approach where the com-
putation is carried out in the backend and (b) an edge computing approach where the
computation is carried out in the IoT node.

in air temperature modeling for early identification of frost on crops. In our
previous work, we designed a deep learning model, which offered very good
results in the prediction of this variable. In what follows, we introduce this
model and refer the reader to [14] for insights.

In the Mediterranean area, there is a large diurnal temperature variation,
which implies that the data time series of air temperature is non-linear, con-
taining sensitive information, making very difficult to predict with traditional
autoregressive (AR) models such as ARIMA [2]. As previously explained in
Section 2, the LSTM is type of RNNs which is designed to deal with long-
term dependencies and therefore it has shown very good results for predicting
values in time series. LSTM is usually composed of four layers, interacting in
several ways and the key idea of LSTMs is the cell state which is basically like a
conveyor belt. The information runs through the entire chain, with only some
minor linear interactions. The LSTM can add or remove information to the

10 Miguel A. Guillén et al.

cell state through the Gates. They are an optional way to let information pass
and are based on a sigmoid neural network layer and a point multiplication op-
eration. The sigmoid layer produces numbers between zero and one, describing
how much of each component must pass. An LSTM has three of these gates in
order to protect and control the cell state. Figure 4 shows the interaction of
the three gates in detail, as well as how the LSTM modules exchanges infor-
mation with each other. An LSTM module receives the temperature at time
t as input, which it is processed together with the temperature prediction at
time t− 1, received from the previous LSTM module. Both temperatures are
processed and send to the next module, which also receives the temperature
at t+ 1. As an example, let’s assume that the LSTM receives the temperature
at the instant t, where t = 3.41◦C. After processing this temperature, which is
now considered as the previous temperature (t− 1), it returns as output, the
temperature at the instant t + 1, let’s assume the temperature t + 1=3.05◦C,
that is, the output of the temperature for the next 10 minutes interval would
be 3.05◦C.

Fig. 4 The LSTM scheme developed to deal with the frost prediction. Each LSTM module
interacts with the previous and subsequent one. The schema shows the three gates that
compose each LSTM module, which allow it to remember or delete the information that
passes through them.

The first step in our LSTM is to decide the input layer. This is an impor-
tance decision as it decides what information goes through the cell state. Our
LSTM model has an input sigmoid layer where the air temperature taken from
the sensors goes in (see Figure 3(a)). Moreover a hidden stack LSTM layer that
is made by LSTM blocks that contains four interacting layers. These four neu-
ronal layers are made up of three sigmoids and a hyperbolic tangent, which
have been tested from 50 to 200 neurons. So in each step, the LSTM block has
to decide what information will be stored in the state of the cell. To do this,
the two types of neural networks work differently: the neural layers with sig-

Edge-computing evaluation 11

moids, decide which values of air temperatures have to be updated, while the
neuronal layer of the hyperbolic tangent creates a vector of new values of can-
didate air temperatures that could be added to the state. The two processes
are combined to create a status update. Finally, the output layer gives the
predicted air temperature base on previous air temperatures. The parameters
used have been optimized, such as learning factor (0.001), optimizer (Adam),
activation function (hyperbolic tangent), etc. A more detailed explanation of
the parameters (batch size, number of epochs, number of delay sequences...)
used for the experiments are shown in section 4.1.1.

3.3 CPU and GPU implementation

Two different implementations of the LSTM model previously described has
been developed for this article. Both of them are based on Keras (version 2.2.4)
[16]. Keras is a Python-based open-source neural network library, which is ca-
pable of running on top of many neural network frameworks such as Tensor-
flow [1] or CNTK [34], just to mention a few. Keras contains implementations
of commonly used neural-networks, including convolutional and RNN neural
networks. Moreover, it includes the main building blocks such as objectives,
optimizers, layers, activation functions.

Algorithm 1 LSTM model implementation with Keras on CPU and GPU
//Create a model
model = Sequential()
if gpuMode then

//GPU
for i IN range(stacklstmlayers− 1) do

model.add(CuDNNLSTM(neuron, returnsequences = True))
end for
//Last LSTM layer
model.add(CuDNNLSTM(neuron)) {Last LSTM layer}

else
//CPU
for i IN range(stacklstmlayers− 1) do

model.add(LSTM(neuron, returnsequences = True, activation = activation))
end for
//Last LSTM layer
model.add(LSTM(neuron, activation=activation))

end if
//Last layer of the model
model.add(Dense(output))
//Compile the model for training.
model.compile(loss=loss, optimizer=optimizer)

Algorithm 1 shows the code baselines of our LSTM implementation. First,
we create the model as a linear stack of layers with the Sequential function from
Keras. Then, different layers are added to the model, depending on an input

12 Miguel A. Guillén et al.

parameter which is actually defined by the user. The influence of this parame-
ter in terms of performance will be studied in section 4.2. Moreover, the code
is able to decide weather the user wants to build the model on GPU through
cuDNNLSTM or on CPU through LSTM. cuDNNLSTM is a Keras function
which offer fast LSTM implementation with CuDNN [8]. It can only be run
on Nvidia GPU, with the TensorFlow backend. cuDNN is a GPU-accelerated
library of primitives for deep neural networks created by Nvidia. It provides
provides GPU counterpart versions for standard routines such as forward and
backward convolution, pooling, normalization, and activation layers. LSTM
function is the standard LSTM model defined by Hochreiter [18]. Finally, once
the model has been defined your model, it is compiled with ccompile function.
This creates the structures previously defined by the underlying backend (in
our case TensorFlow 10.11.1) in order to efficiently execute your model during
training.

4 Results and discussion

This section introduces the performance, energy and quality evaluation of our
LSTM model as applied to predict the air temperature of a particular plot
in an IoT infrastructure with edge computing capabilities. First of all, the
experimental environment is described, providing the main metrics, hardware
and software environment and datasets used in the experiments shown below.
Then, the execution time and power consumption of the edge computing plat-
form and the high performance server are shown and discussed in detail before
the quality evaluation of the LSTM to predict air temperature is provided.

4.1 Experimental setup

4.1.1 Metrics

The performance and energy evaluation are carried out by varying the most
relevant parameters of the LSTM model; i.e. number of epochs and number
of neurons. Moreover, this study analyzes the two main stages of this model;
i.e. training and inference, which are carried out in both; an edge computing
platform (Nvidia Jetson Xavier) and a high-performance computing server.
Energy of the system is measured by polling once every second the power
supply of the Jetson architecture with the Watts Up Pro power meter, which
provides individual energy measurements for the server connected to it and
therefore energy measurements refer to the entire node executing the LSTM
model. As for the quality of the results, the prediction of temperature is a
regression task and the metrics measures used to assess the quality of the
results obtained with the LSTM model are the Root Mean Quadratic Error,
the Mean Absolute Error (MAE), the Pearson Correlation Coefficient (PCC)
and Determination coefficient (R2). The results are positive when the RMSE

Edge-computing evaluation 13

and MAE measurements are less than one degree Celsius and PCC and R2

should be the closer to one the more acceptable and suitable the model is. For
both experiments 95% of the data is used to train the model and 5% of the
data is used to perform the inference task.

The optimum parameters used for the experiments are shown in Table 1.
Parameters that do not influence the computational performance of the LSTM
have been validated in previous experiments.

Parameters Values
Number of delay sequences 6
Batch size 32
Learning factor 0.001
Optimizer Adam
Activation function hyperbolic tangent
Number of input neurons 50 - 200
Number of epochs 200 - 3000

Table 1 LSTM parameters used for the different proposed experiments

4.1.2 Datasets

Date Temperature Wind speed Humidity
12/12/2018 7:40 5.72 2.23 3.02

Table 2 Each row’s format collected every 10 minutes. 6 per hour. 144 per day.

The dataset to evaluate the LSTM model is obtained from the IoT system
previously described in Section 3.1. Table 2 shows an example of the data
collected by this architecture. The IoT infrastructure is generating 144 rows
per day (i.e 1 row each 10 minutes) and the data layout is as follows:

– Date: in dd/mm/aaaa format.
– Hour: in hh:mm format.
– Air temperature: decimal number in Celsius degrees.
– Wind speed: decimal number in m/s.
– Relative air humidity: decimal number in %.

Our LSTM model only works with air temperature, which is collected every
10 minutes. For the experimental environment, four different datasets have
been created to test scalability of edge and cloud solutions. They include a
number of air temperature measurements from different periods, including
3,6,12 and 18 months respectively (see Table 3).

14 Miguel A. Guillén et al.

Datasets Num. of instances Start date End date
3-months 12922 01/12/2018 0:09:00 28/02/2019 23:53:00
6-months 25975 01/11/2018 0:00:00 30/04/2018 23:56:00
12-months 52018 01/11/2017 0:05:00 31/10/2018 23:55:00
18-months 86087 01/11/2017 0:05:00 30/06/2019 23:59:00

Table 3 Description of the datasets used in the experiments. It shows the number of in-
stances, the start and end date period of the air temperature data.

4.1.3 Hardware and software environment

Experiments have been carried out in two different GPU-based platforms:

– The former is the edge computing like architecture Jetson AGX Xavier
Developer Kit. It has 4-core ARM v8.0 64-bit CPU, 8MB L2 + 4MB L3,
512-core Volta GPU with Tensor Cores and 16GB 256-Bit LPDDR4x run-
ning at 137GB/sec.

– The latter is called HETEROLISTIC and it is composed of 2 hexa-core
Intel Xeon E5-2650 at 2.20 GHz, 128 GB of RAM, private L1 and L2 caches
of 32 KB and 256 KB per node, and a L3 cache of 32 MB shared by all
the cores of a socket. It includes an Nvidia GTX 1080 Ti(Pascal), with 12
GB and 3584 cores (28 SM and 128 SP per SM).

The software environment is based on gcc 7.4.0 and cuda 10 and Python
3.6.5. The design of our LSTM model is based on Tensorflow 1.10.1 and Keras
2.2.4.

4.2 Evaluation

One of the main goals of this paper is to validate edge computing for com-
plex tasks such as those under the umbrella of deep learning. Computational
devices at the edge are traditionally low-power and therefore have limited
computational horsepower. Recently, more powerful edge computing devices
have emerged, such as those from the Nvidia Jetson family, which include an
accelerator to speed-up parts of the code. Figure 5 shows the performance
difference between a GPU-based code of our LSTM model compared to multi-
threaded CPU counterpart version, executed in the Nvidia Jetson AGX Xavier
for the training stage and varying the number of epochs. Although the GPU
architecture included in Xavier only includes a Multiprocessor with 512-cores,
more than 1.6x speed-up factor is reported. Moreover, the figure 6 shows the
energy in KWh of the two implementations. Xavier’s power consumption is
higher when the GPU is enabled. Actually, the Xavier consumes 10W when
the GPU code is running and only 8W when only CPU code does. However,
the performance difference between these codes makes the GPU code more
efficient compared to the CPU code in terms of energy consumption.

Figures 7 and 8 show the execution time of the proposed LSTM model
to predict the temperature of a plot. Experiments are carried with the GPU

Edge-computing evaluation 15

Fig. 5 Execution time (in seconds) of LSTM training stage with Multicore CPU and GPU
on AGX Xavier, varying the number of epochs for training. The training is carried out with
information of 3 months with 150 neurons.

Fig. 6 Energy (in KWh) on AGX Xavier of LSTM training stage with Muticore CPU and
GPU on AGX Xavier, varying the number of epochs for training. The training is carried out
with information of 3 months with 150 neurons.

16 Miguel A. Guillén et al.

Fig. 7 Execution time (in seconds) of LSTM training stage, varying the number of epochs
for training. The training is carried out with information of 3 and 6 months with 150 neurons.

Fig. 8 Execution time (in seconds) of LSTM inference stage, varying the number of epochs
for training. The inference is carried out with information of 3 and 6 months with 150
neurons.

Edge-computing evaluation 17

version of the LSTM model on the edge computing platform Jetson AGX
Xavier and the high performance computing server HETEROLISTIC. Two
performance figures are provided for main stages of the LSTM model, i.e.
training and inference and, in both scenarios, HETEROLISTIC defeats by
a wide margin Jetson Xavier (peak performance difference of 3.5x speed-up
factor). However, the magnitude of the execution time for each of these stages
is very different. Computationally speaking, the training process is more time-
consuming than the inference process; a difference reaching up to 5 orders
of magnitude and thus different conclusions can be drawn. As previously ex-
plained, the LSTM is designed to be as a part of intelligent component of an
IoT infrastructure. The IoT infrastructure sends information periodically each
10 minutes and therefore, this is time-limit for making instantaneous predic-
tions. Otherwise, the prediction will become obsolete, and the farmer would
not be able to take actions before a temperature drops. Therefore, the execu-
tion time obtained for inference in Xavier is valid for performing instantaneous
prediction on edge computing.

There are scenarios where the deadline to obtain the prediction is, at least,
12 hours or even more. This is the case of frost prediction in places where there
is a large diurnal temperature variation as it is the targeted region (South
East, Spain). Frost prediction is a scenario where the farmer needs to know
the prediction several hours in advance to activate the antifreeze mechanisms.
In addition, climate change makes the weather even more unpredictable and
changing. Therefore, the deep learning models need to be retrained period-
ically. Execution time for the training stage for 3000 epochs and 6 months
dataset is less than 12 hours (i.e. 11,01 hours) in the case of Jetson Xavier,
which is actually the worst of the cases presented in figures 7 and 8. The
execution time is drastically reduced when the dataset size and the number
of epochs are reduced. For instance, it takes less than 6 hours to train with
3-months dataset, running 3000 epochs and less than 1 hour if the training
is performed with 3-months dataset and 200 epochs. Therefore, Jetson Xavier
can offer great performance to enable an autonomous decision support system
for frost prediction, in which both training and inference are performed at the
edge.

Figures 9 and 10 show large-scale (12 and 18 months datasets) training and
inference on both Jetson Xavier and HETEROLISTIC. The training execu-
tion time grows exponentially along with the number of epoch and inference
stays flat.

Finally, the Table 4 shows the scalability of the LSTM when the number of
neurons increases, setting the number of epochs to 2500. The execution time is
not affected too much by increasing the number of neurons. The usage of GPUs
allows high performance data training of the LSTM on both architectures.

18 Miguel A. Guillén et al.

Fig. 9 Execution time (in seconds) of LSTM training stage, varying the number of epochs
for training. The training is carried out with information of 12 and 18 months.

Fig. 10 Execution time (in seconds) of LSTM inference stage, varying the number of epochs
for training. The inference is carried out with information of 12 and 18 months.

Edge-computing evaluation 19

Neurons
Training Process Inference Process

Jetson Xavier GTX 1080ti Speed-up Jetson Xavier GTX 1080ti Speed-up
(col 2 vs. col 3) (col 5 vs. col 6)

50 17660.26 5542.02 3.2 0.3249 0.0930 3.5
100 17523.19 5509.52 3.2 0.3301 0.0945 3.5
150 17693.14 5584.67 3.2 0.3193 0.0963 3.3
200 18502.43 5270.53 3.5 0.3337 0.0979 3.4

Table 4 Execution time (in seconds) of LSTM training and inference stages, varying the
number of neurons for training and setting the number of epochs to 2500. The training is
carried out with information of 3 months.

4.3 Quality evaluation

This section shows the results obtained from the LSTM model designed to
predict the temperature from IoT information. First, we show and analyze the
results of the three cross validation and then we show the results of the test
of 95% for train and 5% for test (considering 24 consecutive hours).

Datasets Epochs RMSE MAE PCC R2

3-months

200 0.7425 0.5377 0.9958 0.9909
500 0.7372 0.5241 0.9954 0.9908
1000 0.7117 0.4953 0.9957 0.9917
1500 0.6969 0.4749 0.996 0.9919
2000 0.7015 0.4831 0.996 0.9917
2500 0.6731 0.451 0.9962 0.9924
3000 0.6173 0.4136 0.9968 0.9936

6-months

200 1.6575 1.0028 0.9826 0.9654
500 1.645 0.9851 0.983 0.9659
1000 1.6136 0.9857 0.9836 0.9672
1500 1.5631 0.9734 0.9846 0.9692
2000 1.5418 0.9726 0.9849 0.9701
2500 1.5332 0.9484 0.9851 0.9704
3000 1.4435 0.8908 0.9869 0.9738

12-months

200 0.7627 0.5866 0.9598 0.9204
500 0.7558 0.5803 0.9605 0.9218
1000 0.7725 0.5946 0.9589 0.9183
1500 0.7777 0.5890 0.9584 0.9171
2000 0.8027 0.6133 0.9558 0.9118
2500 0.8124 0.6228 0.9547 0.9097
3000 0.8068 0.6152 0.9552 0.9109

Table 5 Quality results for 3 months, 6 months and 12 months datasets varying the number
of epochs. RMSE (Root mean square error) MAE (Mean absolute error), PCC (Pearson
correlation coefficient) and R2 (determination coefficient)

After analyzing the results of the computational performance of the models
in their training phase and given the high computational cost with the 18-
month datasets, we have only analyzed the quality of the results for the 3, 6
and 12 month datasets, since the time of the 18 months was excessive, even
the time for the 12-month datasets is considered excessive for an autonomous

20 Miguel A. Guillén et al.

system, but we have considered it necessary to study the quality of the results,
in case the prediction results were very remarkable.

Table 5 shows the error after model inference by setting the number of
neurons to 150 and varying the number of epochs for 3, 6 and 12 month
datasets. The most suitable models are those obtained by the 3-month dataset,
whose value of R2 is 99%. For datasets of 6 and 12 months the value is also
acceptable but it is much better that of the 3-month dataset. Regarding the
error, both RMSE and MAE, there is a remarkable fact and it is the increase
above a Celsius degree of the 6-month dataset. This error increase is due to
the fact that the datasets include summer months, which causes the model to
have noise since the objective is to predict low temperatures. As can be seen,
this error decreases for the 12-month dataset.

Analyzing in depth the results, we see how the smallest error and the most
adjusted model are produced with 3000 epochs configuration. Nevertheless
looking at the difference in time in the experiment of computational perfor-
mance between the configuration of 2500 and 3000 epochs we have an hour of
difference, being slower the training with 3000 epochs. Studying the difference
of error between 2500 and 3000 epochs with the increase of 1 hour, we consider
more satisfactory considering performance vs. quality the result obtained with
2500 epochs. The two best results are highlighted in Table 5.

Once the quality of the results has been studied after varying the number
of epochs, Table 6 analyses the quality of the model by varying the number
of input neurons to the model between 50 and 200. This is done for 3, 6 and
12 month datasets. The behaviour obtained is similar to the variation in the
number of epochs. The 6-month dataset obtains a greater error than the 3-
month and 12-month datasets. The most suitable model taking into account
the determination coefficient R2 is the 3 months dataset with 150 neurons.
Already with 200 neurons the model starts with overlearning and the error
increases slightly.

Datasets Neurons RMSE MAE PCC R2

3-months

50 0.7572 0.5106 0.9952 0.9904
100 0.7425 0.5241 0.9954 0.9908
150 0.6902 0.4771 0.996 0.992
200 0.7158 0.4867 0.9958 0.9914

6-months

50 1.6379 0.9997 0.9831 0.9662
100 1.6498 1.0121 0.9829 0.9657
150 1.5467 0.9672 0.985 0.9699
200 1.5772 0.9803 0.9843 0.9687

12-months

50 0.8466 0.6390 0.9515 0.9019
100 0.8340 0.6335 0.9520 0.9048
150 0.8124 0.6228 0.9547 0.9097
200 0.7904 0.5995 0.9571 0.9145

Table 6 Quality results for 3 months,6 months and 12 months datasets varying the number
of neurons. RMSE(Root mean square error) MAE (Mean absolute error), PCC (Pearson
correlation coefficient) and R2(determination coefficient)

Edge-computing evaluation 21

Therefore in view of the results we can conclude that the data indicate
that it is possible to run the prediction model of the LSTM at the edge, since
with a training of 5 hours, there is enough time between frost and frost, even
if these occur on consecutive days. The most optimal configuration found is to
train the data with the last 3 months collected by the node IoT taking as input
150 neurons and making a maximum of 2500 epochs. With this configuration
the mean quadratic error obtained is less than 0.8 Celsius degrees.

5 Conclusions and Future work

Prior knowledge of low temperatures can help the farmer to anticipate re-
sources and apply frost control techniques early enough to ensure maximum
efficiency. The overall objective is to create an autonomous decision support
system for precision agriculture and, in such hostile environments, connectiv-
ity is limited and there are transient clouds that limit the effectiveness of these
systems. Edge computing provides a framework in which connectivity and se-
curity problems are addressed by computing at the edge of the network, but
today’s edge computing architectures are not able to handle heavy workloads.

This article evaluates edge computing for frost prediction in crops by esti-
mating low temperatures through LSTM deep learning models. LSTM Deep
learning models are computationally heavy workloads, but provide very good
results for predicting time series. Our results demonstrate that novel edge
computing platforms including low-power GPUs such as Nvidia Jetson Xavier
provide an excellent framework for driving edge computing as a real alter-
native to smart applications. Our best LSTM model obtains a deviation less
than 1 degree centigrade, being trained with information of 3 months, 2500
epochs and 150 neurons, and its execution time is less than 5 hours which
allows training before the prediction is required.

As future work, new variables will be incorporated into the LSTM to create
a multivariate LSTM and study the influence of other variables on temperature
prediction, as well as the network adjustment creating a new architecture with
more layers and different activation functions and different learning factors.

Acknowledgments

This work was partially supported by the Fundación Séneca del Centro de Co-
ordinación de la Investigación de la Región de Murcia under Project 20813/PI/18,
and by Spanish Ministry of Science, Innovation and Universities under grants
RTI2018-096384-B-I00 (AEI/FEDER, UE) and RTC-2017-6389-5.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine learning.

22 Miguel A. Guillén et al.

In: 12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), pp. 265–283 (2016)

2. Aliberti, A., Bottaccioli, L., Macii, E., Di Cataldo, S., Acquaviva, A., Patti, E.: A non-
linear autoregressive model for indoor air-temperature predictions in smart buildings.
Electronics 8(9), 979 (2019)

3. Bah, M.D., Dericquebourg, E., Hafiane, A., Canals, R.: Deep learning based classifica-
tion system for identifying weeds using high-resolution uav imagery. In: Science and
Information Conference, pp. 176–187. Springer (2018)

4. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet
of things. In: Proceedings of the first edition of the MCC workshop on Mobile cloud
computing, pp. 13–16. ACM (2012)

5. Boubin, J., Chumley, J., Stewart, C., Khanal, S.: Autonomic computing challenges in
fully autonomous precision agriculture. In: 2019 IEEE International Conference on
Autonomic Computing (ICAC), pp. 11–17. IEEE (2019)

6. Cass, S.: Taking ai to the edge: Google’s tpu now comes in a maker-friendly package.
IEEE Spectrum 56(5), 16–17 (2019)

7. Chen, X., Shi, Q., Yang, L., Xu, J.: Thriftyedge: Resource-efficient edge computing for
intelligent iot applications. IEEE network 32(1), 61–65 (2018)

8. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., Shel-
hamer, E.: cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759
(2014)

9. Farooq, M.S., Riaz, S., Abid, A., Abid, K., Naeem, M.A.: A survey on the role of iot
in agriculture for the implementation of smart farming. IEEE Access 7, 156237–156271
(2019)

10. Gondchawar, N., Kawitkar, R.: Iot based smart agriculture. International Journal of
advanced research in Computer and Communication Engineering 5(6), 838–842 (2016)

11. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
12. Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent neu-

ral networks. In: 2013 IEEE international conference on acoustics, speech and signal
processing, pp. 6645–6649. IEEE (2013)

13. Grinblat, G.L., Uzal, L.C., Larese, M.G., Granitto, P.M.: Deep learning for plant iden-
tification using vein morphological patterns. Computers and Electronics in Agriculture
127, 418–424 (2016)

14. Guillén-Navarro, M.A., Mart́ınez-España, R., Llanes, A., Bueno-Crespo, A., Cecilia,
J.M.: A deep learning model to predict lower temperatures in agriculture. Journal of
Ambient Intelligence and Smart Environments 12(1), 21–34 (2020)

15. Guillén-Navarro, M.A., Mart́ınez-España, R., López, B., Cecilia, J.M.: A high-
performance iot solution to reduce frost damages in stone fruits. Concurrency and
Computation: Practice and Experience p. e5299 (2019)

16. Gulli, A., Pal, S.: Deep learning with Keras. Packt Publishing Ltd (2017)
17. Halawa, H., Abdelhafez, H.A., Boktor, A., Ripeanu, M.: Nvidia jetson platform charac-

terization. In: European Conference on Parallel Processing, pp. 92–105. Springer (2017)
18. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8),

1735–1780 (1997)
19. Kamilaris, A., Prenafeta-Boldu, F.X.: Deep learning in agriculture: A survey. Computers

and Electronics in Agriculture 147, 70–90 (2018)
20. Khosravi, A., Koury, R., Machado, L., Pabon, J.: Prediction of wind speed and wind

direction using artificial neural network, support vector regression and adaptive neuro-
fuzzy inference system. Sustainable Energy Technologies and Assessments 25, 146–160
(2018)

21. Kratzert, F., Klotz, D., Brenner, C., Schulz, K., Herrnegger, M.: Rainfall-Runoff mod-
elling using Long-Short-Term-Memory (LSTM) networks. Hydrol. Earth Syst. Sci. Dis-
cuss., https://doi.org/10.5194/hess-2018-247, in review (2018)

22. Kussul, N., Lavreniuk, M., Skakun, S., Shelestov, A.: Deep learning classification of land
cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing
Letters 14(5), 778–782 (2017)

23. Kuwata, K., Shibasaki, R.: Estimating crop yields with deep learning and remotely
sensed data. In: 2015 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), pp. 858–861. IEEE (2015)

Edge-computing evaluation 23

24. Li, Y., Zhao, K., Chu, X., Liu, J.: Speeding up k-means algorithm by gpus. Journal of
Computer and System Sciences 79(2), 216–229 (2013)

25. Liakos, K., Busato, P., Moshou, D., Pearson, S., Bochtis, D.: Machine learning in agri-
culture: A review. Sensors 18(8), 2674 (2018)

26. Mohammadi, M., Al-Fuqaha, A., Sorour, S., Guizani, M.: Deep learning for iot big data
and streaming analytics: A survey. IEEE Communications Surveys & Tutorials 20(4),
2923–2960 (2018)

27. Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based plant
disease detection. Frontiers in plant science 7, 1419 (2016)

28. Pierpaoli, E., Carli, G., Pignatti, E., Canavari, M.: Drivers of precision agriculture
technologies adoption: a literature review. Procedia Technology 8, 61–69 (2013)

29. Qi, S., Wan, L., Fu, B.: Multisource and multiuser water resources allocation based on
genetic algorithm. The Journal of Supercomputing pp. 1–9 (2018)

30. Rodriguez, S.A.B., Klein, L., Schrott, A.G., Van Kessel, T.G.: Autonomous mobile
platform and variable rate irrigation method for preventing frost damage (2019). US
Patent App. 10/219,448

31. Salman, A.G., Heryadi, Y., Abdurahman, E., Suparta, W.: Single layer & multi-layer
long short-term memory (lstm) model with intermediate variables for weather forecast-
ing. Procedia Computer Science 135, 89–98 (2018)

32. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39 (2017)
33. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for vm-based cloudlets

in mobile computing. IEEE pervasive Computing 8(4), 14–23 (2009)
34. Seide, F., Agarwal, A.: Cntk: Microsoft’s open-source deep-learning toolkit. In: Pro-

ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 2135–2135 (2016)

35. Simoens, P., Xiao, Y., Pillai, P., Chen, Z., Ha, K., Satyanarayanan, M.: Scalable crowd-
sourcing of video from mobile devices. In: Proceeding of the 11th annual international
conference on Mobile systems, applications, and services, pp. 139–152. ACM (2013)

36. Zamora-Izquierdo, M.A., Santa, J., Mart́ınez, J.A., Mart́ınez, V., Skarmeta, A.F.: Smart
farming iot platform based on edge and cloud computing. Biosystems engineering 177,
4–17 (2019)

37. Zaytar, M.A., El Amrani, C.: Sequence to sequence weather forecasting with long short-
term memory recurrent neural networks. International Journal of Computer Applica-
tions 143(11), 7–11 (2016)

38. Zhang, N., Wang, M., Wang, N.: Precision agriculturea worldwide overview. Computers
and electronics in agriculture 36(2-3), 113–132 (2002)

39. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., Zhang, J.: Edge intelligence: Paving the
last mile of artificial intelligence with edge computing. Proceedings of the IEEE 107(8),
1738–1762 (2019)

