

RIGA TECHNICAL UNIVERSITY

Faculty of Electrical and Enviromental Engineering

Pablo Beléndez Pascual

DEVELOPMENT OF A DEMONSTRATION

TEST BENCH BASED ON A PLC AND HMI

BACHELOR’S THESIS

Supervisor

Asoc. Prof. Ingars Steiks

RIGA 2023

 1

TABLE OF CONTENTS

List of symbols 3

Abstract 4

Anotācija [LV] 5

Introduction 6

1. Hardware 7

1.1. PLC 7

1.1.1. Components and functioning 7

1.1.2. Racks 9

1.1.3. History 10

1.1.4. Applications 11

1.2. HMI 12

1.3. TCP/IP configuration 13

1.4. External components 14

2. Software 15

2.1. PLC 15

2.1.1. Ladder diagram 15

 2.1.1.1. Logic functions 16

2.1.2. CX-Programmer initialization 20

2.1.3. CX-Programmer commands 22

2.2. HMI 26

 2.2.1. NB-Designer initialization 26

 2.2.2. NB-Designer commands 28

3. Examples 37

3.1. Digital input 37

3.2. Digital output 38

3.3. Analog input 38

3.4. Analog output 40

3.5. Parking garage 41

3.5.1. Dataflow diagram 42

 2

3.5.2. Hardware setup 43

 3.5.2.1. Components 43

 3.5.2.2. Motor functioning 44

3.5.3. Ladder diagram 46

3.5.4. HMI program 52

Conclusions 68

List of references 69

Datasheets 72

Programs 73

List of figures 74

List of tables 78

 3

LIST OF SYMBOLS

AC – Alternating Current

CPU – Central Processing Unit

DC – Direct Current

GUI – Graphical User Interface

HMI – Human-Machine Interface

I/O – Input/Output

IP – Internet Protocol Address

LAN – Local Area Network

LED – Light-Emitting Diode

mA – Milliampere

No – Number

PLC – Programmable Logic Controller

RAM – Random Access Memory

ROM - Read-Only Memory

V – Volts

VDC – Volts Direct Current

 4

ABSTRACT

This paper examines the development of a test bench based on PLC, HMI, and

external components. This setup will be tested with several software programs in order to

achieve a full interaction with all the components. The present study provides deep learning

about the hardware by analyzing its characteristics and scope in more detail. Also, it provides

a profound knowledge of the software functions, commands, and initialization. Furthermore,

this thesis contains many introductory examples involving digital and analog I/O, such as

turning on a LED and manually controlling the input voltage range. After all, a parking

garage simulation, which involves all the hardware, will be built as a real PLC and HMI

application.

To sum up, this work can be a manual for future students to show how to program this

test bench and get the required knowledge to develop real-world applications.

Key words: PLC, HMI, software, sensors, configuration, input, output, voltage.

 5

ANOTĀCIJA [LV]

Šajā rakstā ir apskatīta testa stenda izstrāde, pamatojoties uz PLC, HMI un ārējiem

komponentiem. Šī iestatīšana tiks pārbaudīta ar vairākām programmatūras programmām, lai

panāktu pilnīgu mijiedarbību ar visiem komponentiem. Šis pētījums sniedz dziļas zināšanas

par aparatūru, detalizētāk analizējot tās īpašības un apjomu. Tas arī nodrošina padziļinātas

zināšanas par programmatūras funkcijām, komandām un inicializāciju. Turklāt šajā darbā ir

iekļauti daudzi ievada piemēri, kas saistīti ar digitālo un analogo I/O, piemēram, gaismas

diodes ieslēgšana un manuāla ieejas sprieguma diapazona kontrole. Galu galā autostāvvietas

simulācija, kas ietver visu aparatūru, tiks izveidota kā īsta PLC un HMI lietojumprogramma,

Rezumējot, šis darbs var būt rokasgrāmata topošajiem studentiem, lai parādītu, kā

programmēt šo pārbaudes stendu un iegūt nepieciešamās zināšanas, lai izstrādātu reālās

pasaules lietojumprogrammas.

Atslēgas vārdi: PLC, HMI, programmatūra, sensori, konfigurācija, ieeja, izeja, spriegums.

	

	

 6

INTRODUCTION

This Project is based on setting up a test bench including a PLC, an HMI and external

components. Recently, PLCs and HMIs are taking a step forward in industrial automation and

control systems, so the idea is to get more information about them. In this thesis some

introductory sections related to PLC and HMI are argued, with the aim of knowing their

definition, history, operation, components, configuration... On the other hand, external

components have been added to the configuration by attaching them to the PLC or through a

circuit board directly connected to the PLC. Thus, these components are able to interact with

the PLC and the HMI thanks to the development of specific software, allowing the user to

simulate real-world applications. It can be shown in the project from basic examples to an

extensive simulation of a car park that can be emulated with the computer, PLC, HMI, or

with all of them together. This work is also a manual for future students who want to improve

their knowledge on this subject. Therefore, it includes the steps to initialise both CX-

Programmer and NB-Designer software, as well as the main commands in the program are

explained with a variety of examples.

Basically, the thesis not only presents a complete project, but also serves as a practical

guide for students interested in expanding their knowledge of PLCs, HMIs and related

software.

 7

1. HARDWARE

1.1. PLC

A PLC is a ruggedized industrial computer designed to perform and control different

automated processes, especially for industrial applications. As a result, PLCs have become a

fundamental tool in order to develop industrial technological processes. In my case, I will test

the “CJ2M” OMRON PLC as seen in the Figure 1.1.

Fig. 1.1. OMRON PLC

1.1.1. Components and functioning

Broadly speaking, a PLC is composed of few basic parts. Despite the fact that they

might look slightly different from various manufacturers, the purpose and scope of each

component are the same.

Firstly, its power supply has to be mentioned, which converts the AC taken from the

outlet to unregulated DC suitable for the PLC and its components. Secondly, the CPU

appears, which is responsible for executing the user-defined program. It processes input

signals, performs logic and arithmetic operations, and sends output signals to the connected

devices. Moreover, related to PLC racks, it is a hardware assembly that house and organizes

the various components of a PLC system. In addition, the I/O Modules are used to connect

the processor to the field devices. So, an input module detects the status of input signals such

as switches, push-buttons, temperature sensors… On the other hand, an output module

 8

controls devices such as lights, relays, motor starters, etc. Commonly, depending on the

specific application, I/O modules may be digital or analog. In Figure 1.2 can be shown a

typical PLC I/O system connection.

(a) (b)

Fig. 1.2. Typical PLC I/O system connection, (a) Analog input module and (b) analog output module

Furthermore, the Communication Interface allows the PLC to communicate with other

devices, such as a computer or an HMI. It may support various communication protocols,

namely Modbus, Profibus, Ethernet/IP, and others [1]. The common types of memory used in

PLCs are ROM, where programs and data are stored, and RAM, where data can uniquely be

read and not written [2]. Finally, PLC is programmed by a program or software configured by

a computer, as a result, it will be loaded into the PLC. It can be shown in Figure 1.3 a PLC

typical function and operation.

 9

Fig. 1.3. Typical function and operation of a PLC

1.1.2. Racks

The rack serves as the backbone of the modular PLC system that holds all the

modules together such as the CPU, Power Supply, Communication Module, I/O Modules,

and additional function modules, in a single frame. PLC racks work by receiving input

signals from sensors and switches, processing them using a program logic that is stored in the

CPU, and then sending output signals to control devices in the system (Figure 1.4).

Fig. 1.4. Different modules that are fitted in the same rack or chassis of the modular PLC system. Image source:

instrumentationblog.com

The four different racks within the PLC are the Digital input, Digital output, Analog

input, and Analog output. Each has its own characteristics and purposes. Generally, an input

module detects the status of input signals such as push-buttons, switches, temperature

 10

sensors, etc. An output module controls devices such as relays, motor starters, LEDs, etc.

Differentiating digital and analog modules, digital I/O are referred to signals that are either

ON or OFF, 1 or 0, true or false, open or closed, so simply signals to process for a PLC. On

the contrary, Analog I/O specifies signals that have a range of values much greater than just 1

or 0. For instance, an analog signal could produce a voltage anywhere in the range of 0 – 10

VDC. The signal could be 2 V, 3 V, 8.5 V, etc.

Each digital rack of our PLC has a set of 16 channels, where external components can

be attached, and a set of 16 LED indicators visually indicating the status of each bit. It is the

same for analog racks, they have a set of 16 channels, to which external components can be

attached, however without LED indicators. On the contrary, depending on in which exactly

bits are these components attached, will be different signal ranges such as 1-5V, 0-10V, or

−10-10V. The first rack starting from the left is the digital input, the second is the digital

output, and then the analog input and analog output [3].

1.1.3. History

The first PLC was developed by Dick Morley and Bedford Associates in the 1960s,

see Figure 1.5. PLC was developed as a solution to replace large banks of hardwired relays

and timers, performing more operations in a fraction of the time. There were several

advantages of using digital programmable controls as their small size and enormous power

efficiency. In addition, the expected lifetime of a system would certainly be much longer, as

solid-state devices, e.g. transistors, last longer. The time required to make repairs or changes

to the system would absolutely decrease, due to the changes being directly downloaded from

the computer to the controller.

In the beginning, the original specifications that were required for the PLC included a

few inputs and outputs, and a small memory. PLCs were simply known by the name Modicon

084 or “Programmable Controller”. Then, the Allen-Bradley company popularized the PLC

name and acronym in the early 1970s. During the following years, more companies entered

the PLC market and the programming software also advanced. From simple keypads

allowing direct text entry, to modern software on operating systems that can allow the user to

program and carefully document an entire process easily [4].

 11

Fig. 1.5. Historical photo showing from left to right: Dick Morley, Tom Bois-sevain, Modicon 084, George

Schwenk, and Jonas Landau. Image source: Automation.com

1.1.4. Applications

In today’s world, PLC systems can be found everywhere, including factories, office

buildings and even controlling the traffic on the streets. PLCs are the very heart of the control

of many critical technologies that most people do not even imagine, as a result, they are so

seamlessly and invisibly integrated into people’s life. Here are some examples of everyday

mechanical systems that are controlled by PLCs [5], see Figures 1.6 and 1.7.

• Road Traffic Signals

• The Automatic Car Wash

• The elevator

• Automatic Doors

• Parking garage

• Conveyor belts

 12

 Fig. 1.6. Road traffic signal. Credits: FREEPIK Fig. 1.7. Conveyor belts. Image source: algevasa.com

1.2. HMI

HMI refers to a dashboard that enables a user to interact with a controller. Basically,

HMI allows users to visualize data about operations and control machinery. Similar to how

you would interact with your air-conditioning system to check and control the temperature in

your house, a plant-floor operator might use an HMI to check and control the temperature of

an industrial water tank, or to see if a certain pump in the facility is currently running [6].

Generally speaking, depending on the type of manufacturer, HMI might be composed

of a screen where it shows some visual information about the software in progress. In my

case I will run the “NB10W-TW01B” OMRON HMI model as seen in Figure 1.8.

Fig. 1.8. OMRON HMI

 13

1.3. TCP/IP connections

This test bench groups together all the involved hardware via Ethernet. Basically,

Ethernet is a widely used technology for local area networks that allows devices to

communicate with each other over a wired connection. The connection between the PLC,

HMI, and computer via Ethernet typically involves establishing a communication network

that allows these devices to exchange data and commands.

Firstly, we should connect the PLC to the Ethernet network by connecting an Ethernet

cable from the PLC’s Ethernet port to an available port on the LAN. In addition, we should

configure the PLC’s Ethernet settings by assigning a unique IP address, 192.168.1.120. The

next step is to connect the HMI to the Ethernet network. This is done by connecting an

Ethernet cable from the HMI’s Ethernet port to an available port on the LAN. Also, we must

configure the Ethernet settings on the Omron HMI to match the network configuration. This

includes assigning a unique IP address, 192.168.1.120, and a subnet mask, 255.255.255.0.

The computer should also be connected to the same Ethernet network as the Omron PLC and

HMI. This is done by connecting an Ethernet cable from the computer’s Ethernet port to an

available port on the LAN. Another possibility might be to connect the computer via WIFI

with the Ethernet network, but in my case, it will be done via Ethernet cable.

Once these steps have been completed, the computer, Omron PLC, and Omron HMI

should be able to communicate with each other via Ethernet. The user can then use the

software on the computer to program and control the PLC and HMI [7], Figure 1.9.

 Fig. 1.9. ETHERNET connection

 14

 1.4. External components

In this project, some external components have been attached to the PLC with the aim

of testing several functions. Some of these components have been attached directly to the

PLC or through a circuit board.	

• Switch: An electrical switch is a device used to establish or interrupt the flow of

electrical current in a circuit. It is commonly used to control the ON/OFF state of a

circuit or to redirect the current to different paths. The type of switch argued in this

thesis is the “Push-button” Switch. This type of switch returns to its original position

when released. It is frequently used for momentary operations, such as turning on a

light or activating a device only while the button is pressed [8].

• Resistor: A resistor restricts or impedes the flow of electric current in a circuit. It has

a specific resistance value that determines how much the resistor resists the flow of

current, measured in ohms. Speaking about the analog resistor, it is used to control the

voltage and current levels in a circuit. [9].

• Motor: A motor is a device that converts electrical energy into mechanical energy in

order to create a rotational movement [10].

• Transistor switch: A transistor switch controls the flow of current through the load by

switching itself on or off.

• Diode: In this thesis, the diode protects the circuit from damaging voltage spikes.

Diodes are placed in series with each of the transistors to block the reverse current

and ensure that it does not flow through the transistors or cause any damage [11].

• Optocoupler: In this project, an optocoupler consists of a LED and a photodetector

housed within a single package. The input side of the optocoupler is connected to the

microcontroller, while the output side is connected to the high-power section of the H-

bridge circuit. The optocoupler provides electrical isolation between these two

sections, preventing noise, voltage spikes, or ground potential differences from

affecting the control circuitry [12].

 15

2. SOFTWARE

2.1. PLC

This thesis argues the creation of PLC software by Ladder logic. A ladder diagram is

the symbolic representation of the control logic used for programming a PLC.

2.1.1. Ladder diagram

A ladder diagram, also known as ladder logic, is a graphical programming language

widely used in PLCs for creating control logic, Figure 2.1. Ladder Diagram is the official

name given in the international PLC programming standard IEC-61131. Ladder diagrams are

composed of rungs, horizontal lines of control logic, and rails, vertical lines at the start and

end of each rung. The symbols used in ladder diagrams represent different electrical and

logical components such as contacts, coils, timers, counters, and other control elements.

Logic expressions are useful to formulate the desired control operations, commonly used in

combination with the inputs and outputs.

Fig. 2.1. Example of ladder diagram software. Image source: automationreadypanels.com

 16

In addition, it is helpful to save each input, output, and expression with an address

notation. This means that these addresses will always refer to each item. The comments are

an extremely important part of a ladder diagram. Comments are displayed at the start of each

rung and are used to describe the logical expressions and control operations being executed in

that rung, or groups of rungs. Understanding ladder diagrams is made a lot easier by using

comments.

Regarding how ladder logic works, it operates in a similar way to relay logic, however

without all the laborious relay control wiring. Basically, input and output devices are hard-

wired to the PLC. On the ladder logic program, the outputs are activated depending on the

status of the input signals With reference to reading ladder logic, the program is read from the

left-hand rail to the right-hand rail and from the first rung to the last rung. Briefly, left to right

and top to bottom. Hence, the rungs contain input symbols that either pass or block the logic

flow. The result of the rung is expressed in the last symbol, known as the output.

On the other hand, mentioning the binary concept is essential within this topic.

Normally, PLCs operate on the binary concept, for instance, True or False, 1 or 0, ON or

OFF, High or Low, Yes or No… In a PLC, binary events are expressed symbolically using

ladder logic in the form of a normally open contact (NO) and normally closed contact (NC).

The event associated with a normally open contact (NO) can be TRUE or FALSE. When the

event is TRUE then it is highlighted green and the logic flow can move past it to the next

logic expression, such as the current flow in an electric circuit when a switch is turned on. On

the contrary, the closed contact (NC) functions exactly in the same way, nevertheless, it is

basically the opposite state of an event that occurs [13].

2.1.1.1. Logic functions

Ladder logic has several logic functions. The six basic, yet essential, logic functions

are NOT, AND, OR, NAND, NOR, and XOR. So, depending on how we set up the diagram,

we will achieve a huge variety of software programs with different highlighted inputs and

outputs. Furthermore, we will be fully able to program the majority of automation control

requirements.

 17

NOT GATE (Figure 2.2, Table 2.1)

Fig. 2.2. Example of NOT function

Table 2.1.

NOT binary input and output

Input A Output

0 1

1 0

AND GATE (Figure 2.3, Table 2.2)

Fig. 2.3. Example of AND function

Table 2.2.

AND binary input and output

Input A Input B Output

0 0 0

1 0 0

0 1 0

1 1 1

The output will be activated only if both switches are activated simultaneously.

 18

OR GATE (Figure 2.4, Table 2.3)

Fig. 2.4. Example of OR function

Table 2.3.

OR binary input and output

Input A Input B Output

0 0 0

1 0 1

0 1 1

1 1 1

The output will be activated if any of the switches is energised.

NAND GATE (Figure 2.5, Table 2.4)

Fig. 2.5. Example of NAND function

 19

Table 2.4.

NAND binary input and output

Input A Input B Output

0 0 1

1 0 1

0 1 1

1 1 0

Basically, it is the inversion of the AND gate.

NOR GATE (Figure 2.6, Table 2.5)

Fig. 2.6. Example of NOR function

Table 2.5.

NOR binary input and output

Input A Input B Output

0 0 1

1 0 0

0 1 0

1 1 0

The output will be true only if both inputs are false, the opposite of the OR gate.

 20

XOR GATE (Figure 2.7, Table 2.6)

Fig. 2.7. Example of XOR function

Table 2.6.

XOR binary input and output

Input A Input B Output

0 0 0

1 0 1

0 1 1

1 1 0

The output will be true only if one of the inputs is true.

2.1.2. CX-Programmer initialization

In my case, I will run the project in CX-Programmer, which is wholly integrated into

the CX-One software suite. It is the programming software for all of Omron´s PLC series.

Before starting with the program, it is required to configure the PLC. This can be done within

the pop-up window “NewPLC1[CJ2M] Offline” (Figure 2.8) [14].

Then, within “Network Settings”, it is necessary to set the IP address in order to

connect the computer to the PLC via Ethernet (Figure 2.9).

After that, it is required to configure the main racks within “IO Table and Unit Setup”,

as can be seen in Figure 2.10.

 21

Fig. 2.8. “NewPLC1[CJ2M] Offline” setting

Fig. 2.9. IP address setting

Fig. 2.10. Racks configuration

 22

Later, while building the program, it can be tested either in simulation or in the PLC.

It is required to compile the program (Figure 2.11) and afterward, if it has been successful,

run it online (transfer to PLC) or through simulation.

Fig. 2.11. Compiling the program

2.1.3. CX-Programmer commands

 CX-Programmer provides a set of commands and instructions in order to create ladder

logic programs. These are the most commonly used commands:

- Inputs

Inputs can appear as opened or closed contact. When it is open, the contact

will be turned on when the input is activated. In contrast, closed contacts will be

turned ON when the input is deactivated, shown in Figure 2.12. They are defined from

0.00 to 0.99, in defiance of our PLC will be able to show only from 0.00 to 0.15 [15].

Fig. 2.12. Input command

 23

- Outputs

Outputs might also appear as opened or closed coils, however, they will

commonly exist as opened (Figure 2.13). They will be either energised or not

depending on the input status. They are defined as 1.00, 2.00, 100.07, 200.12, and

whatnot. However, our PLC will only be able to show from 1.00 to 1.15.

Fig. 2.13. Output command

- Timers

Timers are an instruction that permits counting a specific time while the input

connected to it is activated. Moreover, when the time is over, this timer will be

energized and, an input with this timer address can be used to turn on other

instructions. As can be seen in Figure 2.14, timers are added, for instance, as TIM T0

#800, where T0 is the timer number (T0, T1, T2, T3…) and #800 is referred to as the

millisecond.

Fig. 2.14. Timer instruction

- Reversible counter

A reversible counter is a counter command with the aim of adding up or down

a set value. It has three connections, the upper one increases by one meanwhile the

middle one, decreases by one. The other one is a reset. As can be shown in Figure

2.15, a reversible counter can be set as New Instruction – Find Instruction –

CNTR(012). The first number is the counter address and the other refers to the set

value.

 24

Fig. 2.15. Reversible counter instruction

On the other hand, a normal counter, which only counts either up or down, can

be configured too.

- Differentiate UP/DOWN inputs

Basically, these differentiated inputs allow us to turn on a particular output

momentarily, so this output will be no longer activated. Differentiate UP inputs will

be energised when these inputs go from OFF to ON, contrary to differentiate DOWN

inputs. This command is commonly used for “Push-button” switches (Figure 2.16).

Fig. 2.16. Differentiate UP/DOWN inputs

- Keep function

Keep functions operate as the relay latches, latching relay, which is set by S

and reset by R. When S is in the ON state, operating instructions specified output will

remain in a state of ON and ON until reset, regardless of whether S is ON or OFF.

Frequently utilized to keep the ON state in differentiated inputs, as shown in Figure

2.17.

 25

Fig. 2.17. Keep instruction

- Move function

The move function is used to move a value from one memory location to

another. It is commonly used in ladder logic programming to transfer values between

data registers, timers, counters, and other memory locations. It can also be used to

copy values from input devices, such as switches or sensors, to output devices, such as

motors or lights. "Source" represents the memory location from which the value is to

be moved, and "Destination" represents the memory location where the value is to be

moved (Figure 2.18).

Fig. 2.18. Move instruction

- Comparison data function

Comparison instructions in PLC are used to test pairs of values to condition

the logical continuity of a rung. As an example, shown in Figure 2.19, suppose an

instruction is presented with two values. If the first value is less than the second, then

the comparison instruction is true.

 26

Fig. 2.19. Comparison data instruction

2.2. HMI

This thesis argues the creation of HMI software. It is a type of software used to

control and monitor industrial processes and machines. It provides a GUI that allows users to

interact with the machines and systems in a user-friendly and intuitive way.

2.2.1. NB-designer initialization

In my case, I will run the project in NB-DESIGNER, which is wholly integrated into

the CX-One software suite. It is the programming software for many of Omron’s HMI series.

Firstly, as can be seen in Figure 2.20, the user has to display the PLC and the HMI by

selecting his own manufacturer. In this case, “HMI NB10W-TW01B” and “PLC OMRON

CJ/CS/NJ”. As we are connecting the setup via Ethernet, this must also be displayed. These

are the IP addresses for the HMI and PLC distinctively [16].

Fig. 2.20. Screen where communication between HMI and PLC is set

 27

On the other hand, we should set the IP addresses and Port No of the PLC and HMI,

including the HMI Subnet Mas (Figure 2.21).

Fig. 2.21. IP address and Port No setting

Eventually, by pressing “HMI0” within the “Screens Preview”, we will be ready to

start working. The program can be tested either in simulation or in the HMI. It is required to

compile the program and afterward, if it has been successful, download it (transfer to HMI)

or through “Offline Test”. In Figure 2.22 can be shown the required settings in order to

transfer the program to the HMI.

Fig. 2.22. Program compilation

 28

2.2.2. NB-Designer commands

After finishing with all the laborious initialization, the basic commands and functions

will be explained. As we can see in Figure 2.23, this is how the program looks like.

Fig. 2.23. NB-Designer main screen

On the right, “Screens Preview”, all the screens are displayed. It can be seen that from

0 to 9, including both screens, are related to preconfigured screens. Most likely we will add

new screens instead of using those, however in some programs is also common to use screen

0, “Frame0”.

Firstly, in order to add a new screen, the user should press the right button on

“HMI0”, and then, add and configure the new screen image. This screen can be designed

within “properties”, like changing its name or background color (Figure 2.24).

Fig. 2.24. Adding a new screen

 29

Secondly, to create a title or add notes, several rectangles with some text inside can be

added from the menu bar on the top figure (Figure 2.25).

Fig. 2.25. Adding text

When the user has created several screens, perhaps is wondering how to change from

one screen to another within the simulation. So, the programmer can add the button “Function

key”, select therefore which screen wants to appear on by pressing this button (Figure 2.26).

Fig. 2.26. Function Key property

On the other hand, with the aim of selecting which screen will be the initial, it can be

set by pressing HMI0 and choosing the screen that suits better, as seen in Figure 2.27.

 30

Fig. 2.27. PT property

Regarding input and output buttons, can be added within “Parts”. Basically, when the

developer wants to add an input button, he can choose between “Bit Button” or “Bit Switch”,

both are quite similar. These input buttons have the same function as CX programmer and

PLC inputs. As a result, they have the possibility to be linked with the PLC and the CX-

programmer software by setting the same address. This means that activating this kind of

input button in the HMI screen will also activate a PLC input and a ladder diagram input bit,

and viceversa. If the user has in mind making a program only involving the HMI, the variable

LB with whatsoever address should be set (Figure 2.28).

On the contrary, with the aim of linking ladder diagram W input bits with the HMI

inputs, it can be configured by setting the W_bit variable and the same address as the bit in

the ladder software, as seen in Figure 2.29.

 31

Fig. 2.28. Bit Button property

Fig. 2.29. Bit button property

Continuing with the input properties, the input button can be configured as a set, reset,

alternate, or momentary. Generally, the set is referred to exclusively turn on a bit, and the

 32

reset function is solely to turn it off. Otherwise, the alternate function will turn on/off the bit

when pressing the button, and the momentary will work as a switch, the bit will be activated

while the button is being pressed (Figure 2.30).

Fig. 2.30. Bit Button property

Moreover, to select a symbol for each state, as seen in Figure 2.31, can be chosen

within the NB-Designer graphics or imported from the internet. The last option allows the

user to design specific buttons.

Fig. 2.31. Bit Button property

 33

Later on, the outputs buttons are commonly used to visualize the inputs interactions.

As a result, an output can be energised or de-energised by turning on manually an input

button in the HMI. These output buttons can be found in the program as “Bit lamp”. In

addition, they have the possibility to be linked with the PLC and the CX-programmer

software by setting the same address. This means that when a PLC output or ladder diagram

output bit is activated, these HMI output buttons will be activated too.

In Figure 2.32 it can be shown that the switch 0.05, attached to the PLC, has been

linked with an HMI output button. So, the action of activating this PLC switch will be shown

in the HMI output button.

Fig. 2.32. Turning on a HMI output button by pressing a switch attached to the PLC

Overall, the output configuration is practically the same as the inputs buttons,

however, in Figure 2.33 it can be seen that there are different types of bit lamps. This fact can

help to hide some outputs while they are not turned on, and vice-versa. Typically use in the

automated parking program to hide the car and barrier images.

 34

Fig. 2.33. Bit Lamp property

As an example of all of that, in Figures 2.34 and 2.35 it can be seen an input with the

address “LB 120”, which is going to turn on an output with the same address.

Fig. 2.34. Example of an input and output with the same address

 35

Fig. 2.35. Example of turning on an output by pressing the input button

Additionally, using the command “Number display”, has the possibility to show

visually a number in the HMI screen. This value can be related to a PLC counter, PLC timer,

analog output… If the user has the intention to link it with some analog input, variable “D”

with its address must be configured. Utilizing commonly “BIN” as data format. On the other

hand, variables “C” and “T” should be used for counters and timers, respectively. Also, they

commonly operate in the data format “BCD”. It can be shown in Figure 2.36.

Fig. 2.36. Number Display property

 36

In Figure 2.37, we can see the possibility to choose the storage format. Also, a

minimum and maximum value can be configured, which can help to display an analog input.

Fig. 2.37. Number Display property

 37

3. EXAMPLES

3.1. Digital input

First off, in order to turn on a PLC digital input, it is necessary to display an addressed

input in the ladder diagram software, as seen in Figure 3.1, and link it with some other

commands. In this example, an input has been linked with an output [17].

Fig. 3.1. Input linked with an output by ladder logic

 Then, as shown in Figure 3.2, we can turn it on by activating the switch “0.01”

attached to the PLC or directly activating the input from the ladder program.

Fig. 3.2. Turning on the 0.01 input

This fact leads us to turn on the led 1 on the digital input rack, as shown in Figure 3.3.

Fig. 3.3. Turning on the LED 1

 38

3.2. Digital output

In order to turn on a PLC digital output, it is required to display an input with an

address in the ladder diagram software, as seen in Figure 3.4. Afterward, this output should

be linked to an input, and thus, when the input is on, the output will be too.

Fig. 3.4. Turning on the 1.04 output

This fact leads us to turn on the led 4 on the output rack, shown in Figure 3.5. In

addition, by attaching an external component to the pin 4, this device will be also activated.

For instance, if a motor is attached, will rotate while this pin is activated.

Fig. 3.5. Turning on the LED 4

Later on, once the user has improved his PLC programming skills, he might be able to

program big rungs grouping together different inputs, outputs, and commands. So, many

LEDs can be involved, and hardware such as switches, motors…

3.3. Analog input

An analog resistor has been implemented as an example of analog input. So basically,

by connecting the wire in specific bits, we will be able to regulate the input voltage between

0-10V. As seen in Figure 3.6, with “MOV(021)” we will be able to set the input voltage [18].

 39

Fig. 3.6. Example of analog input with MOV(021) instruction

As a result, we will be able to achieve a decimal and hexadecimal value by changing

the analog resistor value attached to the PLC. These numbers are directly related to the

voltage. Once we have got the range of values, by using a “Comparison” we will manage to

set a threshold between the low voltage and high voltage (Figure 3.7). These outputs will be

implemented in the parking garage program.

Fig. 3.7. Example of Analog Input with Comparison Instruction

On the other hand, depending on the voltage and the input number, the input

conversion value and conversion data holding addresses will change. As seen in Figure 3.8,

there are different input values range depending on the bits where the component is attached.

Moreover, it might be some type of error referred to the hexadecimal and decimal voltage

range, which means that these range of numbers might be slightly lessened.

 40

Fig. 3.8. Analog Input Terminal Block Arrangement

3.4. Analog output

A multimeter might be implemented as an example of analog output. Also with

“MOV(021)” we might be able to set the output voltage.

As a result, we will be able to introduce a decimal value either in the ladder diagram

or by changing the analog resistor value attached to the PLC, which also will be converted to

hexadecimal. So, the multimeter will display the voltage set through the analog resistor or

ladder diagram.

On the other hand, depending on the voltage and the output number, the output

conversion value and conversion data holding addresses will change. There are different

output values range depending on the bits where the component is attached. Moreover, it

might be some type of error referred to the hexadecimal and decimal voltage range, which

means that these range of numbers might be slightly lessened.

 41

3.5. Parking garage

This thesis argues a demonstration test bench based on the hardware and software

explained before. So, a real example that includes the PLC, HMI, computer, and external

components will be explained. This real example can be tested separately with the PLC,

HMI, or computer, however, it can be also tested by combining two of them or even three.

• The program consists of a parking garage simulation where basically cars enter or

exit.

• Consists of two sensors, two ticket machines, and the barrier.

• In the entrance process, the car has to take the entrance ticket in order to enter the

parking garage. Then, the car will go towards the barrier, and sensor 2 will detect it

and will make the barrier up. Later on, the car will go through the barrier and after

that, sensor 1 will detect the car getting in and will make the barrier down.

• In the exit process, the car has to return the entrance ticket in order to get out of the

parking garage. Then, the car will go towards the barrier, and sensor 1 will detect it

and will make the barrier up. Later on, the car will go through the barrier and

afterward, sensor 2 will detect the car getting out and will make the barrier down.

• In case the car finally regrets going through the barrier after being detected by the

sensor, an 80 seconds timer security has been implemented in order to make the

barrier down automatically.

• The barrier needs different voltages in order to go either up or down. It will need a

low voltage to make the barrier down and will be necessary a high voltage in order to

make the barrier up.

 42

3.5.1. Data flow diagram

Fig. 3.9. Data flow diagram

 43

3.5.2. Hardware Setup

3.5.2.1. Components

Figure 3.10 shows the different components that have been taken into account.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 3.10. (a) Switch 0.11 digital input “Take ticket button”. (b) Switch 0.01 digital input “Give ticket button”.

(c) Switch 0.05 digital input bit “Sensor 2”. (d) Switch 0.09 digital input bit “Sensor 1”. (e) Analog resistor 0-

10V “Barrier voltage”. (f) DC motor 1.10 and 1.12 digital output bits “Barrier”. (g) Contact Form of the Switch

Differentiated up. (h) Contact Form of the Switch Differentiated down

 44

3.5.2.2. Motor functioning

The “H-bridge” electronic circuit has been set up to achieve the motor's rotation in

both directions [19]. Basically, an H-bridge is a commonly used integrated circuit that can be

used to control the direction of rotation of a DC motor. It is called an "H-bridge" because the

arrangement of the switching elements looks like the letter H. Consists of four switches,

which can be controlled independently to control the direction of current flow through the

motor. To understand how the H-bridge works, imagine that you have a DC motor with two

leads, labeled A and B. The H-bridge has four transistors, labeled VT1, VT2, VT3, and VT4.

When a voltage is applied to VT1 and VT4 through the U1 optocoupler, current will flow

from lead A of the motor to the ground, causing the motor to turn in clockwise. Conversely,

when a voltage is applied to VT2 and VT3 through the U2 optocoupler, current will flow

from lead B of the motor to the ground, causing the motor to turn anti-clockwise.

As it can be shown in Figure 3.11, X1 is related to pin 12 of the PLC digital output

and X2 to pin 10. When they are activated, they will send 24V from the PLC to its respective

optocoupler. On the other hand, X3 is referred to as the PLC ground. The circuit can be

shown in Figure 3.12.

Fig. 3.11. H-Bridge circuit simulation

 45

Fig. 3.12. H-Bridge circuit setup and voltage applied

In Figure 3.13, it can be shown when each component is either ON or OFF.

Fig. 3.13. ON/OFF diagram

 46

3.5.3. Ladder diagram

In this section, I am explaining the ladder diagram software that I have developed for

the automated parking garage process.

First of all, the car has to be started and ready to get into the parking garage. As we

can see in Figure 3.14, the traffic light is green “1.03”, which allows the car to move forward.

It will be always green if the red traffic light, address 1.02, is OFF. In the PLC, pin 3 located

on the output rack, will be illuminated.

Fig. 3.14. Green traffic light, cars are allowed to continue

After that, related to the entrance, the car must take a ticket to enter the parking

garage. So, there is attached to the PLC a switch that simulates the entrance ticket machine.

This switch, address 0.01, is differentiated UP and will activate bit W0.01, which means that

the ticket has been taken. In addition, the software will be reset when T2 is turned on,

referring to the time while the barrier is going down, and hence, the process will be

completed, as it will be shown below (Figure 3.15).

The pin 1 on the input rack will be temporarily illuminated, as a result of turning on

the switch 0.01.

On the other hand, the W0.13 bit, “HMI take the ticket”, and the W0.09 bit, “stop the

process”, are related to the HMI simulation.

Fig. 3.15. The car takes the entrance ticket in order to start the process

 47

Once the ticket has been taken, the traffic light will be automatically red, which will

not permit other cars neither enter nor exit (Figure 3.16). In the PLC, pin 2 located on the

output rack, will be illuminated.

Fig. 3.16. Traffic light turn into red, cars are not allowed to continue

Later, the car steers towards the barrier, and a sensor detects it. A switch differentiated

UP attached to the PLC will simulate this sensor. Furthermore, this sensor 2, address 0.05,

will energise the bit W0.00, referred to as the entrance mode. Also, T2 appears with the same

performance as we have seen before (Figure 3.17).

Fig. 3.17. Sensor 2 detects the car going toward the barrier

The pin 5 on the input rack will be temporarily illuminated, as a result of turning on

the switch addressed as 0.05.

On the other hand, the W0.10 bit is the simulation of sensor 2 in HMI programming.

Once Entrance mode is activated, an eighty seconds security timer will start running.

In case no car enters through the barrier after this time, the barrier will be automatically

down. Therefore, if the car somehow regrets and decides not entering into the parking garage

anymore, this timer allows certainly lower the barrier and finish the process. It can be shown

in Figure 3.18.

 48

Fig. 3.18. Eighty seconds security timer starts running

The pin 0 on the output rack will be illuminated during this time, addressed as 1.00. It

would be the same process if the car were exiting. In that case, the exit mode bit, W0.03

would be turned on, instead of the Entrance bit W.00.

At the same time, after activating the Entrance Mode, it can be shown in Figure 3.19

that sensor 2 and Entrance Mode both will activate bit W.0.04 “Barrier Up”. Then, the rung

will be reset when T3 is turned on, referring to the time while the barrier is going up, and

hence, the up process will be completed, as it will be shown below.

Fig. 3.19. Barrier up mode is activated

Alternatively, if we were in the Exit mode, which I will explain afterward, bit W0.03,

referred to as Exit mode, and bit 0.09, related to the sensor 1, would make bit W0.04 “Barrier

UP” energised.

On the other hand, the W0.10 and W0.11 bits both are the simulation of the sensors in

HMI programming.

 49

In this stage, it is necessary to make the voltage high, so the barrier will be ready to go

up. As a result, a twenty seconds timer will start to count and a motor attached to the PLC, as

an output, will rotate in a clockwise direction. The barrier will be rising while T3 is running.

When T3 is over, the barrier will be totally up, and also the motor will stop rotating. It can be

shown in Figure 3.20. After all, the barrier will be completely up, and the car will go through

it.

Fig. 3.20. The barrier is raising and the motor rotating

Consequently, when the car went through the barrier, it will steer towards the

entrance. At this point, a sensor will detect the car driving away, simulated by a switch

differentiated UP. Furthermore, the entrance mode bit and this sensor 1, address 0.09, will

energise the bit W0.05, referred to as the barrier down mode. Also appears T2 with the same

performance as we have seen before, Figure 3.21.

Fig. 3.21. Sensor 1 detects the car after it has gone through the barrier, and “Barrier Down” mode is activated

 50

Alternatively, if we were in the Exit mode, which I will explain afterward, bit W0.03,

referred to as Exit mode, and bit 0.05, related to sensor 2, would make bit W0.05 “Barrier

Down” energised.

On the other hand, the W0.10 and W0.11 bits both are the simulation of the sensors in

HMI programming.

Currently, it is necessary to make the voltage low, so the barrier will be ready to go

down. As a result, a twenty seconds timer will start to count and a motor attached to the PLC,

as an output, will rotate in a counterclockwise direction. When T2 is over, the barrier will be

down and also the motor will stop rotating. It can be shown in Figure 3.22. After all, the

barrier will be entirely down, and the process will be totally finished and reset.

Fig. 3.22. Barrier is going down and the motor rotating

However, speaking about the case when no car enters, which we have discussed

before. It has been implemented the bit W0.06 dubbed Security Barrier. So, we should take a

look at Figure 3.23, when the security timer is done, T0. Therefore, when T0 is ON, and at

once, T2 and W0.05 both are OFF, the Security Barrier down mode will be switched ON,

W0.06. This command is reset when W0.01, “ticket has been taken” mode, is turned off

again.

Fig. 3.23. “Security Barrier” settings

 51

All of this means that, as no car has entered after the security time, it is supposed that

the car has moved back. For that reason, it is required to make the barrier down and finish the

process. Lately, the barrier will go down as explained before.

Additionally, with the aim of controlling how many cars there are within the parking

garage, it has been added a counter. This counter will add up or down whether a car enters or

exits, and thus, it will show the number of parking places available at the moment. In this

example, the parking garage contains fifty parking places.

Basically, either the entrance mode is ON, W0.00, or the exit mode, W0.03, the

counter will count in one way or another. Moreover, the bit “Barrier Down”, W0.05, must be

energised to claim that the car has truly gone through the barrier, shown in Figure 3.24.

Fig. 3.24. Cars counter

After mainly explaining when the car enters the parking garage, when we refer to the

exit mode, some slight differences have to be mentioned. In this case, the car must give the

ticket that previously took entering the parking garage. So, a switch that simulates the exit

ticket machine is attached to the PLC. Contrary to the “Take ticket” switch, this new switch

with the address 0.11, is differentiated Down and will activate bit W0.02, which means that

the ticket has been given. In addition, T2 appears with the same performance, as we have

seen before. The pin 11 on the input rack will be temporarily illuminated due to turning on

the switch 0.11, Figure 3.25.

On the other hand, the W0.14 bit, “HMI give the ticket”, and the W0.09 bit, “stop the

process”, are related to the HMI simulation.

 52

Fig. 3.25. The car gives the ticket in order to start the process

Later on, similar to the Entrance mode activation, sensor 1, addressed as 0.09, will

turn on the exit Mode, bit W0.00. Also T2 appears with the same performance, seen

previously. The pin 9 on the input rack will be temporarily illuminated due to turning on the

switch addressed as 0.09, Figure 3.26.

On the other hand, the W0.11 bit is the simulation of the sensor in HMI programming.

Fig. 3.26. Sensor 1 detects the car going toward the barrier

3.5.4. HMI program

In this chapter, I am explaining the HMI software that I have developed for the

automated parking garage process. The program comprises three areas (Figure 3.27), as

follows:

o MANUAL SETTING

o PLC SETTING

o HMI SETTING

 53

Fig. 3.27. Main screen

Speaking about the “Manual Setting”, the parking garage can be simulated manually

by the user. This means that there will not be any interaction neither with the PLC nor with

the computer, only the HMI screen will take part.

When the user will press the button, it will emerge another screen. Within this, exists

the possibility to simulate either the ticket action or the entrance and exit process. Also, a

screen with some cars from the parking and their number plate has been added. It can be

shown in Figure 3.28.

Fig. 3.28. Manual Setting screen

 54

Appertaining to the ticket screen, firstly the user will be able to choose the ticket´s

machine language. There is a huge variability of languages, shown in Figure 3.29, such as

Latvian, Russian, Spanish, English, German, and French.

After the user has chosen the language which suits better for him, the user will be

automatically redirected to the next step (Figure 3.30). In this stage, the customer should

choose between taking or giving the ticket, as an entrance or exit process respectively.

Fig. 3.29. Select the language screen

Fig. 3.30. Ticket process

 55

Later on, if the customer selects “Take ticket”, another screen will come out. In this

one, the buyer will be asked for paying 1,50 $ by card or cash. Then, after paying, the ticket

will be ready to be taken and thus, the entrance process will continue. It can be seen Figure

3.31.

On the other hand, about giving the ticket to get out of the parking garage, the steps

are practically the same, seen in Figure 3.32.

Fig. 3.31. “Take ticket process”

Fig. 3.32. “Give ticket” process

 56

After all, the user will return to “Manual Setting” screen by pressing the “Return”

button (Figure 3.33). In this phase, with the aim of simulating the process, the button

“Process” should be pressed. There, it can be chosen either the entrance or the exit mode, as it

can be shown in Figure 3.34.

Fig. 3.33. Car process

Fig. 3.34. Entrance process

As can be seen in Figure 3.34, if simulating the entrance process, the user will be able

to turn on manually the barrier and the sensors, imitating the entrance action.

 57

Alternately, the exit mode is analogous (Figure 3.35).

Fig. 3.35. Exit process

Moving to the other section, “PLC setting”, it is referred to show visually the PLC

process. In this case, the user will control the external components, which are attached to the

PLC, and the entire process will be shown on the HMI screen. In this section, the PLC, HMI

and computer will take part, however the HMI will solely have the function of showing the

process.

 After entering this “PLC setting” section, it will be asked whether the user wants to

visualize the entrance or exit process, as it can be shown in the Figure 3.36.

Fig. 3.36. PLC setting screen

 58

First of all, speaking about the entrance action, the HMI screen will show how the car

enters the parking, with all the PLC hardware involved. Then, going through this input

section, you can see in Figure 3.37 the program without being running. You can easily see all

the addresses of each component. On the other hand, some outputs are superimposed, with

the aim of simulating different stages. For example, the motor and the barrier appear in

different positions. Also, some timers such as the time while the barrier is going up and

down, and the timer security, has been implemented. In addition, the car counter.

Fig. 3.37. Entrance process with addressed I/O

After transferring the program to the HMI, the screen will simulate the first stage of

the process, as can be seen in the Figure 3.38. At this moment, the car has not taken the ticket

yet, and the traffic light is completely green.

In addition, appears two numbers that reflect the required voltage that needs the

barrier to go either up or down. The number at the top “Barrier Voltage” shows the range of

voltage, between 0-10 V, however, it is displayed in hexadecimal, which is between 0 and A.

Moreover, “Barrier Voltage hexadecimal” is related to the hexadecimal number converted

from the decimal voltage range.

 59

Fig. 3.38. Entrance process first stage

Subsequently, the car will take the ticket by pressing a switch attached to the PLC.

Afterward, the HMI screen will show that the traffic light has turned into red. Also, the image

of the car will disappear as a result of the car going toward the barrier, Figure 3.39.

Fig. 3.39. The car takes the ticket in order to start the process

 60

In the next phase, sensor 2 will detect the car approaching the barrier, simulated in the

PLC by pressing an attached switch. As we can see in the Figure 3.40, this sensor will

energise by turning into green. Moreover, the car’s image will emerge on the screen.

Fig. 3.40. Sensor 2 detects the car approaching and the security timer starts running

In the Figure 3.41, it can be shown the rising barrier process. In order to raise the

barrier, the user has to regulate the required voltage by adjusting the analog resistor attached

to the PLC. This adjustment will be shown on the HMI screen by changing the numbers

related to the voltage. Once the analog resistor has been adjusted to a high voltage, the

barrier’s image will change. Additionally, as a result of rising the barrier, it will emerge a

motor image that simulates its rotation and consequently, the car will move forward.

 In the Figure 3.42, the barrier’s image changed as a consequence of the barrier being

completely up. The motor disappeared due to its rotation is over. Also, the car vanished

because it is going through the barrier.

 61

Fig. 3.41. High voltage adjustment, the barrier goes up and the motor rotates

Fig. 3.42. The barrier is completely up and the car goes through it

 62

In the next stage, sensor 1 will detect the car after going through the barrier, simulated

in the PLC by pressing an attached switch. As we can see in the Figure 3.43, this sensor will

energise by turning into green. Moreover, the car’s image will emerge on the screen.

Fig. 3.43. Sensor 1 detects the car after it went through the barrier

In the Figure 3.44, it can be shown the process of making down the barrier. In order to

achieve this, the user has to regulate the required voltage by adjusting the analog resistor

attached to the PLC. This adjustment will be shown on the HMI screen by changing the

numbers related to the voltage. Once the analog resistor has been adjusted to a low voltage,

the barrier’s image will change. Additionally, as a result of the barrier going down, it will

emerge a motor image that simulates its rotation and consequently, the car will move

forward. This image of the motor will be different from the one seen before, simulating the

counterclockwise rotation.

In addition, it has been set by the analog resistor a low voltage, but not the lowest,

with the aim of showing other numbers apart from 0.

 63

Fig. 3.44. Low voltage adjustment, the barrier goes down and the motor rotates

Then, the process will be reset to the beginning, but the counter will add up to one car.

On the contrary, in order to simulate the exit process, it is necessary to press the exit button

shown in the Figure 3.45. Finally, the HMI screen will show how the car exits the parking,

with all the PLC hardware involved. In fact, this visualization is similar to the entrance

process. The addresses of each component are displayed. Also, the first stage of the process

can be exhibited in the Figure 3.46.

Fig. 3.45. Exit process with addressed I/O

 64

Figure 3.46. Exit process first stage

Basically, in order to achieve this simulation on the HMI screen, the addresses of the

PLC software have been linked with the HMI inputs and outputs. For example, some outputs,

such as the “Take ticket” image have two different images: the ticket machine when it is OFF

and the ticket when is ON. Moreover, related to simulating the car going through each stage,

for instance, it has been implemented the car image when it is ON, and no image when it is

OFF. Although in the first image car, is on the contrary. The motor images work exactly the

same, the motor appears when it is ON, and nothing when it is OFF. Related to the barrier

output, many barrier pictures of different phases have been overlapped in order to allow the

user to see the correct barrier position at each stage. Also, it works as the motor and car

outputs, however, as there are many barrier pictures, new rungs have been programmed into

the ladder diagram in order to get more addresses, seen in the Figure 3.47.

Fig. 3.47. HMI addresses added to the ladder diagram

 65

In Figure 3.48, can be seen the additional rung that has been implemented into the

CX-Programmer in order to achieve the last car image.

Fig. 3.48. HMI addresses added to the ladder diagram

The last area, “HMI setting”, is related to controlling the process by the HMI. In this

case, the user will be able to simulate the software solely with the HMI. For instance, instead

of pressing the attached PLC switches, it will be just necessary to press a button on the HMI

screen and will do the same function as the real switch. Basically, the Figure 3.49 can show

the functions that the user is able to do by pressing the buttons. It should be emphasized that

when the user presses the buttons “Barrier UP” or “Barrier Down”, the motor attached to the

PLC will start the rotation clockwise or counterclockwise respectively. In addition, the button

“STOP” has been implemented exclusively in this section. It has the target of stopping the

process immediately.

Fig. 3.49. HMI setting screen

For instance, in the Figure 3.50 it can be shown the interaction between the computer,

PLC and HMI. When the user presses the button “Take ticket” on the HMI screen, the bit

 66

W0.13 “HMI Take ticket”, on the ladder diagram, will be activated. In addition, the bit

W0.01 “Ticket has been taken” will be energised, and the user will be able to move forward

to the next step.

Fig. 3.50. Example of PLC, computer, and HMI interaction by pressing "Take ticket" HMI button

Basically, in order to be able to make the simulation manually with the HMI and

interact with the computer and PLC, some additions have been made to the CX-Programmer

software. Mainly, adding Ladder Logic OR functions, as displayed in the Figure 3.51. For

instance, Ladder Logic OR functions with sensor 2 and HMI sensor 2. An example activating

“Sensor 2” from the HMI can be seen Figure 3.52.

 67

Fig. 3.51. Example of PLC, computer, and HMI interaction by pressing “Sensor 2” HMI button

Figure 3.52. Example of PLC, computer, and HMI interaction by pressing the “STOP” HMI button

 68

CONCLUSIONS

This section is devoted to summarising the main findings of this work, as well as

suggesting some plans for possible future work.

RESULT FROM PRESENT WORK

In conclusion, the thesis emphasizes the increasing importance of PLCs and HMIs in

today´s world, highlighting their role in efficiency, productivity, and enabling effective

human-machine interaction. It has been demonstrated the practical implementation of the

setup, which provides a safe and controlled environment for testing before deploying the

system in actual industrial settings. In addition, this test bench has presented its versatility

and scalability by allowing the user to make continuous changes to the software or

components, due to its capability to transfer the program to the PLC and HMI quickly. The

research conducted in this thesis has provided a comprehensive understanding of the

integration between hardware components and software programs. As a result, due to

combining theoretical and implementation parts, this project has contributed to a deeper

understanding of this topic, which allows future students to acquire the skills needed to

contribute to the development and implementation of advanced automation systems.

FUTURE WORK

In order to improve the comprehensive parking garage simulation, it can be added an

OMRON camera “ZFV-SC50”. This camera might detect the car´s license plate number and

send this information to the PLC, working as a digital input. Moreover, this project could be

further refined by adding some analogue I/O examples. For instance, adding either a

multimeter that shows the input voltage, which would be positive for the barrier voltage, or a

sensor that detects an object approach, which might detect the car and send this information

to the PLC as an analog input.

In addition, related to the TCP/IP connection, the computer can be connected via

WIFI with the Ethernet network. Apart from that, different real-world simulations can be

created, involving different external components.

 69

LIST OF REFERENCES

[1] Petruzella, F.D., Programmable Logic Controllers. 4. New York: McGraw-Hill

Companies, 2011. 396 lpp. ISBN 978-0-07-351088-0.

[2] Bryan, L.A. and Bryan, E.A., Programmable Controllers. 2. Atlanta: Industrial Text

Company, 1997. 1035 lpp.

[3] Rack PLCs guideline. OMRON. 135 lpp. Available from:

https://www.webddigital.com/fabricantes/omron/pdf/plcs/CS1.pdf

[4] Romero-Segovia, V. and Theorin, A., History of PLC and DCS. 2012. 21 lpp. Available

from:

http://archive.control.lth.se/media/Education/DoctorateProgram/2012/HistoryOfControl/Vane

ssa_Alfred_report.pdf

[5] Langmann, R. and Stiller, M., The PLC as a Smart Service in Industry 4.0 Production

Systems. Dusseldorf: Faculty of Electrical Engineering & Information Technoloigy,

Hochschule Duesseldorf University of Applied Sciences, 2019. 20 lpp. Available from:

https://www.mdpi.com/2076-3417/9/18/3815

[6] Benyon, D., Designing Interactive Systems: A Comprehensive Guide to HCI, UX and

Interaction Design. 3. Harlow: Pearson education limited, 2014. 6504 lpp. ISBN 978-1-292-

01384-8

[7] Chapter 7 - Ethernet Connection, Device/PLC Connection Manuals. Pro-face. 24 lpp.

Available from:

https://www.proface.tech/otasuke/files/manual/plc_connection/v70/omr/eomreth.pdf

[8] Pressman, A.I., Billings, K. and Morey, T., Switching Power Supply Design. 3. New

York: McGraw-Hill Companies, 2007. 792 lpp. ISBN 978-0-07-148272-1.

 70

[9] Chapter 1 - Resistor Fundamentals, What is a resistor?. EE Power. Available from:

https://eepower.com/resistor-guide/resistor-fundamentals/what-is-a-resistor/

[10] Hughes, A. and Drury, B., Electric Motors and Drives: Fundamentals, Types, and

Applications. 5. USA: Newnes, 2019. 1368 lpp.

[11] Horowitz, P. and Hill, W., The Art of Electronics. 2. Cambridge: Cambridge University

Press, 1989. 1125 lpp. ISBN 0-521 -37095-7.

[12] Kennedy, B., Implementing an Isolated Half-Bridge Gate Driver. Analog Devices. 2 lpp.

Available from: https://www.analog.com

 [13] Romanov, V., How to Read Ladder Logic & Ladder Diagrams. Available from:

https://www.solisplc.com/tutorials/how-to-read-ladder-logic

[14] CX-Programmer Operation Manual. OMRON, 2019. 96 lpp. Available from:

https://assets.omron.eu/downloads/manual/en/v6/w446_cx-

programmer_operation_manual_en.pdf

[15] Programming Manual. OMRON, 2007. 1140 lpp. Available from:

https://assets.omron.eu/downloads/manual/en/v1/w451_cp1_cpu_unit_programming_manual

_en.pdf

[16] NB-Designer Operation Manual. OMRON, 2020. 451 lpp. Available from:

 https://assets.omron.eu/downloads/manual/en/v1/v106_nb-

designer_software_operation_manual_en.pdf

[17] User´s Manual. OMRON, 2010. 364 lpp. Available from:

https://assets.omron.eu/downloads/manual/en/v6/w472_cj2_cpu_units_hardware_users_manu

al_en.pdf

[18] Operation Manual. OMRON, 2009. 487 lpp. Available from:

 71

https://assets.omron.eu/downloads/manual/en/v4/w345_cs1_cj1_analog_i_o_units_operation

_manual_en.pdf

[19] Scherz, P. and Monk, S., Practical Electronics for Inventors. 2. New York: McGraw-

Hill Education, 2016. 1027 lpp.

 72

DATASHEETS

PLC https://www.ia.omron.com/data_pdf/cat/cj2m-cpu3__-cpu1_-md21__ds_e_12_5_csm2201.pdf?id=2712

Motor https://datasheetspdf.com/pdf-file/917203/MABUCHIMOTOR/RF-300EA-1D390/1

Switches differentiated up https://omronfs.omron.com/en_US/ecb/products/pdf/en-ss.pdf

Switch differentiated down https://pdf1.alldatasheet.com/datasheet-pdf/view/333098/OMRON/D2X.html

HMI https://datasheet.octopart.com/NB10W-TW01B-Omron-datasheet-62040884.pdf

Multimeter https://www.libble.eu/metrix-mx-22/online-manual-696641/

Optocoupler https://pdf1.alldatasheet.com/datasheet-pdf/view/43364/SHARP/PC814.html

Power supply https://www.testequipmenthq.com/datasheets/TTI-EX752M-Datasheet.pdf

Router https://downloads.linksys.com/downloads/userguide/1224638367343/WRT54G-v1.1_ug.pdf

Transistor https://pdf1.alldatasheet.com/datasheet-pdf/view/555501/WINNERJOIN/BC557C.html

Diode https://pdf1.alldatasheet.com/datasheet-pdf/view/25755/SURGE/FR102.html

 73

PROGRAMS

CX-PROGRAMMER https://industrial.omron.es/es/products/cx-programmer

NB-DESIGNER https://industrial.omron.eu/en/products/nb

MULTISIM https://www.multisim.com/

 74

LIST OF FIGURES

Figure 1.1. OMRON PLC

Figure 1.2. Typical PLC I/O system connection

Figure 1.3. Typical function and operation of a PLC

Figure 1.4. Different modules that are fitted in the same rack or chassis of the modular PLC

system

Figure 1.5. Historical photo showing from left to right: Dick Morley, Tom Bois-sevain,

Modicon 084, George Schwenk, and Jonas Landau. Image source: Automation.com

Figure 1.6. Road traffic signal. Credits: FREEPIK

Figure 1.7. Conveyor belts. Image source: algevasa.com

Figure 1.8. OMRON HMI

Figure 1.9. ETHERNET connection

Figure 2.1. Example of ladder diagram software. Image source: automationreadypanels.com

Figure 2.2. Example of NOT function

Figure 2.3. Example of AND function

Figure 2.4. Example of OR function

Figure 2.5. Example of NAND function

Figure 2.6. Example of NOR function

Figure 2.7. Example of XOR function

Figure 2.8. “NewPLC1[CJ2M] Offline” setting

Figure 2.9. IP address setting

Figure 2.10. Racks configuration

Figure 2.11. Compiling the program

Figure 2.12. Input command

Figure 2.13. Output command

Figure 2.14. Timer instruction

Figure 2.15. Reversible counter instruction

 75

Figure 2.16. Differentiate UP/DOWN inputs

Figure 2.17. Keep instruction

Figure 2.18. Move instruction

Figure 2.19. Comparison data instruction

Figure 2.20. Screen where communication between HMI and PLC is set

Figure 2.21. IP address and Port No setting

Figure 2.22. Program compilation

Figure 2.23. NB-Designer main screen

Figure 2.24. Adding a new screen

Figure 2.25. Adding text

Figure 2.26. Function Key property

Figure 2.27. PT property

Figure 2.28. Bit Button property

Figure 2.29. Bit button property

Figure 2.30. Bit Button property

Figure 2.31. Bit Button property

Figure 2.32. Turning on a HMI output button by pressing a switch attached to the PLC

Figure 2.33. Bit Lamp property

Figure 2.34. Example of an input and output with the same address

Figure 2.35. Example of turning on an output by pressing the input button

Figure 2.36. Number Display property

Figure 2.37. Number Display property

Figure 3.1. Input linked with an output by ladder logic

Figure 3.2. Turning on the 0.01 input

Figure 3.3. Turning on the LED 1

Figure 3.4. Turning on the 1.04 output

Figure 3.5. Turning on the LED 4

Figure 3.6. Example of analog input with MOV(021) instruction

 76

Figure 3.7. Example of Analog Input with Comparison Instruction

Figure 3.8. Analog Input Terminal Block Arrangement

Figure 3.9. Data flow diagram

Figure 3.10. (a) Switch 0.11 digital input “Take ticket button”. (b) Switch 0.01 digital input

“Give ticket button”. (c) Switch 0.05 digital input bit “Sensor 2”. (d) Switch 0.09 digital input

bit “Sensor 1”. (e) Analog resistor 0-10V “Barrier voltage”. (f) DC motor 1.10 and 1.12

digital output bits “Barrier”. (g) Contact Form of the Switch Differentiated up. (h) Contact

Form of the Switch Differentiated down

Figure 3.11. H-Bridge circuit simulation

Figure 3.12. H-Bridge circuit setup and voltage applied

Figure 3.13. ON/OFF diagram

Figure 3.14. Green traffic light, cars are allowed to continue

Figure 3.15. The car takes the entrance ticket in order to start the process

Figure 3.16. Traffic light turn into red, cars are not allowed to continue

Figure 3.17. Sensor 2 detects the car going toward the barrier

Figure 3.18. Eighty seconds security timer starts running

Figure 3.19. Barrier up mode is activated

Figure 3.20. The barrier is raising and the motor rotating

Figure 3.21. Sensor 1 detects the car after it has gone through the barrier, and “Barrier Down”

mode is activated

Figure 3.22. Barrier is going down and the motor rotating

Figure 3.23. “Security Barrier” settings

Figure 3.24. Cars counter

Figure 3.25. The car gives the ticket in order to start the process

Figure 3.26. Sensor 1 detects the car going toward the barrier

Figure 3.27. Main screen

Figure 3.28. Manual Setting screen

Figure 3.29. Select the language screen

 77

Figure 3.30. Ticket process

Figure 3.31. “Take ticket process”

Figure 3.32. “Give ticket” process

Figure 3.33. Car process

Figure 3.34. Entrance process

Figure 3.35. Exit process

Figure 3.36. PLC setting screen

Figure 3.37. Entrance process with addressed I/O

Figure 3.38. Entrance process first stage

Figure 3.39. The car takes the ticket in order to start the process

Figure 3.40. Sensor 2 detects the car approaching and the security timer starts running

Figure 3.41. High voltage adjustment, the barrier goes up and the motor rotates

Figure 3.42. The barrier is completely up and the car goes through it

Figure 3.43. Sensor 1 detects the car after it went through the barrier

Figure 3.44. Low voltage adjustment, the barrier goes down and the motor rotates

Figure 3.45. Exit process with addressed I/O

Figure 3.46. Exit process first stage

Figure 3.47. HMI addresses added to the ladder diagram

Figure 3.48. HMI addresses added to the ladder diagram

Figure 3.49. HMI setting screen

Figure 3.50. Example of PLC, computer, and HMI interaction by pressing "Take ticket" HMI

button

Figure 3.51. Example of PLC, computer, and HMI interaction by pressing “Sensor 2” HMI

button

Figure 3.52. Example of PLC, computer, and HMI interaction by pressing the “STOP” HMI

button

 78

LIST OF TABLES

Table 2.1. NOT binary input and output

Table 2.2. AND binary input and output

Table 2.3. OR binary input and output

Table 2.4. NAND binary input and output

Table 2.5. NOR binary input and output

Table 2.6. XOR binary input and output

