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Resumen  

Esta tesis explora el desarrollo e implementación de un chatbot de inteligencia artificial 
diseñado para manejar consultas de empleados y recuperar información de una base de 
datos MySQL. Al examinar la importancia de la gestión de recursos humanos, la 
evolución de los chatbots y su uso en recursos humanos, el proyecto tiene como 
objetivo crear un chatbot que aborde las necesidades de la organización y brinde soporte 
a los empleados. La tesis profundiza en las técnicas y metodologías de construcción de 
chatbots, demuestra el despliegue y la funcionalidad, y discute los resultados obtenidos, 
las limitaciones y las posibles líneas de investigación futuras. La exitosa integración de 
PyMySQL, un modelo de aprendizaje profundo y técnicas de procesamiento del 
lenguaje natural resulta en un chatbot que mejora la eficiencia, el ahorro de costos y la 
satisfacción de los empleados. 

Resum 

Esta tesi explora el desenvolupament i la implementació d'un xatbot d'intel·ligència 
artificial dissenyat per a gestionar consultes dels empleats i recuperar informació d'una 
base de dades MySQL. Examinant la importància de la gestió de recursos humans, 
l'evolució dels xatbots i el seu ús en recursos humans, el projecte té com a objectiu crear 
un xatbot que aborde les necessitats de l'organització i done suport als empleats. La tesi 
aprofundeix en les tècniques i metodologies de construcció de xatbots, demostra el 
desplegament i la funcionalitat, i discuteix els resultats obtinguts, les limitacions i les 
possibles línies de recerca futures. La integració exitosa de PyMySQL, un model 
d'aprenentatge profund i tècniques de processament del llenguatge natural resulta en un 
xatbot que millora l'eficiència, l'estalvi de costos i la satisfacció dels empleats.

Abstract 

This thesis explores the development and implementation of an AI chatbot designed to 
handle employee queries and retrieve information from a MySQL database. By 
examining the importance of human resource management, the evolution of chatbots, 
and their use in HR, the project aims to create a chatbot that addresses organizational 
needs and supports employees. The thesis delves into chatbot-building techniques and 
methodologies, demonstrates deployment and functionality, and discusses the achieved 
results, limitations, and potential future research directions. The successful integration 
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of PyMySQL, a deep learning model, and natural language processing techniques 
results in a chatbot that improves efficiency, cost savings, and employee satisfaction.
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1.Introduction  

1.1. Motivation 

In today's increasingly digital world, businesses must continually adapt to new 
technologies to stay competitive. An essential aspect of this adaptation is the 
development of efficient and effective employee web pages. However, despite 
significant investments in web page design and development, employees still struggle to 
find the information they need quickly.

Designing and implementing a bot for query redirection in an employee web page can 
solve this problem. The bot can analyze employee queries and redirect them to the 
appropriate web page or resource, reducing the time and effort employees spend 
navigating the web page. This will increase employee satisfaction, reduce frustration, 
and ultimately boost productivity. 

1.2. Objectives 

The proposal of this project is to introduce an AI-powered chatbot into the HRM 
department to enhance the employee experience, automate administrative tasks, and 
provide real-time decision-making capabilities. By integrating AI technology, 
businesses can streamline HR processes, increase efficiency, and reduce operating costs. 
The chatbot will be customized to handle common HR queries, such as vacation 
policies, benefits information, and performance evaluations, freeing up HR 
professionals to focus on more complex tasks, such as managing employee relations and 
developing talent. The implementation of AI-powered chatbots in HRM presents an 
exciting opportunity to revolutionize business operations and create a more engaging 
work environment.
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1.3. Structure of  the thesis 

This document has been organized in the following format: 

1. Introduction:  
In this chapter, the author presents the context for the project, followed by their personal 
motivation for pursuing this research. Finally, the chapter outlines the objectives of the 
project.

2.  Human resources management: 
 this chapter will provide an overview of the importance of human resource 
management and the challenges faced by HR professionals. It will review the literature 
on HR management, describe the research methodology used, and present the findings 
of the study, which will include data on current HR practices, challenges and 
effectiveness of HR practices. 

3. History, evolution, architecture and different technologies of  AI 
chatbots:                      

 this section will discuss the history and evolution of chatbots, their architecture, and 
different technologies used in their development.

4. AI Chatbots in Human Resource Management:  
      The purpose of this chapter is to give an overview of the problem, goals to achieve 
through the bot implementation, design constraints, and user issues to address. This 
allows us to design a bot tailored to the organization's needs and provide effective 
support for employees in their work 

5. Building chatbots: 

  We explore the various techniques and methodologies involved in creating chatbots, 
focusing on the essential components, tools, and best practices for effective 
development. This comprehensive guide will enable readers to understand the 
intricacies of chatbot construction, ensuring the development of chatbots that meet the 
needs of users and enhance their overall experience. 

6. Deploying the chatbot:    

In this chapter, we'll demonstrate the chatbot's deployment and functionality via a web 
interface, enabling users to interact with it and observe real-time responses. The goal is 
to showcase the chatbot's practical use and its capability to comprehend and effectively 
answer user queries.
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7. Conclusions and future lines of  research: 

This project aimed to develop a chatbot capable of managing employee queries and 
efficiently retrieving information from a MySQL database. By integrating PyMySQL, a 
deep learning model, and natural language processing techniques, the chatbot 
successfully addresses these objectives, resulting in increased efficiency, cost savings, 
and improved employee satisfaction. Despite some limitations, potential future research 
could further enhance its performance and user experience. 

8. Bibliographic references 
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2. Human resource Management: 

2.1 Fundamentals of  Human Resource Management  

HRM is a strategic, integrated and coherent approach to the employment, development 
and well-being of the people working in organizations. The purpose of HRM is to 
enable employees to contribute effectively and productively to the overall company 
direction and the accomplishment of the organization’s goals and objectives, while at 
the same time enabling employees to achieve their own goals and objectives. HRM is 
concerned with the acquisition, development and reward of employees, as well as the 
management of change within the organization (Armstrong, 2017, p. [page 3]).  

By defining HRM as a strategic approach to managing the employment, development, 
and well-being of people within organizations, it is important to understand the 
functions of HRM that contribute to achieving this goal. One key area of HRM is 
employee relations, which involves managing the relationship between the employer 
and employees  to create a positive work environment and maintain effective 
communication. Employee relations encompass a variety of activities, including 
employee engagement, conflict resolution, and managing employee benefits. 

 

  

                                        Figure 1: Functions of Human Resources 

  

                                                                                                                                      9



  

 

                                                                                                                                                                                      

Human resource professionals play a critical role in managing an organization's human 
capital. They ensure the development and implementation of effective employee benefit 
systems, training and development programs, and performance evaluation and reward 
systems. Additionally, they work to maintain positive employee relations by fostering a 
harmonious relationship between management and workers and ensuring compliance 
with labor laws and regulations.

In today's business landscape, organizations are facing intense competition, leading 
them to adopt new technological advancements to remain competitive in the market.
(Narayanan, 1998). In this scenario, man–machine interaction has become much more 
crucial. The industries can run smoothly and achieve the business objectives by the 
collaboration between human and computers. Business can be effective in the different 
functional domains by using different technical components (Bos et al., 2019a).

As organizations face intense competition in today's business landscape, the integration 
of technology and human resources has become crucial for their success. The use of 
HRIS, a software application that merges HR management and information technology, 
allows companies to streamline their workforce management processes, making them 
more efficient and effective. By automating HR processes, such as recruiting, 
onboarding, performance management, and employee records management, HRIS can 
free up HR staff to focus on strategic initiatives, while also reducing administrative 
errors and costs (SelectHub. ,2021). 

            

                                                                                                                                                              

                                                                                                                                      10



  

 

                                              Figure 2: e-HRM model  

                                                                                                                                           
2.2 Human Resource Information Systems (HRIS) 

HRIS is a system used to acquire, store, manipulate, analyze, retrieve, and distribute 
pertinent information about an organization's human resources. The system combines 
hardware, software, and data and provides information for decision making, 
communication, and administrative activities (Kavanagh and Johnson, 2018, p. 5).

In other words, It’s used to acquire and store information about employees, such as 
personal information, job details, and performance data. The system can manipulate and 
analyze this information, providing insights and trends that can help decision-makers 
better understand their workforce. Additionally, HRIS can retrieve and distribute this 
information as needed, such as generating reports or providing data to other systems.

2.2.1 Features of  an Effective HRIS 

Each HRIS has a number of “essential features” that cover other important processes 
and services. Most of them are simply marketing tactics. It is therefore essential to be 
careful when choosing an HRIS (Features of an Effective HRIS. IceHrm, 2021),One of 
the truly essential features of an effective HRIS is integration with other systems.

A well-implemented HRIS should be able to integrate with other HR and organizational 
systems such as payroll, benefits, performance management, and accounting to ensure 
that all employee data is accurately and efficiently collected, analyzed, and reported 
(Noe et al., 2017, p. 239).

Flexibility is another important feature of an effective HRIS. HRIS should be flexible 
enough to adapt to the changing needs of the organization. This includes the ability to 
customize workflows, forms, and reports to fit the unique needs of the organization.
(Kavanagh et al., 2019, p. 106) 

For example, an HRIS should be able to accommodate changes in job titles, job 
descriptions, and other HR policies without requiring extensive programming or 
customization. This flexibility allows the HRIS to evolve as the organization changes 
and grows, ensuring that it remains a useful tool for managing human resources. 
Additionally, HRIS should be able to handle multiple languages and currencies, as 
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many organizations have a global presence and require HRIS that can operate across 
borders.

Data accuracy is an important feature of an effective HRIS. The system should have 
accurate and up-to-date information on employees, such as personal information, job 
history, and performance data. This helps to ensure that HR decisions are based on 
reliable information, and that employees receive the appropriate benefits and 
compensation based on their qualifications and experience. Inaccurate or outdated 
information can lead to errors in decision making and negatively impact employee 
satisfaction and performance. HRIS should also have mechanisms in place to maintain      

data accuracy, such as regular data audits and user access controls to prevent 
unauthorized changes to employee information.

In the healthcare industry, accurate and timely information is crucial for providing 
quality patient care. A study conducted by the Agency for Healthcare Research and 
Quality (AHRQ) found that inaccurate patient information, including incomplete 
medical histories and incorrect medication orders, led to medication errors and adverse 
events in hospitals (AHRQ, 2020). HRIS can play a significant role in ensuring data 
accuracy for healthcare organizations by providing up-to-date employee information to 
support scheduling, staffing, and training decisions. This helps to ensure that healthcare 
providers have the necessary resources to deliver quality care to patients.

Another feature is Self-service, refers to the ability of employees to access and manage 
their own personal HR-related information, such as benefits enrollment, paid time off 
requests, and updating personal information. Self-service features provide employees 
with greater control and convenience, while also reducing the administrative burden on 
HR staff.

Self-service applications provide employees, managers, and HR professionals with 
direct access to data and HR transactions. Through self-service, employees can enter 
and update their own information, view and modify their benefits and compensation, 
and access training and development programs. Managers can use self-service to view 
and approve employee requests, conduct performance evaluations, and make staffing 
decisions. HR professionals can use self-service to manage recruiting and onboarding 
processes, administer employee benefits and compensation, and maintain employee 
records. Self-service applications can help to reduce administrative costs, improve data 
accuracy an consistency, and increase employee and manager satisfaction (Kavanagh, 
Thite & Johnson, 2019, p. 287).

Reporting and analytics are important features of HRIS that allow organizations to 
make informed decisions based on data analysis. HRIS can generate reports on 
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employee data, such as headcount, turnover rate, compensation and benefits, and 
performance metrics. These reports can help identify trends and areas for improvement, 
allowing organizations to make data-driven decisions that improve the overall 
performance and effectiveness of the HR function.

Moreover, HRIS can also offer data visualization tools that help HR professionals create 
visual representations of complex data sets, making it easier to identify patterns and 
insights. Advanced analytics tools, such as predictive analytics and machine learning 
algorithms, can also be integrated into HRIS to forecast future trends and outcomes, and 
to automate routine HR tasks.

According to Kavanagh, Thite, and Johnson (2019), "Reporting and analytics 
capabilities are critical for HR functions to demonstrate their value and impact to the 
organization. These capabilities enable HR professionals to quantify the effectiveness of 
HR policies and programs, and to provide meaningful insights to decision makers at all 
levels of the organization" (p. 294).

Security is a critical feature of any HRIS as it deals with sensitive employee data such 
as social security numbers, salary information, and personal identification. A breach of 
this information can have severe consequences, including legal repercussions and 
reputational damage. It is, therefore, crucial for an HRIS to have robust security 
measures in place to protect this data. This includes access controls to limit who can 
view and modify employee information, data encryption to prevent unauthorized access, 
and regular security audits to identify potential vulnerabilities.

                                                             Figure 3: HRIS selection criteria diagram  
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2.3 Employee Portals  

In addition to the core features listed above, many modern HRIS systems include 
employee portals as a key component.

Technically speaking, an employee portal offers a browser-based user interface 
providing access to personalized information, resources, and applications. In many 
cases, an employee portal is the primary tool through which employees do their work. 
Ideally, employee portals yield organizations and employees different benefits, such as 
reducing information overload, lowering organizational costs, improving corporate 
communication and knowledge management (KM), as well as enhancing employee 
productivity (Tojib et al., 2006). 

Today, many companies, especially large ones, offer their employees a portal. A 2006 
US study by Forrester Research, Inc. indicated that 46% of large companies ran an 
employee portal, and another quarter planned to establish one by 2008 (For- rester, 
2006). 

The use of employee portals has been growing steadily and, despite many companies 
restricted IT budgets, investments in portal solutions are still growing. However, portal 
projects are usually complex, time and cost-consuming with a high failure risk (Remus, 
2006). And although IT departments and decision-makers have to justify portal 
investments, a significant number of companies do not assess their portal 
implementations actual benefits (Brown et al., 2007). Companies that do so, often use 
monetary indicators and cost-benefit analysis methods (White, 2003). 

These success-measurement approaches do not, however, take intangible impacts and 
intervening environmental variables into account. A portal’s success cannot, however, 
be measured by just its reach, and practitioners should not simply rely on ‘‘hit counts” 
as measures of success (Damsgaard and Scheepers, 1999). Clearly, a comprehensive 
measurement of portal success would also need to consider a portal’s intangible effects 
to detect areas of potential improvements and justify present and future investments in 
portal solutions. 

According to the hypotheses of the paper "An Empirical Investigation of Employee 
Portal Success" by Benbya et al. (2004), the perceived process quality and collaboration 
quality of an employee portal can have a significant impact on user satisfaction and 
usage of the portal. Specifically, the higher the perceived process quality, the more 
satisfied users are with the portal and the more they will use it. Similarly, the higher the 
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perceived collaboration quality, the more satisfied users are with the portal and the more 
they will use it.

                                          Figure 4: Employee portal quality model 

In this regard, AI chatbot can play a crucial role in enhancing collaboration quality 
within an employee portal. By providing quick and accurate responses to employee 
queries and concerns, chatbots can help reduce response times and increase accessibility 
to important information. This can lead to improved communication and collaboration 
between employees and HR departments, as well as between employees themselves.
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3. History, evolution, architecture and 
different technologies of  AI chatbots 

3.1 A brief  history of  chatbots :  

Chatbots have a long history that dates back to the mid-20th century when computer 
scientists first began exploring natural language processing (NLP) and machine learning 
algorithms . One of the earliest chatbots was ELIZA, developed by Joseph Weizenbaum 
in 1966, which used pattern matching and substitution techniques to simulate 
conversation (Weizenbaum, 1966).

ELIZA's success paved the way for other chatbots, such as PARRY and Jabberwacky, to 
be developed in the 1980s and 1990s. However, it wasn't until the mid-2000s, with the 
rise of social media platforms like Facebook and Twitter, that chatbots began to gain 
widespread popularity.

For several decades, chatbots largely followed the rule-based approach used by ELIZA 
with minor improvements such as speech synthesis and emotion management. However, 
in 2001, a conversational agent called SmarterChild was introduced by ActiveBuddy, 
Inc. (now Colloquis), which operated on AOL Instant Messenger and MSN Messenger. 
SmarterChild was designed to provide quick access to news, weather forecasts, sports 
results, and other information by connecting to a knowledge base. This was an 
innovative approach, inspired by the rise of instant messaging platforms such as SMS. 
However, due to the limitations of natural language processing technology at the time, 
chatbots on these platforms were eventually forgotten by history.

The next significant advancement for conversational agents came from the IBM Watson 
AI project, which had been under development since 2006. The primary goal of the 
project was to design an agent capable of winning the American TV show Jeopardy! In 
2011, the Watson agent successfully defeated two of the show's former champions. 
Jeopardy! is an interesting challenge for NLP systems because the questions often 
involve wordplay and require fast information retrieval from vast knowledge bases. 
However, the Watson AI, in its previous form, could only provide one-line answers and 
was incapable of engaging in a proper conversation with a human user.

The 2010s saw the emergence of virtual assistants, including Siri, Cortana, Google 
Assistant, and Alexa, among others. These agents introduced the concept of goal-
oriented dialog and conversation to the field of chatbots. Additionally, the Messenger 
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Platform for Facebook Messenger was released in 2016, which enabled the creation of 
conversational agents for non-AI related companies.

Since the release of the Messenger Platform, the field of chatbots has continued to 
evolve rapidly. Many companies have started using chatbots for customer service, sales, 
and marketing, as they can provide 24/7 support and handle a large volume of inquiries. 
Moreover, advancements in machine learning and natural language processing have 
made it possible for chatbots to understand and respond to more complex queries.

In recent years, there has been a growing trend towards using chatbots in healthcare, 
mental health, and therapy. Chatbots have been developed to provide support for 
individuals with mental health issues, provide health-related advice and information, 
and even offer therapy sessions.

As the field of chatbots continues to evolve, it is likely that they will become even more 
sophisticated and integrated into our daily lives. With advancements in technologies 
such as voice recognition and computer vision, it is possible that chatbots will soon be 
able to understand and respond to non-verbal cues, such as facial expressions and body 
language. As such, chatbots will continue to play an important role in shaping the future 
of human-computer interaction.

According to Abdul-Kader, S. A., & Woods, J. C. (2015), the evolution of chatbots can 
be categorized into three main stages:

1. First Generation: These chatbots are rule-based and use predefined templates to 
respond to user input.

2. Second Generation: These chatbots use machine learning algorithms to improve 
their responses over time. They can learn from user interactions and adapt to new 
situations.

  3. Third Generation: These chatbots use advanced AI technologies, such as natural          
language processing and deep learning, to provide more human-like conversation 
experiences. They can understand context and perform complex tasks.

3.2 Architecture of  chatbots: 

A chatbot is an integration of several components working together towards a common 
objective. These components are interconnected and their relationships are illustrated in 
Figure 5, providing a visual representation of a conversational agent's structure.

When a user sends a message to a chatbot designed to solve employee queries, the 
chatbot goes through a series of components to determine the appropriate response. The 
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first component is the language identification module, which processes the message 
using various methods to identify the language being used. The message is then passed 
on to the intent classifier module, which uses machine learning algorithms to determine 
the user's intent based on the message received.

Using the metadata from the message and the inferred intent, the chatbot's backend 
accesses additional information to determine the appropriate response. This information 
includes previous conversation messages and other relevant data. Based on this 
information, the chatbot determines an appropriate action or sequence of actions to 
perform. For example, the chatbot may ask clarifying questions if the intent is unclear, 
or it may reactivate a user account if that is the user's intention.

Finally, the action handler module executes the determined action, taking into account 
the environment in which the chatbot is operating. This allows for the same action to be 
executed in different ways, depending on the platform or website where the chatbot is 
operating.

                                       Figure 5 : conceptual diagram of a chatbot 

3.2.1    Rule-based 

                                      

Rule-based approaches involve defining a set of rules or heuristics that guide the 
chatbot's behavior. These rules are typically defined by domain experts or developers 
based on their understanding of the problem domain and the common patterns and 
questions that users might have.

One example of a rule-based approach is a decision tree, which involves branching 
based on a set of predefined rules or criteria. Another example is a template-based 
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approach, where the chatbot selects a pre-defined response template based on the user's 
input.

Other rule-based models include hand-crafted state machines, regular expression 
matching, and pattern recognition techniques. These approaches require manual 
intervention and domain expertise to design and refine the rules.

Among the various rule-based models, the decision tree approach has been found to be 
particularly effective in employee-based portals due to its ability to handle complex 
decision-making processes.

3.2.2 Decision Tree Method 

The decision tree model can also be applied to employee portals to provide effective 
support for employee queries. By defining a set of rules and criteria based on the nature 
of employee queries, the decision tree can help classify and predict the appropriate 
responses. The model can be used to help employees understand company policies, 
provide information on benefits, and answer questions related to performance 
evaluations. With the ability to customize the decision tree based on the needs of the 
organization, this approach can be highly effective in providing accurate and consistent 
responses to employee queries. 

 

                      Figure 6 : An illustration of the hierarchical rules of a decision tree 

In Figure 6, the tree is a hierarchical rule directed from top to bottom, starting with a 
decision node (green diamond shape) as the root or initial decision. Then, each 
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management strategy is followed by yes or no choices, representing certain events. 
Finally, the endpoints of decision trees are characterized by a leaf as a terminal node 
(parallelogram shape) consisting of blue for the education needed on general conditions 
and red as the option of talking to a midwife, representing severe conditions at the end 
of the tree. The outcome measures are generally attached to these endpoint.

3.2.3     Transformer (machine learning model) 

Transformer-based models are a type of neural network architecture that was introduced 
in the paper "Attention is All You Need" by Vaswani et al. (2017). They have 
revolutionized the field of natural language processing (NLP) and achieved state-of-the-
art performance on a wide range of NLP tasks, including machine translation, sentiment 
analysis, and language modeling.

The key innovation of transformer-based models is the attention mechanism, which 
allows the model to focus on different parts of the input sequence during processing. 
This attention mechanism replaces the recurrent and convolutional layers that were 
commonly used in previous NLP models.

The transformer model uses a multi-head attention mechanism to capture dependencies 
between different parts of the input sequence, which allows it to model long-range 
dependencies more effectively than other neural network architectures. This makes it 
well-suited for tasks that involve understanding the context of a sequence of text, such 
as natural language understanding and text classification.
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                                          Figure 7: The Transformer - model architecture                                                   

BERT (Bidirectional Encoder Representations from Transformers): 

BERT is a pre-trained language model that uses an unsupervised approach of language 
modeling on a large dataset to understand the context of input sentences. After pre-
training, BERT can be fine-tuned on a task-specific supervised dataset to obtain good 
results.

There are two strategies for applying pre-trained models: fine-tuning and feature-based. 
Elmo uses a feature-based model where the model architecture is task-specific, and each 
task will use different pre-trained models for language representations.

In contrast, BERT uses a fine-tuning approach that utilizes bidirectional transformers 
encoders to understand language. BERT can understand the full context of a word by 
analyzing the terms before and after the word and finding the relationship between 
them.

Unlike other language models such as Glove2Vec and Word2Vec, which build context-
free word embeddings, BERT provides context, making it a powerful tool for natural 
language processing tasks, including handling employee queries.

                            Figure 8 : pre-training and fine-tuning procedures for BERT 
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During the pre-training stage, a large amount of data is used to train the model, allowing 
it to learn about the relationships between words and the ways in which sentences are 
constructed. This knowledge is saved as parameters that can be inherited by other 
models. During the fine-tuning stage, the pre-trained model is re-trained for a new task. 
Because the model has already learned a great deal about language from the pre-training 
stage, it can often achieve good results with only a limited amount of new data.

 

                                                 Figure 9 :BERT input representation 

BERT requires the entire input to be fed as a single sequence, and to understand the 
input properly, it uses special tokens such as [CLS] and [SEP]. The [SEP] token should 
be inserted at the end of a single input. In cases where a task involves more than one 
input, such as NLI and Q-A tasks, [SEP] token helps the model to understand the end of 
one input and the start of another input in the same sequence input. The [CLS] token is 
a special classification token, and the last hidden state of BERT corresponding to this 
token (h[CLS]) is used for classification tasks.

To embed tokens, BERT uses Wordpiece embeddings input. In addition to token 
embeddings, BERT also employs positional embeddings and segment embeddings for 
each token. Positional embeddings contain information about the position of tokens in 
the sequence, while segment embeddings are useful when the model input has sentence 
pairs. Specifically, tokens of the first sentence are given a pre-defined embedding of 0, 
whereas tokens of the second sentence receive an embedding of 1 as segment 
embeddings.

The final input representation for BERT is the sum of the token, positional, and segment 
embeddings, which is then passed through deep bidirectional layers to generate output. 
The output is a hidden state vector of a predefined size for each token in the input 
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sequence. These hidden states, obtained from the last layer of BERT, are utilized for 
various NLP tasks.

Pre-training and Fine-tuning : BERT was pre-trained on unsupervised Wikipedia 
and Bookcorpus datasets using language modeling. Two tasks namely Masked 
Language Model (MLM) and Next Sentence Prediction (NSP) were performed. During 
MLM, 15% of the tokens from the sequence were masked and then correct tokens were 
predicted at the final hidden state. To capture the relationship between sentence pairs 
given as input, NSP is used. For NSP, 50% of the data is labeled as isNext where 
sentence B of the input sequence is just the next sentence of sentence A from the dataset 
corpus. Another 50% of data is labeled as notNext where sentence B is not next to 
sentence A but any random sentence from the corpus dataset. Output hidden state 
corresponding to [CLS] token is used to predict the correct label and compute loss. 
After pre-training, BERT can be fine-tuned on the specific task-based dataset.

XLNet (Generalized Auto-Regressive model for NLU):  

XLNet is a generalized AR pretraining method that uses a permutation language 
modeling objective to combine the advantages of AR and AE methods. The neural 
architecture of XLNet is developed to work seamlessly with the AR objective, including 
integrating Transformer-XL and the careful design of the two-stream attention 
mechanism. XLNet achieves substantial improvement over previous pretraining 
objectives on various tasks (Yang et al. (2019)). 

Comparing the conventional AR language modeling and BERT for language 
pretraining. Given a text sequence  , AR language modeling performs 
pretraining by maximizing the likelihood under the forward autoregressive 
factorization: 
 

where  is a context representation produced by neural models, such as RNNs 
or Transformers, and  denotes the embedding of . In comparison, BERT is based 
on denoising auto-encoding. Specifically, for a text sequence , BERT first constructs a 

x = [x1, . . . , xT]

hθ(x1:t−1)
e(x) x

x
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corrupted version  by randomly setting a portion (e.g. 15%) of tokens in  to a special 
symbol [MASK]. Let the masked tokens be  . The training objective is to reconstruct  
from  :
 

where  indicates  is masked, and  is a Transformer that maps a length-T text 
sequence  into a sequence of hidden vectors = [ , , … , ]. The 
pros and cons of the two pretraining objectives are compared in the following aspects:

 • Independence Assumption:  As emphasized by the ≈ sign in Eq. (2), BERT 
factorizes the joint conditional probability  based on an independence 
assumption that all masked tokens   are separately reconstructed. In comparison, the 
AR language modeling objective (1) factorizes  using the product rule that holds 
universally without such an independence assumption.  

• Input noise: The input to BERT contains artificial symbols like [MASK] that never 
occur in downstream tasks, which creates a pretrain-finetune discrepancy. Replacing 
[MASK] with original tokens as in [10] does not solve the problem because original 
tokens can be only used with a small probability — otherwise Eq. (2) will be trivial to 
optimize. In comparison, AR language modeling does not rely on any input corruption 
and does not suffer from this issue. 

•  Context dependency: The AR representation   is only conditioned on 
the tokens up to position t (i.e. tokens to the left), while the BERT representation 

has access to the contextual information on both sides. As a result, the BERT 
objective allows the model to be pretrained to better capture bidirectional context.

3.3.     Language identification 

Identifying the language of a text is often the initial and necessary step in a larger 
natural language processing pipeline. However, some languages may have homographs, 
such as "bank" in English and Dutch, which can cause confusion in algorithms due to 
the different meanings of the word in each language. Thus, it becomes essential to 
determine the correct language of a given text before further processing it. While this 

x̂ x
x̄ x̄

x̂

mt = 1 xt Hθ
x Hθ(x) Hθ(x)1 Hθ(x)2 Hθ(x)T

p(x̄ | x̂)
x̄

pθ(x)

hθ(x1:t−1)

Hθ(x)t
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project assumes that messages are written in a single language, there are also instances 
where the problem involves detecting multiple languages within a single piece of text.

3.4.      Intent classification 
  
When a new message is received, the conversational agent needs to identify the user's 
intention or goal, which is typically modeled as a multiclassification problem. The 
labels are the possible names of user intentions, and various techniques can be used to 
solve this problem, ranging from simple keyword extraction to Bayesian inference that 
uses multiple messages to determine the user's request.

3.5.      Knowledge management 

The field of knowledge engineering has advanced significantly in enabling computers to 
handle knowledge, particularly in the 1980s. Early knowledge engineering techniques 
involved using an inference engine to manipulate facts and derive new knowledge using 
first and second-order logic. These techniques allow for generating answers to 
incomplete questions and can be easily translated into API calls. In the context of 
conversational agents, knowledge engineering can be highly beneficial for answering 
basic questions about general facts. For instance, digital assistants such as Siri and 
Amazon Alexa use internal knowledge inference methods to retrieve facts from the web 
and other sources. When asked about the current weather, for example, the assistant 
may use inference to generate a response based on the user's location and current 
weather conditions.

3.6.      Responses generation 

For a conversational agent to effectively communicate, it must possess the ability to 
generate coherent replies that align with the conversation's context. To achieve this, two 
modules typically work in tandem: one that generates a list of candidate replies and 
another that selects the most appropriate response or ranks them based on a specific 
metric. Two popular approaches have emerged in addressing this subproblem: retrieval-
based and generative-based methods.

Retrieval-based techniques rely on a large database of pre-existing responses and match 
them with information from the user's message to find the most appropriate answer. 
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This information can be a simple regular expression that searches for particular sentence 
structures or the output of a machine learning model. The primary advantage of this 
approach is that the chatbot's maintainers can control every answer, thus ensuring that 
inappropriate replies are avoided.

In contrast, generative-based methods use machine learning models, such as neural 
networks, to generate responses on the fly based on the conversation's context. This 
approach allows for more flexibility and creativity in responses, but it also poses a 
challenge of ensuring that the responses remain coherent and appropriate. Generative-
based methods also require a large dataset for training and can be computationally 
intensive.

 

     

                 
                           Figure 10: Classification of chatbots based on design techniques 

Retrieval-Based Chatbot  

   

Generative Chatbot  
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3.7 Performance assessment 

Another area of challenge in conversational agents is ensuring their ethical use. As AI 
technology progresses and conversational agents become more sophisticated, there is a 
risk that they may be used to deceive or manipulate users. This has led to increased 
discussion around ethical considerations in conversational agents, including issues such 
as transparency, user privacy, and the potential for harm. In response, researchers and 
developers have begun to explore ethical guidelines and frameworks for conversational 
agents to ensure their responsible use. Some examples of these efforts include the IEEE 
Global Initiative for Ethical Considerations in AI and Autonomous Systems and the 
Asilomar AI Principles. These initiatives aim to promote ethical use of conversational 
agents and other AI technologies, while also ensuring their continued development and 
progress.
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4. AI Chatbots in Human Resource Management:  

The aim of this chapter is to provide a comprehensive overview of the problem at hand, 
the goals that we aim to achieve through the implementation of the bot, the constraints 
that need to be considered during the design process, and the identified user problems 
that the bot will be addressing. By understanding these factors, we can design a bot that 
is tailored to the specific needs of the organization, and that can provide employees with 
the support they need to carry out their work effectively.

4.1 Problem description 

One of the main challenges associated with implementing a bot that handles employee 
queries is ensuring the accuracy of its responses. This requires the bot to have a deep 
understanding of the organization's policies, procedures, and systems, as well as the 
ability to accurately interpret and respond to employee queries.

Achieving accuracy requires the bot to be trained on a diverse and representative 
dataset, which can include historical tickets, chat logs, and other relevant data sources. 
The bot must also be able to learn from feedback and continuously improve its accuracy 
over time.

Another key challenge is delivering a positive user experience for employees interacting 
with the bot. This requires the bot to be easy to use and navigate, with clear and concise 
instructions and responses. The bot must also be able to adapt to different 
communication styles and languages, and provide personalized responses based on the 
employee's specific query.

Integration with existing systems and processes is also important for the successful 
implementation of a bot that handles employee queries. This requires the bot to be able 
to access and integrate with relevant data sources, such as HR systems, payroll 
databases, and other internal systems. The bot must also be able to follow established 
workflows and procedures, and be able to escalate tickets to the appropriate support 
agents or departments when necessary.
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In order to address these challenges, organizations may need to invest in advanced 
natural language processing and machine learning technologies, as well as provide 
extensive training and support to employees and support agents. Regular testing and 
performance monitoring can also help ensure that the bot is providing accurate and 
effective responses, and identify areas for improvement.

4.2 Goals  

The goal of a bot for query redirection in an employee web page oriented platform is to 
efficiently handle and redirect employee queries to the appropriate department or 
support agent. By automating this process, the bot can provide faster and more accurate 
responses to employee queries, which can help improve employee satisfaction and 
productivity.

The bot's primary goal is to analyze employee queries using natural language processing 
and machine learning techniques to understand their intent and provide relevant 
information or redirect the query to the appropriate department or support agent. The 
bot should also be able to maintain an accurate and up-to-date knowledge base, which 
can help improve its accuracy and effectiveness over time.

Another goal of the bot is to provide a seamless and user-friendly experience for 
employees interacting with the platform. This requires the bot to be easy to use and 
navigate, with clear and concise instructions and responses. The bot should also be able 
to adapt to different communication styles and languages, and provide personalized 
responses based on the employee's specific query.

Ultimately, the goal of a bot for query redirection in an employee web page oriented 
platform is to provide fast and efficient support for employees, while also improving the 
overall efficiency and productivity of the organization.

  

Ideally, the software should : 

•  Accurate Responses: the bot should be able to provide accurate responses to 
employee queries and have a high degree of accuracy in understanding the intent 
behind the queries. 

• The bot should also be able to extract relevant information from the employee queries, 
such as specific dates, names, or numbers, in order to provide more tailored and 
helpful responses. This requires the bot to have advanced information extraction 
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capabilities, which can be achieved through the use of machine learning and other 
natural language processing techniques.

•  Personalization: The bot should be able to personalize responses based on the 
employee's specific query and provide relevant information or redirect the query to 
the appropriate department or support agent.

• Easy to Use: The bot should have an intuitive and user-friendly interface, with clear 
instructions and responses that are easy to understand and follow.

• Multilingual Support: The bot should be able to support multiple languages and be 
able to handle queries in different languages.

• Integration with Existing Systems: The bot should be able to integrate with existing 
systems and processes to provide seamless support and avoid duplication of effort.

• Continuous Learning: The bot should be able to continuously learn and improve its 
accuracy and effectiveness over time, based on user feedback and interactions.

• Availability: The bot should be available 24/7 to provide support to employees, which 
can help reduce wait times and improve employee satisfaction.

4.3 Constraints  

potential constraints that a bot in an employee web page oriented platform may have 
include:

• Security and Privacy: The bot should be designed to comply with the organization's 
security and privacy policies, ensuring that employee data is protected and not shared 
with unauthorized parties.

• Scalability: The bot should be able to handle a large volume of employee queries and 
be scalable enough to accommodate future growth in the organization.

• Integration with existing systems and processes: The bot must be able to integrate 
with existing systems and processes within the organization, such as HR databases or 
customer relationship management (CRM) systems.
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• Language support: The bot should be designed to support multiple languages to cater 
to the diverse needs of employees.

• Limited conversational capabilities: The bot may have difficulty engaging in complex 
or nuanced conversations with employees, which could limit its ability to fully 
address their queries.

• Training data availability: The accuracy of the bot depends on the quality of training 
data used to develop it. Availability of training data may constrain the bot's 
performance.

• Budget: The development and implementation of a bot can require significant 
financial resources, which may be a constraint for some organizations.
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4.4 Identified issues 

The initial inquiry is to determine "Which user problems should the chatbot be able to 
handle?” This is a significant challenge since the issues must be common enough to 
provide ample training data and straightforward enough to prevent potential errors by 
the chatbot.

1. common enough to provide enough training samples.

2. simple to resolve so as to limit the chatbot’s potential mistakes
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Figure 11 : Industry Standards and Best Practices – Comparison and Analysis

While communication and collaboration tools in employee portals can be very 
beneficial, they can also lead to some user problems. Here are some potential issues that 
can arise:
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                          Table 1 : List of considered user problems 

When employees submit queries to a chatbot designed to provide support, the chatbot 
may use macros to respond appropriately and attach tags to the query. These tags can 
help the chatbot quickly identify the nature of the problem and respond effectively.

It is assumed that employees will only report one issue at a time in a single query to the 
chatbot. This ensures that the chatbot can efficiently address each issue and provide 
accurate and helpful responses. If employees report multiple issues in a single query, it 

         User problem             Description 
Login problems  Users may have difficulty logging 

into the portal or accessing specific 
tools within the portal.

Compatibility issues Certain tools may not be compatible 
with certain devices or operating 
systems, leading to technical issues or 
limited functionality.

Data storage limitations Some tools may have limitations on the 
amount of data that can be stored or 
shared, which can lead to technical 
issues if users exceed those limitations.

Benefits enrollment E m p l o y e e s m a y h a v e d i f f i c u l t y 
understanding their benefits options, or 
may have trouble enrolling in benefits 
programs.

Time off and vacation Employees may have questions about 
their vacation time, sick leave, or other 
time off policies and procedures.

Payroll and compensation Employees may have questions about 
their pay, taxes, or other compensation-
related issues

Work schedules Employees may have questions 
about their work schedules or may 
need to request time off
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may be more difficult for the chatbot to identify and address each issue individually, 
which could lead to longer response times and less effective solutions.

5.  Building chatbots 

The architecture of the chatbot system is illustrated in Figure 12, which shows that the 
system retrieves information from its knowledge base and connects it to the inference 
engine. This connection establishes the relationships throughout the entire system. The 
data flow design of the architecture provides a clear understanding of the chatbot's 
concept.

                                 Figure 12 : Anatomy of the chatbot system 

                                                  

                              

                                                                                                                                      35



  

 

                         Figure 13 : Proposed system flowchart 
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5.1 Flask : 

 

                                  Figure 14 : Flask + Bootstrap + SQLite 

Flask is a popular, lightweight, and extensible web application framework written in 
Python. It provides a simple and efficient way to develop web applications by offering a 
range of essential tools and features out-of-the-box. Flask is built on the Werkzeug 
WSGI (Web Server Gateway Interface) toolkit and the Jinja2 templating engine, which 
together allow developers to create dynamic, scalable, and customizable web 
applications with ease.

One of the main advantages of Flask is its simplicity, as it does not enforce a specific 
project structure or require a steep learning curve. This makes it an ideal choice for 
small to medium-sized projects, as well as for developers who are new to web 
application development. With its minimalist and modular design, Flask enables 
developers to build applications by adding only the necessary components, avoiding the 
complexities and overhead of larger frameworks.

Flask's flexibility is another key strength, as it allows developers to choose from a wide 
variety of third-party extensions and libraries to enhance the functionality of their 
applications. This adaptability enables the creation of web applications tailored to 
specific requirements and ensures that the framework can grow alongside the project.
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In the context of developing the chatbot for query redirection in an employee web page, 
Flask's simplicity and flexibility make it a suitable choice. Its easy-to-use routing 
system, seamless integration with the Jinja2 templating engine, and compatibility with 
various databases and machine learning libraries enable the efficient development of a 
chatbot that can handle user inputs, process natural language queries, and interact with 
an employee database to provide relevant information.

5.1.1 Flask initialization: 

The Flask app initialization is a crucial step in setting up the foundation of the chatbot 
application. The 'app' variable is created by instantiating the Flask class, which serves as 
the core component of the Flask application. This instance of the Flask class represents 
the chatbot application and provides essential functionality for defining routes, handling 
HTTP requests, and managing application configurations.

The 'app' variable is initialized with the following line of code:

                             Figure 15: app variable initialization 

Here, the 'name' argument passed to the Flask class is used to determine the root path of 
the application. This is essential for Flask to locate other resources, such as templates 
and static files, which are used in the chatbot application.

Once the 'app' variable is created, it is used throughout the code to define the 
application's routes and handle HTTP requests. Routes are the URLs at which users can 
access different parts of the web application. In the context of the chatbot, the routes are 
responsible for rendering the user interface and processing user messages. By using the 
'app' variable along with route decorators (e.g., @app.route('/')), you can associate 
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specific functions with particular URLs, allowing the chatbot to respond to user requests 
accordingly.

5.1.2 Route for Home Page: 

In Flask, decorators are used to associate specific functions with particular routes or 
URLs. In this case, the '@app.route('/')' decorator associates the subsequent 'home()' 
function with the root URL of the application, which is the home page.

Here's the code snippet for the home route:

                             Figure 16: home route code snippet   

The associated 'home()' function serves as the entry point for users to interact with the 
chatbot. When users visit the root URL of the application, the 'home()' function is 
executed, and it returns the rendered 'index.html' template. The 'render_template()' 
function is a built-in Flask function that takes an HTML template file as an argument 
and dynamically generates an HTML page to be displayed to the user.

The 'index.html' template serves as the user interface for the chatbot application. It 
contains input elements for users to enter their messages and interact with the chatbot, 
as well as a display area to show the chatbot's responses. This user interface allows for 
seamless communication between the user and the chatbot, enabling the chatbot to 
receive user inputs, process them, and return relevant responses based on the user's 
queries.
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5.1.3 Route for Chatbot Response: 

We use the decorator ‘@app.route(‘/get’)' this decorator associates the subsequent 
'chatbot_response()' function with the '/get' URL of the application, which is specifically 
designed to handle user messages and generate appropriate responses from the chatbot.

Here's the code snippet for the chatbot response route:

                      Figure 17: chatbot response route code snippet 

The associated 'chatbot_response()' function receives user messages as HTTP GET 
requests. The user's message is passed as a parameter named 'msg' in the request. The 
'request.args.get()' function retrieves the value of the 'msg' parameter from the HTTP 
request, and the resulting message is stored in the 'message' variable.

Once the user's message is obtained, the 'chatbot_response()' function calls the 
'get_response()' function, passing the 'message' variable as an argument. The 
'get_response()' function is responsible for processing the user's message, interpreting 
its content, and generating an appropriate response based on the chatbot's understanding 
of the message. This function utilizes the pre-trained Neural Network model, natural 
language processing techniques, and database interactions to produce a relevant 
response for the user.

Finally, the 'chatbot_response()' function returns the generated response as an HTTP 
response, which is then displayed to the user in the chatbot's user interface. This process 
allows for a smooth and interactive conversation between the user and the chatbot.
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5.1.4 Processing User Messages: 

The function used is called  ‘get_response()’  this function is responsible for processing 
user messages, interacting with the employees' database, and generating appropriate 
responses using the pre-trained Neural Network model.

In this block of code, the get_response() function initializes various components 
required to process the user's message and generate an appropriate response. Here's an 
explanation of each part of the code:  
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def get_response(message): 
    mydb = pymysql.connect( 
        host="localhost", 
        user="root", 
        password="", 
        database="employees", 
    ) 

    mycursor = mydb.cursor() 

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 

    with open('intents.json', 'r') as json_data: 
        intents = json.load(json_data) 

    FILE = "data.pth" 
    data = torch.load(FILE) 

    input_size = data["input_size"] 
    hidden_size = data["hidden_size"] 
    output_size = data["output_size"] 
    all_words = data['all_words'] 
    tags = data['tags'] 
    model_state = data["model_state"] 

    model = NeuralNet(input_size, hidden_size, output_size).to(device) 
    model.load_state_dict(model_state) 
    model.eval() 

    bot_name = "TFG" 



  

 

Database connection - Device configuration - Loading intents - Loading model data - 
Model initialization - Botname

This block of code in the ‘get_response()’ function is responsible for processing the 
user's message and generating an appropriate response using the pre-trained Neural 
Network model. 

get_employee_info() function: This inner function takes an employee number (emp_no) 
as an argument, queries the 'employees' database to fetch the first_name of the 
employee with that number, and returns it. If no employee is found with the given 
number, it returns None.

Tokenization: The user's message is tokenized using the tokenize() function, which 
splits the input message into a list of words.

Bag of words: The tokenized message is converted into a bag-of-words representation 
using the bag_of_words() function. This representation is a fixed-size vector that 
captures the presence (or frequency) of words in the message.

                                                                                                                                      42

def get_employee_info(emp_no): 
    mycursor.execute(f"SELECT first_name FROM employees.employees WHERE emp_no = {emp_no}") 
    result = mycursor.fetchone() 
    if result: 
        return result[0] 
    else: 
        return None 

sentence = message 
sentence = tokenize(sentence) 
X = bag_of_words(sentence, all_words) 
X = X.reshape(1, X.shape[0]) 
X = torch.from_numpy(X).to(device) 

output = model(X) 
_, predicted = torch.max(output, dim=1) 
tag = tags[predicted.item()] 

prob = torch.softmax(output, dim=1)[0][predicted.item()] 



  

 

Model prediction: The bag-of-words representation is fed into the Neural Network 
model to predict the most suitable response tag. The torch.max() function is used to find 

the index of the highest value in the output tensor, which corresponds to the predicted 
tag.

This block of code in the ‘get_response()’ function is responsible for generating the 
chatbot's response based on the predicted tag and its probability.

Checking prediction confidence: The code checks if the probability of the predicted tag 
is greater than a threshold (0.5 in this case) to ensure that the model is confident enough 
in its prediction before generating a response.
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prob = torch.softmax(output, dim=1)[0][predicted.item()] 
if prob.item() > 0.5: 
    for intent in intents['intents']: 
        if tag == intent["tag"]: 
            if tag == "employee_info": 
                pattern = re.compile(r'employee\s+(\d+)', re.IGNORECASE) 
                match = pattern.search(" ".join(sentence)) 
                if match: 
                    emp_no = match.group(1) 
                    first_name = get_employee_info(emp_no) 
                    if first_name is not None: 
                        response = intent['responses'][0].format(emp_no=emp_no, first_name=first_name) 
                    else: 
                        response = "I couldn't find that employee's information." 
                else: 
                    response = "Please provide an employee number." 
            else: 
                response = random.choice(intent['responses']) 
            return f"{bot_name}: {response}" 
else: 
    return f"{bot_name}: I do not understand..." 



  

 

Iterating through intents: If the confidence threshold is met, the code iterates through 
the intents defined in the intents.json file to find the intent that matches the predicted tag.

Handling 'employee_info' tag: If the predicted tag is 'employee_info', the code looks for 
an employee number in the user's message using a regular expression pattern. If an 
employee number is found, the get_employee_info() function is called to retrieve the 
employee's first name. The appropriate response is then formatted using the employee's 
number and first name.

Returning the chatbot's response: The chatbot's response is returned as a formatted 
string that includes the bot's name.

Handling low confidence predictions: If the confidence threshold is not met, the chatbot 
returns a default response indicating that it does not understand the user's message.

5.2 Neural Network model : 

The Neural Network model used in this chatbot application is responsible for processing 
and understanding user messages. It takes the tokenized and preprocessed messages as 
input and generates predictions for the appropriate response based on the message 
content.  

                                    Figure 18: importing NeuralNet 
  
Key components:

Input Size (input_size): This is the size of the input vector, which represents the bag of 
words for a given user message. The input size is equal to the length of the 'all_words' 
list, which contains all unique words in the training dataset. The bag of words is a 
binary vector where each element corresponds to the presence (1) or absence (0) of a 
word from 'all_words' in the user message.
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Hidden Size (hidden_size): This is the size of the hidden layers in the neural network. 
The hidden layers are responsible for learning complex patterns and relationships 
between the input data (user messages) and the output data (predicted response tags). A 
larger hidden size allows the model to learn more complex patterns, but it can also 
increase the risk of overfitting and the computational cost.

Output Size (output_size): This is the size of the output vector, which represents the 
predicted tag probabilities for a given user message. The output size is equal to the 
number of unique tags in the 'intents.json' file. Each element in the output vector 
corresponds to the probability of a specific tag being the appropriate response for the 
input message

Loading the Trained Model: The 'data.pth' file stores the trained model's parameters and 
related information, such as input_size, hidden_size, output_size, all_words, and tags. 
The file is loaded using the torch.load() function, and the model's state dictionary is 
updated with the saved parameters using model.load_state_dict(). This allows the 
chatbot to utilize the pre-trained model to generate predictions for user messages.

                                                  Figure 19: importing torch 

5.3 Natural Language Processing (NLP) : 

Natural Language Processing (NLP) is a critical component of the chatbot application, 
as it enables the model to understand and process user messages. The nltk_utils module 
provides essential NLP functions that facilitate these tasks. The two main functions used 
from this module are:

tokenize(): This function is used to break down the user's message into individual words 
or tokens. Tokenization is a vital preprocessing step in NLP, as it converts raw text into 
a structured format that can be analyzed and processed by the model. By splitting the 
message into tokens, the model can recognize and understand individual words, making 
it easier to determine the meaning and context of the input
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                               Figure 20: tokenize function 

 stem(): This function is a utility function for stemming words. Stemming is an NLP 
technique that aims to reduce a word to its root or base form by removing inflections 
and derivational affixes. This process helps normalize the text data and reduces the 
vocabulary size, making it easier for the model to understand and process text input.

                                       Figure 21:    stem function
 

bag_of_words(): This function is used to create a "bag of words" representation of the 
tokenized message. A bag of words is a simplified representation of the text, where each token 
is represented as a binary value (1 or 0) indicating its presence or absence in the message. This 
representation disregards word order and grammar but captures the essential information about 
which words are present in the input.
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                           Figure 22: bag_of_words function

5.4 Database Integration : 

Database Integration is an essential aspect of the chatbot application, as it enables the 
retrieval of specific employee information when needed. The chatbot is integrated with 
the employees' database using the pymysql library, a Python MySQL client library that 
allows for easy interaction with MySQL databases.

                                 Figure 23: importing pymysql

The get_employee_info() function is a crucial component of this integration, as it queries the 
database for employee information based on the employee number provided by the user. The 
function performs the following steps:

                                Figure 24: get_response function 

                                                                                                                                      47



  

 

Connection to mysql database, the database used is a sample database from : https://
dev.mysql.com/doc/employee/en/employees-installation.html.  

                                    Figure 25: get_employee_info function 

While this function uses a basic SELECT query to fetch the first_name of an employee 
based on the provided employee number (emp_no), it serves as an example to 
demonstrate the integration of the chatbot with the employees' database.

In the actual implementation of the chatbot, more complex and diverse queries were 
used to fetch various types of employee information, such as last names, job titles, 
department names, and hire dates.

5.5 Query Processing and Response Generation : 

When a user sends a message, it is first tokenized and preprocessed using the functions 
from the nltk_utils module. The tokenization involves breaking the message into 
individual words, while the bag of words representation converts the tokenized message 
into a fixed-size input vector for the Neural Network model. This preprocessing is 
essential to ensure that the model can effectively understand and process the user's 
message.

The preprocessed input vector is then passed through the trained Neural Network 
model, which predicts the most appropriate tag for the user's message. The model 
architecture consists of input_size, hidden_size, and output_size layers. The input_size 
corresponds to the size of the bag of words representation, while the output_size is the 
number of unique tags in the 'intents.json' file. The model returns a probability 
distribution over the possible tags, and the tag with the highest probability is selected as 
the predicted tag
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                             Figure 26: Example of a tag in intents.json 

Once the predicted tag is obtained, the system searches through the 'intents.json' file to 
find the corresponding intent. The 'intents.json' file contains predefined intents, each 
with a tag, a list of patterns (sample user messages), and a list of responses. Based on 
the predicted tag, the system selects a random response from the list of available 
responses associated with the intent.

If the predicted tag requires querying the employees' database (e.g., "employee_info"), 
the chatbot extracts the necessary information from the user's message (e.g., employee 
number) and uses the get_employee_info() function to fetch the requested data from the 
database. The response is then generated by incorporating the retrieved data.

Finally, the generated response is returned as an HTTP response and displayed to the 
user in the 'index.html' template, enabling seamless interaction between the user and the 
chatbot.

                              Figure 27: example of generated HTTP responses 
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5.6 Training : 

The script performs several key tasks, such as data preparation, model training, and 
saving the trained model. 

                      Figure  28 : training loop for the Neural Network model 

 The script begins by loading the 'intents.json' file, which contains the intents, patterns, 
and responses. It tokenizes and stems the patterns to create a list of unique words 
(all_words) and a list of unique tags (tags). The data is then converted into input-output 
pairs, where the input is a bag of words representation of the patterns, and the output is 
the corresponding class label (tag index).

Then the script defines several hyperparameters, such as the number of epochs, batch 
size, and learning rate for training the Neural Network model. It also sets the input_size, 
hidden_size, and output_size for the model architecture. The ChatDataset class is 
created as a subclass of the PyTorch Dataset class to handle the training data. The 
DataLoader is used to create mini-batches and shuffle the data during training.

The Neural Network model is instantiated and set to run on either GPU (CUDA) or 
CPU, depending on the availability. The CrossEntropyLoss criterion is used as the loss 
function, and the Adam optimizer is chosen for updating the model's parameters. The 
training loop iterates over the specified number of epochs, and for each epoch, it 
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processes the data in mini-batches. The model's forward pass computes the output, 
which is then compared with the ground truth labels using the loss function. The 
optimizer performs a backward pass to update the model parameters based on the 
computed gradients. 

After the training process is complete, the final loss is printed to show the model's 
performance. The model's state_dict (containing the model's parameters), input_size, 
hidden_size, output_size, all_words, and tags are saved in a dictionary called 'data'. This 
data is then saved to a file named 'data.pth' using the torch.save() function, which can 
later be loaded to use the trained model for processing user messages.

6.  Deploying the chatbot  

In this final chapter, we will demonstrate the deployment of the chatbot and showcase 
its functionality by interacting with it through a web interface. This will allow users to 
ask the chatbot various queries and see the chatbot's responses in real-time. The purpose 
of this chapter is to present the chatbot's practical application and its ability to 
understand and answer user questions effectively.

                

                                            Figure 29 : Project directory 
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To create an appealing user interface for our chatbot, we have designed an HTML 
template that includes essential elements such as a text input field for entering queries, a 
display area for showing the chatbot's responses, and a send button for submitting user 
input. The template incorporates CSS styling to ensure the interface is visually 
appealing and easy to navigate.

                                        Figure 30 :  Chatbot Web Interface. 
                                       

In addition to the HTML template, we have implemented JavaScript functions to handle 
user input and manage the interaction between the user and the chatbot. These functions 
are responsible for capturing user input, sending it to the Flask server via AJAX 
requests, and updating the display area with the chatbot's responses. This ensures a 
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smooth, real-time interaction between the user and the chatbot without requiring page 
refreshes.

6.1 Query Processing and Response Generation : 

In this section, you can present multiple user interaction examples with the chatbot, 
showcasing its capabilities and versatility. Here's a sample structure for presenting these 
interactions:

            

 Figure 31 : Requesting information about the name of an employee with a 
specific employee number 10001. 
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Figure 32:  Seeking information about the date when a specific person was hired. 
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   Figure 33:  Retrieving the name of a department based on its department 
number. 

       Figure 34:  Retrieving the title of an employee and his salary. 

7.  Conclusions and future lines of  research :  

The primary objectives of this project were to develop a chatbot capable of handling 
employee queries and effectively retrieving relevant information from a MySQL 
database. The results of this project demonstrate that the developed chatbot has been 
successful in achieving these objectives.

The chatbot's implementation, which involved the integration of PyMySQL, a deep 
learning model, and natural language processing techniques, enabled it to effectively 
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communicate with the database and provide accurate responses to a wide range of 
employee queries.

It increases efficiency by automating the process of handling employee queries, which 
saves time and effort for human resources and administrative staff, allowing them to 
focus on other critical tasks. This efficiency may lead to cost savings for the 
organization.

Furthermore, the chatbot's quick and accurate responses contribute to improved 
employee satisfaction, which can result in higher retention rates and increased employee 
engagement. By leveraging the chatbot's automated capabilities, organizations can also 
reduce human error when responding to employee queries, leading to more accurate and 
consistent information being provided to employees.

The chatbot is highly scalable, capable of handling a large volume of queries without 
requiring additional resources. This makes it an ideal solution for growing organizations 
or those with frequent fluctuations in employee numbers. Additionally, the chatbot 
offers an accessible method for obtaining information, as employees can interact with it 
through a familiar chat interface. This convenience may lead to higher adoption rates 
and increased utilization of the chatbot across the organization.

7.1 Limitations  : 

Despite the numerous benefits provided by the chatbot, there are some limitations to be 
acknowledged. One potential limitation is the chatbot's performance in handling 
complex or ambiguous queries, which may require human intervention for accurate 
responses. The chatbot relies on predefined intents and patterns, and it might not be able 
to handle queries outside its training scope, or those that involve subjective 
interpretations.

Another limitation is the dependency on the quality and completeness of the data used 
in the project. If the database contains outdated or inaccurate information, the chatbot 
may provide incorrect responses to employee queries. Moreover, the chatbot's 
performance may be influenced by the quality of the Natural Language Processing 
(NLP) model and the training data used to develop it. Insufficient or biased training data 
may lead to reduced accuracy in the chatbot's responses.

Additionally, the chatbot may face challenges in understanding certain linguistic 
nuances, such as slang, idioms, or regional dialects, which could affect the accuracy of 
its responses. The chatbot's performance may also be influenced by the technology or 
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platform used for deployment, as different platforms may have varying levels of 
compatibility with the chatbot's features and requirements. 

Lastly, privacy and security concerns should be considered when implementing the 
chatbot in an organization. Ensuring that the chatbot handles sensitive employee 
information securely and in compliance with data protection regulations is essential to 
maintain employee trust and prevent potential data breaches.

7.2 Future lines of  research : 

Expanding the scope of the chatbot to handle more complex queries and tasks, making it 
a more versatile tool for employees.

Incorporating additional data sources, such as external APIs, to provide more 
comprehensive information and making the chatbot a centralized information hub for 
employees.

Improving the natural language understanding capabilities of the chatbot by 
implementing more advanced NLP techniques or fine-tuning the model with domain-
specific data, which would lead to better query comprehension and more accurate 
responses.

Enhancing the user experience by developing a more interactive and user-friendly 
interface, which could encourage greater adoption and use of the chatbot by employees.

Evaluating the chatbot's performance and impact on employees' productivity and 
satisfaction through user testing and feedback, allowing for iterative improvements and 
ensuring that the chatbot continues to meet the needs of its users.
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