
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Telecommunications Engineering

Functional design of a bot for query redirection in an
employee web page oriented.

End of Degree Project

Bachelor's Degree in Telecommunication Technologies and
Services Engineering

AUTHOR: Bamhaoued, Karim

Tutor: González Ladrón de Guevara, Fernando Raimundo

ACADEMIC YEAR: 2022/2023

Resumen

Esta tesis explora el desarrollo e implementación de un chatbot de inteligencia artificial
diseñado para manejar consultas de empleados y recuperar información de una base de
datos MySQL. Al examinar la importancia de la gestión de recursos humanos, la
evolución de los chatbots y su uso en recursos humanos, el proyecto tiene como
objetivo crear un chatbot que aborde las necesidades de la organización y brinde soporte
a los empleados. La tesis profundiza en las técnicas y metodologías de construcción de
chatbots, demuestra el despliegue y la funcionalidad, y discute los resultados obtenidos,
las limitaciones y las posibles líneas de investigación futuras. La exitosa integración de
PyMySQL, un modelo de aprendizaje profundo y técnicas de procesamiento del
lenguaje natural resulta en un chatbot que mejora la eficiencia, el ahorro de costos y la
satisfacción de los empleados.

Resum

Esta tesi explora el desenvolupament i la implementació d'un xatbot d'intel·ligència
artificial dissenyat per a gestionar consultes dels empleats i recuperar informació d'una
base de dades MySQL. Examinant la importància de la gestió de recursos humans,
l'evolució dels xatbots i el seu ús en recursos humans, el projecte té com a objectiu crear
un xatbot que aborde les necessitats de l'organització i done suport als empleats. La tesi
aprofundeix en les tècniques i metodologies de construcció de xatbots, demostra el
desplegament i la funcionalitat, i discuteix els resultats obtinguts, les limitacions i les
possibles línies de recerca futures. La integració exitosa de PyMySQL, un model
d'aprenentatge profund i tècniques de processament del llenguatge natural resulta en un
xatbot que millora l'eficiència, l'estalvi de costos i la satisfacció dels empleats.

Abstract

This thesis explores the development and implementation of an AI chatbot designed to
handle employee queries and retrieve information from a MySQL database. By
examining the importance of human resource management, the evolution of chatbots,
and their use in HR, the project aims to create a chatbot that addresses organizational
needs and supports employees. The thesis delves into chatbot-building techniques and
methodologies, demonstrates deployment and functionality, and discusses the achieved
results, limitations, and potential future research directions. The successful integration

 2

of PyMySQL, a deep learning model, and natural language processing techniques
results in a chatbot that improves efficiency, cost savings, and employee satisfaction.

 3

Index:

1. Introduction …………………………………………………………………………………..
 1.1 Motivation ……….

 1.2. Objectives ……….

 1.3. Structures of the thesis ………………………………………………………………………………………………

2. Human Resources management…………………………………………………………………………………………..

 2.1. Fundamentals of Human Resource Management………………………………………………………….

 2.2. Human Resource Information Systems (HRIS)……………………………………………………………….

 2.3. Features of an Effective HRIS………………………………………………………………………………………..

 2.4. Employee Portals……..

3. History, evolution, architecture and different technologies of AI chatbots…………………………..

 3.1. A brief history of chatbots…………………………………………………………………………………………….

 3.2. Architecture of chatbots……………………………………………………………………………………………….

 3.2.1 Rule-based……….

 3.2.2 Decision Tree Method……………………………………………………………………………………………

 3.2.3. Transformer (machine learning model)………………………………………………………………….

 3.3. Language identification………………………………………………………………………………………………….

 3.4. Intent classification………………………………………………………………………………………………………..

 3.5. Knowledge management……………………………………………………………………………………………….

 3.6. Response generation……………………………………………………………………………………………………..

 3.7 Performance assessment……………………………………………………………………………………………….

4. AI Chatbots in Human Resource Management………………………………………………………………….

 4.1. Problem description………………………………………………………………………………………………………

 4.2. Goals………

 4.3. Constraints…….

 4.4. Identified issues……….

5. Building chatbots…….

 5.1. Flask……

 5.1.1. Flask initialization…………………………………………………………………………………………………

 5.1.2. Route for Home Page…………………………………………………………………………………………….

 5.1.3 Route for Chatbot Response……………………………………………………………………………………

 5.1.4. Processing User Messages………………………………………………………………………………………

 5.2. Neural Network model…………………………………………………………………………………………………

 4

 5.3. Natural Language Processing (NLP)………………………………………………………………………………

 5.4. Database Integration…………………………………………………………………………………………………….

 5.5. Query Processing and Response Generation………………………………………………………………….

 5.6. Training…….

6. Deploying the chatbot

 6.1. Query Processing and Response Generation………………………………………………………………….

7. Conclusions and future lines of research……………………………………………………………………………….

 7.1. Limitations…….

 7.2. Future lines of research…………………………………………………………………………………………………

 5

1.Introduction

1.1. Motivation

In today's increasingly digital world, businesses must continually adapt to new
technologies to stay competitive. An essential aspect of this adaptation is the
development of efficient and effective employee web pages. However, despite
significant investments in web page design and development, employees still struggle to
find the information they need quickly.

Designing and implementing a bot for query redirection in an employee web page can
solve this problem. The bot can analyze employee queries and redirect them to the
appropriate web page or resource, reducing the time and effort employees spend
navigating the web page. This will increase employee satisfaction, reduce frustration,
and ultimately boost productivity.

1.2. Objectives

The proposal of this project is to introduce an AI-powered chatbot into the HRM
department to enhance the employee experience, automate administrative tasks, and
provide real-time decision-making capabilities. By integrating AI technology,
businesses can streamline HR processes, increase efficiency, and reduce operating costs.
The chatbot will be customized to handle common HR queries, such as vacation
policies, benefits information, and performance evaluations, freeing up HR
professionals to focus on more complex tasks, such as managing employee relations and
developing talent. The implementation of AI-powered chatbots in HRM presents an
exciting opportunity to revolutionize business operations and create a more engaging
work environment.

 6

1.3. Structure of the thesis

This document has been organized in the following format:

1. Introduction:
In this chapter, the author presents the context for the project, followed by their personal
motivation for pursuing this research. Finally, the chapter outlines the objectives of the
project.

2. Human resources management:
 this chapter will provide an overview of the importance of human resource
management and the challenges faced by HR professionals. It will review the literature
on HR management, describe the research methodology used, and present the findings
of the study, which will include data on current HR practices, challenges and
effectiveness of HR practices.

3. History, evolution, architecture and different technologies of AI
chatbots:

 this section will discuss the history and evolution of chatbots, their architecture, and
different technologies used in their development.

4. AI Chatbots in Human Resource Management:
 The purpose of this chapter is to give an overview of the problem, goals to achieve
through the bot implementation, design constraints, and user issues to address. This
allows us to design a bot tailored to the organization's needs and provide effective
support for employees in their work

5. Building chatbots:

 We explore the various techniques and methodologies involved in creating chatbots,
focusing on the essential components, tools, and best practices for effective
development. This comprehensive guide will enable readers to understand the
intricacies of chatbot construction, ensuring the development of chatbots that meet the
needs of users and enhance their overall experience.

6. Deploying the chatbot:

In this chapter, we'll demonstrate the chatbot's deployment and functionality via a web
interface, enabling users to interact with it and observe real-time responses. The goal is
to showcase the chatbot's practical use and its capability to comprehend and effectively
answer user queries.

 7

7. Conclusions and future lines of research:

This project aimed to develop a chatbot capable of managing employee queries and
efficiently retrieving information from a MySQL database. By integrating PyMySQL, a
deep learning model, and natural language processing techniques, the chatbot
successfully addresses these objectives, resulting in increased efficiency, cost savings,
and improved employee satisfaction. Despite some limitations, potential future research
could further enhance its performance and user experience.

8. Bibliographic references

 8

2. Human resource Management:

2.1 Fundamentals of Human Resource Management

HRM is a strategic, integrated and coherent approach to the employment, development
and well-being of the people working in organizations. The purpose of HRM is to
enable employees to contribute effectively and productively to the overall company
direction and the accomplishment of the organization’s goals and objectives, while at
the same time enabling employees to achieve their own goals and objectives. HRM is
concerned with the acquisition, development and reward of employees, as well as the
management of change within the organization (Armstrong, 2017, p. [page 3]).

By defining HRM as a strategic approach to managing the employment, development,
and well-being of people within organizations, it is important to understand the
functions of HRM that contribute to achieving this goal. One key area of HRM is
employee relations, which involves managing the relationship between the employer
and employees to create a positive work environment and maintain effective
communication. Employee relations encompass a variety of activities, including
employee engagement, conflict resolution, and managing employee benefits.

 Figure 1: Functions of Human Resources

 9

Human resource professionals play a critical role in managing an organization's human
capital. They ensure the development and implementation of effective employee benefit
systems, training and development programs, and performance evaluation and reward
systems. Additionally, they work to maintain positive employee relations by fostering a
harmonious relationship between management and workers and ensuring compliance
with labor laws and regulations.

In today's business landscape, organizations are facing intense competition, leading
them to adopt new technological advancements to remain competitive in the market.
(Narayanan, 1998). In this scenario, man–machine interaction has become much more
crucial. The industries can run smoothly and achieve the business objectives by the
collaboration between human and computers. Business can be effective in the different
functional domains by using different technical components (Bos et al., 2019a).

As organizations face intense competition in today's business landscape, the integration
of technology and human resources has become crucial for their success. The use of
HRIS, a software application that merges HR management and information technology,
allows companies to streamline their workforce management processes, making them
more efficient and effective. By automating HR processes, such as recruiting,
onboarding, performance management, and employee records management, HRIS can
free up HR staff to focus on strategic initiatives, while also reducing administrative
errors and costs (SelectHub. ,2021).

 10

 Figure 2: e-HRM model

2.2 Human Resource Information Systems (HRIS)

HRIS is a system used to acquire, store, manipulate, analyze, retrieve, and distribute
pertinent information about an organization's human resources. The system combines
hardware, software, and data and provides information for decision making,
communication, and administrative activities (Kavanagh and Johnson, 2018, p. 5).

In other words, It’s used to acquire and store information about employees, such as
personal information, job details, and performance data. The system can manipulate and
analyze this information, providing insights and trends that can help decision-makers
better understand their workforce. Additionally, HRIS can retrieve and distribute this
information as needed, such as generating reports or providing data to other systems.

2.2.1 Features of an Effective HRIS

Each HRIS has a number of “essential features” that cover other important processes
and services. Most of them are simply marketing tactics. It is therefore essential to be
careful when choosing an HRIS (Features of an Effective HRIS. IceHrm, 2021),One of
the truly essential features of an effective HRIS is integration with other systems.

A well-implemented HRIS should be able to integrate with other HR and organizational
systems such as payroll, benefits, performance management, and accounting to ensure
that all employee data is accurately and efficiently collected, analyzed, and reported
(Noe et al., 2017, p. 239).

Flexibility is another important feature of an effective HRIS. HRIS should be flexible
enough to adapt to the changing needs of the organization. This includes the ability to
customize workflows, forms, and reports to fit the unique needs of the organization.
(Kavanagh et al., 2019, p. 106)

For example, an HRIS should be able to accommodate changes in job titles, job
descriptions, and other HR policies without requiring extensive programming or
customization. This flexibility allows the HRIS to evolve as the organization changes
and grows, ensuring that it remains a useful tool for managing human resources.
Additionally, HRIS should be able to handle multiple languages and currencies, as

 11

many organizations have a global presence and require HRIS that can operate across
borders.

Data accuracy is an important feature of an effective HRIS. The system should have
accurate and up-to-date information on employees, such as personal information, job
history, and performance data. This helps to ensure that HR decisions are based on
reliable information, and that employees receive the appropriate benefits and
compensation based on their qualifications and experience. Inaccurate or outdated
information can lead to errors in decision making and negatively impact employee
satisfaction and performance. HRIS should also have mechanisms in place to maintain

data accuracy, such as regular data audits and user access controls to prevent
unauthorized changes to employee information.

In the healthcare industry, accurate and timely information is crucial for providing
quality patient care. A study conducted by the Agency for Healthcare Research and
Quality (AHRQ) found that inaccurate patient information, including incomplete
medical histories and incorrect medication orders, led to medication errors and adverse
events in hospitals (AHRQ, 2020). HRIS can play a significant role in ensuring data
accuracy for healthcare organizations by providing up-to-date employee information to
support scheduling, staffing, and training decisions. This helps to ensure that healthcare
providers have the necessary resources to deliver quality care to patients.

Another feature is Self-service, refers to the ability of employees to access and manage
their own personal HR-related information, such as benefits enrollment, paid time off
requests, and updating personal information. Self-service features provide employees
with greater control and convenience, while also reducing the administrative burden on
HR staff.

Self-service applications provide employees, managers, and HR professionals with
direct access to data and HR transactions. Through self-service, employees can enter
and update their own information, view and modify their benefits and compensation,
and access training and development programs. Managers can use self-service to view
and approve employee requests, conduct performance evaluations, and make staffing
decisions. HR professionals can use self-service to manage recruiting and onboarding
processes, administer employee benefits and compensation, and maintain employee
records. Self-service applications can help to reduce administrative costs, improve data
accuracy an consistency, and increase employee and manager satisfaction (Kavanagh,
Thite & Johnson, 2019, p. 287).

Reporting and analytics are important features of HRIS that allow organizations to
make informed decisions based on data analysis. HRIS can generate reports on

 12

employee data, such as headcount, turnover rate, compensation and benefits, and
performance metrics. These reports can help identify trends and areas for improvement,
allowing organizations to make data-driven decisions that improve the overall
performance and effectiveness of the HR function.

Moreover, HRIS can also offer data visualization tools that help HR professionals create
visual representations of complex data sets, making it easier to identify patterns and
insights. Advanced analytics tools, such as predictive analytics and machine learning
algorithms, can also be integrated into HRIS to forecast future trends and outcomes, and
to automate routine HR tasks.

According to Kavanagh, Thite, and Johnson (2019), "Reporting and analytics
capabilities are critical for HR functions to demonstrate their value and impact to the
organization. These capabilities enable HR professionals to quantify the effectiveness of
HR policies and programs, and to provide meaningful insights to decision makers at all
levels of the organization" (p. 294).

Security is a critical feature of any HRIS as it deals with sensitive employee data such
as social security numbers, salary information, and personal identification. A breach of
this information can have severe consequences, including legal repercussions and
reputational damage. It is, therefore, crucial for an HRIS to have robust security
measures in place to protect this data. This includes access controls to limit who can
view and modify employee information, data encryption to prevent unauthorized access,
and regular security audits to identify potential vulnerabilities.

 Figure 3: HRIS selection criteria diagram

 13

2.3 Employee Portals

In addition to the core features listed above, many modern HRIS systems include
employee portals as a key component.

Technically speaking, an employee portal offers a browser-based user interface
providing access to personalized information, resources, and applications. In many
cases, an employee portal is the primary tool through which employees do their work.
Ideally, employee portals yield organizations and employees different benefits, such as
reducing information overload, lowering organizational costs, improving corporate
communication and knowledge management (KM), as well as enhancing employee
productivity (Tojib et al., 2006).

Today, many companies, especially large ones, offer their employees a portal. A 2006
US study by Forrester Research, Inc. indicated that 46% of large companies ran an
employee portal, and another quarter planned to establish one by 2008 (For- rester,
2006).

The use of employee portals has been growing steadily and, despite many companies
restricted IT budgets, investments in portal solutions are still growing. However, portal
projects are usually complex, time and cost-consuming with a high failure risk (Remus,
2006). And although IT departments and decision-makers have to justify portal
investments, a significant number of companies do not assess their portal
implementations actual benefits (Brown et al., 2007). Companies that do so, often use
monetary indicators and cost-benefit analysis methods (White, 2003).

These success-measurement approaches do not, however, take intangible impacts and
intervening environmental variables into account. A portal’s success cannot, however,
be measured by just its reach, and practitioners should not simply rely on ‘‘hit counts”
as measures of success (Damsgaard and Scheepers, 1999). Clearly, a comprehensive
measurement of portal success would also need to consider a portal’s intangible effects
to detect areas of potential improvements and justify present and future investments in
portal solutions.

According to the hypotheses of the paper "An Empirical Investigation of Employee
Portal Success" by Benbya et al. (2004), the perceived process quality and collaboration
quality of an employee portal can have a significant impact on user satisfaction and
usage of the portal. Specifically, the higher the perceived process quality, the more
satisfied users are with the portal and the more they will use it. Similarly, the higher the

 14

perceived collaboration quality, the more satisfied users are with the portal and the more
they will use it.

 Figure 4: Employee portal quality model

In this regard, AI chatbot can play a crucial role in enhancing collaboration quality
within an employee portal. By providing quick and accurate responses to employee
queries and concerns, chatbots can help reduce response times and increase accessibility
to important information. This can lead to improved communication and collaboration
between employees and HR departments, as well as between employees themselves.

 15

3. History, evolution, architecture and
different technologies of AI chatbots

3.1 A brief history of chatbots :

Chatbots have a long history that dates back to the mid-20th century when computer
scientists first began exploring natural language processing (NLP) and machine learning
algorithms . One of the earliest chatbots was ELIZA, developed by Joseph Weizenbaum
in 1966, which used pattern matching and substitution techniques to simulate
conversation (Weizenbaum, 1966).

ELIZA's success paved the way for other chatbots, such as PARRY and Jabberwacky, to
be developed in the 1980s and 1990s. However, it wasn't until the mid-2000s, with the
rise of social media platforms like Facebook and Twitter, that chatbots began to gain
widespread popularity.

For several decades, chatbots largely followed the rule-based approach used by ELIZA
with minor improvements such as speech synthesis and emotion management. However,
in 2001, a conversational agent called SmarterChild was introduced by ActiveBuddy,
Inc. (now Colloquis), which operated on AOL Instant Messenger and MSN Messenger.
SmarterChild was designed to provide quick access to news, weather forecasts, sports
results, and other information by connecting to a knowledge base. This was an
innovative approach, inspired by the rise of instant messaging platforms such as SMS.
However, due to the limitations of natural language processing technology at the time,
chatbots on these platforms were eventually forgotten by history.

The next significant advancement for conversational agents came from the IBM Watson
AI project, which had been under development since 2006. The primary goal of the
project was to design an agent capable of winning the American TV show Jeopardy! In
2011, the Watson agent successfully defeated two of the show's former champions.
Jeopardy! is an interesting challenge for NLP systems because the questions often
involve wordplay and require fast information retrieval from vast knowledge bases.
However, the Watson AI, in its previous form, could only provide one-line answers and
was incapable of engaging in a proper conversation with a human user.

The 2010s saw the emergence of virtual assistants, including Siri, Cortana, Google
Assistant, and Alexa, among others. These agents introduced the concept of goal-
oriented dialog and conversation to the field of chatbots. Additionally, the Messenger

 16

Platform for Facebook Messenger was released in 2016, which enabled the creation of
conversational agents for non-AI related companies.

Since the release of the Messenger Platform, the field of chatbots has continued to
evolve rapidly. Many companies have started using chatbots for customer service, sales,
and marketing, as they can provide 24/7 support and handle a large volume of inquiries.
Moreover, advancements in machine learning and natural language processing have
made it possible for chatbots to understand and respond to more complex queries.

In recent years, there has been a growing trend towards using chatbots in healthcare,
mental health, and therapy. Chatbots have been developed to provide support for
individuals with mental health issues, provide health-related advice and information,
and even offer therapy sessions.

As the field of chatbots continues to evolve, it is likely that they will become even more
sophisticated and integrated into our daily lives. With advancements in technologies
such as voice recognition and computer vision, it is possible that chatbots will soon be
able to understand and respond to non-verbal cues, such as facial expressions and body
language. As such, chatbots will continue to play an important role in shaping the future
of human-computer interaction.

According to Abdul-Kader, S. A., & Woods, J. C. (2015), the evolution of chatbots can
be categorized into three main stages:

1. First Generation: These chatbots are rule-based and use predefined templates to
respond to user input.

2. Second Generation: These chatbots use machine learning algorithms to improve
their responses over time. They can learn from user interactions and adapt to new
situations.

 3. Third Generation: These chatbots use advanced AI technologies, such as natural
language processing and deep learning, to provide more human-like conversation
experiences. They can understand context and perform complex tasks.

3.2 Architecture of chatbots:

A chatbot is an integration of several components working together towards a common
objective. These components are interconnected and their relationships are illustrated in
Figure 5, providing a visual representation of a conversational agent's structure.

When a user sends a message to a chatbot designed to solve employee queries, the
chatbot goes through a series of components to determine the appropriate response. The

 17

first component is the language identification module, which processes the message
using various methods to identify the language being used. The message is then passed
on to the intent classifier module, which uses machine learning algorithms to determine
the user's intent based on the message received.

Using the metadata from the message and the inferred intent, the chatbot's backend
accesses additional information to determine the appropriate response. This information
includes previous conversation messages and other relevant data. Based on this
information, the chatbot determines an appropriate action or sequence of actions to
perform. For example, the chatbot may ask clarifying questions if the intent is unclear,
or it may reactivate a user account if that is the user's intention.

Finally, the action handler module executes the determined action, taking into account
the environment in which the chatbot is operating. This allows for the same action to be
executed in different ways, depending on the platform or website where the chatbot is
operating.

 Figure 5 : conceptual diagram of a chatbot

3.2.1 Rule-based

Rule-based approaches involve defining a set of rules or heuristics that guide the
chatbot's behavior. These rules are typically defined by domain experts or developers
based on their understanding of the problem domain and the common patterns and
questions that users might have.

One example of a rule-based approach is a decision tree, which involves branching
based on a set of predefined rules or criteria. Another example is a template-based

 18

approach, where the chatbot selects a pre-defined response template based on the user's
input.

Other rule-based models include hand-crafted state machines, regular expression
matching, and pattern recognition techniques. These approaches require manual
intervention and domain expertise to design and refine the rules.

Among the various rule-based models, the decision tree approach has been found to be
particularly effective in employee-based portals due to its ability to handle complex
decision-making processes.

3.2.2 Decision Tree Method

The decision tree model can also be applied to employee portals to provide effective
support for employee queries. By defining a set of rules and criteria based on the nature
of employee queries, the decision tree can help classify and predict the appropriate
responses. The model can be used to help employees understand company policies,
provide information on benefits, and answer questions related to performance
evaluations. With the ability to customize the decision tree based on the needs of the
organization, this approach can be highly effective in providing accurate and consistent
responses to employee queries.

 Figure 6 : An illustration of the hierarchical rules of a decision tree

In Figure 6, the tree is a hierarchical rule directed from top to bottom, starting with a
decision node (green diamond shape) as the root or initial decision. Then, each

 19

management strategy is followed by yes or no choices, representing certain events.
Finally, the endpoints of decision trees are characterized by a leaf as a terminal node
(parallelogram shape) consisting of blue for the education needed on general conditions
and red as the option of talking to a midwife, representing severe conditions at the end
of the tree. The outcome measures are generally attached to these endpoint.

3.2.3 Transformer (machine learning model)

Transformer-based models are a type of neural network architecture that was introduced
in the paper "Attention is All You Need" by Vaswani et al. (2017). They have
revolutionized the field of natural language processing (NLP) and achieved state-of-the-
art performance on a wide range of NLP tasks, including machine translation, sentiment
analysis, and language modeling.

The key innovation of transformer-based models is the attention mechanism, which
allows the model to focus on different parts of the input sequence during processing.
This attention mechanism replaces the recurrent and convolutional layers that were
commonly used in previous NLP models.

The transformer model uses a multi-head attention mechanism to capture dependencies
between different parts of the input sequence, which allows it to model long-range
dependencies more effectively than other neural network architectures. This makes it
well-suited for tasks that involve understanding the context of a sequence of text, such
as natural language understanding and text classification.

 20

 Figure 7: The Transformer - model architecture

BERT (Bidirectional Encoder Representations from Transformers):

BERT is a pre-trained language model that uses an unsupervised approach of language
modeling on a large dataset to understand the context of input sentences. After pre-
training, BERT can be fine-tuned on a task-specific supervised dataset to obtain good
results.

There are two strategies for applying pre-trained models: fine-tuning and feature-based.
Elmo uses a feature-based model where the model architecture is task-specific, and each
task will use different pre-trained models for language representations.

In contrast, BERT uses a fine-tuning approach that utilizes bidirectional transformers
encoders to understand language. BERT can understand the full context of a word by
analyzing the terms before and after the word and finding the relationship between
them.

Unlike other language models such as Glove2Vec and Word2Vec, which build context-
free word embeddings, BERT provides context, making it a powerful tool for natural
language processing tasks, including handling employee queries.

 Figure 8 : pre-training and fine-tuning procedures for BERT

 21

During the pre-training stage, a large amount of data is used to train the model, allowing
it to learn about the relationships between words and the ways in which sentences are
constructed. This knowledge is saved as parameters that can be inherited by other
models. During the fine-tuning stage, the pre-trained model is re-trained for a new task.
Because the model has already learned a great deal about language from the pre-training
stage, it can often achieve good results with only a limited amount of new data.

 Figure 9 :BERT input representation

BERT requires the entire input to be fed as a single sequence, and to understand the
input properly, it uses special tokens such as [CLS] and [SEP]. The [SEP] token should
be inserted at the end of a single input. In cases where a task involves more than one
input, such as NLI and Q-A tasks, [SEP] token helps the model to understand the end of
one input and the start of another input in the same sequence input. The [CLS] token is
a special classification token, and the last hidden state of BERT corresponding to this
token (h[CLS]) is used for classification tasks.

To embed tokens, BERT uses Wordpiece embeddings input. In addition to token
embeddings, BERT also employs positional embeddings and segment embeddings for
each token. Positional embeddings contain information about the position of tokens in
the sequence, while segment embeddings are useful when the model input has sentence
pairs. Specifically, tokens of the first sentence are given a pre-defined embedding of 0,
whereas tokens of the second sentence receive an embedding of 1 as segment
embeddings.

The final input representation for BERT is the sum of the token, positional, and segment
embeddings, which is then passed through deep bidirectional layers to generate output.
The output is a hidden state vector of a predefined size for each token in the input

 22

sequence. These hidden states, obtained from the last layer of BERT, are utilized for
various NLP tasks.

Pre-training and Fine-tuning : BERT was pre-trained on unsupervised Wikipedia
and Bookcorpus datasets using language modeling. Two tasks namely Masked
Language Model (MLM) and Next Sentence Prediction (NSP) were performed. During
MLM, 15% of the tokens from the sequence were masked and then correct tokens were
predicted at the final hidden state. To capture the relationship between sentence pairs
given as input, NSP is used. For NSP, 50% of the data is labeled as isNext where
sentence B of the input sequence is just the next sentence of sentence A from the dataset
corpus. Another 50% of data is labeled as notNext where sentence B is not next to
sentence A but any random sentence from the corpus dataset. Output hidden state
corresponding to [CLS] token is used to predict the correct label and compute loss.
After pre-training, BERT can be fine-tuned on the specific task-based dataset.

XLNet (Generalized Auto-Regressive model for NLU):

XLNet is a generalized AR pretraining method that uses a permutation language
modeling objective to combine the advantages of AR and AE methods. The neural
architecture of XLNet is developed to work seamlessly with the AR objective, including
integrating Transformer-XL and the careful design of the two-stream attention
mechanism. XLNet achieves substantial improvement over previous pretraining
objectives on various tasks (Yang et al. (2019)).

Comparing the conventional AR language modeling and BERT for language
pretraining. Given a text sequence , AR language modeling performs
pretraining by maximizing the likelihood under the forward autoregressive
factorization:

where is a context representation produced by neural models, such as RNNs
or Transformers, and denotes the embedding of . In comparison, BERT is based
on denoising auto-encoding. Specifically, for a text sequence , BERT first constructs a

x = [x1, . . . , xT]

hθ(x1:t−1)
e(x) x

x

 23

corrupted version by randomly setting a portion (e.g. 15%) of tokens in to a special
symbol [MASK]. Let the masked tokens be . The training objective is to reconstruct
from :

where indicates is masked, and is a Transformer that maps a length-T text
sequence into a sequence of hidden vectors = [, , … ,]. The
pros and cons of the two pretraining objectives are compared in the following aspects:

 • Independence Assumption: As emphasized by the ≈ sign in Eq. (2), BERT
factorizes the joint conditional probability based on an independence
assumption that all masked tokens are separately reconstructed. In comparison, the
AR language modeling objective (1) factorizes using the product rule that holds
universally without such an independence assumption.

• Input noise: The input to BERT contains artificial symbols like [MASK] that never
occur in downstream tasks, which creates a pretrain-finetune discrepancy. Replacing
[MASK] with original tokens as in [10] does not solve the problem because original
tokens can be only used with a small probability — otherwise Eq. (2) will be trivial to
optimize. In comparison, AR language modeling does not rely on any input corruption
and does not suffer from this issue.

• Context dependency: The AR representation is only conditioned on
the tokens up to position t (i.e. tokens to the left), while the BERT representation

has access to the contextual information on both sides. As a result, the BERT
objective allows the model to be pretrained to better capture bidirectional context.

3.3. Language identification

Identifying the language of a text is often the initial and necessary step in a larger
natural language processing pipeline. However, some languages may have homographs,
such as "bank" in English and Dutch, which can cause confusion in algorithms due to
the different meanings of the word in each language. Thus, it becomes essential to
determine the correct language of a given text before further processing it. While this

x̂ x
x̄ x̄

x̂

mt = 1 xt Hθ
x Hθ(x) Hθ(x)1 Hθ(x)2 Hθ(x)T

p(x̄ | x̂)
x̄

pθ(x)

hθ(x1:t−1)

Hθ(x)t

 24

project assumes that messages are written in a single language, there are also instances
where the problem involves detecting multiple languages within a single piece of text.

3.4. Intent classification

When a new message is received, the conversational agent needs to identify the user's
intention or goal, which is typically modeled as a multiclassification problem. The
labels are the possible names of user intentions, and various techniques can be used to
solve this problem, ranging from simple keyword extraction to Bayesian inference that
uses multiple messages to determine the user's request.

3.5. Knowledge management

The field of knowledge engineering has advanced significantly in enabling computers to
handle knowledge, particularly in the 1980s. Early knowledge engineering techniques
involved using an inference engine to manipulate facts and derive new knowledge using
first and second-order logic. These techniques allow for generating answers to
incomplete questions and can be easily translated into API calls. In the context of
conversational agents, knowledge engineering can be highly beneficial for answering
basic questions about general facts. For instance, digital assistants such as Siri and
Amazon Alexa use internal knowledge inference methods to retrieve facts from the web
and other sources. When asked about the current weather, for example, the assistant
may use inference to generate a response based on the user's location and current
weather conditions.

3.6. Responses generation

For a conversational agent to effectively communicate, it must possess the ability to
generate coherent replies that align with the conversation's context. To achieve this, two
modules typically work in tandem: one that generates a list of candidate replies and
another that selects the most appropriate response or ranks them based on a specific
metric. Two popular approaches have emerged in addressing this subproblem: retrieval-
based and generative-based methods.

Retrieval-based techniques rely on a large database of pre-existing responses and match
them with information from the user's message to find the most appropriate answer.

 25

This information can be a simple regular expression that searches for particular sentence
structures or the output of a machine learning model. The primary advantage of this
approach is that the chatbot's maintainers can control every answer, thus ensuring that
inappropriate replies are avoided.

In contrast, generative-based methods use machine learning models, such as neural
networks, to generate responses on the fly based on the conversation's context. This
approach allows for more flexibility and creativity in responses, but it also poses a
challenge of ensuring that the responses remain coherent and appropriate. Generative-
based methods also require a large dataset for training and can be computationally
intensive.

 Figure 10: Classification of chatbots based on design techniques

Retrieval-Based Chatbot

Generative Chatbot

 26

3.7 Performance assessment

Another area of challenge in conversational agents is ensuring their ethical use. As AI
technology progresses and conversational agents become more sophisticated, there is a
risk that they may be used to deceive or manipulate users. This has led to increased
discussion around ethical considerations in conversational agents, including issues such
as transparency, user privacy, and the potential for harm. In response, researchers and
developers have begun to explore ethical guidelines and frameworks for conversational
agents to ensure their responsible use. Some examples of these efforts include the IEEE
Global Initiative for Ethical Considerations in AI and Autonomous Systems and the
Asilomar AI Principles. These initiatives aim to promote ethical use of conversational
agents and other AI technologies, while also ensuring their continued development and
progress.

 27

4. AI Chatbots in Human Resource Management:

The aim of this chapter is to provide a comprehensive overview of the problem at hand,
the goals that we aim to achieve through the implementation of the bot, the constraints
that need to be considered during the design process, and the identified user problems
that the bot will be addressing. By understanding these factors, we can design a bot that
is tailored to the specific needs of the organization, and that can provide employees with
the support they need to carry out their work effectively.

4.1 Problem description

One of the main challenges associated with implementing a bot that handles employee
queries is ensuring the accuracy of its responses. This requires the bot to have a deep
understanding of the organization's policies, procedures, and systems, as well as the
ability to accurately interpret and respond to employee queries.

Achieving accuracy requires the bot to be trained on a diverse and representative
dataset, which can include historical tickets, chat logs, and other relevant data sources.
The bot must also be able to learn from feedback and continuously improve its accuracy
over time.

Another key challenge is delivering a positive user experience for employees interacting
with the bot. This requires the bot to be easy to use and navigate, with clear and concise
instructions and responses. The bot must also be able to adapt to different
communication styles and languages, and provide personalized responses based on the
employee's specific query.

Integration with existing systems and processes is also important for the successful
implementation of a bot that handles employee queries. This requires the bot to be able
to access and integrate with relevant data sources, such as HR systems, payroll
databases, and other internal systems. The bot must also be able to follow established
workflows and procedures, and be able to escalate tickets to the appropriate support
agents or departments when necessary.

 28

In order to address these challenges, organizations may need to invest in advanced
natural language processing and machine learning technologies, as well as provide
extensive training and support to employees and support agents. Regular testing and
performance monitoring can also help ensure that the bot is providing accurate and
effective responses, and identify areas for improvement.

4.2 Goals

The goal of a bot for query redirection in an employee web page oriented platform is to
efficiently handle and redirect employee queries to the appropriate department or
support agent. By automating this process, the bot can provide faster and more accurate
responses to employee queries, which can help improve employee satisfaction and
productivity.

The bot's primary goal is to analyze employee queries using natural language processing
and machine learning techniques to understand their intent and provide relevant
information or redirect the query to the appropriate department or support agent. The
bot should also be able to maintain an accurate and up-to-date knowledge base, which
can help improve its accuracy and effectiveness over time.

Another goal of the bot is to provide a seamless and user-friendly experience for
employees interacting with the platform. This requires the bot to be easy to use and
navigate, with clear and concise instructions and responses. The bot should also be able
to adapt to different communication styles and languages, and provide personalized
responses based on the employee's specific query.

Ultimately, the goal of a bot for query redirection in an employee web page oriented
platform is to provide fast and efficient support for employees, while also improving the
overall efficiency and productivity of the organization.

Ideally, the software should :

• Accurate Responses: the bot should be able to provide accurate responses to
employee queries and have a high degree of accuracy in understanding the intent
behind the queries.

• The bot should also be able to extract relevant information from the employee queries,
such as specific dates, names, or numbers, in order to provide more tailored and
helpful responses. This requires the bot to have advanced information extraction

 29

capabilities, which can be achieved through the use of machine learning and other
natural language processing techniques.

• Personalization: The bot should be able to personalize responses based on the
employee's specific query and provide relevant information or redirect the query to
the appropriate department or support agent.

• Easy to Use: The bot should have an intuitive and user-friendly interface, with clear
instructions and responses that are easy to understand and follow.

• Multilingual Support: The bot should be able to support multiple languages and be
able to handle queries in different languages.

• Integration with Existing Systems: The bot should be able to integrate with existing
systems and processes to provide seamless support and avoid duplication of effort.

• Continuous Learning: The bot should be able to continuously learn and improve its
accuracy and effectiveness over time, based on user feedback and interactions.

• Availability: The bot should be available 24/7 to provide support to employees, which
can help reduce wait times and improve employee satisfaction.

4.3 Constraints

potential constraints that a bot in an employee web page oriented platform may have
include:

• Security and Privacy: The bot should be designed to comply with the organization's
security and privacy policies, ensuring that employee data is protected and not shared
with unauthorized parties.

• Scalability: The bot should be able to handle a large volume of employee queries and
be scalable enough to accommodate future growth in the organization.

• Integration with existing systems and processes: The bot must be able to integrate
with existing systems and processes within the organization, such as HR databases or
customer relationship management (CRM) systems.

 30

• Language support: The bot should be designed to support multiple languages to cater
to the diverse needs of employees.

• Limited conversational capabilities: The bot may have difficulty engaging in complex
or nuanced conversations with employees, which could limit its ability to fully
address their queries.

• Training data availability: The accuracy of the bot depends on the quality of training
data used to develop it. Availability of training data may constrain the bot's
performance.

• Budget: The development and implementation of a bot can require significant
financial resources, which may be a constraint for some organizations.

 31

4.4 Identified issues

The initial inquiry is to determine "Which user problems should the chatbot be able to
handle?” This is a significant challenge since the issues must be common enough to
provide ample training data and straightforward enough to prevent potential errors by
the chatbot.

1. common enough to provide enough training samples.

2. simple to resolve so as to limit the chatbot’s potential mistakes

 32

Figure 11 : Industry Standards and Best Practices – Comparison and Analysis

While communication and collaboration tools in employee portals can be very
beneficial, they can also lead to some user problems. Here are some potential issues that
can arise:

 33

 Table 1 : List of considered user problems

When employees submit queries to a chatbot designed to provide support, the chatbot
may use macros to respond appropriately and attach tags to the query. These tags can
help the chatbot quickly identify the nature of the problem and respond effectively.

It is assumed that employees will only report one issue at a time in a single query to the
chatbot. This ensures that the chatbot can efficiently address each issue and provide
accurate and helpful responses. If employees report multiple issues in a single query, it

 User problem Description
Login problems Users may have difficulty logging

into the portal or accessing specific
tools within the portal.

Compatibility issues Certain tools may not be compatible
with certain devices or operating
systems, leading to technical issues or
limited functionality.

Data storage limitations Some tools may have limitations on the
amount of data that can be stored or
shared, which can lead to technical
issues if users exceed those limitations.

Benefits enrollment E m p l o y e e s m a y h a v e d i f f i c u l t y
understanding their benefits options, or
may have trouble enrolling in benefits
programs.

Time off and vacation Employees may have questions about
their vacation time, sick leave, or other
time off policies and procedures.

Payroll and compensation Employees may have questions about
their pay, taxes, or other compensation-
related issues

Work schedules Employees may have questions
about their work schedules or may
need to request time off

 34

may be more difficult for the chatbot to identify and address each issue individually,
which could lead to longer response times and less effective solutions.

5. Building chatbots

The architecture of the chatbot system is illustrated in Figure 12, which shows that the
system retrieves information from its knowledge base and connects it to the inference
engine. This connection establishes the relationships throughout the entire system. The
data flow design of the architecture provides a clear understanding of the chatbot's
concept.

 Figure 12 : Anatomy of the chatbot system

 35

 Figure 13 : Proposed system flowchart

 36

5.1 Flask :

 Figure 14 : Flask + Bootstrap + SQLite

Flask is a popular, lightweight, and extensible web application framework written in
Python. It provides a simple and efficient way to develop web applications by offering a
range of essential tools and features out-of-the-box. Flask is built on the Werkzeug
WSGI (Web Server Gateway Interface) toolkit and the Jinja2 templating engine, which
together allow developers to create dynamic, scalable, and customizable web
applications with ease.

One of the main advantages of Flask is its simplicity, as it does not enforce a specific
project structure or require a steep learning curve. This makes it an ideal choice for
small to medium-sized projects, as well as for developers who are new to web
application development. With its minimalist and modular design, Flask enables
developers to build applications by adding only the necessary components, avoiding the
complexities and overhead of larger frameworks.

Flask's flexibility is another key strength, as it allows developers to choose from a wide
variety of third-party extensions and libraries to enhance the functionality of their
applications. This adaptability enables the creation of web applications tailored to
specific requirements and ensures that the framework can grow alongside the project.

 37

In the context of developing the chatbot for query redirection in an employee web page,
Flask's simplicity and flexibility make it a suitable choice. Its easy-to-use routing
system, seamless integration with the Jinja2 templating engine, and compatibility with
various databases and machine learning libraries enable the efficient development of a
chatbot that can handle user inputs, process natural language queries, and interact with
an employee database to provide relevant information.

5.1.1 Flask initialization:

The Flask app initialization is a crucial step in setting up the foundation of the chatbot
application. The 'app' variable is created by instantiating the Flask class, which serves as
the core component of the Flask application. This instance of the Flask class represents
the chatbot application and provides essential functionality for defining routes, handling
HTTP requests, and managing application configurations.

The 'app' variable is initialized with the following line of code:

 Figure 15: app variable initialization

Here, the 'name' argument passed to the Flask class is used to determine the root path of
the application. This is essential for Flask to locate other resources, such as templates
and static files, which are used in the chatbot application.

Once the 'app' variable is created, it is used throughout the code to define the
application's routes and handle HTTP requests. Routes are the URLs at which users can
access different parts of the web application. In the context of the chatbot, the routes are
responsible for rendering the user interface and processing user messages. By using the
'app' variable along with route decorators (e.g., @app.route('/')), you can associate

 38

specific functions with particular URLs, allowing the chatbot to respond to user requests
accordingly.

5.1.2 Route for Home Page:

In Flask, decorators are used to associate specific functions with particular routes or
URLs. In this case, the '@app.route('/')' decorator associates the subsequent 'home()'
function with the root URL of the application, which is the home page.

Here's the code snippet for the home route:

 Figure 16: home route code snippet

The associated 'home()' function serves as the entry point for users to interact with the
chatbot. When users visit the root URL of the application, the 'home()' function is
executed, and it returns the rendered 'index.html' template. The 'render_template()'
function is a built-in Flask function that takes an HTML template file as an argument
and dynamically generates an HTML page to be displayed to the user.

The 'index.html' template serves as the user interface for the chatbot application. It
contains input elements for users to enter their messages and interact with the chatbot,
as well as a display area to show the chatbot's responses. This user interface allows for
seamless communication between the user and the chatbot, enabling the chatbot to
receive user inputs, process them, and return relevant responses based on the user's
queries.

 39

5.1.3 Route for Chatbot Response:

We use the decorator ‘@app.route(‘/get’)' this decorator associates the subsequent
'chatbot_response()' function with the '/get' URL of the application, which is specifically
designed to handle user messages and generate appropriate responses from the chatbot.

Here's the code snippet for the chatbot response route:

 Figure 17: chatbot response route code snippet

The associated 'chatbot_response()' function receives user messages as HTTP GET
requests. The user's message is passed as a parameter named 'msg' in the request. The
'request.args.get()' function retrieves the value of the 'msg' parameter from the HTTP
request, and the resulting message is stored in the 'message' variable.

Once the user's message is obtained, the 'chatbot_response()' function calls the
'get_response()' function, passing the 'message' variable as an argument. The
'get_response()' function is responsible for processing the user's message, interpreting
its content, and generating an appropriate response based on the chatbot's understanding
of the message. This function utilizes the pre-trained Neural Network model, natural
language processing techniques, and database interactions to produce a relevant
response for the user.

Finally, the 'chatbot_response()' function returns the generated response as an HTTP
response, which is then displayed to the user in the chatbot's user interface. This process
allows for a smooth and interactive conversation between the user and the chatbot.

 40

5.1.4 Processing User Messages:

The function used is called ‘get_response()’ this function is responsible for processing
user messages, interacting with the employees' database, and generating appropriate
responses using the pre-trained Neural Network model.

In this block of code, the get_response() function initializes various components
required to process the user's message and generate an appropriate response. Here's an
explanation of each part of the code:

 41

def get_response(message):
 mydb = pymysql.connect(
 host="localhost",
 user="root",
 password="",
 database="employees",
)

 mycursor = mydb.cursor()

 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

 with open('intents.json', 'r') as json_data:
 intents = json.load(json_data)

 FILE = "data.pth"
 data = torch.load(FILE)

 input_size = data["input_size"]
 hidden_size = data["hidden_size"]
 output_size = data["output_size"]
 all_words = data['all_words']
 tags = data['tags']
 model_state = data["model_state"]

 model = NeuralNet(input_size, hidden_size, output_size).to(device)
 model.load_state_dict(model_state)
 model.eval()

 bot_name = "TFG"

Database connection - Device configuration - Loading intents - Loading model data -
Model initialization - Botname

This block of code in the ‘get_response()’ function is responsible for processing the
user's message and generating an appropriate response using the pre-trained Neural
Network model.

get_employee_info() function: This inner function takes an employee number (emp_no)
as an argument, queries the 'employees' database to fetch the first_name of the
employee with that number, and returns it. If no employee is found with the given
number, it returns None.

Tokenization: The user's message is tokenized using the tokenize() function, which
splits the input message into a list of words.

Bag of words: The tokenized message is converted into a bag-of-words representation
using the bag_of_words() function. This representation is a fixed-size vector that
captures the presence (or frequency) of words in the message.

 42

def get_employee_info(emp_no):
 mycursor.execute(f"SELECT first_name FROM employees.employees WHERE emp_no = {emp_no}")
 result = mycursor.fetchone()
 if result:
 return result[0]
 else:
 return None

sentence = message
sentence = tokenize(sentence)
X = bag_of_words(sentence, all_words)
X = X.reshape(1, X.shape[0])
X = torch.from_numpy(X).to(device)

output = model(X)
_, predicted = torch.max(output, dim=1)
tag = tags[predicted.item()]

prob = torch.softmax(output, dim=1)[0][predicted.item()]

Model prediction: The bag-of-words representation is fed into the Neural Network
model to predict the most suitable response tag. The torch.max() function is used to find

the index of the highest value in the output tensor, which corresponds to the predicted
tag.

This block of code in the ‘get_response()’ function is responsible for generating the
chatbot's response based on the predicted tag and its probability.

Checking prediction confidence: The code checks if the probability of the predicted tag
is greater than a threshold (0.5 in this case) to ensure that the model is confident enough
in its prediction before generating a response.

 43

prob = torch.softmax(output, dim=1)[0][predicted.item()]
if prob.item() > 0.5:
 for intent in intents['intents']:
 if tag == intent["tag"]:
 if tag == "employee_info":
 pattern = re.compile(r'employee\s+(\d+)', re.IGNORECASE)
 match = pattern.search(" ".join(sentence))
 if match:
 emp_no = match.group(1)
 first_name = get_employee_info(emp_no)
 if first_name is not None:
 response = intent['responses'][0].format(emp_no=emp_no, first_name=first_name)
 else:
 response = "I couldn't find that employee's information."
 else:
 response = "Please provide an employee number."
 else:
 response = random.choice(intent['responses'])
 return f"{bot_name}: {response}"
else:
 return f"{bot_name}: I do not understand..."

Iterating through intents: If the confidence threshold is met, the code iterates through
the intents defined in the intents.json file to find the intent that matches the predicted tag.

Handling 'employee_info' tag: If the predicted tag is 'employee_info', the code looks for
an employee number in the user's message using a regular expression pattern. If an
employee number is found, the get_employee_info() function is called to retrieve the
employee's first name. The appropriate response is then formatted using the employee's
number and first name.

Returning the chatbot's response: The chatbot's response is returned as a formatted
string that includes the bot's name.

Handling low confidence predictions: If the confidence threshold is not met, the chatbot
returns a default response indicating that it does not understand the user's message.

5.2 Neural Network model :

The Neural Network model used in this chatbot application is responsible for processing
and understanding user messages. It takes the tokenized and preprocessed messages as
input and generates predictions for the appropriate response based on the message
content.

 Figure 18: importing NeuralNet

Key components:

Input Size (input_size): This is the size of the input vector, which represents the bag of
words for a given user message. The input size is equal to the length of the 'all_words'
list, which contains all unique words in the training dataset. The bag of words is a
binary vector where each element corresponds to the presence (1) or absence (0) of a
word from 'all_words' in the user message.

 44

Hidden Size (hidden_size): This is the size of the hidden layers in the neural network.
The hidden layers are responsible for learning complex patterns and relationships
between the input data (user messages) and the output data (predicted response tags). A
larger hidden size allows the model to learn more complex patterns, but it can also
increase the risk of overfitting and the computational cost.

Output Size (output_size): This is the size of the output vector, which represents the
predicted tag probabilities for a given user message. The output size is equal to the
number of unique tags in the 'intents.json' file. Each element in the output vector
corresponds to the probability of a specific tag being the appropriate response for the
input message

Loading the Trained Model: The 'data.pth' file stores the trained model's parameters and
related information, such as input_size, hidden_size, output_size, all_words, and tags.
The file is loaded using the torch.load() function, and the model's state dictionary is
updated with the saved parameters using model.load_state_dict(). This allows the
chatbot to utilize the pre-trained model to generate predictions for user messages.

 Figure 19: importing torch

5.3 Natural Language Processing (NLP) :

Natural Language Processing (NLP) is a critical component of the chatbot application,
as it enables the model to understand and process user messages. The nltk_utils module
provides essential NLP functions that facilitate these tasks. The two main functions used
from this module are:

tokenize(): This function is used to break down the user's message into individual words
or tokens. Tokenization is a vital preprocessing step in NLP, as it converts raw text into
a structured format that can be analyzed and processed by the model. By splitting the
message into tokens, the model can recognize and understand individual words, making
it easier to determine the meaning and context of the input

 45

 Figure 20: tokenize function

 stem(): This function is a utility function for stemming words. Stemming is an NLP
technique that aims to reduce a word to its root or base form by removing inflections
and derivational affixes. This process helps normalize the text data and reduces the
vocabulary size, making it easier for the model to understand and process text input.

 Figure 21: stem function

bag_of_words(): This function is used to create a "bag of words" representation of the
tokenized message. A bag of words is a simplified representation of the text, where each token
is represented as a binary value (1 or 0) indicating its presence or absence in the message. This
representation disregards word order and grammar but captures the essential information about
which words are present in the input.

 46

 Figure 22: bag_of_words function

5.4 Database Integration :

Database Integration is an essential aspect of the chatbot application, as it enables the
retrieval of specific employee information when needed. The chatbot is integrated with
the employees' database using the pymysql library, a Python MySQL client library that
allows for easy interaction with MySQL databases.

 Figure 23: importing pymysql

The get_employee_info() function is a crucial component of this integration, as it queries the
database for employee information based on the employee number provided by the user. The
function performs the following steps:

 Figure 24: get_response function

 47

Connection to mysql database, the database used is a sample database from : https://
dev.mysql.com/doc/employee/en/employees-installation.html.

 Figure 25: get_employee_info function

While this function uses a basic SELECT query to fetch the first_name of an employee
based on the provided employee number (emp_no), it serves as an example to
demonstrate the integration of the chatbot with the employees' database.

In the actual implementation of the chatbot, more complex and diverse queries were
used to fetch various types of employee information, such as last names, job titles,
department names, and hire dates.

5.5 Query Processing and Response Generation :

When a user sends a message, it is first tokenized and preprocessed using the functions
from the nltk_utils module. The tokenization involves breaking the message into
individual words, while the bag of words representation converts the tokenized message
into a fixed-size input vector for the Neural Network model. This preprocessing is
essential to ensure that the model can effectively understand and process the user's
message.

The preprocessed input vector is then passed through the trained Neural Network
model, which predicts the most appropriate tag for the user's message. The model
architecture consists of input_size, hidden_size, and output_size layers. The input_size
corresponds to the size of the bag of words representation, while the output_size is the
number of unique tags in the 'intents.json' file. The model returns a probability
distribution over the possible tags, and the tag with the highest probability is selected as
the predicted tag

 48

 Figure 26: Example of a tag in intents.json

Once the predicted tag is obtained, the system searches through the 'intents.json' file to
find the corresponding intent. The 'intents.json' file contains predefined intents, each
with a tag, a list of patterns (sample user messages), and a list of responses. Based on
the predicted tag, the system selects a random response from the list of available
responses associated with the intent.

If the predicted tag requires querying the employees' database (e.g., "employee_info"),
the chatbot extracts the necessary information from the user's message (e.g., employee
number) and uses the get_employee_info() function to fetch the requested data from the
database. The response is then generated by incorporating the retrieved data.

Finally, the generated response is returned as an HTTP response and displayed to the
user in the 'index.html' template, enabling seamless interaction between the user and the
chatbot.

 Figure 27: example of generated HTTP responses

 49

5.6 Training :

The script performs several key tasks, such as data preparation, model training, and
saving the trained model.

 Figure 28 : training loop for the Neural Network model

 The script begins by loading the 'intents.json' file, which contains the intents, patterns,
and responses. It tokenizes and stems the patterns to create a list of unique words
(all_words) and a list of unique tags (tags). The data is then converted into input-output
pairs, where the input is a bag of words representation of the patterns, and the output is
the corresponding class label (tag index).

Then the script defines several hyperparameters, such as the number of epochs, batch
size, and learning rate for training the Neural Network model. It also sets the input_size,
hidden_size, and output_size for the model architecture. The ChatDataset class is
created as a subclass of the PyTorch Dataset class to handle the training data. The
DataLoader is used to create mini-batches and shuffle the data during training.

The Neural Network model is instantiated and set to run on either GPU (CUDA) or
CPU, depending on the availability. The CrossEntropyLoss criterion is used as the loss
function, and the Adam optimizer is chosen for updating the model's parameters. The
training loop iterates over the specified number of epochs, and for each epoch, it

 50

processes the data in mini-batches. The model's forward pass computes the output,
which is then compared with the ground truth labels using the loss function. The
optimizer performs a backward pass to update the model parameters based on the
computed gradients.

After the training process is complete, the final loss is printed to show the model's
performance. The model's state_dict (containing the model's parameters), input_size,
hidden_size, output_size, all_words, and tags are saved in a dictionary called 'data'. This
data is then saved to a file named 'data.pth' using the torch.save() function, which can
later be loaded to use the trained model for processing user messages.

6. Deploying the chatbot

In this final chapter, we will demonstrate the deployment of the chatbot and showcase
its functionality by interacting with it through a web interface. This will allow users to
ask the chatbot various queries and see the chatbot's responses in real-time. The purpose
of this chapter is to present the chatbot's practical application and its ability to
understand and answer user questions effectively.

 Figure 29 : Project directory

 51

To create an appealing user interface for our chatbot, we have designed an HTML
template that includes essential elements such as a text input field for entering queries, a
display area for showing the chatbot's responses, and a send button for submitting user
input. The template incorporates CSS styling to ensure the interface is visually
appealing and easy to navigate.

 Figure 30 : Chatbot Web Interface.

In addition to the HTML template, we have implemented JavaScript functions to handle
user input and manage the interaction between the user and the chatbot. These functions
are responsible for capturing user input, sending it to the Flask server via AJAX
requests, and updating the display area with the chatbot's responses. This ensures a

 52

smooth, real-time interaction between the user and the chatbot without requiring page
refreshes.

6.1 Query Processing and Response Generation :

In this section, you can present multiple user interaction examples with the chatbot,
showcasing its capabilities and versatility. Here's a sample structure for presenting these
interactions:

 Figure 31 : Requesting information about the name of an employee with a
specific employee number 10001.

 53

Figure 32: Seeking information about the date when a specific person was hired.

 54

 Figure 33: Retrieving the name of a department based on its department
number.

 Figure 34: Retrieving the title of an employee and his salary.

7. Conclusions and future lines of research :

The primary objectives of this project were to develop a chatbot capable of handling
employee queries and effectively retrieving relevant information from a MySQL
database. The results of this project demonstrate that the developed chatbot has been
successful in achieving these objectives.

The chatbot's implementation, which involved the integration of PyMySQL, a deep
learning model, and natural language processing techniques, enabled it to effectively

 55

communicate with the database and provide accurate responses to a wide range of
employee queries.

It increases efficiency by automating the process of handling employee queries, which
saves time and effort for human resources and administrative staff, allowing them to
focus on other critical tasks. This efficiency may lead to cost savings for the
organization.

Furthermore, the chatbot's quick and accurate responses contribute to improved
employee satisfaction, which can result in higher retention rates and increased employee
engagement. By leveraging the chatbot's automated capabilities, organizations can also
reduce human error when responding to employee queries, leading to more accurate and
consistent information being provided to employees.

The chatbot is highly scalable, capable of handling a large volume of queries without
requiring additional resources. This makes it an ideal solution for growing organizations
or those with frequent fluctuations in employee numbers. Additionally, the chatbot
offers an accessible method for obtaining information, as employees can interact with it
through a familiar chat interface. This convenience may lead to higher adoption rates
and increased utilization of the chatbot across the organization.

7.1 Limitations :

Despite the numerous benefits provided by the chatbot, there are some limitations to be
acknowledged. One potential limitation is the chatbot's performance in handling
complex or ambiguous queries, which may require human intervention for accurate
responses. The chatbot relies on predefined intents and patterns, and it might not be able
to handle queries outside its training scope, or those that involve subjective
interpretations.

Another limitation is the dependency on the quality and completeness of the data used
in the project. If the database contains outdated or inaccurate information, the chatbot
may provide incorrect responses to employee queries. Moreover, the chatbot's
performance may be influenced by the quality of the Natural Language Processing
(NLP) model and the training data used to develop it. Insufficient or biased training data
may lead to reduced accuracy in the chatbot's responses.

Additionally, the chatbot may face challenges in understanding certain linguistic
nuances, such as slang, idioms, or regional dialects, which could affect the accuracy of
its responses. The chatbot's performance may also be influenced by the technology or

 56

platform used for deployment, as different platforms may have varying levels of
compatibility with the chatbot's features and requirements.

Lastly, privacy and security concerns should be considered when implementing the
chatbot in an organization. Ensuring that the chatbot handles sensitive employee
information securely and in compliance with data protection regulations is essential to
maintain employee trust and prevent potential data breaches.

7.2 Future lines of research :

Expanding the scope of the chatbot to handle more complex queries and tasks, making it
a more versatile tool for employees.

Incorporating additional data sources, such as external APIs, to provide more
comprehensive information and making the chatbot a centralized information hub for
employees.

Improving the natural language understanding capabilities of the chatbot by
implementing more advanced NLP techniques or fine-tuning the model with domain-
specific data, which would lead to better query comprehension and more accurate
responses.

Enhancing the user experience by developing a more interactive and user-friendly
interface, which could encourage greater adoption and use of the chatbot by employees.

Evaluating the chatbot's performance and impact on employees' productivity and
satisfaction through user testing and feedback, allowing for iterative improvements and
ensuring that the chatbot continues to meet the needs of its users.

 57

1. Bibliography

[1] Armstrong's Handbook of Human Resource Management Practice" by Michael Armstrong,
2017.
[3] The Human Capital Hub URL : https://www.thehumancapitalhub.com/articles/functions-of-
human-resources-how-the-department-works
[3] Narayanan, K. (1998). Technology acquisition, de-regulation and competitiveness: A study
of Indian automobile industry. Research Policy, 27(2), 215–228.
[4] Bos, A. S., Pizzato, M., & Zaro, M. A. (2019e). Investigation of Student Attention: The Use
of Virtual Reality in Computing Education. Tear: Journal of Education, Science and Technology,
8, 3. https://periodicos.ifrs.edu.br/index.php/tear/index https://doi.org/10.35819/
tear.v8.n2.a3586.
[5] SelectHub. (2021). HRIS Integration: Why Your System Needs to Play Nice with Others.
Retrieved from https://www.selecthub.com/hris/hris-integration/
[6] Kavanagh, M. J., & Johnson, R. D. (2018). Human resource information systems: Basics,
applications, and future directions. Sage Publications.
[7] ichrm URL : https://icehrm.com/blog/features-of-an-effective-hris/
[8] Noe, R. A., Hollenbeck, J. R., Gerhart, B., & Wright, P. M. (2017). Fundamentals of human
resource management. McGraw-Hill Education.
[9] Human Resource Information Systems: Basics, Applications, and Future Directions" by
Michael J. Kavanagh, Richard D. Johnson, and Talya Bauer
[10] Kavanagh, M. J., Thite, M., & Johnson, R. D. (2019). Human Resource Information
Systems: Basics, Applications, and Future Directions (Third ed.). SAGE Publications, Inc.
[11] The URL to Agency for Healthcare Research and Quality (AHRQ) : https://www.ahrq.gov/
[12] Human Resource Information Systems: Basics, Applications, and Future Directions" by
Michael J. Kavanagh, Richard D. Johnson, and Dianne Willis Thite, published by Sage
Publications in 2019.
[13] ogrnostic URL : https://orgnostic.com/blog/best-hris/
[14] Tojib, D., Sadiq, S. A., & Reynolds, P. (2006). Employee portals and knowledge
management: An empirical investigation. Journal of Knowledge Management, 10(3), 135-149.
doi: 10.1108/13673270610670892
[15] Lee, S. M., & Kim, H. J. (2009). User satisfaction with business-to-employee portals:
Conceptualization and scale development. Computers in Human Behavior, 25(1), 48-61. doi:
10.1016/j.chb.2008.05.005
[16] Remus, U. (2006). Employee portal projects: Complex, time and cost-consuming, with a
high risk of failure.
[17] Brown, T., Bond, J., Balaji, S., Brown, J., & Lusch, R. (2007). Developing business-to-
employee (B2E) portals: Exploring the drivers and barriers. Journal of Electronic Commerce in
Organizations

 58

[18] Werts, C.E., Linn, R.L., Jöreskog, K.G., 1974. Intraclass reliability estimates: testing
structural assumptions. Educational and Psychological Measurement 34. White, C., 2003.
Determining Enterprise Portal ROI. in: DM Review.

[19] Damsgaard, J., Scheepers, R., 1999. A stage model of intranet technology implementation
and management. In: Proceedings of the 7th European Conference on Information Systems,
June 23–25, Copenhagen, Denmark.
[20] “An Empirical Investigation of Employee Portal Success" by Benbya et al. (2004)
[21] Benbya, H., Belbaly, N., & Van Alstyne, M. (2004). An empirical investigation of
employee portal success
[22] Weizenbaum, J. (1966). ELIZA – a computer program for the study of natural language
communication between man and machine. Communications of the ACM, 9(1), 36-45.
Available at https://web.stanford.edu/class/cs124/p36-weizenabaum.pdf
[23] Abdul-Kader, S. A., & Woods, J. C. (2015). Survey on chatbot design techniques in speech
conversation systems. International Journal of Advanced Computer Science and Applications
[24] Vodolazova, T., & Kucherov, D. (2020). The Use of Chatbots in the Educational Process. In
Proceedings of the 2nd International Conference on Intelligent Human Systems Integration
(IHSI 2020): Integrating People and Intelligent Systems (pp. 326-332).
[25] Kusumadewi, S., & Hidayanto, A. N. (2021). The Use of Decision Tree Algorithm to
Develop a Chatbot Application for Pregnant Women. Journal of Functional Morphology and
Kinesiology
[26] Rashid, M. A., Hasan, M. M., Hoque, A. S. M. L., & Mahmud, S. M. (2021). BERT-based
sentiment analysis: A software engineering perspective. In 2021 IEEE International Conference
on Electro/Information Technology (EIT) (pp. 365-369)
[26] URL de BERT : https://www.analyticsvidhya.com/blog/2021/05/all-you-need-to-know-
about-bert/
[27] XLNet: Generalized Autoregressive Pretraining for Language Understanding" by Zhilin
Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V. Le.
[28] Ait Ouakrim, D., Benamar, N., Boumhidi, I., El Moussami, H., & Ait Ouahman, A. (2022).
A review on the use of artificial intelligence for the optimization of photovoltaic systems.
Electronics,
[29] Devopedia. "Flask." Devopedia, https://devopedia.org/flask.

 59

	2. Human resource Management:
	Bibliography

