<u>Introducción</u>

1) Arabidopsis thaliana como organismo modelo para el estudio del desarrollo	
vegetal. 1.1 Aspectos generales.	2
1.2 Ciclo vital.	3
2) La transición a la floración en Arabidopsis thaliana.	5
3) Control del tiempo de floración en Arabidopsis thaliana.	6
3.1 Vía de fotoperiodo.	8
Fotorreceptores.	8
El reloj circadiano.	9
Transducción de la señal luminosa. ELF3, ELF4 y PIF3.	10
El oscilador central. TOC1, CCA1 y LHY.	11
Genes de salida del reloj. GI, CO y FT.	14
3.2 Vía autónoma.	17
3.3 Integración de las rutas.	18
4) Respuestas a estrés en Arabidopsis thaliana.	19
5) Ácido salicílico. Generalidades y biosíntesis.	21
6) Funciones del ácido salicílico.	23
6.1 Respuesta de la planta al ataque de patógenos. Ácido salicílico y defensa.	24

6.2 Ácido salicílico y desarrollo. Termogénesis, senescencia y floración.	25
Termogénesis.	26
Senescencia.	26
Floración.	27
<u>Objetivos</u>	31
<u>Materiales y Métodos</u>	
1) Material vegetal y condiciones de cultivo.	33
2) Tratamientos realizados.	
Aplicación de compuestos.	34
Irradiación con luz UV-C.	34
Inoculación con patógenos.	35
3) Aislamiento y manipulación del DNA de plantas.	
Extracción de DNA.	35
Reacciones de amplificación mediante PCR.	36
Purificación de DNA.	36
Reacciones de ligación.	37

4) /	<i>1islamiento</i>	y manipulación	de RNA.
------	---------------------------	----------------	---------

Extracción de RNA.	37
Retrotranscripción del RNA.	38
PCR cuantitativa.	38
Análisis Southern. PCR semicuantitativa.	39
Análisis Northern.	40
Transferencia de DNA y RNA a membrana.	40
Marcaje e hibridación de sondas radiactivas.	40
5) Manipulación de microorganismos.	
Obtención y transformación de células competentes de Escherichia coli.	42
Obtención y transformación de células competentes de Agrobacterium	1
tumefaciens.	43
Aislamiento, purificación y digestión de plásmidos bacterianos.	44
6) Generación de líneas transgénicas de Arabidopsis thaliana.	
Generación de las construcciones.	45
Transformación de Arabidopsis thaliana.	45
Análisis genético para la identificación de plantas homocigotas.	46
7) Análisis fenotípico de las líneas transgénicas generadas.	46
8) Cuantificación de los niveles de ácido salicílico.	47
9) Detección de la actividad β -glucuronidasa.	48

10) Análisis transcriptómico mediante micromatrices de oligonucleótidos.	
11) Aplicaciones bioinformáticas.	49

<u>Resultados</u>

1) Correlación entre niveles endógenos de ácido salicílico y transición floral.	51
2) Análisis transcriptómico comparado de plantas deficientes en ácido salicílico y	
plantas silvestres durante la transición floral.	54
3) Caracterización molecular de PCC1.	58
4) Conexión funcional entre PCC1 y las diferentes vías de transición floral.	60
5) Patrón de expresión de PCC1 a lo largo del desarrollo.	64
6) Conexión entre ácido salicílico y el reloj circadiano.	66
7) Caracterización funcional de PCC1.	69
8) Funciones de PCC1 no relacionadas con la regulación de la transición floral.	82
9) Caracterización de los mutantes de la vía de fotoperiodo en eventos que	
requieren de la síntesis de ácido salicílico.	87
10) Variación genética natural en la transición floral activada por luz UV-C en	
Arabidopsis thaliana.	90

<u>Discusión</u>

Cambios en los niveles endógenos de ácido salicílico correlacionan con el tiempo de floración.

PCC1 relaciona ácido salicílico con el reloj circadiano y la vía de fotoperiodo.	98
PCC1 participa en la regulación del tiempo de floración.	100
Otras funciones para PCC1.	101
¿Qué confiere a PCC1 su función reguladora?	102
Variación natural. Otra aproximación.	103

Conclusiones

105

<u>Bibliografía</u>	107
0	

Índice de figuras y tablas

<u>Introducción</u>

Figura I. Ciclo vital de Arabidopsis.	5
Figura II. Modelos propuestos de regulación de la floración por el fotoperiodo.	10
Figura III. Modelo propuesto de oscilador central.	14
Figura IV. Diagrama de rutas de transición a la floración.	19
Figura V. Esquema de las rutas de biosíntesis de SA.	23

Materiales y Métodos

Tabla I. Oligonucleótidos empleados en qRT-PCR. PCR.	39
Tabla II. Oligonucleótidos empleados en RT-PCR semicuantitativa.	40
Tabla III. Fragmentos de cDNA empleados en marcaje de sondas.	41

<u>Resultados</u>

Figura 1. Cambios en el contenido basal de SA se correlacionan temporalmente	
con la transición del estado vegetativo a reproductivo.	53
Figura 2. Análisis de la expresión GUS en plantas cultivadas en días cortos.	54

Tabla 1. Genes diferencialmente expresados en el análisis transcriptómico de	
plantas deficientes en SA frente a plantas silvestres.	56
Tabla 2. Análisis qRT-PCR de la expresión de genes en plantas Col-0 y nahG	
irradiadas con luz UV-C frente a plantas no irradiadas.	57
Figura 3. La expresión de PCC1 se activa por irradiación con luz UV-C o	
aplicación exógena de SA.	59
Figura 4. La activación de la expresión de PCC1 requiere la función de CO.	61
Figura 5. La activación de la expresión de PCC1 por aplicación exógena de SA	
requiere la función de CO y se modula negativamente por JA.	62
Figura 6. Niveles de transcrito de PCC1 en plantas tratadas con diferentes	
fitohormonas o especies reactivas donadoras de oxígeno y nitrógeno.	63
Figura 7. Patrón de expresión espacio- temporal de PCC1.	64
Figura 8. La expresión de PCC1 está regulada por el reloj circadiano.	66
Figura 9. Niveles de transcrito de CCA1 y CO a lo largo del fotoperiodo en D.L. en	
plantas silvestres Col-0 y deficientes en SA.	67
Figura 10. Expresión de PCC1 en respuesta a UV-C y tratamiento con SA en	
plantas mutantes sobreexpresoras de CCA1.	68
Figura 11. Tiempo de floración, respuesta a UV-C y expresión de FT y SOC1 en	
líneas transgénicas de PCC1 en fondo Col-0.	71
Figura 12. Homología de secuencia entre At3g22235, At3g22240 y PCC1. Niveles	
de transcrito relativo en las líneas de RNAi de PCC1 en fondo Col-0.	73
Figura 13. Niveles de SA en líneas transgénicas de PCC1 en fondo Col-0.	74
Figura 14. Análisis fenotípico en D.L. de las líneas transgénicas de PCC1 en fondo	
Col-0.	75

Figura 15. Análisis morfológico de los órganos reproductivos de las líneas RNAi	
PCC1 en fondo Col-0.	76
Figura 16. Análisis fenotípico en D.C. de las líneas transgénicas de PCC1 en fondo	
Col-0.	77
Figura 17. Tiempo de floración y respuesta a UV-C en líneas transgénicas de	
PCC1 en fondo co-1.	79
Figura 18. Tiempo de floración y respuesta a UV-C en líneas transgénicas de	
PCC1 en fondo fve-3.	81
Tabla 3. Resistencia frente a Pseudomonas de las líneas transgénicas de PCC1 en	
fondo Col-0, co-1 y fve-3.	83
Figura 19. Estudio de la senescencia natural y forzada en líneas transgénicas de	
PCC1 en fondo Col-0.	85
Figura 20. Estudio de la senescencia en líneas transgénicas de PCC1 en fondo co-	
l y fve-3.	86
Figura 21. co-1 muestra diferencias con los mutantes de la vía de fotoperiodo en	
resistencia frente a Pseudomonas y en la activación de la síntesis de SA.	88
Figura 22. Respuesta al tratamiento con SA y JA en mutantes de la vía de	
fotoperiodo.	89
Figura 23. Estudio de la senescencia forzada en mutantes de la vía de fotoperiodo.	90
Tabla 4. Tiempo de floración de plantas irradiadas y control en ecotipos silvestres	
de Arabidopsis thaliana.	92
Figura 24. Correlación entre la respuesta a estrés en tiempo de floración y distintas	
coordenadas geográficas en ecotipos silvestres de Arabidopsis.	93
Figura 25. Niveles basales de SA en ecotipos silvestres de Arabidopsis thaliana.	94

Figura 26. Tiempo de floración en respuesta a estrés en ecotipos sensibles e insensibles a irradiación de Arabidopsis y en líneas híbridas recombinantes.