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Resum
Per a superar les limitacions dels models tradicionals de simulació de dades, que són

computacionalment costosos i requereixen molt de còmput, proposem utilitzar models
generatius del tipus normalitzadors de flux basats en aprenentatge profund, com MA-
DE, MAF i IAF. Aquests models poden simular col·lisions de partícules en física d’altes
energies de manera més eficient que els mètodes basats en Monte Carlo, per a detectar
senyals de la física més enllà del model estàndard, la qual cosa és essencial en l’exploració
dels aspectes desconeguts del comportament de la matèria.

MADE (Autoencoder Emmascarat per a Estimació de Distribucions), MAF (Flux Au-
toregressiu Emmascarat) i IAF (Flux Autoregressiu Invers) són exemples de models ba-
sats en Normalitzadors de Flux que han demostrat ser altament efectius en la simula-
ció de distribucions de dades complexes. MADE utilitza una xarxa d’autoencoder amb
connexions emmascarades per a aproximar qualsevol distribució de probabilitat, la qual
cosa el fa adequat per a generar dades d’alta dimensionalitat amb una estructura dis-
persa. MAF és un model de Flux que modela una distribució objectiu transformant una
distribució base simple a través d’una sèrie de transformacions invertibles, la qual cosa
permet un mostreig i estimació de densitat eficient. IAF és un altre model del tipus Nor-
malitzadors de Flux que transforma seqüencialment una distribució base amb funcions
invertibles per a generar mostres d’una distribució objectiu.

Utilitzant aquests models generatius basats en Normalitzadors de Flux, podem simu-
lar dades amb alta qualitat i reduir el temps i els costos energètics dels mètodes tradici-
onals, proporcionant una forma més eficient i precisa de descobrir nous esdeveniments
i dissenyar detectors en el context del LHC. A més, aquests models faciliten l’obtenció
d’una estimació completa i detallada dels errors sistemàtics, la qual cosa és crucial per a
validar amb precisió nous escenaris de física comparant les dades reals obtingudes dels
experiments amb dades simulades de models teòrics.

Paraules clau: Aprenentatge profund, esdeveniments de Monte Carlo, models genera-
tius basats en aprenentatge profund, models de flux, nova física, Gran Col·lisionador
d’Hadrons



v

Resumen
Para superar las limitaciones de los modelos tradicionales de simulación de datos,

que son computacionalmente costosos y requieren mucho cómputo, proponemos utilizar
modelos generativos del tipo normalizadores de flujo basados en aprendizaje profundo,
como MADE, MAF e IAF. Estos modelos pueden simular colisiones de partículas en física
de altas energías, de manera más eficiente que los métodos basados en Monte Carlo,
para detectar señales de la física más allá del modelo estándar, lo cual es esencial en la
exploración de los aspectos desconocidos del comportamiento de la materia.

MADE (Autoencoder Enmascarado para Estimación de Distribuciones), MAF (Flujo
Autoregresivo Enmascarado) e IAF (Flujo Autoregresivo Inverso) son ejemplos de mo-
delos basados en Normalizadores de Flujos que han demostrado ser altamente efectivos
en la simulación de distribuciones de datos complejas. MADE utiliza una red de auto-
encoder con conexiones enmascaradas para aproximar cualquier distribución de proba-
bilidad, lo que lo hace adecuado para generar datos de alta dimensionalidad con una
estructura dispersa. MAF es un modelo de Flujo que modela una distribución objetivo
transformando una distribución base simple a través de una serie de transformaciones
invertibles, lo que permite un muestreo y estimación de densidad eficiente. IAF es otro
modelo del tipo Normalizadores de Flujo que transforma secuencialmente una distribu-
ción base con funciones invertibles para generar muestras de una distribución objetivo.

Utilizando estos modelos generativos basados en Normalizadores de Flujos, pode-
mos simular datos con alta calidad y reducir el tiempo y los costos energéticos de los
métodos tradicionales, proporcionando una forma más eficiente y precisa de descubrir
nuevos eventos y diseñar detectores en el contexto del LHC. Además, estos modelos fa-
cilitan la obtención de una estimación completa y detallada de los errores sistemáticos,
lo cual es crucial para validar con precisión nuevos escenarios de física comparando los
datos reales obtenidos de los experimentos con datos simulados de modelos teóricos.

Palabras clave: Deep Learning, Eventos de Monte Carlo, Modelos generativos basados
en Deep Learning, Modelos Flow, Nueva Física, Gran Colisionador de Hadrones
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Abstract
To overcome the limitations of traditional data simulation models that are computa-

tionally expensive and time-consuming, we propose using generative models of the flow
normalizers type based on deep learning, such as MADE, MAF, and IAF. These models
can simulate particle collisions in high-energy physics more efficiently than Monte Carlo-
based methods to detect signals of physics beyond the standard model, which is essential
in exploring unknown aspects of the behavior of matter.

MADE (Masked Autoencoder for Distribution Estimation), MAF (Masked Autore-
gressive Flow), and IAF (Inverse Autoregressive Flow) are examples of flow normalizer-
based models that have been highly effective in simulating complex data distributions.
MADE uses a masked autoencoder network to approximate any probability distribution,
making it suitable for generating high-dimensional data with a sparse structure. MAF is
a flow model that models a target distribution by transforming a simple base distribution
through a series of invertible transformations, allowing for efficient sampling and density
estimation. IAF is another flow normalizer-based model that sequentially transforms a
base distribution with invertible functions to generate samples from a target distribution.

By using these generative models based on flow normalizers, we can simulate high-
quality data and reduce the time and energy costs of traditional methods, providing a
more efficient and accurate way to discover new events and design detectors in the con-
text of the LHC. Additionally, these models facilitate obtaining a complete and detailed
estimate of systematic errors, which is crucial for accurately validating new physics sce-
narios by comparing real data obtained from experiments with simulated data from the-
oretical models.

Key words: Deep Learning, Monte Carlo events, Generative models based on Deep
Learning, Flow models, New Physics, Large Hadron Collider
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CHAPTER 1

Introduction

At present, the Standard Model serves as a theoretical framework that explains the com-
position of matter and the forces that regulate the physical processes of its constituents.
The most recent addition to this model, the Higgs boson[1], is included. Nevertheless,
certain observables do not align with theoretical predictions, and there are several fun-
damental aspects of physics that the model fails to explain, such as the neutrino masses,
gravity, and dark matter. The Standard Model also features unexplained parameters,
such as the Higgs mass, which is relatively low despite its considerable quantum correc-
tions, indicating a lack of understanding.

To shed light on the fundamental laws of nature, the European Organization for Nu-
clear Research (CERN) operates the Large Hadron Collider (LHC), the most powerful
and extensive collider worldwide. The LHC accelerates particles to high velocities and
collides them, studying their interactions.

At the LHC, a program obtains actual data by recording a small fraction of proton-
proton collisions. A trigger selects events online, and the recorded events are processed
and reconstructed. Using seven detectors, four collision points collect data from the 27-
kilometer circular ring of the LHC[2]. Simulated data is also generated during an ex-
periment’s lifespan, both quickly and in detail, to compare models with actual events.
Results from analyses of the collected data are discussed.

In addition to measuring Standard Model observables, experiments also search for
new Physics Beyond the Standard Model that could explain the current model’s limita-
tions. The LHCb, ATLAS, ALICE, and CMS experiments have already collected a sub-
stantial amount of data. ATLAS and CMS are general-purpose experiments, aiming to
research the origin of masses and Physics Beyond the Standard Model. While there is
no confirmed new model of physics, promising results could emerge with further exper-
imentation. Conversely, LHCb concentrates on B physics, matter-antimatter asymmetry,
and CP violation, and ALICE is an experiment that investigates Heavy Ion physics.

This work focuses on the ATLAS experiment (Figure 1.1). By applying Deep Gen-
erative Models1, in our case, Normalizing Flows2, we provide a faster way to simulate
physical events.

1Class of unsupervised learning algorithms that utilize deep neural networks to learn and generate new
data that resembles the original dataset.

2Type of probabilistic models that transform a simple distribution into a complex target distribution
through a series of invertible transformations.

1



2 Introduction

Figure 1.1: Computer-generated image of the ATLAS detector located at CERN.

1.1 Motivation and problem description

The current methods used for simulating physical processes using the Markov Chain
Monte Carlo methods (MCMC)[3] face a significant challenge due to their high computa-
tional requirements. This approach involves three steps: sampling pseudo-random num-
bers and transforming them into simulated physical events, such as particle collisions, to
then select the desired ones and discard the rest.

As pointed out, the extensive computational resources needed by these simulations
put a hard limit on scientific progress in the field. Algorithms like VEGAS[4] can take up
to 10 minutes[5] to generate particle physics experiments of an MC event, including the
detector response.

We believe this event generation pipeline can be accelerated using Deep Generative
Models, which may have the ability to produce more comprehensive and precise results
for signals in the Standard Model and Beyond the Standard Model of Physics.

It is essential to find an alternative for event generation, as the time and energy con-
sumption required by current methods will prove infeasible and unsustainable in the
future, when billions of events will need to be produced due to the buildup of data ob-
tained in the collider.

1.2 Objectives

In order to establish the scope of this study, we define the objectives we aim to accomplish
as the result of this work.

As pointed out previously, one goal of this study is to provide new frameworks for
efficient event generators as an alternative to the current methods based on Monte Carlo.

The results of the experiments will be compared based on standard metrics for their
use case, which provide insight on the similarities and dissimilarities of our estimated
distributions and the ground truth3 distributions.

3Accurate reference data for evaluating or comparing other information or models.
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Finally, we analyze the strengths and weaknesses of each approach, as we aim to
provide different ways to generate and construct events. We will focus on obtaining
distributions that adjust to the data provided generated with Monte Carlo methods

1.3 Structure of this work

The work is divided into seven parts, each addressing specific aspects and contributing
to the overall organization and coherence of the study:

First, we introduce the problem and its related ongoing CERN experiments, briefly
describing the current shortcomings followed by the objectives of this study.

The second chapter is dedicated to the analysis of the state-of-the-art. Here we de-
scribe the present cutting-edge advancements, providing a brief overview of classical
and similar approaches along with machine learning solutions that closely align with out
intended objectives.

Chapter three of our study centers on the dataset utilized. We provide a brief overview
of its generation process, outlining the constraints involved, and discussing the file for-
matting of the provided data.

In chapter four, we propose our own solution to improve upon the models mentioned
in the previous references. Our objective is to develop a valid model that effectively meets
the specified goals. Through careful analysis and consideration of the existing literature,
we crafted an approach that addresses the limitations of prior work.

Chapter five is dedicated to the technologies employed to make this study possible,
from the software tools to the hardware architecture and infrastructure. Followed by
chapter six, where we present the metrics by which our experiments’ success were mea-
sured. We give a brief explanation on what they indicate and how we calculate them.

In the seventh chapter we present and describe the results of our experimentation,
together with the framework for each experiment and a brief comparison between our
results.

Finally in chapter eight we conclude by offering an assessment of the chosen ap-
proach’s suitability for the intended experiment, and propose future improvements on
this model and other techniques that may be worth exploring.





CHAPTER 2

State of the art

The LHC has always prioritized the detection and generation of signals related to new
physics, which is evident from the numerous experiments conducted using both super-
vised and unsupervised machine learning techniques. However, despite these efforts, no
evidence of physics beyond the Standard Model has been discovered so far.

As indicated previously, efforts from CERN, in particular from the ATLAS project
team, tried to define a strategy for detection of new physics [6]. The cited study presents
their strategy for a comprehensive search to identify potential new physics signals. Events
were classified into multiple classes based on their final state, and an automated search
algorithm tested data compatibility with Monte Carlo simulations in distributions sen-
sitive to new physics effects. Significance of deviations was quantified using pseudo-
experiments. Analysis of data-derived signal regions allows for statistical interpreta-
tion, with sensitivity evaluated using Standard Model processes and benchmark signals
of new physics. No significant deviations were found, leading to the absence of data-
derived signal regions for further analysis.

There has also been a community effort to find BSM signals, namely The Dark Ma-
chines Anomaly Score Challenge[7]. The challenge focused on detecting signals of new
physics at the LHC using unsupervised machine learning algorithms. An anomaly score
was proposed to define model-independent signal regions in LHC searches. A bench-
mark dataset consisting of over 1 billion simulated LHC events was provided, which we
employ in this study and describe in Chapter 3. Various anomaly detection and density
estimation algorithms developed for the challenge were reviewed, and their performance
was assessed in realistic analysis environments. The valuable insights gained contribute
to the advancement of unsupervised methods in the search for new physics at the LHC.

Similar to the objective of our study, we find [8]. The aforementioned study focuses
on Drell-Yan processes at the LHC, and it describes a novel approach which employs
normalizing flows as an integrator to enhance the unweighting efficiency of Monte-Carlo
event generators in collider physics simulations.

To conclude, it is worth pointing out some of the different approaches to the subject
of this study, event generation. Efforts have been made using Monte Carlo methods
coupled with regression [9, 10]. Other Deep Learning Generative Methods such as GANs
[11, 12, 13] and VAEs [14] have also been used in this context. As of Normalizing Flows,
we observe that they have been mainly used as a piece of the VAE generation process[15],
and rarely as a standalone model.
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6 State of the art

2.1 Analysis of the current situation

After carefully reviewing the latest contributions in the field of efficient event simulation
using Deep Learning Generative Models, we have discovered several key findings that
warrant further exploration.

One important observation is that most research in this area has predominantly fo-
cused on supervised learning methods. This has sparked our curiosity to dive into the
less explored realm of unsupervised learning, which presents exciting opportunities for
advancement in event simulation.

While Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs)
have received considerable attention in event simulation studies (as evident from rele-
vant research), the utilization of Normalizing Flows, a type of generative model, has been
relatively limited. Typically, Normalizing Flows have been used as auxiliary tools, assist-
ing in the sampling process from the latent space of VAEs and GANs. However, their
independent potential and effectiveness in event generation remain largely unexplored.

Therefore, the primary aim of our study is to thoroughly investigate and analyze the
behavior of various Normalizing Flow models within the context of event generation,
encompassing both Standard Model (SM) and Beyond the Standard Model (BSM) pro-
cesses. By diving into this uncharted territory and carefully examining the performance
and capabilities of Normalizing Flows in event simulation, we hope to uncover new in-
sights and possibilities that could drive progress in this field of research.



CHAPTER 3

The dataset

The datased used for the experimentation is one of many generated to be used in The
Dark Machines Anomaly Score Challenge[16], whose objective was to give an event-
by-event classification between SM events and events produced by BSM processes via an
anomaly score.

Each event represents a simulated proton-proton collision similar to those ocurring at
the LHC at a center-of-mass energy of 13 TeV1, and is comprised of a series of final-state
objects (Table 3.1).

Symbol ID Object
j jet
b b-jet

e− electron (e−)
e+ positron (e+)
m− muon (µ−)
m+ antimuon (µ+)
g photon (γ)

Table 3.1: Symbol ID and corresponding object type in each event.

3.1 Data generation

The creation of the dataset for the SM and BSM processes was performed applying di-
verse technologies which served to generate events, handle parton-level matrix elements
and parton distribution functions, incorporate parton showering, simulate the detector
response, and perform jet clustering. A detailed explanation of the data generation pro-
cedure is described in [17].

The number of objects resulting from a collision event can vary, and for each of them
the full energy (E), traverse momentum (pT), pseudo-rapidity (η) and azimuthal angle
(ϕ) are recorded.

An event was stored in the dataset and is stored in this experiment if it meets at least
one of the following requirements:

• At least one jet or b-jet with pT > 60 GeV and |η| < 2.8

1Teraelectronvolt. Ultra-high energy unit in particle physics, representing trillions of electron volts. Each
electronvolt represents the energy acquired by an electron in passing through a potential difference of 1 volt.
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• At least one electron with pT > 25 GeV and |η| < 2.47, except for 1.37 < |η| < 1.52

• At least one muon with pT > 25 GeV and |η| < 2.7

• At least one photon with pT > 25 GeV and |η| < 2.37

Some additional requirements regarding final objects were applied on the dataset and
are also applied in this experiment. The requirements on the final state objects are:

• Jet or b-jet: pT > 20 GeV and |η| < 2.8

• Electron or muon: pT > 15 GeV and |η| < 2.7

• Photon: pT > 20 GeV and |η| < 2.37

3.2 Data format

Each file corresponds to a process. The total number of generated events per file is at
least the number that is needed for obtaining 10 f b−1 of data2 (N10 f b−1). When N10 f b−1 <
20000, a second file with 20000 lines is given.

The data is formatted as a CSV file with one line per event, and each line can vary
in length. An event consists of three event-specifiers followed by the kinematic features
corresponding to each object within the event. The line format is:

event ID; process ID; event weight; MET; METphi; obj1, E1, pt1, eta1, phi1;
obj2, E2, pt2, eta2, phi2; ...

Each event has three specifiers. The event ID is a unique integer that serves to iden-
tify a particular event for debugging purposes. The process ID is a string referring to
the process that generated the event, as seen in Table 3.2. The event weight depends on
the cross section for a particular process and the number of events in a single file, and is
ignored in our experiments.

Every event also has two kinematic features, the MET and METphi entries are the mag-
nitude Emiss

T and the azimuthal angle ϕEmiss
T

of the missing traverse energy vector of the
event, which represent the traverse energy and azimuthal angle of the objects that escape
detection.

The object identifiers (obj1,obj2,...) are strings that follow Table 3.1, which identify
each object in the event. Four values follow each object identifier, which specify its fea-
tures: En (E), ptn (pT), etan (η), phin (ϕ). These features correspond to those mentioned
previously in 3.1.

The particles are shown in a determined order: b-jets, jets, leptons and photons. And
inside each particle type, they are sorted in descending order based on their pT. The
particle with the highest pT inside its class will be referred as the leading particle.

As previosuly indicated, all of the events are separated by process, generating 65 files
with a total size of 66.5GB. For experimentation, only the largest files for each type of
process were chosen (for processes that reached 10 f b−1 with less than 20K events, the file
with 20K events was chosen).

2The inverse femtobarn indicates the number of particle collisions that have occurred, on average, per
femtobarn of integrated luminosity (1 f b−1 ≈ 1012 proton-proton collisions).
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SM processes
Physics process Process ID

pp → jj njets
pp → W ± (+2j) w_jets

pp → γ (+2j) gam_jets
pp → Z (+2j) z_jets

pp → tt + jets (+2j) ttbar
pp → W ± t (+2j) wtop
pp → W ± t̄ (+2j) wtopbar
pp → W W (+2j) ww

pp → t + jets (+2j) single_top
pp → t̄ + jets (+2j) single_topbar

pp → γγ (+2j) 2gam
pp → W γ (+2j) Wgam

pp → ZW ± (+2j) zw
pp → Zγ (+2j) Zgam
pp → ZZ (+2j) zz
pp → h (+2j) single_higgs

pp → ttγ (+1j) ttbarGam
pp → ttZ̄ ttbarZ

pp → tth̄ (+1j) ttbarHiggs
pp → γt (+2j) atop

pp → ttW̄ ttbarW
pp → γt̄ (+2j) atopbar
pp → Zt (+2j) ztop
pp → Zt̄ (+2j) ztopbar

pp → ttt̄t 4top
pp → ttW̄ + W̄ ttbarWW

BSM processes
Physics process Process ID

pp → g̃g̃ (1 TeV) gluino_01
pp → g̃g̃ (1.2 TeV) gluino_02
pp → g̃g̃ (1.4 TeV) gluino_03
pp → g̃g̃ (1.6 TeV) gluino_04
pp → g̃g̃ (1.8 TeV) gluino_05
pp → g̃g̃ (2 TeV) gluino_06

pp → g̃g̃ (2.2 TeV) gluino_07
pp → t̃1 t̃1 (220 GeV), mx̃0 = 20 GeV stop_01

pp → t̃1 t̃1 (300 GeV), mx̃0 = 100 GeV stop_02
pp → t̃1 t̃1 (400 GeV), mx̃0 = 100 GeV stop_03
pp → t̃1 t̃1 (800 GeV), mx̃0 = 100 GeV stop_04

pp → Z0 (2 TeV) Zp_01
pp → Z0 (2.5 TeV) Zp_02
pp → Z0 (3 TeV) Zp_03

pp → Z0 (3.5 TeV) Zp_04
pp → Z0 (4 TeV) Zp_05

Table 3.2: Generated SM and BSM signal processes with their identification.





CHAPTER 4

Proposed solution

Considering the current state of the art discussed in Chapter 2 and the dataset analysis
in Chapter 3, a solution is proposed utilizing Normalizing Flows to generate relevant
results in event generation. The choice of using Normalizing Flows is based on the rela-
tively few studies employing this model compared to the more popular VAEs and GANs.
VAEs, along with GANs and Flow models, are widely used in the AI field, and we expect
promising results with this technique.

Once a well-fitting model capturing the data distribution of the dataset is obtained,
it will facilitate extensive searches for signals of Physics Beyond the Standard Model,
enabling the validation of new theoretical models.

A concise explanation of the theoretical concepts underpinning Normalizing Flows
and some of its variants’ architectures follows, coupled with custom data structures that
facilitate the flexibility of the events generated.

4.1 Alias Method

The Alias method[18, 19] is a technique used for efficient random sampling from discrete
probability distributions. It is based on the idea of using a mixture of uniform random
variables and a lookup table to generate random values.

To construct the Alias table, we start with a probability distribution where each out-
come is associated with a certain probability. We calculate the average probability and di-
vide the outcomes into two groups: alias and prob. The alias group contains the outcomes
with probabilities greater than or equal to the average, while the prob group contains the
outcomes with probabilities less than the average.

Figure 4.1: A diagram of an alias table that represents the probability distribution 〈0.25, 0.3, 0.1,
0.2, 0.15〉. [20]
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For each outcome in the prob group, we pair it with an outcome from the alias group.
The paired outcome is selected randomly, and its probability is adjusted to be the differ-
ence between the average probability and the probability of the prob outcome.

To generate a random value from the distribution, we first select a row from the Alias
table uniformly at random. Then, we toss a fair coin to decide whether to choose the orig-
inal outcome or its alias. This process allows us to sample from the desired distribution
efficiently.

The Alias method provides a constant-time complexity O(1) for generating random
values from discrete probability distributions, regardless of the number of outcomes. We
will employ a variant of this method to represent the distribution of appearances of par-
ticles in the observed events.

4.1.1. Counter

In order to guarantee the appearance of even the most rare event configurations, we
decided to encode the particle presence on an event as a 7-dimensional integer vector.
In this vector, as can be seen on Table 4.1, each dimension corresponds to the amount of
objects of a certain particle type observed on an event.

Particle Type j b e+ e− m+ m− g
Counter Vector jn bn e+n e−n m+

n m−
n gn

Table 4.1: Counter Vector reference to Particle types present in an event.

Applying the technique described above, we constructed a Counter Generator (see Fig-
ure 4.2), which models the discrete distribution of the number of particles per event using
two levels. Level one contains up to 80% of occurrences, and level two the 20% remain-
ing.

More concretely, it is capable of sampling from the distribution of 7-dimensional vec-
tors that describe particle amounts in a collision event; one dimension per particle.

· · · 040.14 1 0 0 000

First level

Random number
generator. 0.0 - 1.0

· · · 050.23 1 0 0 000

1.0 Second level pointer

· · · 010.03 2 1 0 001

Second level

Random number
generator. 0.0 - 1.0

· · · 020.06 0 0 0 011

1.0 0 0 0 2 2 0 1

Figure 4.2: Two-level counter generator.

As we can see in Figure 4.3, this technique allows us to correctly sample from the
distribution of particle amounts per event.
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Figure 4.3: Count array distribution based on % over 5 million samples. It can be seen both have
the same distribution, with no relevant differences.

4.2 Density Estimation

Density estimation is a fundamental task in statistical modeling and machine learning
that aims to learn the underlying probability distribution of a given dataset. The goal is
to estimate the density function, which describes the likelihood of observing a particular
value of the random variable that the data points represent. Density estimation has ap-
plications in various domains, such as anomaly detection, signal processing, image and
speech recognition, and natural language processing.

There are several methods for density estimation, such as Masked Autoencoder for
Distribution Estimation (MADE)[21], which is a parametric modeling approach to this
problem and the building block of Masked Autoregressive Flows (MAF)[22].

4.2.1. Normalizing Flows

Normalizing flows[23] is a class of generative models that learn to transform a simple
probability distribution into a complex target distribution. The idea is to apply a se-
quence of invertible and differentiable transformations (Figure 4.4), called flow layers, to
a base distribution to obtain the target distribution. The transformations can be parame-
terized by neural networks, allowing for flexible and expressive mappings.

Figure 4.4: Illustration of a normalizing flow model, transforming a simple distribution to a com-
plex one step by step.
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Normalizing flows offer several advantages over other generative models, such as the
ability to model complex and multimodal distributions, exact likelihood computation,
efficient sampling and inference, and controllable data generation.

4.2.2. Autoregressive Flows

The autoregressive constraint is a method for modeling sequential data where each out-
put is influenced only by previously observed data. The likelihood of observing a specific
element is determined by its conditional probability given the preceding elements, and
the overall probability of observing the entire sequence is obtained by multiplying these
conditional probabilities together.

p(x) = ∏D
i=1 p(xi|x1, . . . , xi−1) = ∏D

i=1 p(xi|x1:i−1)

In order to obtain a normalizing flow with the autoregressive property, we have to
frame its flow transformations as autoregressive models, where each dimension in a vec-
tor variable is conditioned only on the previous dimensions. This is called an autoregres-
sive flow.

Typically, the parameters of the conditional densities can be learned. The autoregres-
sive density p(x1:D), for instance, is a popular option.

p(xi|x1:i−1) = N(xi|µi, (exp(αi))
2)

µi = fµi(x1:i−1)
αi = fαi(x1:i−1)

Its conditional density is a univariate Gaussian, and neural networks that rely on the
prior x1:i−1 compute its mean and standard deviation.

In order to sample from said distribution, we generate vectors u from a standard
Normal N(0, 1), and apply a simple scale-and-shift to obtain x:

xi = ui · exp(αi) + µi

ui ≈ N(0, 1)

4.2.3. MAF

The Masked Autoregressive Flow (MAF)[22] is a Normalizing Flow model which imple-
ments the conditional-Gaussian autorregressive property described before.

MAF models can learn quickly thanks to the simultaneous evaluation of all the con-
ditional likelihoods p(x1), p(x2|x1), ...p(xD|x1:D−1) can be evaluated simultaneously by
taking advantage of the batch parallelism of machine-learning-ready GPUs.

This model works as a bijector, and as such, it can perform forward and backward
passes on data.

In order to obtain xi, MAF uses αi and µi, which are scalars computed by passing
x1:i−1 through a network, as depicted by Figure 4.5a. The transformation applied is a
simple scale-and-shift, as described in the section before.
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x1 x2 xi-1 xi xdTarget Distribution

Base Distribution z1 z2 zi-1 zi zd

αi μi

(a) MAF forward pass.

x1 x2 xi-1 xi xdTarget Distribution

Base Distribution z1 z2 zi-1 zi zd

αi μi

(b) MAF inverse pass.

Figure 4.5: MAF scale-and-shift operations.

This transformation was made to be easily invertible, to computing u = T−1(x) does
not require to invert fα and fµ. Therefore, we can easily recover the original sample u
from the base distribution by reversing the scale-and-shift:

ui = (xi − µi) · exp(−αi)

Sampling can be slow, since in order to compute a dimension xi, the model has to wait
for all previous x1:i−1 to be computed, therefore being unable to exploit the previously
mentioned processor parallelism.

Tu P T TP Pu' u'' x

Figure 4.6: MAF Architecture with multiple layers.

This flow model is usually implemented as depicted on Figure 4.6. We start from a
distribution U, which we use to obtain the base samples u, and we chain the scale-and-
shift transformations, introducing a permutation layer P to change the ordering of each
dimension so the model can learn the inter-dependencies between all the variables.

MAF uses the Masked Autoencoder for Distribution Estimation (MADE)[21] in order
to compute the nonlinear parameters of the shift-and-scale transformations described
earlier simultaneously and in one pass, incorporating these efficient autoregressive mod-
els within the normalizing flows framework.

MADE

Masked Autoencoder for Distribution Estimation (MADE)[21] represents a specifically
crafted structure that effectively enforces the autoregressive characteristic in an autoen-
coder

Instead of supplying the autoencoder with diverse observation window inputs, MADE
employs binary mask matrices to eliminate the influence of specific hidden units. This
process ensures that each input dimension is reconstructed solely from preceding di-
mensions, following a predetermined order, within a single iteration when predicting
the conditional probabilities using the autoencoder.
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Figure 4.7: Masking of a conventional three hidden layer autoencoder into a MADE.

The numbers are assigned to all the units and layers, fixing the ordering of the input
dimensions, and calculating the conditional probability with respect to it.

As seen in Figure 4.7, a unit in a layer can only be connected to other units with
equal or smaller numbers in the previous layer, and this type of dependency propagates
through the network up to the output layer.

4.2.4. RQS

The Rational Quadratic Spline (RQS) is a type of normalizing flow that represents a
monotonically increasing piecewise rational quadratic function.

The RQS bijector is constructed using bins, where each bin defines a monotonically
increasing rational-quadratic function within a specified interval. Outside of this interval,
the function is set to the identity transformation.

A-RQS

The Autoregressive Rational Quadratic Spline (A-RQS) corresponds to the autoregressive
variant of the Rational Quadratic Spline. In the context of flow models, this bijector pro-
vides enhanced flexibility than the MAF presented before, being able to perform better
on datasets of higher dimensionality [24].

The transformation that the A-RQS bijector performs can be represented as follows:

xi =
(αi + βi(ui − uk))

(1 + γi(ui − uk))

where uk is the position of the k-th knot, αi, βi, and γi are the parameters of the rational
quadratic function in the i-th interval, and xi is the output value of the transformation at
input ui.

Therefore, this model follows the same architecture as the one presented in Figure 4.6,
but instead of the scale-and-shift operation as the transform function, we have a much
more flexible T [25].



CHAPTER 5

Used technologies

Throughout the history of AI research, numerous libraries and frameworks have emerged
and expanded, offering new layers of abstraction to facilitate the implementation process.

In the development of this project, a variety of software and hardware tools of this
nature have been utilized to design, train and test the proposed models.

5.1 Software environment

All the experiments were carried out in a Linux-based machine, running Ubuntu 20.04.6
LTS. Due to its standardized status in the field of artificial intelligence, Python 3[26] was
chosen for the development of the codebase.

5.1.1. Model definition

For this study, Tensorflow, Tensorflow Probability and Keras, were used as the libraries
for model definition and training.

Tensorflow[27] is an open-source deep learning framework. It utilizes a computa-
tional graph paradigm, where mathematical operations are represented as nodes con-
nected by edges that flow data between them. Tensors, multidimensional arrays, are
the fundamental data units in TensorFlow. The framework offers flexibility with both
static and dynamic graph modes, enabling efficient memory allocation and accommodat-
ing varying input sizes or control flow. TensorFlow provides high-level APIs like Keras
for easy model development, as well as lower-level APIs for advanced customization.
Integration with GPUs and TPUs1 enhances computation speed, making TensorFlow a
powerful tool in the field of machine learning.

Tensorflow Probability[27] is a powerful library built on top of TensorFlow that in-
tegrates probabilistic modeling and machine learning. It enables researchers and practi-
tioners to model uncertainty and make probabilistic predictions in their machine learn-
ing pipelines. TensorFlow Probability offers a wide range of probabilistic distributions,
including Gaussian processes, Bayesian neural networks, and hidden Markov models,
allowing for flexible modeling of complex and uncertain real-world phenomena.

Keras[28] is a high-level neural networks API built on TensorFlow which offers a
user-friendly and modular approach for designing, training, and evaluating deep learn-
ing models. With its intuitive design, pre-defined layers, and built-in optimization al-

1Tensor Processing Units. Specialized, highly efficient and optimized hardware accelerator for perform-
ing tensor operations.
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gorithms, Keras simplifies the process of model development and training. It promotes
code reusability and transferability, allowing models to be easily shared and reused.

As in our experiments GPUs were employed for training and sampling generation,
the libraries described above leveraged cuDNN and CUDA underneath.

cuDNN[29] or CUDA Deep Neural Network library, is a high-performance GPU-
accelerated library developed by NVIDIA. It provides optimized implementations of key
deep learning primitives, such as convolutional and recurrent operations, for training
and inference on NVIDIA GPUs.

CUDA[30] is a parallel computing platform and programming model developed by
NVIDIA that enables developers to harness the computational power of GPUs for general-
purpose computing.

Figure 5.1: Interaction of Tensorflow and Keras with GPU, with the help of CUDA and
cuDNN.[31]

5.1.2. Data representation

In order to observe the quality of the obtained results, a visual representation of the gen-
erated data must be used. In our case, we used Matplotlib to display our generated
results’ distribution and compare them to the expected distribution.

Matplotlib[32] is a data visualization library for creating static, animated, and inter-
active visualizations in Python. It provides a range of 2D and 3D plotting functionali-
ties for generating publication-quality figures across a wide range of formats, including
line plots, scatter plots, bar plots, histograms, pie charts, and many more. Matplotlib is
widely used in the scientific and engineering communities for data analysis and commu-
nication of research findings, and it offers a high degree of customization and flexibility
to suit various needs and preferences. It is an open-source library and is compatible with
a wide range of platforms, including Windows, macOS, and Linux.

5.1.3. Model evaluation

Certain metrics had to be calculated to ensure the quality of our trained event generator
models. For this, Scikit-learn was employed as it provides all the methods needed to
obtain these metrics.

Scikit-learn[33] is a versatile machine learning library in Python, providing a user-
friendly interface for data preprocessing, model selection, and evaluation. With its exten-
sive collection of algorithms, evaluation metrics, and preprocessing techniques, scikit-
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learn simplifies the development and deployment of machine learning models. In this
work, it was used to compute validation metrics for the trained models.

5.2 Hardware environment

In order to tackle the complexity and scale of the machine learning problems at hand, it
was essential to leverage a powerful hardware architecture for training our models.

The intricacy of deep learning algorithms, coupled with the vast amounts of data
involved, demanded significant computational resources. By harnessing the capabilities
of GPUs, which for this task achieve a higher performance when compared to CPUs, we
were able to expedite the training process and achieve faster convergence.

Therefore, the hardware infrastructure used in this project consisted of a server with
32 GB of DDR4 RAM memory and a high-performance NVIDIA GeForce RTX 3060 graph-
ics card, powered by the GA106-300-A1 chip (Figure 5.2) with 3584 NVIDIA CUDA cores.

Figure 5.2: NVIDIA GA106 graphics chip scheme.[31]





CHAPTER 6

Metrics

In our experimental study, we explore and utilize three key concepts to analyze and com-
pare probability distributions: the Wasserstein distance, the Kullback-Leibler divergence,
and the Jensen-Shannon divergence. These concepts enable us to quantify the dissimilar-
ity or similarity between our learnt distributions and the dataset distributions.

6.1 Wasserstein Distance

The Wasserstein distance, also known as the Earth Mover’s distance[34], is a metric used
to quantify the dissimilarity between probability distributions. It provides a way to com-
pare the structural differences between distributions by measuring the minimum "cost"
required to transform one distribution into another.

Given two probability distributions P and Q defined on a metric space X , the Wasser-
stein distance W(P, Q) is calculated as the minimum cost of transporting mass from P to
Q, where the cost is determined by a ground metric c(x, y) between elements x and y in
X . Mathematically, the Wasserstein distance is expressed as:

W(P, Q) = inf
γ∈Γ(P,Q)

∫
X×X

c(x, y) dγ(x, y)

Here, Γ(P, Q) represents the set of all joint distributions (couplings) γ with marginals
P and Q. The ground metric c(x, y) reflects the cost of transporting a unit of mass from
x to y. The Wasserstein distance provides a meaningful comparison of distributions in
terms of their structure.

6.2 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence[35], also known as relative entropy, is a measure
of the difference between two probability distributions P and Q. It quantifies the amount
of information lost when Q is used to approximate P. The KL divergence is defined as:

DKL(P ∥ Q) =
∫

P(x) log
(

P(x)
Q(x)

)
dx

where P(x) and Q(x) are the probability density functions of P and Q respectively.
The KL divergence is asymmetric and not a true metric since it does not satisfy the trian-
gle inequality, but we will use it as a point of reference.
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6.3 Jensen-Shannon Divergence and Distance

The Jensen-Shannon divergence[36] is a symmetric and smoothed version of the KL di-
vergence previously mentioned in 6.2. It measures the similarity or dissimilarity between
two probability distributions P and Q. The Jensen-Shannon divergence is defined as the
average of the KL divergence between P and the average distribution M, and the KL
divergence between Q and M. Mathematically, it can be expressed as:

JSD(P, Q) =
1
2

DKL(P ∥ M) +
1
2

DKL(Q ∥ M)

where M = 1
2 (P + Q) is the average distribution. The Jensen-Shannon divergence

ranges between 0 and 1, where 0 indicates identical distributions and 1 represents com-
pletely dissimilar distributions.

The Jensen-Shannon distance is simply the square root of the Jensen-Shannon diver-
gence, providing a metric for comparing the dissimilarity between probability distribu-
tions.



CHAPTER 7

Experimentation

In this section, we focus on the implementation and experimentation that we carried out
based on the solution proposed in Chapter 4, using the technologies presented in Chapter
5 and the metrics described in Chapter 6.

Before checking out the results of the experiments, we first specify some details about
the partitioning, analysis and preprocessing of the dataset presented in Chapter 3 and the
model architecture for each solution.

For simplicity, the particles of the events generated in each experiment have been
grouped into logical classes during representation:

• Jets: Which include jets and bjets (j, b).

• Leptons: Including positrons, eletrons, anti-muons and muons (e+, e−, m+, m−).

• Photons: Just the photons (g).

To be noted, we will also see the distribution of the ordered particles, to appreciate
if the pT is consistent with the ordering, together with the total energy and the total
traversal momentum of the events as a measure of conservation these properties1.

7.1 SM Experiment I: Particle subdivision

For our first experiment, we decided to focus on the flexibility of the events generated,
mainly on the amount of particles that are observed per event.

Current implementations are limited by the size of event they can generate based on
particle amount due to the nature of neural networks. In order to overcome this limita-
tion, we propose the division of the generator in a model-per-particle basis, which ensures
the appearance of even the most rare combinations and particles.

While this approach is more flexible, it also has a huge handicap, which lies on the fact
that the event generated may not be "consistent". Even it if meets all the requirements,
the generated data may be implausible, since the models are not connected to each other
in any capacity.

Therefore, this approach will only be useful in the presence of a discriminator or a
filter, which will, as the current MCMC implementations do, select the events which are
valid and discard the other ones.

1The total energy has been calculated as the sum of all the energies of the present particles and the MET,
and the total traversal momentum as the sum of the traversal momentum pT of the particles.

23
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All models in this experiment utilize MAFs, as described in the architecture presented
in Section 4.2.3. The subsequent sections provide the hyperparameters that define each
individual model.

7.1.1. Data partitioning

The data used in our experiments as pointed out before, is that of ttbar. As described,
we are training a model per particle, including one for MET and METphi, therefore, we
decided to partition the original CSV file into eight different files, one per particle. With
this, we end up with about 2.2 GB of data in total.

As we can see on Table 7.1, ttbar contains a majority amount of jets, followed by the
bjets, leptons and photons. This is not surprising, as ttbar focuses on "jet-heavy" events,
Table 3.2.

File Name File size (MB) Particle amount
j_all.csv 1577 19,598,073
b_all.csv 537 6,657,017
m-_all.csv 33 405,903
m+_all.csv 33 403,769
e+_all.csv 25 310,145
e-_all.csv 25 309,770
g_all.csv 9 107,478
met.csv 145 5,412,187
Total 2384 33,204,342

Table 7.1: Particle amount by file for experiment I.

7.1.2. Data analysis and preprocessing

Before we started the experiment, it was important to analyze the dataset presented in
Chapter 3 in the search of familiar distributions which have been known to facilitate the
learning of Deep Learning models.

After a brief exploration of the data, and taking into account the insights provided by
[14], we determined that between the kinematic features that describe each particle (E,
pT, η and ϕ) the Energy E and the Traversal Momentum pT follow an almost log-normal
distribution2 (see Figure 7.1).
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Figure 7.1: Comparison between the original jet energy (left) and the transformed log10 energy
(right).

2The log-normal distribution is a continuous probability distribution that arises when the logarithm of a
variable follows a normal distribution.
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Therefore, based on these observations, the dataset was preprocessed and transformed
accordingly. The logarithmic transformation was then applied to the MET (as can be seen
in Figure 7.2), leaving the METϕ as it was. The aforementioned operation was also uti-
lized in the Energy E and the Traversal Momentum pT (see Figure 7.3), while the ϕ and η
were left as they were in the dataset.

log10MET, METϕ
log10MET, METϕ
.
.
.
log10MET, METϕ

Figure 7.2: Format of met.csv on experi-
ment I.

log10E, log10 pT, η, ϕ
log10E, log10 pT, η, ϕ
.
.
.
log10E, log10 pT, η, ϕ

Figure 7.3: Format of the particles’ CSV files
on experiment I.

7.1.3. Model framework

For this first experiment, we decided to employ the MAF model, as described in the
proposed solution in Section 4.2.3.

As pointed out before, we will be using one model per particle, including one separate
model for MET and METϕ.
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Figure 7.4: Experiment I model architecture.

Therefore, as seen in the figure above (Figure 7.4), our event generator will have es-
sentially three components:

• MET Model: A masked autoregressive flow model trained on the distribution of
MET and METϕ whose parameters are listed on Table 7.2 and Table 7.3.

• Counter Generator: A discrete 7-dimensional array generator that works as de-
scribed in Section 4.1.1. It is in charge of providing the amount of each particle
present in the current event, following the discrete distribution of the ground truth.
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• Particle Model: A masked autoregressive flow model which has learnt the distri-
bution of the kinematic properties of a particle type. We have seven of them, one
per particle, and each one generates as many particles per event as the counter tells
it to. Its parameters are listed on Table 7.4 and Table 7.5.

Parameter Values
MAF layers 10
Permutation layers 9

Table 7.2: MET Model hyperparameters
on experiment I.

Parameter Values
MADE layers 3
Neurons per layer 50

Table 7.3: MET MAF hyperparameters
on experiment I.

Parameter Values
MAF layers 10
Permutation layers 9

Table 7.4: Particle Model hyperparameters
on experiment I.

Parameter Values
MADE layers 3
Neurons per layer 100

Table 7.5: Particle MAF hyperparameters
on experiment I.

With this framework, in order to generate an event, we follow these detailed steps in
order to guarantee the best performance and accuracy of the generation:

Step 1: Launch the MET Model, which provides the MET and METphi for the current
event being generated.

Step 2: Trigger the Counter Generator to provide a 7-dimensional array which describes
the number of particles per particle type. With this information, we then use the
trained models for each particle to generate as many as needed.

Step 3: Sort the particles by pt, as they do in the dataset described in Chapter 3, and then
assemble the event.

Step 4: Check for its validity requirements also indicated in the aforementioned chapter.
Accept and save the event if it meets them, discard it if otherwise.

7.1.4. Training results

The training of the models presented in the before section was conducted using the hy-
perparameters listed in Table 7.2 and Table 7.7. As we can see, batch size was tailored to
the observed amount of each particle in Table 7.1.

Parameter Values
Optimizer Adam[37]
Initial learning rate 10−4

Loss function Log-likelihood
Batch size 1024

Table 7.6: MET Model training parameters on experiment I.
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Parameter Values
Optimizer Adam[37]
Initial learning rate 10−4

Loss function Log-likelihood
Batch size (j) 1024
Batch size (b) 512
Batch size (e−, e+, m−, m+) 32
Batch size (g) 16

Table 7.7: Particle Model training parameters on experiment I.

All the training procedures were conducted to up to 100 epochs3, which resulted in
the best results for this architecture.

MET and METϕ

As can be seen in Figure 7.5, the model that is in charge of the generation of MET and
METϕ is able to reproduce accurately the distribution of these properties, accomplishing
good results based on our metrics.

0.2

0.4

0.6

0.8

1.0 Original
Simulated

3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50
MET

0.5

1.0

1.5

ra
tio

all general particles
KLD 0.000180 | WD 0.000379 | JSD 0.006732

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 Original
Simulated

3 2 1 0 1 2 3
METphi

0.5

1.0

1.5

ra
tio

all general particles
KLD 0.000056 | WD 0.000055 | JSD 0.003730

Figure 7.5: Histograms of MET and METϕ on experiment I.

3A single iteration through the entire dataset during model training.
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Jets

For the model trained on all the jets present on ttbar, we can appreciate that it is capable
to generate jets that follow the original distribution almost perfectly (see Figure 7.6). The
biggest divergence can be found on the pT distribution, which has trouble fitting the
original data due to its unusual shape.
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Figure 7.6: Histograms of the kinematic properties of all the jets (j, b) on experiment I.

But as expected, discrepancies may occur once we separate the jets by order. Even
if the model can generate random jets perfectly, the small discrepancies in the learnt pT
propagate through the ordered jets.

The energy E loses some accuracy for the first jet, but stays mostly consistent for the
rest of the jets (Figure 7.7), being able to produce the correct skewed distribution on the
third and next jets.
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Figure 7.7: Histograms of the energy of the ordered jets (j, b) on experiment I.

For the traversal momentum pT, we see a bigger disparity as pointed out before,
having the first jet a displaced distribution by a small margin, while the other jets can’t
quite get the right proportions (Figure 7.8).
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Figure 7.8: Histograms of the traversal momentum of the ordered jets (j, b) on experiment I.

In the case of the pseudo-rapidity η, even if the distribution is strange, it does not
present a challenge for the model (Figure 7.10).
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Figure 7.9: Histograms of the pseudo-rapidity of the ordered jets (j, b) on experiment I.

Finally, the azimuth angle ϕ, which presents itself as a uniform distribution (Figure
7.10), can also be easily simulated by the jets model.
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Figure 7.10: Histograms of the azimuth angle of the ordered jets (j, b) on experiment I.

Leptons

In the case of the leptons model, we can observe that the simulated distribution does a
good job at imitating the original (Figure 7.11). Even though it is not as exact as the jets
model, this can be explained by the difference in data to be trained on, as seen in Table
7.1.
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Figure 7.11: Histograms of the kinematic properties of all leptons (e−, e+, m−, m+) on experiment
I.

Photons

Lastly, when it comes to the model responsible for generating photons, it is not surprising
that it provides suboptimal results. This outcome was anticipated because the dataset
contains only approximately 107 thousand photon particles, which accounts for a mere
0.32% of the total observed particles.

Despite the lack of training data, the model manages to capture the general trends
and patterns of the distributions, with one exception being the pseudo-rapidity (η) due
to its atypical shape.

The limited amount of data poses a challenge for accurately learning the complex
characteristics of photons, yet the model still demonstrates a capacity to capture certain
underlying tendencies within the available particle samples.
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Figure 7.12: Histograms of the kinematic properties of all photons (g) on experiment I.

Conservation of energy and traversal momentum

We represent the total energy and the total traversal momentum in Figure 7.13. In this
first experiment, we can appreciate a notable disparity between the ground truth and the
generated values.
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Figure 7.13: Histograms of the total energy and the total momentum in experiment I.

This was to be expected, as the particle models are not connected in any way, which
can result in events that posses uncorrelated energy and traverse momentum amounts.
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7.2 SM Experiment II: Cumulative particle subdivision

In this second experiment, we try to improve on the framework of experiment I. We
attempt to maintain the flexibility that we explained before, while increasing the corre-
lation between the generated particles.

In order to do this, we decided to train two models per particle. The first one will only
focus on the first appearance of each particle in an event, and the second one on the next
appearances on an event. In order to facilitate the needed operations to accomplish more
particle correlation, the models were given more information, which we will describe in
the following sections.

Even with this new procedure, plausibility of the generated events cannot be guaran-
teed, even if it meets all the requirements exposed in Chapter 3. Therefore, as exposed in
the before experiment, a discriminator or filter would prove necessary to guarantee the
validity of the generated events.

This experiment employs MAFs in all its models, following the architecture presented
on Section 4.2.3. The hyperparameters that define each model are presented in the sec-
tions that come.

7.2.1. Data partitioning

As previously mentioned, our experiments utilize the ttbar dataset. To train the two mod-
els for each particle, including MET and METϕ, we made the decision to divide the origi-
nal CSV file into 15 separate files, two per particle, and one for the MET. This partitioning
resulted in a total data size of approximately 2.2 GB.

Table 7.8 illustrates the distribution of particle types in the ttbar dataset. Jets constitute
the majority, followed by bjets, leptons, and photons. This observation aligns with the
one made in experiment I, as shown in Table 3.2.

Given the substantial amount of data, we opted to batch the files appropriately to
optimize memory usage and training speed, without compromising the accuracy of the
models.

File Name File size (MB) Particle amount
j_1.csv 428 5,315,678
j_next.csv 1664 14,282,395
b_1.csv 359 4,453,838
b_next.csv 257 2,203,179
m-_1.csv 33 405,777
m-_next.csv 1 126
m+_1.csv 33 403,664
m+_next.csv 1 105
e+_1.csv 25 310,108
e+_next.csv 1 37
e-_1.csv 25 309,730
e-_next.csv 1 40
g_1.csv 9 106,641
g_next.csv 1 837
met.csv 145 5,412,187
Total 2983 33,204,342

Table 7.8: Particle amount by file on experiment II.
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7.2.2. Data analysis and preprocessing

For the preprocessing of the data of this experiment, we took into account the observa-
tions made on experiment I (Section 7.1.2) and on [14].

As mentioned in the introduction to this experiment, its models have been trained
with more data than the models on experiment I. Concretely, for the models that generate
first particles, we have included the MET and METϕ as dimensions of the event they
belong to (illustrated on Figure 7.15), and for the next models, we have also included the
cumulative energy and cumulative traversal momentum of that particle type (as seen on
Figure 7.15). The logarithmic transformation has been applied as expected on the MET,
energy E, traversal momentum pT, cumulative energy cumE and cumulative traversal
momentum cumpT.

Finally, it is worth mentioning that the file met.csv (Figure 7.14) has been left the same
as on experiment I, therefore the trained model will be the same.

log10MET, METϕ
log10MET, METϕ
.
.
.
log10MET, METϕ

Figure 7.14: Format of met.csv on experiment II.

log10MET, METϕ, log10E, log10 pT, η, ϕ
log10MET, METϕ, log10E, log10 pT, η, ϕ
.
.
.
log10MET, METϕ, log10E, log10 pT, η, ϕ

Figure 7.15: Format of the first particles’ CSV files on experiment II.

log10MET, METϕ, log10cumE, log10cumpT, log10E, log10 pT, η, ϕ
log10MET, METϕ, log10cumE, log10cumpT, log10E, log10 pT, η, ϕ
.
.
.
log10MET, METϕ, log10cumE, log10cumpT, log10E, log10 pT, η, ϕ

Figure 7.16: Format of the next particles’ CSV files on experiment II.
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7.2.3. Model framework

As said before, for this second experiment we will use the same model as for the first, the
MAF model, as proposed in Section 4.2.3. We will be employing two models per particle,
including one separate model for MET and METϕ.
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Figure 7.17: Experiment II model architecture.

Following the figure above (Figure 7.17), our event generator will have mainly four
distinct components:

• MET Model: A masked autoregressive flow model trained on the distribution of
MET and METphi whose parameters are listed on Table 7.9 and Table 7.10.

• Counter Generator: A discrete 7-dimensional array generator, explained in Section
4.1.1, that provides the particle quantities in the current event. It follows the discrete
distribution of the ground truth.

• Particle Models: A masked autoregressive flow model that has learned the distri-
bution of kinematic properties for each particle type. There are fourteen particle
models, two per particle, and they generate the specified number of particles per
event based on the counter. The model’s parameters can be found in Table 7.11 and
Table 7.12.

• Particle Selector: Selection made over a batch of generated particles of each type
based on the minimization of the euclidean distance.
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– For first particles, the distance to minimize is the following:

((MET − SampleMET)2 + (METϕ − SampleMETϕ)2)1/2

– For second particles, we need to minimize the next function:

((MET − SampleMET)2 + (METϕ − SampleMETϕ)2+

+(CumE − SampleCumE)2 + (CumpT − SampleCumpT)
2)1/2

Parameter Values
MAF layers 10
Permutation layers 9

Table 7.9: MET Model hyperparameters
on experiment II.

Parameter Values
MADE layers 3
Neurons per layer 50

Table 7.10: MAF hyperparameters (MET)
on experiment II.

Parameter Values
MAF layers 10
Permutation layers 9

Table 7.11: Particle Model hyperparameters
on experiment II.

Parameter Values
MADE layers 3
Neurons per layer 100

Table 7.12: MAF hyperparameters (Particle)
on experiment II.

With this framework, in order to generate an event, we follow these detailed steps in
order to guarantee an improvement on particle generation correlation from experiment
I:

Step 1: Launch the MET Model, which provides the MET and METϕ for the current
event being generated. This values will work as the "seed" of the event.

Step 2: Trigger the Counter Generator to provide a 7-dimensional array which describes
the number of particles per particle type.

Step 3: If it precedes, use the first particle generator to produce 1000 particles of the type
that is needed. Select the one sample that minimizes the euclidean distance as
described before.

Step 4: If there are more particles after the first one, use the second particle generator
to produce 1000 particles of the type that is needed. Select the one sample that
minimizes the euclidean distance as described before for the second particles. The
cumE and cumpT will need to be added as the generation continues per particle
type.

Step 5: Sort the particles by pT, as they do in the dataset described in Chapter 3, and then
assemble the event.

Step 6: Check for its validity requirements also indicated in the aforementioned chapter.
Discard the event if it’s not valid, save it if otherwise.

Following the aforementioned instructions, we generated enough events to visualize
how this approach fits the training data.



38 Experimentation

7.2.4. Training results

The optimization of the models presented was done using the training hyperparameters
listed in Table 7.13 and Table 7.14.

Parameter Values
Optimizer Adam[37]
Initial learning rate 10−4

Loss function Log-likelihood
Batch size 1024

Table 7.13: MET Model training parameters on experiment II.

Parameter Values
Optimizer Adam[37]
Initial learning rate 10−4

Loss function Log-likelihood
Batch size (j1, b1) 256
Batch size (jnext) 1024
Batch size (bnext) 512
Batch size (e−1 , e+1 , m−

1 , m+
1 ) 16

Batch size (g1, gnext, e−next, e+next, m−
next, m+

next) 2

Table 7.14: Particle Model training parameters on experiment II.

The models learnt using various procedures, with each training session spanning up
to 100 epochs.

MET and METϕ

The MET Model perfomed as expected, since it is exactly the same architecture as the
MET Model presented on the first experiment.

It is then able to reproduce the distributions almost perfectly (see Figure 7.18), which
in this case has more importance, as it serves as the seed for the particle models to gener-
ate.
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Figure 7.18: Histograms of MET and METϕ on experiment II.

Jets

In the analysis of jet models in particle physics, both models demonstrate impressive
performance concerning the overall distribution of jet particles, as illustrated in Figure
7.19.

The transverse momentum, denoted as pT, appears to have the least accurate distribu-
tion fit among the studied variables. This discrepancy can be attributed to the prevalence
of lower transverse momentum jets in the second model’s training data

The second model is responsible for generating up to 13 jets that succeed the initial
jet. As discussed in Chapter 3’s dataset description, higher-order jets typically possess
lower pT values. Consequently, the divergence in the pT distribution becomes more pro-
nounced when examining the jets by order.

By expanding upon the jets’ order, the divergence in the pT distribution will become
more evident, providing valuable insights into the performance of the jet models.
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Figure 7.19: Histograms of the kinematic properties of all the jets (j, b) on experiment II.

When analyzing the jets by order, we can observe how many disparities arise mostly
on the second model’s task. Figure 7.20 illustrates the ordered distributions, where the
first jet model behaves as expected, while the second, third and next distributions are not
well fitted by the second model.
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Figure 7.20: Histograms of the energy of the ordered jets (j, b) on experiment II.

As pointed out in the description of Figure 7.19, the discrepancies on the learnt dis-
tribution of the traverse momentum pT propagate through the ordered jets, providing an
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irregular fit over the data, while slightly approaching its distribution tendency, as seen in
Figure 7.21.
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Figure 7.21: Histograms of the traversal momentum of the ordered jets (j, b) on experiment II.

The distribution of the pseudo-rapidity η poses no challenge for the models as shown
in Figure 7.22.
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Figure 7.22: Histograms of the pseudo-rapidity of the ordered jets (j, b) on experiment II.

The azimuth angle ϕ, can be seen following a uniform distribution in Figure 7.23.
This property is well fitted by the first jet model, but the second jet model struggles on
the edge values.
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Figure 7.23: Histograms of the azimuth angle of the ordered jets (j, b) on experiment II.
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Leptons

Both lepton models do a great job at following the original kinematic properties’ distri-
butions (Figure 7.24). However, they suffer from the same problem as the jets model did,
the learnt pT has a larger amount of lower traversal momentum values than originally.
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Figure 7.24: Histograms of the kinematic properties of all leptons (e−, e+, m−, m+) on experiment
II.

Photons

Finally, the photons models work surprisingly well (Figure 7.25), mostly struggling on
the pseudo-rapidity η.

The models are mostly able to learn the tendencies of the distributions and can pro-
duce sound photons.
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Figure 7.25: Histograms of the kinematic properties of all photons (g) on experiment II.

Conservation of energy and traversal momentum

Experiment II failed to improve the correlation between energy and traverse momentum
among particles compared to experiment I. The model still struggles to generate events
at the distribution extremes 7.26.
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Figure 7.26: Histograms of the total energy and the total momentum in experiment II.
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7.3 SM Experiment III: Tailored generator

This third and final experiment on the Standard Model dataset was dedicated to pro-
ducing plausible samples, sacrificing the flexibility that the two experiments presented
before accomplished.

As this experiment employs only one model in charge of learning and generating
entire events at once, it has the ability to find inter-relationships between the particles in
the events, as opposed to the experiments that came before. Therefore, we believe there
is little need for a filter or discriminator, since we trust most of the data generated will be
believable.

Due to the high dimensionality required per event, which we will detail further in
the next sections, a more flexible and adaptable model was needed. Therefore, for this
experiment we decided to use the A-RQS architecture, presented in Section 4.2.4, which
has proven to work better than the other model architecture in this study for high dimen-
sional data.

7.3.1. Data partitioning

Since in this approach we will only be training one model, the ttbar dataset has had to be
adapted. A series of filters based on the need of the model training were put in place.

As the model has a fixed amount of maximum particles per particle type in an event,
which is displayed in the table below, only events that did not go over these particle
amounts would be considered valid.

Particle Type j b e+ e− m+ m− g
Maximum amount 4 2 2 2 2 2 2

Table 7.15: Maximum amount of each particle type in an event on experiment III.

Therefore, by that criteria, all events which had more than the number specified in Ta-
ble 7.15 of a certain particle type, were discarded, leaving us with the amount displayed
in Table 7.16, just about 1.7 GB.

File Name File size (MB) Event amount
ttbar_conditioned.csv 1657 3,688,244
Total 1657 3,688,244

Table 7.16: Event amount in processed file on experiment III.

7.3.2. Data analysis and preprocessing

Bearing in mind the findings on [14], as we did in experiment I and II, we decided to
carry on applying the logarithmic transformation to the MET and METϕ, together with
the E and pT of each particle.

For this last experiment, as we already mentioned, we are using a single model to
generate the entirety of the event. As presented on previous section, we have limited our
sample size to a maximum of 66 dimensions: 2 belonging to MET and METϕ, and the 64
remaining shared by the particles.
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In the events saved after processing, which can be seen on Figure 7.27, we will have
the particles ordered as they have been listed on Table 7.15. In the case of a particle not
appearing on an event, its kinematic values were set to 0, symbolizing its absence.

log10MET, METϕ, log10E, log10 pT, η, ϕ, · · · log10E, log10 pT, η, ϕ
log10MET, METϕ, log10E, log10 pT, η, ϕ, · · · log10E, log10 pT, η, ϕ
.
.
.
log10MET, METϕ, log10E, log10 pT, η, ϕ, · · · log10E, log10 pT, η, ϕ

Figure 7.27: Format of ttbar_conditioned.csv on experiment III.

7.3.3. Model framework

The framework for this experiment has as the main component the A-RQS model imple-
mented following the architecture presented in Section 4.2.4.
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Figure 7.28: Experiment III model architecture.

As represented in the previous figure (Figure 7.28), this event generator framework
only contains one major actor:

• Event Generator Model: An autoregressive rational quadratic spline flow model
that has been trained on the distribution of the properties of an event as described
in Section 7.3.2. The model’s parameters can be found in Table 7.17 and Table 7.18.
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Parameter Values
Flow layers 10
Permutation layers 9

Table 7.17: Model hyperparameters
on experiment III.

Parameter Values
Hidden layers 3
Neurons per layer 512

Table 7.18: A-RQS hyperparameters
on experiment III.

Unsurprisingly, the steps to generate events using this framework are straightfor-
ward:

Step 1: Sample from the event generator, which will provide us with all the values per-
taining to an event.

Step 2: Discard the particles which we can interpret are not present on the event based
on their low values, which approximate 0.

Step 3: Arrange the particles based on their transverse momentum (pT) following the
procedure outlined in Chapter 3. Proceed with constructing the event by assem-
bling the sorted particles.

Step 4: Check for its validity requirements and save if it meets all of them.

7.3.4. Training results

The training of the model employed in this experiment was done using the parameters
listed below (Table 7.19.

Parameter Values
Optimizer Adam[37]
Learning rate 10−4

Loss function Log-likelihood
Batch size 64

Table 7.19: Event Model training parameters on experiment III.

The model went over the training data about 100 times, that is, it was optimized
through 100 epochs.

For this model, it is important to point out that the results were not optimal, but this
was to be expected, as it is trying to learn a very unusual distribution. It tries to model, on
the one hand the absence of a particle (meaning it’s kinematic values are close to 0), and
on the other the real distribution of its kinematic properties in case of particle presence.

This can be illustrated in the following plot of the first jet’s energy distribution (Figure
7.29).
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Figure 7.29: Histogram of the total learnt distribution for the energy of the jets on experiment III.

MET and METϕ

Even though MET and METϕ are not influenced by the effect mentioned before, it seems
the model fails to learn their distribution well, while trying to follow their trend.
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Figure 7.30: Histograms of MET and METϕ on experiment III.
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Jets

The model does a better job at generating jets, having a harder time fitting the distribution
of the pseudo-rapidity η and the azimuth angle ϕ.

The jets have been influenced by the "curse" defined in the beginning of the experi-
ment, and even with that, the model proves capable of generating them accordingly.
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Figure 7.31: Histograms of the kinematic properties of all the jets (j, b) on experiment III.

Once again, as in experiment I and II, once we observe each consecutive jet by itself,
the distributions can be seen diverging more and more.

The energy, depicted in Figure 7.32, is not as bad in the first three jets, but it doesn’t
do a great job in the next jets that appear on the events.
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Figure 7.32: Histograms of the energy of the ordered jets (j, b) on experiment III.

The same thing we can say about the pT, represented in Figure 7.33. A similar diver-
gence than the one observed in the energy above is notable here.
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Figure 7.33: Histograms of the traversal momentum of the ordered jets (j, b) on experiment III.

In the case of the pseudo-rapidity η, even if the distribution is strange, it does not
present a challenge for the model (Figure 7.34).
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Figure 7.34: Histograms of the pseudo-rapidity of the ordered jets (j, b) on experiment III.

Finally, the azimuth angle ϕ, which presents itself as a uniform distribution (Figure
7.35), can also be easily simulated by the jets model.
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Figure 7.35: Histograms of the azimuth angle of the ordered jets (j, b) on experiment III.

Leptons

Leptons became a hurdle for the model (Figure 7.36). The lepton data produced by the
model was not able to follow the original distribution of the kinematic properties.
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Figure 7.36: Histograms of the kinematic properties of all leptons (e−, e+, m−, m+) on experiment
III.

Like in the jets, generated leptons’ pseudo-rapidity η and azimuth angle ϕ did not fit
the original data too closely.

Photons

The model fails to produce photons following the original distribution, as seen in Figure
7.37.

This can be attributed to the rareness of a photon appearing in an event, which makes
it hard for the model to really capture the high end of the distributions.
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Figure 7.37: Histograms of the kinematic properties of all photons (g) on experiment III.

Conservation of energy and traversal momentum

Finally, the conservation of energy and traversal momentum, which we use as a possible
metric to measure the production of plausible events, was satisfactory.

By this metric, the model is able to produce credible events, as can be seen in Figure
7.38. In this case, this experiment outperformed the preceding two by a large margin.
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Figure 7.38: Histograms of the total energy and the total momentum in experiment III.
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7.4 Model comparison

After conducting all the experiments, we decided to compare the models accuracy to
replicate the ttbar dataset using the metrics presented in Chapter 6.

The values we see on Table 7.20 have been calculated using a pondered average. For
each experiment, we took into account the metrics’ values on each particle distribution
generated accordingly to the amount of particles that we had in the original dataset,
giving more weight to the models which had more data to train on.

Model W Divergence KL Divergence JS Distance Events/s4

Experiment I 0.00835558 0.00268654 0.06028002 10,4
Experiment II 0.02181364 0.00543950 0.11161955 7,2
Experiment III 0.10907629 0.01388603 0.25341768 583,9

Table 7.20: Experiment metrics comparison.

As expected, experiments I and II provided better metrics’ results than experiment
III. This is due to the fact that the first two experiments had multiple models with low
dimensionality data instead of a single model that had to learn a much larger dimensional
set of samples.

That said, even though both experiment I and II scored better on the metrics side of
things, they may produce implausible events as pointed out on their respective sections,
and will need a filter to validate the produced data. This is less the case of the model
trained on experiment III, which makes it a better candidate to test on the Beyond Stan-
dard Model Physics experiment that proceeds.

7.5 BSM Experiment

To conclude our experimentation and this study, we decided to select the model from the
third experiment to test against the Beyond the Standard Model event dataset, outlined in
Table 3.2. In particular, we selected stop_01 as the process to focus on, since it’s the one
that has the most reasonable amount of data.

The data has followed the exact same partitioning and preprocessing described in
Section 7.3.1 and Section 7.3.2 respectively, leaving us with 183,719 events as training
data.

7.5.1. Training results

The model was trained using the same parameters as seen in experiment III on Section
7.3.4, with 100 total passes through the data. We list them here again for reproducibility:

Parameter Values
Optimizer Adam[37]
Learning rate 10−4

Loss function Log-likelihood
Batch size 64

Table 7.21: Event Model training parameters on the BSM experiment.

4Calculated with 106 events generated using the setup described in 5.2.
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Now, we will list the distributions of all the particles observed in the generation of
the model compared with the original dataset, as we have done on the SM experiments.
In this case, for simplicity and in order to avoid redundancy, we will only comment on
the histograms which differ the most from the results on experiment III.

MET and METϕ

The results for the Missing Energy Traversal MET and of its angle METϕ (Figure7.39) are
very similar to the results obtained in experiment III (Figure 7.30).
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Figure 7.39: Histograms of MET and METϕ on the BSM experiment.

Jets

It again does a very similar performance to the observed in experiment III for the jets.

It is able to correcly assess the trend of the distributions, again having a tough time
with the pseudo-rapidity η and the azimuth angle ϕ.
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Figure 7.40: Histograms of the kinematic properties of all the jets (j, b) on the BSM experiment.

Leptons

Here, the model performs poorly (Figure 7.41), as Leptons became more of a challenge in
this experiment, the reason being we have less samples to train from.
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Figure 7.41: Histograms of the kinematic properties of all leptons (e−, e+, m−, m+) on the BSM
experiment.

Photons

Not enough photons could be generated to obtain a representative distribution, since
stop_01 has a pretty limited amount of events, as pointed out in the beginning of this
experiment.

Conservation of energy and traversal momentum

Similar results to experiment III were obtained in this regard, having less of a good fit
due to the few samples the utilized dataset had (Figure 7.42).
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Figure 7.42: Histograms of the total energy and the total momentum on the BSM experiment.



CHAPTER 8

Conclusions

We acquired numerous intriguing outcomes in our work after creating and experiment-
ing in several ways. Using methodologies diverse methodologies which provided differ-
ent benefits and downsides, we generated events from the Standard Model and Beyond
the Standard Model datasets more efficiently than typical Monte Carlo methods.

We employed different types of Autoregressive Normalizing Flows architectures such
as MAF and A-RQS, paired with multiple frameworks, each focusing on a specific aspect
of event generation. Even though the results weren’t optimal in some cases, we believe
a larger dataset and more complex architectures than the ones presented on this study
could provide more accurate and usable results.

Taking into account the objectives listed in the beginning of this work, we feel like
we have satisfied most of them, as we have provided a more flexible and faster way
to produce events than current methods, while testing the performance of standalone
normalizing flows in the context of event generation.

8.1 Future work

We propose further work that might be done starting from what we generated because
the issue given here still has many opportunities to study, and because of its crucial im-
portance in the future, when it will be required to artificially generate a large number of
events.

As we have pointed out on experiment I and II, in order for these proposals to be
useful for event generation, we should implement a discriminator or filter, which could
select the plausible events and discard those that are impossible attending to the laws of
nature.

Secondly, in order to improve the results of experiment III, which implemented a reg-
ular Autoregressive Normalizing Flow using A-RQS, we propose pairing this implemen-
tation using conditional normalizing flows (CNF), which could help producing better
results for the particles that have less presence in the dataset.

Finally, exploring other Normalizing Flows such as GLOW, RealNVP, or Flow++ may
be interesting to see how they behave in the context of generating events all at once, as in
the last experiment.
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APPENDIX A

Sustainable Development Goals

Degree of relevance of the work to the Sustainable Development Goals (SDGs).

Sustainable Development Goals High Medium Low Unrelated

SDG 1. No poverty. X

SDG 2. Zero hunger. X

SDG 3. Good health and well-being. X

SDG 4. Quality education. X

SDG 5. Gender equality. X

SDG 6. Clean water and sanitation. X

SDG 7. Affordable and clean energy. X

SDG 8. Decent work and economic growth. X

SDG 9. Industry, innovation, and infrastructure. X

SDG 10. Reduced inequalities. X

SDG 11. Sustainable cities and communities. X

SDG 12. Responsible consumption and production. X

SDG 13. Climate action. X

SDG 14. Life below water. X

SDG 15. Life on land. X

SDG 16. Peace, justice, and strong institutions. X

SDG 17. Partnerships for the goals. X

ETS Enginyeria Informàtica
Camí de Vera, s/n, 46022, Vaència
T +34 963 877 210
F +34 963 877 219
etsinf@upvnet.upv.es - www.inf.upv.es



Discussion on the relationship of this work with the selected SDGs

This study is important to multiple Sustainable Development Goals (SDGs), more con-
cretely to 7, 9, 13, and 17. By applying deep learning-based generative models for event
generation, we can help promote sustainable energy use, boost innovation, support cli-
mate action, and establish relationships in the high-energy physics research community

The project’s significance to Affordable and Clean Energy (SDG 7) stems from its
ability to lower the computational resources and energy consumption required for parti-
cle collision simulation. This has the potential to promote more sustainable energy con-
sumption in high-energy physics research and lead to improvements in energy-efficient
devices. The project’s emphasis on enhancing event generating efficiency coincides with
SDG 7 Target 7.3, which aims to double the worldwide rate of progress in energy effi-
ciency by 2030.

In terms of Industry, Innovation, and Infrastructure (SDG 9), the experimentation’s
approach to high-energy physics modeling can help to develop robust infrastructure and
promote sustainable industry. The use of generative models for event generation in LHC
experiments coincides with SDG 9 Target 9.5, which strives to improve scientific research
and industrial sector technological capacities. The project’s emphasis on improving event
generation efficiency and accuracy can also contribute to Target 9.4, which calls for up-
grading infrastructure to make them more sustainable, with increased resource-use effi-
ciency and greater adoption of clean and environmentally sound technologies.

Although the project’s direct impact on Climate Action (SDG 13) may not be obvious
at first, its potential contributions to energy efficiency and sustainable energy use can help
climate action efforts indirectly. The project can assist decrease greenhouse gas emissions
linked with high-energy physics research by lowering the energy consumption required
for modeling particle collisions, which is consistent with SDG 13 Target 13.2, that asks
for the incorporation of climate change measures into national policies, strategies, and
planning.

The study’s significance to Partnerships for the Goals (SDG 17) stems from its abil-
ity to develop collaborations amongst physics researchers, institutions, and others. These
collaborations can promote the exchange of knowledge, experience, and resources, hence
boosting the creation and implementation of more efficient and sustainable event gener-
ation approaches. The project’s development and publication coincides with SDG 17
Target 17.6, which asks for increased cooperation and access to science, technology, and
innovation, as well as increased knowledge-sharing on mutually agreed-upon terms.

We can then say that the initiative of this project is devoted to the SDGs set by the
United Nations in the 2030 Agenda for Sustainable Development, as we have explained.
These objectives symbolize a fantastic opportunity for all of us to embark on a new path
that will allow us to improve our quality of life while remaining mindful of the impact of
any project as it is implemented.
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