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Abstract

Active disturbance rejection control was initially seen as a paradigm shift be-
cause it is rooted in the challenging idea that controlling a process does not
require a detailed model of its dynamics. The key is to reformulate the con-
trol problem in the disturbance estimation and rejection framework so that
the discrepancy between the controlled process and a desired disturbance-free
plant is compensated in the loop without elaborately describing the process
or the disturbances. The research in this area has provided a solid theoretical
foundation and a compilation of successful applications that have established
ADRC among the Disturbance Observer-Based Control (DOBC) techniques
and have increased interest in designing control loops using this technology.

Numerous and varied contributions based on the ADRC are currently available.
On the one hand, some works address the ADRC methodology. Still, only some
o�er a comprehensive explanation of its design and application aimed at those
researchers who are starting to explore this control strategy. On the other
hand, the ADRC tuning and the ADRC-based composite control are open
research areas. One of the discussions that remain active in the literature
is related to how to select the LADRC main parameters so that closed-loop
stability is achieved with appropriate disturbance rejection and robustness,
mainly when the ADRC is used to control processes approximated by more
straightforward representations such as the �rst-order plus delay (FOPDT)
model. Likewise, the active estimation of uncertainty and disturbances has
made integrating the ADRC topology with advanced control techniques, like
Model-Based Predictive Control (MPC), attractive. The major challenge in
realising this combination lies in how to formulate the control loop so that
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the ADRC disturbance rejection mechanism transforms the behaviour of the
controlled system into that of a simpli�ed desired plant, thus relaxing the
requirement for a detailed model while directly considering the constraints on
the loop variables.

This thesis presents three contributions to ADRC knowledge to address the
challenges mentioned above. The �rst is a guide for designing and applying
linear controllers using conventional active disturbance rejection control. This
guide o�ers a review of the theoretical foundation of the ADRC. It condenses
in an algorithm the steps for designing these control loops to facilitate their
implementation according to the problem formulation in the disturbance esti-
mation and rejection framework and the empirical selection of their gains.

The second contribution of this dissertation is a set of tuning rules for com-
puting the three distinctive parameters of the ADRC with which the state
observer and control law gains are designed. These rules allow tuning the
ADRC to control an approximate process using a �rst-order plus delay model
and o�er di�erent sets of parameters according to a desired level of robustness.
This contribution is based on developing multi-objective optimisation design
procedures focused on controlling a group of nominal FOPDT plants. The
results of these procedures were �tted to the tuning formulae provided.

The third contribution is a new control architecture that combines the distur-
bance rejection mechanism of the ADRC and the receding horizon strategy of
the MPC. In this loop, a predictive control law governs a �rst-order plus inte-
grator plant enforced on the real process subject to constraints. The above is
possible by compensating for the mismatch between the real and desired plants
and incorporating the ADRC compensation term in the constraints formula-
tion of the predictive controller. The loop is intended to provide a solution to
control constrained systems for which no nominal model has been identi�ed.

This dissertation addresses researchers interested in exploring active distur-
bance rejection control and those considering this technology as one of their
main lines of research. The contributions of this dissertation serve those new to
the study of ADRC, controller designers seeking to implement linear ADRC by
considering the disturbance rejection response of processes approximated using
�rst-order plus delay models, and researchers open to discussing the potential
bene�ts of combining ADRC with advanced techniques such as MPC.

vi



Resumen

El control por rechazo activo de perturbaciones (ADRC, del inglés Active Dis-
turbance Rejection Control) fue visto inicialmente como un cambio de paradig-
ma porque se sustenta en la idea desa�ante de que para controlar un proceso
no es necesario un modelo detallado del mismo. La clave está en reformular el
problema de control en el marco de la estimación y el rechazo de perturbacio-
nes de modo que la discrepancia existente entre el proceso controlado y una
planta deseada libre de perturbaciones se compense en el lazo sin describir de-
talladamente el proceso o las perturbaciones. La investigación en esta área ha
proporcionado una fundamentación teórica sólida y una recopilación de apli-
caciones exitosas que han consolidado al ADRC entre las técnicas de control
basadas en observadores de perturbaciones (DOBC, del inglés Disturbance-
Observer-Based Control) y han hecho crecer el interés por el diseño de lazos
de control empleando esta tecnología.

Actualmente existen numerosas y variadas contribuciones basadas en el ADRC.
Por un lado, algunos trabajos abordan la metodología ADRC. Sin embargo,
son pocos los que ofrecen una explicación exhaustiva de su diseño y aplica-
ción, dirigida a aquellos investigadores que están empezando a explorar esta
estrategia de control. Por otro lado, la sintonización del ADRC y el control
compuesto basado en ADRC son áreas de investigación abiertas. Una de las
discusiones que se mantiene activa en la literatura está relacionada con la forma
de seleccionar los parámetros principales del ADRC de modo que se alcance
la estabilidad de lazo cerrado con un rechazo de perturbaciones y robustez
apropiadas, especialmente cuando el ADRC se emplea para controlar proce-
sos aproximados mediante representaciones más sencillas como el modelo de
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primer orden más retardo (FOPDT, del inglés First-Order Plus Dead Time).
Asimismo, la estimación activa de la incertidumbre y las perturbaciones ha
hecho atractiva la idea de integrar la topología ADRC con técnicas de control
avanzado, por ejemplo, con el control predictivo basado en modelo (MPC, del
inglés Model Predictive Control). El mayor desafío que surge al realizar esta
combinación radica en cómo formular el lazo de control para que el mecanis-
mo de rechazo de perturbaciones del ADRC transforme el comportamiento del
sistema controlado en el de una planta deseada simpli�cada, relajando así el
requisito de un modelo detallado y considerando directamente las restricciones
en las variables del lazo.

Esta tesis presenta tres contribuciones al conocimiento del ADRC para abordar
los desafíos expuestos anteriormente. La primera de ellas es una guía para el
diseño y aplicación de controladores lineales mediante el control convencional
por rechazo activo de perturbaciones. Esta guía ofrece, a modo de tutorial, una
revisión de la fundamentación teórica del ADRC y condensa en un algoritmo
los pasos para el diseño de estos controladores con el propósito de facilitar
su implementación de acuerdo con la formulación del problema en el marco
de la estimación y rechazo de perturbaciones y la selección empírica de sus
ganancias.

La segunda contribución de esta disertación es un conjunto de reglas de sinto-
nía para el cálculo de los tres parámetros distintivos del ADRC con los que se
diseñan las ganancias del observador de estados y de la ley de control. Estas
reglas permiten sintonizar el ADRC para el control de un proceso aproximado
mediante un modelo de primer orden más retardo y ofrecen al diseñador dife-
rentes conjuntos de parámetros de acuerdo con un nivel de robustez deseado.
Esta contribución se basa en el desarrollo de procedimientos de diseño de op-
timización multiobjetivo enfocados al control de un grupo de plantas FOPDT
nominales. Los resultados de dichos procedimientos se ajustaron a las fórmulas
de sintonía proporcionadas.

La tercera contribución es una nueva arquitectura de control que combina el
mecanismo de rechazo de perturbaciones del ADRC y la estrategia de horizonte
deslizante del MPC. En este lazo, una ley de control predictivo gobierna una
planta de primer orden más integrador que se induce sobre proceso real sujeto a
restricciones. Lo anterior es posible compensando el desajuste entre las plantas
real y deseada e incorporando el término de compensación del ADRC en la
formulación de las restricciones del controlador predictivo. El bucle pretende
proporcionar una solución para controlar sistemas con restricciones para los
que no se ha identi�cado un modelo nominal.
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Esta disertación está dirigida tanto a los investigadores interesados en explorar
el control por rechazo activo de perturbaciones como a aquellos que consideran
a esta tecnología como una de sus líneas de investigación principales. Las con-
tribuciones de esta tesis sirven a quienes se inician en el estudio del ADRC, a
los diseñadores de controladores que buscan implementar el ADRC lineal con-
siderando la respuesta al rechazo de perturbaciones de procesos aproximados
mediante modelos de primer orden más retardo, y a los investigadores abiertos
a la discusión de los bene�cios potenciales de combinar el ADRC con técnicas
avanzadas como el MPC.
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Resum

El control per rebuig actiu de pertorbacions (ADRC, de l'anglès Active Distur-
bance Rejection Control) va ser vist inicialment com un canvi de paradigma
perquè se sustenta en la idea desa�adora que per a controlar un procés no és
necessari un model detallat d'aquest. La clau està a reformular el problema de
control en el marc de l'estimació i el rebuig de pertorbacions de manera que
la discrepància existent entre el procés controlat i una planta desitjada lliure
de pertorbacions es compense en el llaç sense descriure detalladament el pro-
cés o les pertorbacions. La investigació en aquesta àrea ha proporcionat una
fonamentació teòrica sòlida i una recopilació d'aplicacions reeixides que han
consolidat al ADRC entre les tècniques de control basades en observadors de
pertorbacions (DOBC, de l'anglès Disturbance-Observer-Based Control) i han
fet créixer l'interès pel disseny de llaços de control emprant aquesta tecnologia.

Actualment existeixen nombroses i variades contribucions basades en el ADRC.
D'una banda, alguns treballs aborden la metodologia ADRC. No obstant això,
són pocs els que ofereixen una explicació exhaustiva del seu disseny i aplica-
ció, dirigida a aquells investigadors que estan començant a explorar aquesta
estratègia de control. D'altra banda, la sintonització del ADRC i el control
compost basat en ADRC són àrees d'investigació obertes. Una de les discus-
sions que es manté activa en la literatura està relacionada amb la manera de
seleccionar els paràmetres principals del ADRC de manera que s'aconseguisca
l'estabilitat de llaç tancat amb un rebuig de pertorbacions i robustesa apro-
piades, especialment quan el ADRC s'empra per a controlar processos aproxi-
mats mitjançant representacions més senzilles com el model de primer ordre
més retard (FOPDT, de l'anglès First-Order Plus Dead Time). Així mateix,
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l'estimació activa de la incertesa i les pertorbacions ha fet atractiva la idea
d'integrar la topologia ADRC amb tècniques de control avançat, per exemple,
amb el control predictiu basat en model (MPC, de l'anglès Model Predictive
Control). El major desa�ament que sorgeix en realitzar aquesta combinació
radica en com formular el llaç de control perquè el mecanisme de rebuig de
pertorbacions del ADRC transforme el comportament del sistema controlat
en el d'una planta desitjada simpli�cada, relaxant així el requisit d'un model
detallat i considerant directament les restriccions en les variables del llaç.

Aquesta tesi presenta tres contribucions al coneixement del ADRC per a abor-
dar els desa�aments exposats anteriorment. La primera d'elles és una guia per
al disseny i aplicació de controladors lineals mitjançant el control convencional
per rebuig actiu de pertorbacions. Aquesta guia ofereix, a manera de tutorial,
una revisió de la fonamentació teòrica del ADRC i condensa en un algorisme
els passos per al disseny d'aquests controladors amb el propòsit de facilitar
la seua implementació d'acord amb la formulació del problema en el marc de
l'estimació i rebuig de pertorbacions i la selecció empírica dels seus guanys.

La segona contribució d'aquesta dissertació és un conjunt de regles de sinto-
nia per al càlcul dels tres paràmetres distintius del ADRC amb els quals es
dissenyen els guanys de l'observador d'estats i de la llei de control. Aques-
tes regles permeten sintonitzar el ADRC per al control d'un procés aproximat
mitjançant un model de primer ordre més retard i ofereixen al dissenyador
diferents conjunts de paràmetres d'acord amb un nivell de robustesa desitjat.
Aquesta contribució es basa en el desenvolupament de procediments de disseny
d'optimització multiobjectiu enfocats al control d'un grup de plantes FOPDT
nominals. Els resultats d'aquests procediments es van ajustar a les fórmules
de sintonia proporcionades.

La tercera contribució és una nova arquitectura de control que combina el me-
canisme de rebuig de pertorbacions del ADRC i l'estratègia d'horitzó lliscant
del MPC. En aquest llaç, una llei de control predictiu governa una planta de
primer ordre més integrador que s'indueix sobre procés real subjecte a restricci-
ons. L'anterior és possible compensant el desajustament entre les plantes real i
desitjada i incorporant el terme de compensació del ADRC en la formulació de
les restriccions del controlador predictiu. El bucle pretén proporcionar una so-
lució per a controlar sistemes amb restriccions per als quals no s'ha identi�cat
un model nominal.

Aquesta dissertació està dirigida tant als investigadors interessats a explorar
el control per rebuig actiu de pertorbacions com a aquells que consideren a
aquesta tecnologia com una de les seues línies d'investigació principals.
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Les contribucions d'aquesta tesi serveixen als qui s'inicien en l'estudi del ADRC,
als dissenyadors de controladors que cerquen implementar el ADRC lineal con-
siderant la resposta al rebuig de pertorbacions de processos aproximats mitjan-
çant models de primer ordre més retard, i als investigadors oberts a la discussió
dels bene�cis potencials de combinar el ADRC amb tècniques avançades com
el MPC.
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Acronyms

ADRC Active Disturbance Rejection Control
AMIGO Approximate M-constrained Integral Gain Optimisation
AOF Aggregate Objective Function
CESO Cascade Extended State Observer
CRHPC Constrained Receding-Horizon Predictive Control
CSTR Stirred Tank Reactor
DDC Disturbance Decoupling Control
DMC Dynamic Matrix Control
DOBC Disturbance Observer-Based Control
ESO Extended State Observer
FOPDT First Order Plus Dead Time
GESO General Extended State Observer
GFCL Generate First Choose Later
GPC Generalised Predictive Control
GPIO Generalised Proportional Integral Observer
HGC High Gain Control
IAE Integral of Absolute Error
IMC Internal Model Control
IMP Internal Model Principle
ISE Integral of Squared Error
ITSE Integral of Time Weighted Squared Error
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LADRC Linear Active Disturbance Rejection Control
LESO Linear Extended State Observer
LTI Linear Time Invariant
MADRPC Modi�ed Active Disturbance Rejection Predictive Control
MCDM Multi-Criteria Decision Making
MD Maximum Deviation
MIMO Multiple Input Multiple Output
MOOD Multi-Objective Optimisation Design
MOP Multi-Objective Problem
MPC Model Predictive Control
NADRC Non-linear Active Disturbance Rejection Control
OF-MPC O�set-Free Model Predictive Control
OP Optimisation Problem
OS Overshoot
QDMC Quadratic Dynamic Matrix Control
PID Proportional Integral Derivative
SISO Single Input Single Output
SMC Sliding Model Control
TV Total Variation of control action
US Undershoot

Nomenclature

A, Γ upper-case denotes matrices
x, ℓ boldface lower-case denotes vectors
Z calligraphic letters denote Laplace transforms
s complex variable for frequency domain formulations
ẋ, ẍ dot notation indicates �rst and second order derivatives
y(n) superscripts in brackets indicate higher order derivatives
x̂ circum�ex accent represents estimation of states
xk subscript k indicates discrete instant k
xi|k future value at instant i+ k based on conditions at instant k
G(s) dependence on s denotes transfer functions
exp (·) Euler constant to the power of (·)
diag (·) diagonal matrix with equal diagonal elements (·)
min {·} minimisation of given cost function {·}
∥ · ∥2γ quadratic form with scaling factor γ
[ · ]⊤ transpose
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IL all-ones lower triangular matrix of appropriate dimensions
1 all-ones vector of appropriate length
0 zero vector of appropriate length

For models formulations

r̃, yr desired reference
y system output
n system order
b critical gain
b0 nominal value of critical gain
K static gain
T apparent time constant
l apparent delay or dead time
Θ nominal delay or nominal dead time
τ normalised delay or normalised dead time
d load disturbances acting on the system
k gain scaling of a given plant
ωp frequency scaling of a given plant

For observers formulations

f , fi lumped total perturbation, i-th total perturbation
e estimation error
βi i-th gain of the Extended State Observer
γi(e) i-th non-linear function of the estimation error
ωo observer bandwidth
ℓi i-th gain of the continuous-time Linear Extended State Observer
ℓdi i-th gain of the discrete-time Linear Extended State Observer
ℓoi i-th gain of the discrete-time LESO from the MADRPC

xvii



For controllers formulations

u control law governing the actual plant (system input)
∆u rate of manipulated variable
u0 control law governing the modi�ed plant
∆u0 rate of the control law u0

αi, αi, δ, δ constants for evaluation of the NADRC non-linear functions
ωc controller bandwidth
ki i-th gain for computation of u0 from the LADRC
kb, nb, ab, bb, cb coe�cients of the tuning rule for computation of b0
kω, nω coe�cients of the tuning rule for computation of ωc and ωo

Kc proportional gain for PID controllers
Ti integral time for PID controllers
Td derivative time for PID controllers
y maximum allowed value for the output
u maximum allowed value for the input
∆u maximum allowed value for the rate of input
y minimum allowed value for the output
u minimum allowed value for the input
∆u minimum allowed value for the rate of input
ts sampling time
p prediction horizon
c control horizon
γ weighting factor for the prediction error
λ weighting factor for the rate of input
ε1, ε2 weighting factors for the slack variables

For performance de�nitions

t98% settling time within the 2% error band
MS maximum peak of the sensitivity function
MT maximum peak of the complementary sensitivity function
ε mixed robustness
|G(jω)| magnitude of the frequency response
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Chapter 1

Introduction

This chapter gives an overview of the research developed for the
elaboration of this dissertation. The �rst section tells how aiming
at a theoretical and practical understanding of Active Disturbance
Rejection Control (ADRC) led to synthesising the ADRC knowl-
edge into a tutorial and identifying the two research areas addressed
in this thesis. The second section exposes the main contributions
putting them into context through the literature reviewed, the re-
search challenges identi�ed, and the signi�cance of the results pre-
sented in this dissertation.

1



Chapter 1. Introduction

1.1 Motivation

The term Active Disturbance Rejection Control (ADRC) is described in [1]
as a new control paradigm alternative to the Proportional-Integral-Derivative
(PID) control that inherits from the PID controller its independence from the
plant model and seeks to compensate for its weaknesses through the concept
of disturbance estimation and rejection.

The disturbance estimation and rejection is understood as estimating the in-
�uence of the disturbance in the system from measurable variables to com-
pensate for it, and the group of control strategies integrating this observation
mechanism with a controller in a composite loop are denoted as Disturbance
Observer-based controllers (DOBC) [2].

Within the DOBC set, the ADRC stands out because its estimator, the Ex-
tended State Observer (ESO), was conceived to estimate the system states and
the combined non-modelled dynamics and external signals a�ecting the system.
This is, the possible neglected dynamics, uncertainty and non-manipulable ex-
ternal forces are lumped and estimated based on the plant input-output infor-
mation to compensate for them with the control action. As a result, the ADRC
induces the real plant to behave like an assumed modi�ed plant, conventionally
adopted as a cascade integrator chain.

In summary, three outstanding characteristics of the ADRC can be listed [3].

1. It does not require a nominal model of the process to be controlled. Ini-
tially, only the system order and a factor relating the in�uence of the
control action to the output evolution are su�cient. The latter is re-
ferred to in the literature as the critical gain.

2. It estimates as a single state the uncertainty and disturbances to avoid
their impact on the desired output. On the one hand, this re�ects the ro-
bustness of the ADRC since, typically, the robust controllers are denoted
as those who keep the loop insensitive to the di�erences between the
actual system and its nominal model. This model mismatch is referred
to in the control literature as uncertainty [4]. On the other hand, the
disturbances are regarded as external signals that can a�ect the normal
or steady state of the controlled variable. The ADRC makes no distinc-
tion between uncertainty and disturbances. Instead, they are merged and
labelled under the name total perturbation to be estimated by the ESO.

3. It induces the process to behave like an assumed disturbance-free modi�ed
plant that facilitates the controller design.
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1.1 Motivation

The above constitutes the most notable di�erence between ADRC and other
types of DOBC strategies because the ADRC actively allows state estimation
and disturbance rejection even when the available plant information is mini-
mal, highlighting its attractiveness in engineering. Besides, the ADRC can be
used in single-input, single-output (SISO) and multiple-input multiple-output
(MIMO)processes.

When the ESO and the control law are designed by evaluating non-linear func-
tions, the algorithm is named NADRC (Non-linear ADRC). On the contrary,
if a linear observer and a linear control law are used, the control strategy is
denoted as LADRC (Linear ADRC). The latter has gained popularity due to
its simple structure and reduced amount of parameters to be tuned compared
to the NADRC. This, together with the increasing emergence of innovative
LADRC solutions, motivated the study of this technology as the main topic in
this research. Therefore, the contributions presented within this dissertation
are framed in the control of processes using LADRC, conceived as described
previously.

Although the ADRC seeks to alleviate the model dependence for the loop de-
sign, the canonical form adopted for the observer design, the selection of the
loop gains and other aspects, such as its integration with advanced control
methodologies, are active discussion topics in the literature. Consequently, a
review related to the design and application of active disturbance rejection
controllers was conducted at the beginning of this research. This led to the
elaboration of a tutorial about ADRC, and, what is more, two promising re-
search areas were identi�ed. The �rst is linked to the LADRC tuning when the
modi�ed plant is a �rst-order plus dead time system, and the second involves
merging the LADRC with an advanced control technique such as the Model
Predictive Control (MPC).

Given the challenging idea that the ADRC is an alternative for designing con-
trol loops for systems of di�erent nature and complexity and that the design is
possible by approximating the behaviour of the process to a simpli�ed represen-
tation, this thesis researches how the conventional ADRC is straightforwardly
implemented, how multi-objective optimisation can be used to derive rules for
the computation of the main LADRC parameters, and how the LADRC and
the state-space MPC can be integrated into a control algorithm that enhances
the unique advantages of these techniques while addressing their weaknesses.
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Chapter 1. Introduction

1.2 Main contributions

The search for answers to the research questions introduced in section 1.1 and
the others that emerged from them during the development of this dissertation
was always aimed at o�ering alternative solutions for the control-engineering
�eld. Solutions such as a concise guide to the design and application of ADRC,
which is considered of value for researchers exploring the ADRC subject; a set
of tuning rules for the control engineers interested in the LADRC implementa-
tion applied to �rst-order plus dead time approximations; and a control loop
for constrained systems with a relaxed requirement in the process modelling.

A guide for the design and application of active disturbance rejection

controllers.

As mentioned, the ADRC was initially presented as a non-linear control strat-
egy (NADRC). However, the number of parameters of the NADRC and the
di�culty of their tuning are commonly pointed out as its main disadvantage.
On the contrary, the linear structure of the LADRC has allowed its validation
in di�erent applications, and it continues to impulse the use of the LADRC as
a control technology because the concepts of control theory related to stabil-
ity, convergence and performance in the time and frequency domains can be
applied.

A qualitative and quantitative comparison between NADRC and LADRC is
presented in [5]. In this work, a ball-beam system is adopted as a case study
to show that the NADRC performs an adequate estimation of the states, even
when the initial conditions of the observer are varied. However, the NADRC
performance is limited as the magnitude of the load perturbation increases;
in the latter case, the performance of LADRC is better. A more detailed
theoretical approach to ADRC and its relationship to other control techniques
such as Internal Model Principle (IMP) control, High-Gain Control (HGC) and
Sliding Mode Control (SMC) can be found in [6].

One of the �rst contributions to the theoretical justi�cation of the LADRC was
the study of the linear ESO (LESO) convergence and the closed-loop stability
since the observer must adequately perform the task of estimating the total
disturbance for it to be rejected and the process to be enforced to behave like
the assumed modi�ed plant. In [7], it is concluded that when the derivative
of the total perturbation is known and can be included in the LESO, the
estimation error and the tracking error are asymptotically stable. Conversely,
if the total perturbation is not known, but its �rst derivative is known to be
bounded, the estimation and tracking errors are also bounded, and their upper
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bounds depend on the LESO gains adjustment. These results are validated
numerically and experimentally in [8] by simulating a non-linear system and
testing on a motion control platform.

The relevance of including the available model information to improve the
observer performance is also studied in [9]. Here, the performance of the LESO
is analysed when measurements of all states are available, or a reduced-order
observer is implemented by assuming that the �rst state is accessible.

The incorporation of process information into the LESO increased the re-
searchers interest due to the limitations of the conventional LADRC exposed
in [10] for non-minimum phase linear systems, especially those with inverse
response to a step input which evidences the dynamics of zeros in the right
half-plane. For instance, in [11], the conditions for the control of second-
order linear systems with non-minimum phase zeros are revealed, suggesting
a controllable canonical form for the modi�ed plant that includes information
about the position of the poles and zeros. The numerical results of this work
show that the robustness of the loop is increased and that the selection of
the LESO gains signi�cantly in�uences the stability. Other LADRC formu-
lations mainly designed for systems with non-minimum phase behaviour have
been proposed under model-assisted ADRC [12], generalised ADRC [13], and
modi�ed ADRC [14].

As can be deduced from the above, several works have contributed to the the-
oretical justi�cation of the ADRC and the study of its performance in the time
and frequency domain. The advances in the research of this technology have
been presented either as a compendium of successful applications or from a
methodological approach. For example, [15] summarises the results obtained
when the ADRC was applied to the vibration rejection in motion control, angu-
lar position control of a manipulator used in rehabilitation exercises, �ow and
pressure control in power generation systems, temperature control in extrusion
lines, and design of new technology for motor control. The transition from PID
to ADRC in thermal power plants is studied in [16], and reviews of the ADRC
applications in other ambitious areas, such as robotics and aerospace, are pre-
sented in [17] and [18], correspondingly. On the other hand, [19] addresses
the ADRC formulation for systems described by ordinary di�erential equa-
tions and [20] and [21] expand the analysis to uncertain systems represented
through partial di�erential equations.

Although the summarised literature exposes the ADRC theory deeply, these
works may seem like advanced texts for the control practitioners exploring the
ADRC subject. This concern is addressed in [22] through a comprehensive
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simulation analysis of LADRC for linear systems. However, this study does
not cover the ADRC implementation for multi-variable systems, limiting the
study to control �rst and second-order transfer functions.

The above lead to research questions on how to formulate a control problem in
the disturbance estimation and rejection framework to implement the LADRC,
how to tune the gains of the LADRC loop according to the available system
information, and what can be expected when controlling highly non-linear sys-
tems with LADRC. Therefore, the �rst contribution of this thesis is a guide for
the design and application of active disturbance rejection controllers developed
in a tutorial fashion. It o�ers the researchers a route for implementing control
loops with LADRC and a summary of the main characteristics and di�erences
among some of the LADRC formulations available in the literature. During the
development of this phase of the research, it was concluded that the proposal
of new tuning methodologies and the formulation of composite control loops
based on ADRC are promising research areas.

A set of tuning rules for active disturbance rejection controllers.

When the LADRC loop is implemented, it is necessary to choose the LESO
and the linear control law gains. The bandwidth parameterization introduced
in [23] simpli�es the tuning by formulating the observer and controller gains as
functions of two main parameters: the observer bandwidth and the controller
bandwidth. Their selection can be based on the closed-loop desired behaviour,
but in most cases, the values need to be readjusted, turning the tuning problem
into an empirical process.

The literature approaches that take bandwidth parameterization as a foun-
dation include those that compute the gains by using pre-existing controllers
from the loop or employing optimisation techniques that evaluate performance
indices of interest.

Since the ADRC was proposed as an improved alternative to the PID control,
some authors have researched the LADRC tuning starting from the existing
PID controllers in the loop. This is the case of [24] or [25]. These works
provide a starting point and require empirical tuning according to performance
requirements, similar to the bandwidth parameterization approach.

On the other hand, [26] proposes the calculation of the LADRC gains from a
known strictly proper controller with an integrator, similar to the one described
in [27], by converting the LADRC loop into a two-degree-of-freedom system
under the IMC approach. The methodology in [26] guarantees the same dis-
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turbance rejection as the reference controller. However, di�erent performance
levels regarding trajectory tracking can be obtained if multiple solutions exist.

The similarity of the PID structure with the LADRC or its analysis as a two-
degree-of-freedom system o�ers the advantage that the control engineer knowl-
edge can facilitate the empirical process of gain tuning in a transition from PID
to LADRC. For this reason, the tuning approaches mentioned so far do not
discuss the selection of the critical gain and assume that its approximate value
is known. Some of the �rst proposals that included this parameter within the
design gains estimated its value online.

In [28], the values of the critical gain and observer bandwidth are obtained
by minimising the tracking squared error and the estimation squared error,
and the controller bandwidth is computed according to the closed-loop re-
quirements. Likewise, [29] formulates an optimisation problem to minimise
the integral of time-weighted absolute error. The only decision variable is the
nominal value of the critical gain because the controller bandwidth is adjusted
according to the performance requirements, and the observer bandwidth scales
that value. Both contributions o�er improvements compared to the cases when
the critical gain value is assumed constant.

More recently, the research on LADRC tuning has turned towards strategies to
determine a set of rules for the computation of the three primary parameters
(the nominal value of the critical gain and the two bandwidths). As expected,
this new line has brought awareness about interdependence among the param-
eters and the closed-loop stability regions resulting from the selection of the
parameters bounds.

It is well known that the derivation of tuning rules for a particular controller
usually is linked to a type of process. A model is chosen such that the syn-
thesised controller tuned by the proposed rules is suitable for controlling sys-
tems whose dynamics is approximated by the selected model. This approach is
adopted in [30], where rules for the LADRC tuning are provided assuming that
the controlled process is a high-order system modelled as n cascaded �rst-order
plants. The rules are obtained based on the interpretation of the maximum
sensitivity (MS) in the Nyquist diagram of the loop transfer function.

High-order plants can be used as approximations for some industrial processes.
Nevertheless, the First Order Plus Dead Time (FOPDT) model is a widely
accepted approximation that considers delays due to mass or energy transport
or limitations related to measuring and energy conversion devices as argued in
[31]. This work studies the LADRC stability region when controlling FOPDT
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processes and shows how this information can contribute to the LADRC tuning
of the controller bandwidth.

The interest in controlling the FOPDT systems using LADRC has inspired
the tuning rules proposed in [32], which were obtained through formulating
an optimisation problem following the Aggregate Objective Function (AOF)
approach. The two performance indices of settling time and the Integral of
Squared Error (ISE) were merged into the Integral of Time Weighted Squared
Error (ITSE) for minimisation subject to a �xed constraint related to a ro-
bustness measure.

The methodological approach used in [32] to derive the rules points out the
importance of balancing the disturbance rejection performance with the closed-
loop robustness. However, including the robustness as a constraint for the op-
timisation problem could result in solutions o�ering an optimised performance
(in terms of the index selected) but with a robustness measure that tends to
be in the upper limit allowed. This may be enough for some designers, but for
others, given the complexity of the process, robustness also becomes a design
objective and a balance among all performance indices is required.

An alternative to the AOF method is to use the Generate-First Choose-Later
(GFCL) multi-objective approach in which the design objectives are optimised
simultaneously, providing a set of solutions with di�erent trade-o�s to be exam-
ined by the designer who makes the �nal decision. Few works in the literature
have been developed for the LADRC tuning in the GFCL context, and those
contributions use this multi-objective approach to select some of the LADRC
parameters to control a particular system or the optimisation process needs to
be performed for each design.

On the one hand, in [33], the Integral of Absolute Error (IAE) and the max-
imum sensitivity (MS) are simultaneously minimised to select the LADRC
bandwidths to control a power plant. On the other hand, in [34], a tuning
scheme for the model-assisted ADRC [12] for time delay systems is formulated
as a multi-objective optimisation problem regarding the setpoint following and
the disturbance rejection. However, this methodology is intended to adapt the
problem according to the system to be controlled. It means that the proper
ADRC order should be selected, and the optimisation plus decision-making
stages need to be carried out for each study case to obtain the control law and
observer gains.

In summary, the LADRC tuning focused on using di�erent methodological
approaches for calculating the main parameters or the deduction of rules for
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their computation are considered growing research areas. In this dissertation,
the general challenge of how the GFCL multi-objective optimisation can be
designed to obtain a set of solutions from which it is possible to deduce tun-
ing rules for the LADRC applied to FOPDT systems is tackled. Questions like
what are con�icting design objectives regarding the LADRC performance, how
to de�ne the search space for the parameters acting as decision variables ac-
cording to the possible stability regions, why the bandwidth parameterization
is needed to obtain some sort of tendency in the decision variables solutions
when a multi-objective optimisation procedure is applied for a set of nominal
FOPDT plants, how to �t the selected solutions with suitable functions, how
to de�ne tuning rules to o�er the designer bounded intervals for computation
of the parameters, and to what extend the derived rules can cover or improve
the performance obtained with other controllers designed for FOPDT systems
are also addressed.

Consequently, the second contribution of this thesis is a set of tuning rules
for the LADRC design suitable for the control of systems whose dynamics can
be approximated to a FOPDT plant. These rules di�er from other proposals
in the literature mainly because they were derived through a multi-objective
optimisation design procedure to obtain a trade-o� between the disturbance re-
jection performance and the closed-loop robustness. Even though the LADRC
has a certain level of robustness because it addresses the di�erences between
the actual system and the assumed plant in the total perturbation, its tuning
considering the robustness as an objective design balances this feature with
the closed-loop performance and this is re�ected in the tuning rules. Besides,
a range of values for each LADRC parameter can be computed, or three dif-
ferent sets of parameters can be calculated if a particular robustness measure
is preferred.

The Modi�ed Active Disturbance Rejection Predictive Control.

Throughout this chapter, emphasis has been placed on one of the essential
characteristics of the LADRC: its ability to induce the controlled process to
behave like a desired modi�ed plant. This is achieved thanks to the manipu-
lated variable on the real system being proportional to adding the total per-
turbation provided by the LESO to a control signal designed to govern the
modi�ed plant. The mechanism comprised of the LESO and the internal addi-
tion operation where the manipulated variable is computed is referred to as the
disturbance rejector, and its presence in the LADRC loop makes it possible to
estimate and reject the total e�ect of the multiple disturbances that produce
a di�erence between the real and modi�ed plants.
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The research community positive acceptance of the ADRC has inspired works
intended to integrate it with other control methods, such as MPC. The latter
is a set of advanced control techniques whose main feature is its ability to
predict the process behaviour while operating within active constraints. To
compute future outputs over a prediction horizon, an assumed trajectory of
current and unknown future inputs is applied to an explicit internal model
considered as a proper representation of the real system; the goal is then to
choose the input trajectory such that the output reaches the desired value at
the end of that prediction horizon. The proper inputs are selected by solving
an optimisation problem dependent on predictions, the measured output, and
subject to desired constraints. Once the input trajectory is obtained, only the
�rst of its elements is applied to the actual plant, and the whole procedure
is repeated at the next instant when a new output measurement is available.
This is what is known as the receding horizon strategy.

It has been argued that MPC is a satisfactory approach for a variety of prob-
lems [35], which has led it to establish itself as an impactful technology in
the process industry [36] and gain interest in other applications such as power
electronics [37], [38], building climate [39], [40], and networked systems [41],
[42]. However, the need for a precise prediction model is still considered its
main shortcoming [43].

The integration of the ADRC and the MPC is an open area of research where
two approaches can be identi�ed. On the one hand, there is the ESO-based
control in which a nominal state-space model of the process to be controlled is
used to design a General ESO (GESO) [44],[45]. In [46] the discretised GESO is
used to update the dynamics of a prediction model to control the system states
trajectories. More recently, in [47] the stability of the predictive ESO-based
control is studied when the discrete GESO is employed as part of a predictive
control problem that penalises the deviations of states predictions from zero.
The above contributions have exploited the ESO structure by augmenting the
state vector with states corresponding to disturbances. However, these im-
plementations still require an identi�ed nominal model of the process for the
state and output observer equations which turns into the standard approach
of the disturbance observer-based control. Some recent practical applications
of MPC integration with disturbance observers include power electronics [48],
[49], motor control [50], [51], [52], autonomous vehicles [53], [54] and process
control [55].

On the other hand, there are works where the modi�ed plant concept has been
used in combination with the prediction strategy. For instance, in [56] the
output voltage of a DC-DC buck converter is rearranged as a function of total
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perturbation and input voltage and the Taylor series expansion of this func-
tion is used to implement an unconstrained continuous-time predictive control.
As the prediction model requires output and total perturbation derivatives, a
reduced-order Generalized Proportional Integral Observer (GPIO) [57] is im-
plemented. Even though this continuous con�guration is analogous to the
discrete-time MPC, some simpli�cation should be made for its practical im-
plementation to truncate the number of higher-order derivatives of the Taylor
series expansion and a discretisation of the control algorithm is needed to apply
the input to the real plant.

In [58], the ESO is used to estimate the external disturbances and modelling
errors that arise from obtaining a lateral vehicle model for the steering control
of a two-wheel vehicle. In this work, a constrained predictive control law is
computed and further modi�ed with the compensation term to calculate the
manipulated variable. However, the upper limit of the control action constraint
in the optimisation problem is set as the upper limit of the real manipulated
variable. With this de�nition, the control action computed during the optimi-
sation process is likely to be within the constraint band, but the manipulated
variable applied to the real system could evolve to a value outside the allowed
limits due to the compensation term.

From another point of view, in [59], [60], the discrete transfer function of an
nth-order integrator is assumed as the modi�ed plant and then employed as the
prediction model of a Generalized Predictive Controller (GPC). As expected,
the ESO is in charge of estimating the total perturbation further compensated.
Although these proposals resemble a combination of the ADRC with an MPC
method, none of them addresses the de�nition of constraints and the possible
in�uence of the compensation term in their handling.

According to the �ndings presented in the previous literature, the integration
of ADRC with MPC methods o�ers potential bene�ts in terms of performance
and disturbance rejection. Still, the following challenges are identi�ed: how
to tap the disturbance estimation-rejection mechanism of ADRC to reject the
ignored dynamics actively and thus avoid the modelling e�ort imposed on
MPC, how to incorporate the disturbance compensation term in the MPC op-
timisation problem de�nition to ensure that the manipulated variable satis�es
the real operating limits in servo-regulatory operation, and to what extent
the integration of MPC and ADRC frameworks allows obtaining the desired
performance for di�erent types of systems.

In the above context, the third signi�cant contribution of this thesis is a new
control architecture that merges the disturbance rejection capability of ADRC
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with the receding horizon strategy of the state-state MPC suitable for single-
input single-output systems with no nominal model available and subject to
constraints in output and the increment and absolute value of the manipulated
variable. The proposal has been named after Modi�ed Active Disturbance
Rejection Predictive Control (MADRPC). As a signi�cant advantage, it relaxes
the modelling requirement to an assumed discrete-time second-order state-
space formulation of a �rst-order plus integrator. It o�ers proper disturbance
rejection for linear and non-linear systems.
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Chapter 2

Design and application of

Active Disturbance Rejection

Controllers

This chapter addresses the design of controllers by active dis-
turbance rejection control reuniting the conventional methods in a
straightforward design guide. The �rst section brie�y presents the
scope of this chapter. The second section describes the ADRC block
diagram according to its non-linear or linear nature. The third
section addresses the control problem formulation under the distur-
bance rejection framework, and the corresponding loop gains tuning
is introduced in the fourth section. The �fth section brings together
the previous sections into a controller design guide. Finally, the
guide is applied to thermal control and multi-variable control of a
chemical process in the sixth section.
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2.1 Introduction

The design of an active disturbance rejection controller can be understood as
a three-phase procedure.

1. Formulation of the control problem in the disturbance rejection frame-
work, where the total perturbation should be identi�ed.

2. Tuning of the loop gains set.

3. Implementation of the control loop and validation of the closed-loop per-
formance.

This chapter addresses the above phases in a tutorial fashion to provide the
reader with the theoretical background that serves as the foundation for the
contributions of the oncoming chapters. What is presented in this chapter
constitutes the conventional design methods for the linear ADRC. Therefore,
a �ve-step algorithm is provided, allowing the LADRC design to be straight-
forward.

2.2 Active disturbance rejection control

The active disturbance rejection control loop contains three main blocks, as
shown in Figure 2.1.

� Tracking di�erentiator: takes as input the desired reference r̃ and gener-
ates a transient pro�le r and its n derivatives ṙ, r̈, . . . , r(n).

� Extended State Observer: provides the estimated system states x̂1, . . . , x̂n

and the estimated additional state x̂n+1, which merges the non-modelled
dynamics and perturbations.

� Controller: computes a state feedback control law u0 assuming the real
plant has been modi�ed such that its behaviour resembles a disturbance-
free nominal system. This is, the control action u0 governs the modi�ed
plant and the manipulated variable acting on the real plant is given by
u = (u0 − x̂n+1)/b0.

The non-linear or linear nature of the three comprising blocks determines the
ADRC formulation. Notice that the loop implementation requires the knowl-
edge of the system order n and the approximate value of the critical gain b0.
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Figure 2.1: Active disturbance rejection control loop.

2.2.1 Non-linear active disturbance rejection control

The active disturbance rejection control applies to single-input single-output
(SISO) systems and multiple-input multiple-output (MIMO) systems. To sim-
plify the mathematical notation, let the non-linear ADRC (NADRC) algorithm
be introduced for the SISO system

ÿ = −a1ẏ − a0y + bu. (2.1)

Equation 2.1 is the input-output model of a second-order system with y as
the controlled output, u is the manipulated variable, a0 and a1 are constants
determining the location of the system poles and b is known as critical gain.

The state space representation of (2.1) is given by (2.2), where d has been
included to indicate the load disturbances acting on the system. ẋ1 = x2

ẋ2 = −a0x1 − a1x2 + bu+ d
y = x1

(2.2)

In the case that a0 and a1 are unknown, the �rst two terms on the right
side of the expression for ẋ2 in (2.2) can be lumped in a function called total
perturbation, which also includes load disturbances and the di�erence between
the actual value of b and its known nominal value denoted by b0. Thus,

f = −a0x1 − a1x2 + (b− b0)u+ d. (2.3)
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The model (2.4) is obtained by substituting (2.3) in (2.2). ẋ1 = x2

ẋ2 = f + b0u
y = x1

(2.4)

As the total perturbation is an unknown function, f is treated as an addi-
tional state that must be estimated and compensated by the control loop. The
resulting extended state space model with x3 ≜ f and h = ḟ unknown is

ẋ1 = x2

ẋ2 = x3 + b0u
ẋ3 = h
y = x1.

(2.5)

The estimation of states in (2.5) is achieved through the Extended State Ob-
server (ESO) (2.6), whose inputs are the measured output y and the control
action u. 

˙̂x1 = x̂2 − β1γ1(e)
˙̂x2 = x̂3 + b0u− β2γ2(e)
˙̂x3 = −β3γ3(e)
e = x̂1 − y

(2.6)

In Equation 2.6, x̂i represents the estimation of the ith-state xi, the βi are the
gains, and the γi(e) corresponds to non-linear functions of the estimation error
e, which constitutes the correction terms of the observer.

The active disturbance rejection is achieved by subtracting the total perturba-
tion information, contained in x̂3, from the control law u0, according to

u =
u0 − x̂3

b0
. (2.7)

By substituting (2.7) in (2.4) and assuming that x̂3 ≈ f , the system is trans-
formed into  ẋ1 = x2

ẋ2 = u0

y = x1.
(2.8)
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The state-space model (2.8) represents a disturbance-free and pure-integrating
modi�ed plant on which acts the control law

u0 = k1fal(r − x̂1, α1, δ) + k2fal(ṙ − x̂2, α2, δ) (2.9)

fal(ẽ, αi, δ) =


ẽ

δ1−αi
, |ẽ| ≤ δ

|ẽ|αi sign(ẽ), |ẽ| > δ

(2.10)

The non-linear function (2.10) was proposed by [1] and, with a di�erent com-
bination of its arguments, it allows the evaluation of the non-linear expressions
related to the ESO following that γi(e) = fal(e, ᾱi, δ̄).

According to this subsection, the control of the system (2.2) by NADRC re-
quires the selection of six types of parameters: the observer gains βi, the
constants ᾱi and δ̄ for the evaluation of the observer non-linear functions, and
the gains ki together with the constants αi and δ for the control law design.
Following a similar approach, the NADRC algorithm can be used to control
non-linear systems of order n. In this case, the total perturbation would also
include the terms related to the non-modelled and non-linear dynamics.

2.2.2 Linear active disturbance rejection control

Now, that the system (2.2) is controlled by linear active disturbance rejection
control (LADRC). The extended model is equivalent to (2.5). However, the
states are estimated through a linear version of the ESO, in which γi(e) = e as
a result of evaluating (2.10) with αi = 1 [65]. In this sense, the linear extended
state observer (LESO) is de�ned as

˙̂x1 = x̂2 + ℓ1e
˙̂x2 = x̂3 + b0u+ ℓ2e
˙̂x3 = ℓ3e
e = y − x̂1.

(2.11)

In equation (2.11) the variables βi have been replaced by the ℓi to refer to the
linear gains of the LESO.

The manipulated variable is as (2.7), but the control action governing the
modi�ed plant is the linear state feedback control law (2.12). Notice that r̃ has
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been set as the reference in (2.12). This can be done in practice if the tracking
di�erentiator is omitted or the setpoint derivatives are unbounded [66].

u0 = k1(r̃ − x̂1)− k2x̂2 (2.12)

Compared to the NADRC, the LADRC only requires tuning two types of
parameters: the observer gains ℓi and the controller gains ki. Nevertheless,
the number of design variables in both formulations is directly related to the
assumed order n. The approach described in this section is also referred to in
the literature as conventional LADRC. Its version of order n is presented in
Table 2.1.

The linear formulation of ADRC has allowed its study in the frequency domain.
Let the block diagram of Figure 2.1 be transformed into the two-degree-of-
freedom con�guration of Figure 2.2. The direct loop transfer function Gc(s)
and the feedback transfer function GF (s) are derived as follows.

The linear extended state observer (2.11) in frequency domain is given by
sZ1 = Z2 + ℓ1(Y − Z1)

sZ2 = Z3 + b0U + ℓ2(Y − Z1)

sZ3 = ℓ3(Y − Z1),

(2.13)

with s as the complex variable, Y the Laplace transform of the output, U the
Laplace transform of the control action, and the Zi as the Laplace transforms
of the estimated states. The expressions (2.14)�(2.16) are obtained by solving
the system of equations (2.13).

�� � � �

�� �

�

controlled

variable

�,

manipulated variable

−

�,

load disturbances

	, reference

Figure 2.2: Two-degree-of-freedom con�guration of LADRC.
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Z1 =
b0s

s3 + ℓ1s2 + ℓ2s+ ℓ3
U +

(ℓ1s
2 + ℓ2s+ ℓ3)

s3 + ℓ1s2 + ℓ2s+ ℓ3
Y (2.14)

Z2 =
b0(s

2 + sℓ1)

s3 + ℓ1s2 + ℓ2s+ ℓ3
U +

(ℓ2s
2 + ℓ3s)

s3 + ℓ1s2 + ℓ2s+ ℓ3
Y (2.15)

Z3 =
−ℓ3b0

s3 + ℓ1s2 + ℓ2s+ ℓ3
U +

ℓ3s
2

s3 + ℓ1s2 + ℓ2s+ ℓ3
Y (2.16)

On the other hand, the control action (2.17) is deduced by combining the
frequency domain expressions of (2.7) and (2.12), with R being the Laplace
transform of the reference.

U =
1

b0
(k1R− k1Z1 − k2Z2 −Z3) (2.17)

Therefore, substituting (2.14)�(2.16) in (2.17) and reorganising terms, U is
rewritten as

U =
k1
b0

[
s3 + ℓ1s

2 + ℓ2s+ ℓ3
s3 + (ℓ1 + k2)s2 + (k2ℓ1 + ℓ2 + k1)s

]
R

−
[
(k1ℓ1 + k2ℓ2 + ℓ3)s

2 + (k1ℓ2 + k2ℓ3)s+ k1ℓ3
b0(s3 + (ℓ1 + k2)s2 + (k2ℓ1 + ℓ2 + k1)s)

]
Y.

(2.18)

From Figure 2.2 and in the absence of load disturbance (d = 0),

U = GC(s)R−GC(s)GF (s)Y. (2.19)

Hence, the resulting direct loop transfer function (2.20) and the feedback trans-
fer function (2.21) are obtained by comparing the factors of R and Y in (2.18)
with those in (2.19).

GC(s) =
k1
b0

(
s3 + ℓ1s

2 + ℓ2s+ ℓ3
s3 + (ℓ1 + k2)s2 + (k2ℓ1 + ℓ2 + k1)s

)
(2.20)

GF (s) =
(k1ℓ1 + k2ℓ2 + ℓ3)s

2 + (k2ℓ3 + k1ℓ2)s+ k1ℓ3
k1(s3 + ℓ1s2 + ℓ2s+ ℓ3)

(2.21)
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Finally, the transfer function from output to load disturbance is

GD(s) =
G(s)

1 +G(s)GC(s)GF (s)
, (2.22)

and the transfer function from control action to output is

GU(s) = −GC(s)GF (s). (2.23)

Equation (2.22) describes the system response to a load disturbance and (2.23)
represents the LADRC transfer function for disturbance rejection.

2.3 Control problem formulation under the LADRC

framework

Although the ADRC starts from the idea that through the design of the con-
trol law, a linear or non-linear system can be transformed into a linear de-
coupled system similar to (2.8), the success in the application of this strat-
egy lies in the formulation of the control problem, such that the unknown
quantities (modelling uncertainty and disturbances) are combined in the total
perturbation [19]. This formulation begins with selecting the controlled and
manipulated variables, involves understanding the system through mathemat-
ical representations or signals available for analysis, and leads to choosing the
LADRC canonical form for the observer design.

2.3.1 Identi�cation of controlled and manipulated variables

The identi�cation of the outputs of the system to be controlled and the in-
puts through which control can be carried out is the �rst step in the design
of controllers regardless of the strategy employed. The ADRC was initially
formulated for single-input, single-output systems, as discussed in 2.2, but was
quickly adapted to multi-variable systems under the name Disturbance Decou-
pling Control (DCC) [67].

Consider the m × m MIMO system (2.24), where the rate of change in each
output (represented by the derivative of order ni, y(ni)) is modelled as the sum
of the total perturbation of each channel fi(νi, pi, d) and the product of the
nominal value of the critical gain b0ii and its dominant input ui.
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y
(n1)
1 = f1(ν1, ..., νm, p1, ...pm, d) + b011u1

y
(n2)
2 = f2(ν1, ..., νm, p1, ...pm, d) + b022u2

...
y(nm)
m = fm(ν1, ..., νm, p1, ...pm, d) + b0mmum

νi = (yi, ẏi, ..., y
(ni−1)
i )

pi = (ui, u̇i, ..., u
(ni−1)
i )

(2.24)

The total perturbation functions in (2.24) combines the non-modelled internal
dynamics and coupling between channels, represented by νi, pi, and the load
perturbations, denoted by d. Therefore, to achieve decoupling, a SISO LADRC
is designed in each loop. This way, the multi-variable system is transformed
into a set of m outputs whose behaviour in each channel resembles that of an
integrator of order ni.

The main advantage of DDC is that a proper observer design allows real-
time active cancellation of the total disturbance of each channel. However,
the proposal requires prior selection of the dominant output-input pairs and
tuning of (2ni + 1) parameters in each loop.

2.3.2 System characterisation and LADRC order selection

After the �rst publications [68], [69] in which some of the studies that demon-
strated the viability of ADRC as a new control paradigm were reviewed, the
need to deepen the theoretical justi�cation of the strategy became evident. In
particular, in the de�nition of conditions that would allow deciding whether a
process can be controlled by ADRC and the in�uence of the design parameters
on the closed-loop performance.

Next, the applicability of ADRC is discussed from two perspectives. In the �rst
one, it is assumed that there is some mathematical representation or model of
the process that, when reformulated, allows identifying the unknown quantities
that make up the total disturbance, as well as the real or relative order and
an approximation of the critical gain. On the other hand, the characteristics
that have guided the study of ADRC (mainly in linear systems) and constitute
the necessary understanding of the problem for the following design phases are
mentioned.
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Chapter 2. Design and application of Active Disturbance Rejection Controllers

When the control objective is output regulation, the input-output model of
the process, such as (2.1), allows the unknown terms that make up the total
disturbance to be identi�ed. However, when complete control of the state
vector is desired, the reformulation of the problem must ensure that both the
control signal and the external disturbances only a�ect the rate of change of the
last state [70]. This condition is known as the matching condition in English
literature [2]. An example clari�es the above.

Given the second-order SISO system ẋ1 = x2 + w
ẋ2 = −c1x1 − c2x2 + u
y = x1,

(2.25)

where c1 and c2 are unknown positive constants and w is a perturbation af-
fecting the �rst state evolution. De�ning x1 = x1 and x2 = x2 + w leads
to

ẋ2 =
d

dt
(x2 + w) (2.26)

ẋ2 = ẋ2 + ẇ (2.27)

ẋ2 = −c1x1 − c2x2 + u+ ẇ (2.28)

ẋ2 = −c1x1 − c2(x2 − w) + u+ ẇ (2.29)

Therefore, the system (2.25) is equivalent to ẋ1 = x2

ẋ2 = −c1x1 − c2(x2 − w) + ẇ + u
y = x1,

(2.30)

from which it follows that f = −c1x1 − c2(x2 −w)+ ẇ is the total disturbance
and x3 ≜ f is the additional state. Thus, under the ADRC approach, the
control problem is solved by estimating and cancelling the e�ect of f rather
than the individual action of the external disturbance w.
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Active disturbance rejection control was conceived as a control technology that
seeks to eliminate the dependence on a precise process model, understanding
that all controller designs are based on some interpretation of the system,
mathematical or otherwise [71]. Consequently, ADRC is considered appropri-
ate for systems with little knowledge of the dynamics, and its characterisation
is performed by analysing the manipulated and controlled signals. Features
of interest include the identi�cation of relative order or dominant dynamics
and the presence of inverse response (undershoot), such as that caused by
non-minimum phase zeros, dead time and instability.

Regarding the ADRC order, it was initially proposed that it should coincide
with the relative order of the system [1]. However, most works are developed
with �rst-order or second-order ADRC implementations assuming that the
processes or practical applications have such dominant dynamics. In the case of
SISO systems, two theorems have been put forward that guide LADRC design
when the process order is unknown. Their main conclusions are summarised
below [24].

� For a process whose behaviour resembles that of a minimum-phase Linear
Time-Invariant (LTI) system, there is a set of LADRC gains that achieve
closed-loop stability, provided that the estimated critical gain b0 main-
tains the sign of the actual critical gain and the order of implementation
is equal to or greater than the relative order of the system.

� For a process with behaviour similar to a stable open-loop LTI model,
there is a set of �rst-order or higher LADRC gains that achieve closed-
loop stability. In addition to the design of the controller and observer
gains, it is suggested to increase the absolute value of b0 until the desired
performance is achieved.

The LADRC implementation in minimum-phase LTI systems has greater ro-
bustness concerning variations in nominal critical gain when the system order
is low. However, the selection of b0 below the actual value (b0 < b) reduces the
level of uncertainty allowed in systems with delay [72]. That is, the value of
b0 can be set over a broader range of values when n is small, which is conve-
nient if �rst-order or second-order dominant dynamics are considered, but this
advantage is limited in systems with dead time.
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2.3.3 Selection of the LADRC canonical form

The canonical form ADRC refers to the desired behaviour of the modi�ed
plant (see Figure 2.1). In the conventional ADRC discussed in section 2.2.2,
the observer and the manipulated variable (2.7) combined action is assumed
to induce the system to behave like the set of disturbance-free cascaded inte-
grators (2.8). Consequently, the ADRC transforms an unknown and uncertain
system into a more straightforward and less uncertain linear version that re-
duces the complexity in the design of the control law u0 [3].

If information about the system model is available, it can be incorporated into
the extended state observer to improve its estimation capability. According to
the type of information used to design the LESO, the modi�ed plant is no longer
assumed to be the cascaded integrators characterising the conventional LADRC
version. These new proposals are considered alternative canonical forms in the
ADRC approach and have been referred to by their authors in di�erent ways.
Table 2.1 reunites the formulations of the model-assisted ADRC [12], the gen-
eralised ADRC [13] and the modi�ed ADRC [14]. In those proposals where
a nominal model is assumed, it is considered that the system is represented
by the input-output equation (2.31), where the notation y(n) or u(n) indicates
a derivative of order n. Table 2.1 also includes the LESO formulations asso-
ciated to each LADRC implementation. In all cases, x̂ = [x̂1, . . . , x̂n, x̂n+1]

⊤

represents the estimated states vector and ℓ = [ℓ1, . . . , ℓn, ℓn+1]
⊤ the gains

vector.

y(n) + · · ·+ a1ẏ + a0y = bnu
(n) + · · ·+ b1u̇+ b0u (2.31)

Likewise, some comments are included in Table 2.2 to highlight the main dif-
ferences among the above and to guide the reader on the selection and imple-
mentation of one of them according to the application of interest.

Finally, it is worth mentioning that the expected behaviour of the modi�ed
plant depends signi�cantly on the selection of the observer gains and the critical
gain. Previously it was noted that the knowledge of the estimated value of
this parameter is necessary for implementing the LADRC, and its tuning, at
�rst, was proposed based on the experience of the control engineer and the
characterisation of the process. The following subsection discusses the tuning
of the LADRC gain set.
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Table 2.1: LADRC formulations from the literature

Canonical form Extended State Observer

C
o
n
v
en
ti
o
n
a
l
L
A
D
R
C
[2
3
]


ẋ1

.

.

.
ẋn−1

ẋn

 =


0 1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 0 1
0 0 0 0


︸ ︷︷ ︸

A


x1

.

.

.
xn−1

xn

 +


0

.

.

.
0
1


︸ ︷︷ ︸

B

u

y =
[

1 · · · 0 0
]︸ ︷︷ ︸

C


x1

.

.

.
xn−1

xn



Ao =

 A

[
0(n−1)×1

1

]
01×n 0

 Bo = b0

[
B
0

]

Co =
[

C 0
]

˙̂x = Aox̂ + Bou + ℓ(y − Cox̂)

M
o
d
e
l
a
ss
is
te
d
L
A
D
R
C
[1
2
] 

ẋ1

.

.

.
ẋn−1

ẋn

 =


0 1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 0 1
−a0 −a1 · · · −an−1


︸ ︷︷ ︸

A


x1

.

.

.
xn−1

xn

 +


β1

.

.

.
βn−1

βn


︸ ︷︷ ︸

B

u

y =
[

1 · · · 0 0
]︸ ︷︷ ︸

C


x1

.

.

.
xn−1

xn



Ao =

[
A B

01×n 0

]
Bo =

[
B
0

]
Co =

[
C 0

]
˙̂x = Aox̂ + Bou + ℓ(y − Cox̂)

To be continued
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Table 2.1 (continued)

Canonical form Extended State Observer

G
e
n
e
ra
li
se
d
L
A
D
R
C
[1
3
]


ẋ1

.

.

.
ẋn−1

ẋn

 =


0 1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 0 1
−a0 −a1 · · · −an−1


︸ ︷︷ ︸

A


x1

.

.

.
xn−1

xn

 +


0

.

.

.
0
b0


︸ ︷︷ ︸

B

u

y =
[

1 · · · bn−2/b0 bn−1/b0
]︸ ︷︷ ︸

C


x1

.

.

.
xn−1

xn



Ao =

 A

[
0(n−1)×1

1

]
01×n 0

 Bo =

[
B
0

]

Co =
[

C 0
]

˙̂x = Aox̂ + Bou + ℓ(y − Cox̂)

M
o
d
i�
e
d
co
n
v
e
n
ti
o
n
a
l
L
A
D
R
C
[1
4
] 

ẋ1

.

.

.
ẋn−1

ẋn

 =


0 1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 0 1
0 0 0 0


︸ ︷︷ ︸

A


x1

.

.

.
xn−1

xn

 +


0

.

.

.
0
1


︸ ︷︷ ︸

B

u

y =
[

1 · · · 0 0
]︸ ︷︷ ︸

C


x1

.

.

.
xn−1

xn



Ao =

[
0n×1 In×n

0 a

]
Bo = b0

[
B

−an−1

]
Co =

[
C 0

]
˙̂x = Aox̂ + Bou + ℓ(y − Cox̂)
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Table 2.2: Di�erentiating characteristics of the LADRC formulations from the literature.

LADRC Characteristics

Conventional [23]
� The modi�ed or nominal plant is assumed to be a set of cascaded integrators or an integrator
of order n.

� The control action on the plant is u =
1

b0

[
k1(r̃ − x̂1)−

∑n
i=2 (kix̂i)− x̂n+1

]
.

Model assisted [12]

� The modi�ed plant is assumed to be a non-minimum phase system of order n.
� The �rst state coincides with the controlled output and its measurement is accessible.
� The βi (i = 1, ..., n) values are computed from the coe�cients representing the nominal
process.

� The �rst state coincides with the controlled output and its measurement is accessible.
� Through bandwidth parameterization, the observer gains in the ℓ vector are computed by
comparing the coe�cients in the characteristic equation |sI − (Ao − ℓCo)| with those in the
polynomial (s+ ωo)

n+1. As the matrix Ao contains process model information, the elements
in ℓ are dependent on this information.

� The control action on the plant is u = u0 − x̂n+1.
� The control action u0 is the output from a feedforward controller comprising a signal generator
and a compensator. This proposal seeks that the system response reaches the steady state
in a required settling time and under a constraint on the inverse response (undershoot). The
feedforward controller design is addressed in detail in [73].

To be continued
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Table 2.2 (continued)

LADRC Characteristics

Generalised [13]

� The modi�ed plant is assumed to be a system of order n with the known nominal location of
poles and zeros.

� The controlled output is a linear combination of the states.
� Through bandwidth parameterization, the observer gains in the ℓ vector are computed by
comparing the coe�cients in the characteristic equation |sI − (Ao − ℓCo)| with those in the
polynomial (s+ ωo)

n+1. As the matrix Ao contains process model information, the elements
in ℓ are dependent on this information.

� The control law on the plant is u = r − 1

b0

[∑n
i=1 (kix̂i)− x̂n+1

]
.

� The ki values are computed following that ki =
(

n
i−1

)
ωn+1−i
c − ai−1.

� To improve the trajectory tracking, it is necessary to �lter the reference signal according to
r = F r̃, where F = 1/

[
−C(A−BK)−1B

]
and K = [k1 · · · kn 1] /b0.

Modi�ed
conventional [14]

� The modi�ed or nominal plant is assumed to be a set of cascaded integrators or an integrator
of order n.

� The �rst state coincides with the controlled output and its measurement is accessible.
� It is assumed that the total perturbation is the sum of a known component fk, which models
the dynamics of the poles, and an unknown component fu, which includes the non-modelled
dynamics of the zeros and the unwanted external forces.

� As the model of fk is known, the information of ḟk is included in the extended state observer
through the elements of the vector a = [−a0 · · · − an−1]. Therefore, the observer gains
in the ℓ vector are computed by comparing the coe�cients in the characteristic equation
|sI − (Ao − ℓCo)| with those in the polynomial (s+ ωo)

n+1.
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2.4 LADRC gains tuning

2.4 LADRC gains tuning

The design of the LADRC parameters has gained attention as the study of
this technology has progressed. A common feature among the contributions
is that most are based on the bandwidth parameterization proposed in [23],
which expresses the observer and controller gains as a function of two quantities
named observer bandwidth ωo and controller bandwidth ωc, respectively.

In line with the formulation presented in section 2.2 for a second-order SISO
system, consider the state space representation of its extended model (2.5) ẋ1

ẋ2

ẋ3

 =

 0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

A

 x1

x2

x3

+

 0
b0
0


︸ ︷︷ ︸

B

u+

 0
0
1


︸ ︷︷ ︸

E

h (2.32)

y =
[
1 0 0

]︸ ︷︷ ︸
C

 x1

x2

x3

 ,
whose matrix form is

ẋ = Ax+Bu+ Eh (2.33)
y = Cx,

with x = [x1, x2, x3]
⊤. Similarly, the matrix form of the LESO (2.11), de�ning

x̂ = [x̂1, x̂2, x̂3]
⊤ and ℓ = [ℓ1, ℓ2, ℓ3]

⊤, is

˙̂x = Ax̂+Bu+ ℓ(Cx− Cx̂). (2.34)

Let e = x−x̂ be the estimation error. Its dynamic behaviour is given by (2.35)
and it is obtained after subtracting (2.34) from (2.33).

ė = (A− ℓC)e+ Eh (2.35)

Assuming that h, even if it is unknown, is also di�erentiable and bounded, the
observer gains can be calculated through pole placement. In [23], it is proposed
that the three poles be located at position −ωo in the left semi-plane such as

sI − (A− ℓC) = (s+ ωo)
3. (2.36)
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Consequently, the parameterization of the observer gains (2.37) is obtained as
a function of ωo by solving for both sides of (2.36) and comparing factors. The
convergence analysis of the LESO, when designed using the above approach, is
addressed in [7]. Likewise, [74] discusses the pertinence of assuming h bounded.

ℓ1 = 3ωo ℓ2 = 3ω2
o ℓ3 = ω3

o (2.37)

The bandwidth parameterization can be generalised for an observer of order
n+1 with characteristic equation (2.38). In this case, the gains ℓi are computed
as (2.39).

sn+1 + ℓ1s
n + ...+ ℓns+ ℓn+1 = (s+ ωo)

n+1 (2.38)

ℓi =

(
n+ 1

i

)
ωi
o ; i = 1, 2, ..., n+ 1 (2.39)

On the other hand, the controller gains design takes into account the frequency
representations of the modi�ed plant (2.8) and the control action (2.12) to
obtain the closed-loop transfer function

GY (s) =
k1

s2 + k2s+ k1
. (2.40)

According to the characteristic equation of (2.40), the closed-loop poles de-
pend on the selection of the gains k1 and k2. Then, following the approach
from [23], the poles are located at −ωc as in (2.41) and the controller gains
parameterization of (2.42) is derived.

s2 + k2s+ k1 = (s+ ωc)
2 (2.41)

k1 = ω2
c k2 = 2ωc (2.42)

Extending the analysis to a system of order n, the gains of the control law u0

are calculated according to

ki =

(
n

i− 1

)
ωn+1−i
c ; i = 1, 2, ..., n (2.43)
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2.5 A guide for the LADRC implementation

The selection of ωo and ωc results in a trial-and-error process in which the
controller bandwidth is often set to the desired closed-loop performance, and
the observer bandwidth corresponds to a scaled ωc value (ωo = koωc, ko ≥ 1).
An increase in the values of both parameters can improve the estimation error
and the system response speed but cause oscillations along with an increase in
the control action magnitude and rate of change. The main disadvantage of
this strategy is its empirical nature, as it does not always provide satisfactory
results and retuning supported by other techniques may be necessary.

In the case where a canonical form other than the conventional one is adopted,
(2.39) and (2.43) include information from the nominal model of the system
according to the modi�cations presented in Table 2.1.

2.5 A guide for the LADRC implementation

This section combines the concepts and ideas presented in the previous sections
into a guide for designing control loops using LADRC.

A �ve-step algorithm is presented in Guide 2.5.1. Reference is made to the
section of this chapter where the corresponding theory was discussed. Some
hints for the computation of the LADRC gains are also included. For example,
suppose the open-loop step response of a stable system with �rst-order domi-
nant dynamics is accessible. In that case, the approximate value of the critical
gain b0 can be computed as the ratio of the static gain K to the time constant
T . On the other hand, if second-order dominant dynamics is assumed, the
nominal value b0 is approximated as the ratio of the static gain to the square
of the time constant T [22].

The desired closed-loop settling time t98% can be used to calculate the con-
troller bandwidth and subsequently scale the result to obtain the observer
bandwidth. In each case, the computation suggestions represent initial values
for the gains and may need to be adjusted according to performance require-
ments, as indicated in the �nal step.
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Guide 2.5.1: Algorithm for the Linear Active Disturbance Rejection Control (LADRC)
design

1. De�ne the type of system (plant) to be controlled.

Single-Input Single-Output
(SISO)

Multiple-Input Multiple-Output
(MIMO)

↓ ↓
LADRC (section 2.2.2) DDC (section 2.3.1)

2. Identify the system characteristics of interest.

Is the system
open-loop stable?

→ Yes → Obtain the step response to
determine n and b0.y
If n = 1, then

ẏ = − 1

T
y +

K

T
u, b0 ≈ K/T

Noy
If n = 2, then

ÿ = −2
D

T
ẏ− 1

T 2
y+

K

T 2
u, b0 ≈ K/T 2

Use a mathematical representation (e.g., a input-output model as (2.1))
to determine n and b0.

3. Choose a canonical form, for example, the conventional LADRC
(section 2.2.2 and Table 2.1).

4. Compute the LADRC gains by bandwidth parameterization (section 2.4).

If the canonical LADRC is chosen

First-order LADRC (n = 1) Second-order LADRC (n = 2)
↓ ↓

ωc = 5/t98%, ωo = koωc ωc = 8/t98%, ωo = koωc

k1 = ωc k1 = ω2
c , k2 = 2ωc

ℓ1 = 2ωo, ℓ2 = ω2
o ℓ1 = 3ωo, ℓ2 = 3ω2

o , ℓ3 = ω3
o

Otherwise, see Table 2.1.

5. Evaluate the closed-loop performance and retune the gains if necessary.
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2.6 LADRC implementation examples

This section presents two examples to illustrate the design of the LADRC loop
according to Guide 2.5.1. In the �rst one, the temperature of a thermoelectric
module is controlled. In the second one, the LADRC is used to control the con-
centration of a product and the temperature inside a reactor. Both examples
were developed in MATLAB-Simulink. These implementations are available in
MATLAB Central [63], so the reader can reproduce the results of this section
or use the codes to apply the LADRC design guide to other control problems.

Example 2.6.1 The temperature control of a thermoelectric module operat-
ing according to the Peltier principle and whose dynamics is non-linear around
its operating zones of cooling (≈ 4 ◦C) and freezing (≈ −8 ◦C) is considered.

A thermoelectric module is an array of thermocouples connected electrically
in series and thermally in parallel, as depicted in Figure 2.3. When current is
driven through the thermocouples, it produces heating or cooling depending on
the current direction. The energy transported by the electrons changes as the
current passes from one type of material to the other, leading to a di�erence
in energy which is transformed into heating or cooling. The above is known as
the Peltier e�ect [75]. In the refrigeration mode, the positive current produces
that heat �ows from the heat source to the heat sink, causing a decrease in
temperature in the former with respect to the heat sink thermal conductor.
Consequently, the heat source turns out to be the cooling face of the Peltier
cell.

The thermoelectric module behaviour is described by the thermal balance equa-
tions presented next and whose variables are listed in Table 2.3.

NPNPNPNP

+−

�, current
voltage supply

heat source

heat sink

cool face

hot face

Figure 2.3: Simple sketch of the Peltier thermoelectric module in refrigeration mode.
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Table 2.3: Description of variables of the Peltier thermoelectric module model.

Variable Units Description

Tc K Temperature on the cold face
Th K Temperature on the hot face
Tr K Temperature in the radiator
Vin % Voltage applied to the Peltier thermoelectric module
Ip A Current �ow in the Peltier thermoelectric module
Qcf W Net heat �ow on the cold face
Qacf W Heat �ow transmitted by convection between the envi-

ronment and the cold face
Qpcf W Heat �ow absorbed by the cold face due to the Peltier

e�ect
Qj W Heat �ow generated by Peltier cell due to Joule e�ect
Qcond W Heat �ow transferred by conduction from the hot face to

the cold face
Qhf W Net heat �ow on the hot face
Qrhf W Heat �ow transmitted by radiation between the hot face

and radiator
Qphf W Heat �ow dissipated by the hot face due to Peltier e�ect
Qrf W Net heat �ow into the radiator
Qacc W Heat �ow transmitted by convection between the envi-

ronment and the radiator

The parameters of the non-linear model were taken from [76], where an evolu-
tionary multi-objective optimisation methodology and experimental data were
used to identify the �rst principle model of a Peltier cell laboratory set-up.
The corresponding values are reported in Table 2.4.

The thermal balance in the cold face is described as

Qcf = mcṪc (2.44)
Qcf = Qacf −Qpcf −Qj +Qcond (2.45)
Qacf = (Ta − Tc)Ke (2.46)
Qpcf = αsTcIp (2.47)

Qj =
1

2
I2pRp (2.48)
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Ip =
1

Rp

[Vin − αs (Th − Tc)] (2.49)

Qcond = 0.2 (Th − Tc) . (2.50)

The thermal balance in the hot face is

Qhf = mcṪh (2.51)
Qhf = Qrhf +Qphf +Qj −Qcond (2.52)
Qrhf = Kr (Tr − Th) (2.53)
Qphf = αsThIp. (2.54)

And �nally, the radiator equilibrium corresponds to

Qrf = mrṪr (2.55)
Qrf = Qacc −Qrhf (2.56)
Qacc = Kf (Ta − Tr) . (2.57)

Table 2.4: Parameters of the Peltier thermoelectric module model [76].

Variable Value Units Description

mc 9.2 JK−1 Thermal capacity in the cold face
mh 13 JK−1 Thermal capacity in the hot face
mr 722.55 JK−1 Thermal capacity in the radiator
Ke 0.5 WK−1 Coe�cient of thermal convection between the

hot face and the environment
Kp 0.2 WK−1 Coe�cient of thermal convection of the Peltier

thermoelectric module
Kr 9.59 WK−1 Coe�cient of thermal convection between the

hot face and the radiator
Kf 7.11 WK−1 Ampli�cation factor of convection between the

environment and the radiator due to the action
of a fan coupled to the thermoelectric module

αs 0.041 VK−1 Seebeck coe�cient
Rp 0.82 Ω Thermoelectric module resistance
Ta 23.5 K Ambient temperature
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Following the steps from Guide 2.5.1

1. Type of system. The main objective is to control the thermoelectrical
module temperature through the voltage supply. Therefore, in this single-
input single-output loop, the controlled variable is the temperature on the
cold face Tc, and the manipulated variable is the input voltage Vin.

2. System characteristics. The system is open-loop stable. With a voltage
level of 26%, the temperature on the cold face evolves from the initial
temperature of 23.5 ◦C to an operating temperature of 4 ◦C in approx-
imately 40 s. Figure 2.4 shows this behaviour. A dominant �rst-order
dynamics is assumed.

Since the temperature change experienced by the Peltier thermoelectric
module to the increase in voltage is negative, i.e., an increase in volt-
age causes a decrease in temperature, it follows that the critical gain is
negative, and its approximated value is computed as

b0 =
K

T
=

∆Tc

VinT
=

4− 23.5

(26)(8)
= −0.094

◦C

%s
(2.58)

Figure 2.4: Open-loop response of the thermoelectric module when the input voltage is
increased to Vin = 26%. The temperature on the cold face decreases from Ta = 23.5 ◦C to
Tc = 4 ◦C in approximately 40 s.
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Notice that the static gain in (2.58) is assumed to be the ratio of the
temperature change to the voltage change, and the time constant is ap-
proximated as one-�fth of the settling time.

3. Canonical form. Conventional LADRC is chosen such that the modi�ed
plant is assumed to be a �rst-order integrator. The corresponding LESO,
with initial states x̂1(0) = Ta and x̂2(0) = 0, is[

˙̂x1

˙̂x2

]
=

[
−ℓ1 1
−ℓ2 0

] [
x̂1

x̂2

]
+

[
b0
0

]
Vin +

[
ℓ1
ℓ2

]
Tc (2.59)

and the control action on the thermoelectric module is

Vin =
u0 − x̂2

b0
=

k1 (r̃ − x̂1)− x̂2

b0
(2.60)

4. LADRC tuning. Using bandwidth parameterization, the controller band-
width is designed to reach the desired temperature on the cold face in
approximately 10 s. According to (2.43)

k1 = ωc =
5

t98%
=

5

10
= 0.5

rad

s
(2.61)

The observer bandwidth is chosen as ωo = 2ωc. Thus, following (2.39)

ℓ1 = 2ωo = 2 (2ωc) = (4)(0.5) = 2
rad

s
(2.62)

ℓ2 = ω2
o = [2(0.5)]

2
= 1

rad2

s2
(2.63)

5. Performance evaluation. The closed-loop response of the thermoelec-
tric module around its cooling zone for di�erent temperature setpoints is
shown in Figure 2.5.The performance achieved with the PI controller
(2.64), which was designed in [77] by multi-objective optimisation, is
also included for qualitative comparison. Random noise with variance
σ2 = 0.005 and sampling frequency of 100Hz is added to the output.

CPI(s) = 0.86

(
1 +

1

0.89s

)
(2.64)
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Figure 2.5: Closed-loop response of the thermoelectric module in its cooling zone when
controlled by �rst-order LADRC. Comparison with a PI controller.

Figure 2.6: Closed-loop response of the thermoelectric module in its freezing zone when
controlled by �rst-order LADRC and the voltage supply is reduced at t = 80 s by 10% during
one minute. Comparison with a PI controller.
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The results show that the LADRC can control the non-linear system with
a settling time that meets the design requirement and has no overshoot
compared to the PI controller. With a higher LADRC controller band-
width, the loop is still stable, and the settling time decreases at the cost
of signi�cant changes in the voltage when the setpoint changes. On the
other hand, a larger observer bandwidth does not bring improvements in
the system response; on the contrary, it generates more oscillation in the
control action due to the noise.

Finally, we consider the case where the thermoelectric module operates
in the freezing zone. With the same gains set, the LADRC maintains the
cold face temperature at the desired value of −5 ◦C, as seen in Figure 2.6.
At t = 80 s, a power supply failure was simulated, which decreased the
module voltage by 10% for one minute. The LADRC rejects the distur-
bance e�ect on the output, with a maximum deviation of 1 ◦C, and returns
the system to its desired operating point faster than the PI controller.

Example 2.6.2 The LADRC is now designed to control a Continuous Stirred
Tank Reactor (CSTR).

In a CSTR (Figure 2.7), an irreversible �rst-order chemical reaction A → B
takes place in the liquid generating heat. Therefore, a cooling liquid at tem-
perature Tj circulates through a jacket covering the tank that contributes to
regulating the temperature Ts inside. Moreover, controlling the concentration
Ca of product A inside the tank is also of interest.

� �

jacket

effluent

feed

Figure 2.7: Continuous Stirred Tank Reactor (CSTR).
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The CSTR behaviour is described by a set of highly non-linear equations re-
sulting from the mass and energy balance of the reactor [78]. The solution of
these equations when the accumulation terms are zero allows the calculation
of the equilibrium points Pi = [Cas Tss Tjs] which, depending on the reactor
design, can be multiple. That is, the system can operate at di�erent concentra-
tion and temperature values when the �ow rates and other parameters are kept
constant [79]. Let the CSTR presented in [80] be the system to be controlled
and whose dynamics is given by

Ċa =
F

V
(Ca0 − Ca)− k0Ca exp

(
− E

RTs

)
(2.65)

Ṫs =
F

V
(T0 − Ts) +

∆H

ρcp
k0Ca exp

(
− E

RTs

)
− UA

ρcpV
(Ts − Tj) (2.66)

Ṫj =
Fj

Vj

(Tj0 − Tj) +
UA

ρjcjVj

(Ts − Tj) (2.67)

The parameters from (2.65)-(2.67) are listed in Table 2.5. If the inlet �ow
rate, F , and coolant �ow rate, Fj, are set at, for example, F = 1.13m3 h−1

and Fj = 1.41m3 h−1, the reactor exhibits the three equilibrium points listed
in Table 2.6. At each of these temperatures, the heat generated by the reaction
equals the heat removed with the aid of the coolant, as shown in Figure 2.8.

Table 2.5: Parameters of the CSTR (Example 2.6.2) [80].

Variable Value Units Description

V 1.3592 m3 Reactor volume
Vj 0.0849 m3 Jacket volume
k0 7.08× 1010 h−1 Reaction rate constant
E/R 8375.2 K Activation energy term
∆H 69 828 kJ/kmol Heat of reaction
UA 7.136× 104 kJ/(h ◦C) Heat transfer term
ρ 800 kg/m3 Feed density
ρj 1000 kg/m3 Coolant density
cp 3.142 kJ/(kgK) Feed heat capacity
cj 4.189 kJ/(kgK) Cooling heat capacity
Ca0 8 kmolA/m2 Feed concentration
T0 294.4 K Feed temperature
Tj0 294.4 K Coolant temperature
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Table 2.6: CSTR equilibrium points (Example 2.6.2).

Point Cas (kmol/m3) Tss (K) Tjs (K) Type

P1 7.503 300.378 299.944 Stable
P2 4.316 330.693 327.941 Unstable
P3 0.839 363.766 358.486 Stable

Figure 2.8: CSTR equilibrium points (Example 2.6.2). At the points P1 (stable), P2

(unstable), and P3 (stable) the heat generated by the reaction equals the heat removed by
the coolant.

The Guide 2.5.1 is used next to control the CSTR at points P1 and P2.

1. Type of system. It is desired to control the temperature Ts and the con-
centration Ca inside the reactor by manipulating the feed �ow rate F and
the coolant �ow rate Fj. Consequently, the system is multi-variable.

Under the DDC approach, the control of the CSTR requires the imple-
mentation of two SISO LADRC loops. The inlet �ow rate controls the
concentration, and the temperature inside the reactor is controlled by the
�ow rate of the coolant circulating through the jacket.
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Figure 2.9: Open-loop response of the CSTR from Example 2.6.2 to a change in one of
the manipulated variables at a time. Upper graph: Ca variation when F decreases from
1.130m3/h to 1.017m3/h. Lower graph: Ts variation when Fj decreases from 1.410m3/h to
1.269m3/h.

2. System characteristics. The upper graph in Figure 2.9 shows the evolution
of the concentration with a decrease in the inlet volumetric �ow rate of
10% of its nominal value when the system operates in the equilibrium
point P1. Likewise, the lower graph shows the change in the reactor
temperature when there is a decrease in the coolant �ow rate of 10% of
its equilibrium value.

First-order LADRC is chosen for each controlled channel such that the
system described by (2.65)-(2.67) is reformulated as

Ċa = f1 + b011F (2.68)

Ṫs = f2 + b022Fj (2.69)

where f1 and f2 represent the unknown dynamics and perturbations of
each loop.

The approximate values for b011 (2.70) and b022 (2.71) are computed ac-
cording to the data from Figure 2.9, assuming that tca and tr are the time
constants of the concentration and temperature responses, respectively.
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b011 =
∆Ca

∆Ftca
=

7.446− 7.503

(1.017− 1.130)(0.923)
= 0.547

kmol

m6
(2.70)

b022 =
∆T

∆Fjtr
=

301.050− 300.378

(1.269− 1.410)(0.590)
= −8.078

K

m3
(2.71)

3. Canonical form. The DDC assumes the conventional canonical form in
each loop, so the LESO must estimate four states: x̂11 and x̂12 correspond
to the estimated concentration and total disturbance of the �rst loop, and
x̂21 and x̂22 represent the temperature and total disturbance of the second
loop, respectively.

The LESO structure is

˙̂x = Ax̂+Bu+ ℓ (y − Cx̂) (2.72)

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 B =


b011 0
0 b022
0 0
0 0

 C =

[
1 0 0 0
0 1 0 0

]
(2.73)

ℓ =


2ωo1 0
0 2ωo2

ωo
2
1 0

0 ωo
2
2

 x̂ =


x̂11

x̂21

x̂12

x̂22

 y =

[
Ca

Ts

]
(2.74)

u =


ωc1(r̃1 − x̂11)− x̂12

b011

ωc2(r̃2x̂21)− x̂22

b022

 (2.75)

It should be clari�ed that the LESO can be implemented as two inde-
pendent state observers, one for each loop. Also, the matrices can be
rearranged as long as the canonical LADRC form is respected. For this
example, the last two states of x̂ are the estimated values of the total
disturbances of each loop. Finally, the gains as a function of the band-
widths (ωc1, ωo1 for the �rst loop and ωc2, ωo2 for the second loop) are
included in ℓ and u since their values are de�ned in the next step.
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(a)

(b)

Figure 2.10: Closed-loop time response of the CSTR (Example 2.6.2) when controlled by
DDC around the stable equilibrium point P1. (a) Concentration of product A. (b) Reactor
temperature.
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4. LADRC tuning. The controller bandwidth of each loop is designed so
that both outputs reach the steady state in approximately 5 h after a
step change in reference. That is, ωc1 = ωc2 = 1 rad/h. The observers
bandwidths are computed by scaling by ten the values of the controller
bandwidths according to ωo1 = ωo2 = 10 rad/h.

5. Performance evaluation. Figure 2.10 shows the evolution of the concen-
tration of product A and the reactor temperature for di�erent reference
values starting from the equilibrium point P1. The outputs follow the
references with the DDC by varying the two �ow rates and reducing the
channel coupling. Random noise was included with variance σ2 = 4×10−6

for the measured concentration and σ2 = 2× 10−4 for the measured tem-
perature.

The operation at unstable point P2 is now considered. In this state,
feedback control is necessary to maintain the process since any variation
in the initial conditions leads the reactor to evolve towards one of the
other two equilibrium points [78]. Figure 2.11 shows the system response
when the disturbance decoupling controller designed for point P1 is used.
The DDC, in this case, maintains the reactor in its desired state and
additionally rejects two types of disturbances: a 10% decrease in the feed
�ow rate from instant t = 8h to instant t = 16h and a 10% increase in
the concentration of product A entering the reactor from instant t = 16h
to instant t = 24h. The �rst is viewed as a loading perturbation, and the
second is a parametric uncertainty. In both cases, the volumetric �ows
evolve to return the reactor to a steady state in the required time.

Finally, for comparison, Figure 2.11 also includes the performance achieved
with a DDC in which a second-order LADRC was implemented in each
loop. The noise was removed to better visualisation of the controllers per-
formance. The parameters were adjusted following Guide 2.5.1, keeping
t98% = 5h. Consequently, b011 = 0.593 kmol/m6, b022 = −13.701K/m3,
ωc1 = ωc2 = 1.6 rad/h, ωo1 = 16 rad/h, and ωo2 = 8 rad/h.

As can be seen in Figure 2.11, increasing the controller order reduces
the maximum deviation occurring at the outputs with a slightly more
considerable total variation in the control signals than in the �rst-order
DDC. The above is re�ected in the integral of absolute value of error
reported in Table 2.7 for the two said cases; case 1: variation of the feed
�ow rate and case 2: variation of the concentration of product A entering
the tank.
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(a)

(b)

Figure 2.11: Closed-loop time response of the CSTR (Example 2.6.2) when controlled by
DDC around the unstable equilibrium point P2. Feed �ow rate is decreased by 10% from
t = 8h to t = 16h and feed concentration is increased by 10% from t = 16h to t = 24h
(a) Concentration of product A. (b) Reactor temperature.
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Table 2.7: Integral of absolute value of error IAE =
∫ ts
0

|e(t)|dt for the disturbance
rejection performance of DDC when controlling a CSTR (Example 2.6.2).

Case 1 Case 2

IAECa
IAETs

IAECa
IAETs

n = 1 0.014 0.034 0.038 0.228
n = 2 0.007 0.014 0.019 0.405

End of example 2.6.2 ■

As this chapter exposed, ADRC is a control algorithm that estimates and can-
cels unknown di�erences between the controlled plant and its assumed nominal
model in real-time. These di�erences may include non-modelled dynamics, un-
certainty and other perturbations. In concluding remarks

Conventional ADRC does not require a precise model to control a linear or
non-linear system. Only the dominant dynamics order and the critical gain
are necessary; speci�cations that may be approximated from the input and
output signals analysis. The ADRC algorithm generally induces the system
to behave as a cascaded integrator of order n governed by the designed
control law.

ADRC is an alternative technology for the control of processes with chal-
lenging dynamics. The bandwidth parameterization is a starting point for
tuning its gains, and new methodologies for parameter selection can be de-
veloped from here. Moreover, if ADRC is combined with advanced control
techniques, new questions related to the loop structure arise, becoming new
research challenges.
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Chapter 3

Tuning Rules for Active

Disturbance Rejection

Controllers via Multi-objective

Optimisation

This chapter introduces a set of tuning rules for the design
of linear active disturbance rejection controllers, which o�er three
di�erent levels of compromise between disturbance rejection and
robustness. These tuning rules are the result of a curve �tting
performed on the data obtained from a Multi-objective Optimisa-
tion Design (MOOD) procedure applied to the control of batch pro-
cesses, and they are intended as a tool for designers who seek to
implement LADRC by considering the load disturbance response of
plants whose behaviour is approximated by a general �rst-order sys-
tem with delay. The �rst section presents the main highlights of the
proposed tuning method. The second section recalls the closed-loop
parameterization employed in the tuning process. The third sec-
tion shows the pertinence of the MOOD procedure for the LADRC
tuning task. The fourth section describes the MOOD procedure per-
formed to collect the data. The �fth section presents the data �tting
and the resulting LADRC tuning rules. Finally, the sixth and sev-
enth sections close the chapter by validating the proposed tuning
method on illustrative examples and the control of a thermal pro-
cess, respectively.
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3.1 Introduction

This chapter provides a set of tuning rules for the second-order LADRC pa-
rameters computation applicable to the control of linear or non-linear sys-
tems whose dynamics can be approximated by a First-Order Plus Dead Time
(FOPDT) model. The methodology used to derive the rules consisted of
three phases. First, a MOOD procedure was applied to control a group of
parametrised nominal plants to obtain a set of Pareto optimal solutions repre-
senting controllers with a compromise between the load disturbance response
and the closed-loop robustness. Next, the LADRC parameters were �tted to
functions of the normalised delay, and �nally, these functions were scaled to
make them suitable for the control of a general �rst-order system with delay.

The tuning rules presented here have the following advantages:

� They can be used to control systems approximated by a FOPDT model
because only the static gain, apparent time constant and apparent delay
are required as prior information. The FOPDT model is also known as the
three-parameter model and is widely accepted in the control of industrial
processes.

� The LADRC main parameters, this is, the nominal value of control gain,
the controller bandwidth, and the observer bandwidth, are automatically
computed through the substitution of the model parameters in the given
formulae.

� The designers can select a robustness quality (low, medium or high) for
the computation of the parameters, which allows their involvement as
a decision-maker but eliminates the time and complexity of performing
an entire optimisation process for the controller design. This is possible
because robustness was included as a design objective in the optimisation
process formulation, in contrast with other approaches from literature
where robustness is imposed just as a constraint. Di�erent Pareto optimal
solutions were also used for the derivation of the rules.

� The parameters computed through the proposed rules ensure closed-loop
stability and a reasonable compromise between disturbance rejection and
loop robustness.

� The designer could use the rules to obtain intervals for each LADRC pa-
rameter and adjust the selection according to the preferred performance.
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3.2 Control loop parameterization

The control loop parameterization seeks a set of parameters that allows the
computation of the complete set of LADRC gains. In addition, if a LADRC
is designed to control a nominal system (e.g., a nominal FOPDT system), the
loop parameterization also allows the parameters scaling to make the controller
suitable for other systems of the same nature.

Consider the following theorem related to the scaling and bandwidth parame-
terization of the LADRC loop.

Theorem 3.2.1 [23] Assuming Ga(s) is a stabilising controller for plant Gn(s)
and the loop gain crossover frequency is ωc, then the controller

Ga(s) =
1

k
Ga

(
s

ωp

)
(3.1)

will stabilise the plant Gn(s) = kGn(s/ωp).

The new loop gain L(s) = Gn(s)Ga(s) will have a crossover frequency ωcωp

and the same stability margins of L(s) = Gn(s)Ga(s).

In equation (3.1), k represents the gain scaling of plant kGn(s) respect to Gn(s)
and ωp is the frequency scaling of plant Gn(s/ωp) respect to Gn(s).

Let GA(s) be the transfer function obtained by multiplying the direct loop
transfer function GC(s) (2.20) and the feedback transfer function GF (s) (2.21).
This is,

GA(s) =
(k1ℓ1 + k2ℓ2 + ℓ3)s

2 + (k2ℓ3 + k1ℓ2)s+ k1ℓ3
b0(s3 + (ℓ1 + k2)s2 + (ℓ2 + k2ℓ1 + k1)s)

. (3.2)

Equation (3.2) is a function of b0, the observer gains Li, and the controller
gains ki. With the bandwidth parameterization from (2.37) and (2.42), (3.2)
becomes

GA(s) =
(3ω2

cωo + 6ωcω
2
o + ω3

o) s
2 + (2ωcω

3
o + 3ω2

cω
2
o) s+ ω2

cω
3
o

b0 [s3 + (3ωo + 2ωc) s2 + (3ω2
o + 6ωcωo + ω2

c ) s]
. (3.3)
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Therefore, by proper selection of b0, ωc and ωo, the second-order LADRC
estimates and rejects the load disturbances acting on the loop.

Consider now that the process to be controlled is the FOPDT system

G(s) =
K

Ts+ 1
e−ls, (3.4)

whereK is the static gain, T is the apparent time constant and l is the apparent
delay or dead time [81].

If Gn(s) is considered as a nominal FOPDT plant, then, following the scaling
and bandwidth parameterization theorem [see (3.1)], the model (3.4) can be
treated as a scaled version of (3.5) in which k = K, ωp = 1/T and Θ = l/T ,
as shown in (3.6).

Gn(s) =
1

s+ 1
e−Θs (3.5)

G(s) = K

 1
s

1/T
+ 1

 e−
l
T

s
1/T . (3.6)

Hence, if GA(s) from (3.3) is a stabilising controller for (3.5), a stabilising
controller GA(s) exists for the general FOPDT system (3.4).

According to (3.1),

GA(s) =
1

k
× (3.7)
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Substituting k = K and ωp = 1/T in (3.7) leads to

GA(s) =
1

K
× (3.8)

T 2 (3ω2
cωo + 6ωcω

2
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o) s
2 + T (2ωcω
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cω
3
o

b0 [T 3s3 + T 2 (3ωo + 2ωc) s2 + T (3ω2
o + 6ωcωo + ω2

c ) s]
,

which after some mathematical manipulation can be rewritten as

GA(s) =
T 2

Kb0
× (3.9)(
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Comparing the terms in (3.3) and (3.9), it is deduced that the scaled controller
GA(s) corresponds to a second-order LADRC with the parameter set

b0 =
Kb0
T 2

ωc =
ωc

T
ωo =

ωo

T
. (3.10)

In conclusion, if a stable second-order LADRC with parameters b0, ωc and
ωo is designed for the nominal system (3.5), then the scaled LADRC with
parameters b0, ωc and ωo is suitable for the control of the general FOPDT
plant (3.4).

3.3 Multi-objective optimisation design procedure

When designing a controller, the tuning process or solution obtained is strongly
dependent on the desired performance for the closed-loop. The behaviour of
the output, control action and any other signals of interest is usually measured
through some performance indices or design objectives. If these indices are
wanted to be minimised or maximised, then an optimisation statement can be
formulated.
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For each minimised or maximised index, a particular solution is obtained.
Therefore, if di�erent design objectives are optimised simultaneously, multiple
solutions can be suitable for tuning the same controller, not implying that
one is better than the other but suggesting that a solution can be selected
with a particular trade-o� among the aforementioned con�icting objectives.
In this case, if the designer is interested, for example, in the simultaneous
minimisation of two performance indices, a MOOD procedure could aid in the
tuning problem.

A MOOD procedure comprises three fundamental steps [77].

1. Multi-objective Problem (MOP) de�nition: The design objectives of in-
terest are stated as well as the decision variables and the possible con-
straints.

2. Optimisation Process (OP): An algorithm is selected to search throughout
the decision space for the approximations of the optimal solutions (Pareto
Set) and their corresponding objective values (Pareto Front). This algo-
rithm should ful�l some desirable characteristics to provide the designer
with valuable solutions.

3. Multi-criteria Decision Making (MCDM): Specialized visualisation tech-
niques are employed to analyse the Pareto Front and Pareto Set approxi-
mations. The best solution is the one that meets the designer preferences.

As an example, Figure 3.1 illustrates the concepts of Pareto dominance, Pareto
Front and Pareto Set for the bi-objective optimisation problem minθ J(θ) =
[J1(θ), J2(θ)] with decision variables θ = [θ1, θ2]. The decision vectors θ1, ..., θ5

dominate the vectors θ6 and θ7 because the objective vectors J(θ1), ..., J(θ5)
are not worse than J(θ6), J(θ7) in both objectives and are better in at least
one.

To explore the suitability of the multi-objective optimisation approach for
the LADRC tuning problem, the responses to a unit step load disturbance
(r̃ = 0, d = 1) and to a unit step setpoint (r̃ = 1, d = 0) of the closed-loop of
Figure 2.2, with G(s) as (3.11), were obtained for di�erent combinations of the
three LADRC tuning parameters in the search space: b0 ∈ [5, 35], ωc ∈ [1, 25]
rad/s, ωo ∈ [1, 25] rad/s, and following a grid method with ∆b0 = 1 and
∆ωo = ∆ωc = 0.2 rad/s.

Ge(s) =
1

s+ 1
e−s (3.11)
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Pareto Set 

approximation

Decision

search space

Pareto Front 

approximation

Dominated

solutions

Objective space

Figure 3.1: Pareto dominance, Pareto Front and Pareto set in a bi-dimensional case. There
are no solution vectors dominating θ1, ..., θ5 so these solutions are the approximation of the
Pareto Set and their corresponding objective vectors J(θ1), ..., J(θ5) are the approximation
of the Pareto Front.

Initially, the LADRC stability region was analysed. Figure 3.2 shows the pairs
(ωc, ωo) for the nominal values of the critical gain that produce a stable output
in system (3.11). From this �gure, it is noted that as the nominal value of the
critical gain increases, more pairs appear in the stability region, representing
more possible combinations for the LADRC tuning. In other words, a stability
bound exists that moves in the increasing direction as a higher value of b0 is
selected. Figure 3.2 also shows the closed-loop response of Ge(s) when the
LADRC is tuned with three di�erent sets of parameters for each value of b0:
one of the triads was chosen from the stable area, and the remaining two
correspond to LADRC parameters on the stability bound. As can be seen, the
triads on the stability bounds produce signi�cant oscillations in the output.

Once the LADRC stability region was obtained, interest was put in the per-
formance computed with those combinations of parameters. Particularly, the
integral of time weighted squared error (ITSE) for load disturbance rejection,
the robustness, and the total variation of control action (TV) were de�ned as
design objectives as stated in Table 3.1.

Closed-loop robustness is usually measured through the maximum peak MS of
the sensitivity function S(jω) and the maximum peak MT of the complemen-
tary sensitivity function T (jω), such that 1.3 < MS < 2 and MT < 1.25 [4].
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Figure 3.2: Closed-loop stability regions forGe(s). Each point in the shaded area represents
a combination of parameters producing a stable output. For each value of b0 ∈ [5, 35] pairs
(ωc, ωo) exist that produce a stable output. The stable (ωc, ωo) for b0 = 5, 15, 35 are plotted
as examples to illustrate the shape of the stability regions (left column). Additionally, the
closed-loop responses of Ge(s) when controlled with the LADRC tuned with selected triads
from the stability region and stability bound are presented (right column).
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This thesis adopts a robustness measure denoted by ε as robustness index.
It is de�ned in [82] as the structured singular value of matrix M from an
M −∆ con�guration with a diagonal block structure, and it has been previ-
ously used in [32] to quantify the robust stability of the closed-loop system
with the LADRC. As de�ned in Table 3.1, the ε index is computed as the
maximum peak of the sum of the magnitudes of the frequency responses of the
sensitivity function and the complementary sensitivity function. The lower the
value of ε, the more robust the closed-loop system.

Table 3.1: Design objectives for the performance evaluation of the LADRC.

Index/Design Objective De�nition

Integral of time weighted squared error ITSE =

t98%∫
t=0

t · (r̃(t)− y(t))2 dt

Total variation of the control action TV =

t98%∑
i=1

|ui+1 − ui|

Mixed robustness ε = sup
ω

(|S(jω)|+ |T (jω)|)

A �rst look at the minimum ITSE value inside the stability region shows that
ITSEmin1 = 0.82 for the solution b01 = 17, ωc1 = 1.8 rad/s, ωo1 = 23.6 rad/s.
However, the associated robustness of ε1 = 5.93 is regarded as poor. If the
constraint ε ≤ 3 is imposed on the robustness index, a new solution b02 = 24,
ωc2 = 2 rad/s, ωo2 = 21 rad/s is found with ITSEmin2 = 1.13 and corresponding
robustness ε2 = 2.99.

On the other hand, a search for the most robust controller results in the param-
eters b03 = 15, ωc3 = 19.8 rad/s, ωo3 = 1 rad/s, which produce εmin3 = 1.38,
but with an extremely high ITSE value of ITSE3 = 113.51. Also, if the ITSE
is constrained, such as ITSE ≤ 2, then the new solution is b04 = 19, ωc4 = 21
rad/s, ωo4 = 2.8 rad/s with a robustness εmin4 = 2.02 and a time performance
index ITSE4 = 1.99.

Table 3.2 comprises the solutions and performance comparison discussed above.
Some additional indices such as MS, MT, total variation of control action for
disturbance rejection (TVd), and total variation of control action for setpoint
following (TVs) are included as complementary information. Notice that each
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of the LADRC sets of parameters can be considered as optimal only for the
corresponding minimised index. For example, the solution (b02, ωc2, ωo2) is
optimal concerning the ITSE, but the robustness obtained is the maximum
allowed according to the constraint.

Table 3.2: Comparison of LADRC performance for control of Ge(s).

Desired
performance

LADRC
parameters MS MT ε ITSE TVd TVs

min ITSE
b01 = 17
ωc1 = 1.8
ωo1 = 23.6

3.45 2.48 5.93 0.82 3.14 2.50

min ITSE
ε ≤ 3

b02 = 24
ωc2 = 2
ωo2 = 21

1.98 1.16 2.99 1.13 1.40 1.32

min ε
b03 = 15
ωc3 = 19.8
ωo3 = 1

1.19 1.00 1.38 113.51 1.02 33.87

min ε
ITSE ≤ 2

b04 = 19
ωc4 = 21
ωo4 = 2.8

1.50 1.01 2.02 1.99 1.10 29.25

In addition to the solutions reported in Table 3.2, there are other sets of
LADRC parameters within the stability region that o�er a compromise be-
tween disturbance rejection, quanti�ed by ITSE, and robustness. To search for
these alternatives, the Pareto dominance de�nition was applied over the total
of parameters combinations, restricting the robustness measure to the range
ε ∈ [2, 3], which represents a maximum sensitivity in the range MS ∈ [1.3, 2]
and a maximum complementary sensitivity in the interval MT ∈ [1, 1.4].

Figure 3.3a shows the Pareto Front approximation for the simultaneous min-
imisation of ITSE for disturbance rejection and robustness. As expected, the
ITSE can not be improved (decreased) without weakening the robustness. Like-
wise, a more robust closed-loop system is possible as long as the ITSE value
is allowed to increase. The solutions (b02, ωc2, ωo2) and (b04, ωc4, ωo4) from Ta-
ble 3.2 would be located around the upper and bottom ends of the Pareto
Front approximation, respectively.
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(a) (b)

(c) (d)

Figure 3.3: Pareto Fronts and Pareto Sets approximations for simultaneous minimisation
of two design objectives J1 and J2. (a) Pareto Front approximation JP1 = minθ [ITSE, ε].
(b) Pareto Front approximation JP2 = minθ [ITSE,TVd]. (c) Pareto Front approximation
JP3 = minθ [ITSE,TVs]. (d) Pareto Sets approximations ΘP1, ΘP2, ΘP3 for the three said
cases.

From another point of view, Figure 3.3b is the Pareto Front approximation for
minimisation of ITSE and TV for disturbance rejection (TVd), and Figure 3.3c
is the approximation of the Pareto Front when the ITSE for disturbance re-
jection is minimised simultaneously with the TV of the unit setpoint (TVs).
These �gures show that there is also a compromise between the ITSE perfor-
mance and the control e�orts.

Finally, the Pareto Sets approximations for the three said cases are presented
in Figure 3.3d. Notice that the optimal values for the nominal critical gain are
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higher than b0 = 1, which would be the nominal value (b0 = K/T ) computed
from the model (3.11), as is commonly suggested in the literature. Moreover, in
the solutions with a compromise between ITSE and robustness, the controller
bandwidth can be selected to be greater than the observer bandwidth (ωc > ωo)
or vice versa (ωc < ωo). Nevertheless, for a compromise between ITSE and the
total variation of the control action, a selection of parameters in which ωc < ωo

seems more appropriate.

The case study addressed in this section gave some insight into the LADRC
performance in controlling a FOPDT system. In summary, there exists a
trade-o� between the disturbance rejection performance of the LADRC and
its robustness. The LADRC parameters that produce this compromise are
Pareto optimal and can be searched through an optimisation process where
the objectives related to disturbance rejection and robustness are minimised
simultaneously. Besides, the de�nition of constraints over the objective and
search spaces could drive the optimisation process to solutions that meet some
desired additional performance. If the aforementioned optimisation procedure
is applied over a group of plants of the same kind, then the Pareto optimal
alternatives could be used to derive tuning rules re�ecting the desired trade-o�.

3.4 LADRC tuning by multi-objective optimisation

For the tuning problem of the second-order LADRC related to the control of
FOPDT systems, a MOOD procedure was applied to a group of nominal plants
in the form of (3.5), which was obtained by varying the nominal delay from
Θ = 0.5 to Θ = 5 with a change of ∆Θ = 0.1.

The FOPDT systems can be characterised based on the normalised dead time
τ = l/(l+ T ) with 0 ≤ τ ≤ 1 [83]. Particularly, a system is lag-dominated if τ
is small, balanced if τ is around 0.5 and delay-dominated if τ is large [84]. In
terms of the nominal delay, τ can be written as

τ =
Θ

Θ+ 1
. (3.12)

Therefore, the MOOD procedure was applied to control plants with τ rang-
ing from 0.09 to 0.83, including lag-dominated, balance, and delay-dominated
processes. The MOOD results were used to �t the optimal solutions for the
LADRC parameters, and the �tting curves were scaled to obtain the tuning
rules as functions of the known FOPDT parameters.
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3.4.1 Multi-objective problem de�nition

The �rst stage of the MOOD procedure implies de�ning the decision space,
the objective space, and the possible constraints. The decision variables are
selected from the parametric controller; the objective space is related to the
desired performance, and constraints are the design limitations imposed on the
overall concept.

The plant to be controlled corresponds to the FOPDT nominal model (3.5).
Note that any controller designed for this plant can be scaled afterwards ac-
cording to (3.10).

The scaling for observer bandwidth

ωo = koωc, ko > 1, (3.13)

was also adopted, which indicates that LADRC parameters meeting the rela-
tion ωc < ωo are preferred. This additional scaling is commonly suggested in
the literature (e.g., in [23], [30], [31]).

Consider the transfer function (3.14), obtained by substituting (3.13) in (3.3).

GA(s) =
(3koω

3
c + 6k2

oω
3
c + k3

oω
3
c ) s

2 + (2k3
oω

4
c + 3k2

oω
4
c ) s+ k3

oω
5
c

b0 [s3 + (3koωc + 2ωc) s2 + (3k2
oω

2
c + 6koω2

c + ω2
c ) s]

. (3.14)

Therefore, choosing a value of ko = 10, the corresponding controller to tune is

GA(s) =
1630ω3

cs
2 + 2300ω4

cs+ 1000ω5
c

b0 (s3 + 32ωcs2 + 361ω2
cs)

, (3.15)

with the decision variables

θ = [b0, ωc]. (3.16)

Two design objectives were selected: the ITSE for the response to a unit step
load disturbance and the mixed robustness index ε. Thus, the complete multi-
objective problem is stated as (3.17).
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minθ J(θ) = [J1(θ), J2(θ)]

J1(θ) = ITSE(θ)

J2(θ) = ε(θ)

θ = [b0, ωc]

subject to (3.17)

J1(θ) ≤ ITSESIMC

2 ≤ J2(θ) ≤ 3

1 ≤ b0 ≤ 200

0.1 ≤ ωc ≤ 20

Stable in closed-loop

The constraints on the design objectives were selected considering the perfor-
mances o�ered over the group of nominal plants by classical PID tuning rules
as IMC [85], SIMC [86], and AMIGO [87], and the LADRC tuning method
from [32]. The upper limit of J1(θ) was set as the ITSE value obtained with
the SIMC approach such that the desired closed-loop time constant was equal
to the apparent delay l. The SIMC tuning produced the highest ITSE for each
plant compared to the LADRC from [32] and the other PID controllers.

Similarly, the lower limit of J2(θ) approximates the robustness obtained with
the AMIGO tuning rules, and its upper limit is approximately the robustness
computed with the IMC method. The other controllers o�er a robustness
measure between these limits for all plants. Moreover, the ε(θ) limits are
related to the commonly adopted limits for maximum sensitivity and maximum
complementary sensitivity.

The search space for decision variables was speci�ed following the results from
section 3.3, where it was shown that increasing b0 contributes to a more ex-
tensive stability region in terms of the bandwidths and, consequently, lower
performance indices can be computed.

The MOOD procedure was implemented in Matlab
®, so the Control System

Toolbox function stepinfo was used to compute the step response character-
istics of the closed-loop, including its stability. However, the stability of the
parametrised control loop can be analysed in terms of its frequency response,
as it is presented in [88] and [31].
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The closed-loop characteristic equation of Figure 2.2 with Gn(s) as the con-
trolled plant is 1 +GC(s)GF (s)Gn(s) = 0, which can be rewritten in the form

1 +GA(s)Gn0(s)e
−Θs = 0, (3.18)

where GA(s) is the parametrised second-order LADRC from (3.15), Gn0(s) is
the delay-free transfer function of the controlled plant, and e−Θs represents the
nominal delay. Multiplying (3.18) by eΘs and reorganizing terms results in

GA(s)Gn0(s) = −eΘs. (3.19)

Renaming GA(s)Gn0(s) as H(s), the following lemma applies

Lemma 3.4.1 [89] Under the condition that n > m, being n the denominator
degree of H(s) and m the numerator degree of H(s), the closed-loop system is
stable if one of the following conditions holds

(i) H(s) is stable and the equation |H(jω)| = 1 has no positive real roots.

(ii) There exist a positive real root ω = ωi of equation |H(jω)| = 1 and the
inequality φ (H(jωi)) > φ (−ejωiΘ) holds, with φ (H(jωi)) and φ (−ejωiΘ)
as the arguments of H(s) and −eΘs at ω = ωi, respectively. This means
that, at the frequency ω = ωi, the magnitude of H(jω) equals the magni-
tude of −ejωiΘ and the phase of H(jω) is larger than the phase of −ejωiΘ.

For the parametrised control loop, H(s) is as (3.20). Therefore, for each plant
with nominal delay Θ and given LADRC parameters b0, ωc, condition (i) of
Lemma 3.4.1 is veri�ed by solving (3.21).

H(s) =
1630ω3

cs
2 + 2300ω4

cs+ 1000ω5
c

b0 (s3 + 32ωcs2 + 361ω2
cs) (s+ 1)

(3.20)

∣∣∣∣ 1000ω5
c − 1630ω3

cω
2
i + j2300ω4

cωi

b0 (ω4
i − 361ω2

cω
2
i − 32ωcω2

i ) + jb0 (361ω2
cωi − 32ωcω3

i − ω3
i )

∣∣∣∣ = 1 (3.21)

If the frequency ωi exists, the phases φ (H(jωi)) and φ (−ejωiΘ) can be com-
puted and the condition (ii) of Lemma 3.4.1 can be validated through (3.22).
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arctan

(
2300ω4

cωi

1000ω5
c − 1630ω3

cω
2
i

)
− arctan

(
361ω2

cωi − 32ωcω
3
i − ω3

i

ω4
i − 361ω2

cω
2
i − 32ωcω2

i

)
> Θωi − π (3.22)

3.4.2 Optimisation process

The evolutionary multi-objective algorithm ϵ↗−MOGA [90] was used to per-
form the optimisation process. This algorithm uses the epsilon-dominance
concept to obtain Pareto Front and Pareto Set approximations with limited
memory resources, preserving the Front diversity by adjusting its limits dy-
namically [91]. The algorithm parameters were set to 200 individuals for the
main population, eight individuals for the auxiliary population, 1000 genera-
tions and 1000 divisions per dimension.

The Pareto Fronts and Pareto Sets approximations of each of the nominal
plants are presented in Figure 3.4 and Figure 3.5. They have been plotted
separately for plants with τ ≤ 0.5 in Figure 3.4 and for plants with τ > 0.5
in Figure 3.5. The above to better illustrate that the range of the decision
variables for plants with τ ≤ 0.5 is wider than for plants with τ > 0.5. For
instance, a robustness measure between 2 and 3 can be obtained when con-
trolling the plant with τ = 0.09 if the LADRC parameters are selected in the
ranges b0 ∈ [86, 115] and ωc ∈ [11.6, 6.6] (see Figure 3.4b), whereas the same
variation in robustness for the plant with τ = 0.833 is achieved with a con-
troller tuned such that b0 ∈ [6.2, 9.2] and ωc = [0.73, 0.71] (see Figure 3.5b).
Another essential feature is the decreasing trend in the decision variables as the
normalised delay increases. However, the rate of change in both parameters
tends to be greater for plants with τ ≤ 0.5 than for plants with τ > 0.5.

3.4.3 Multi-criteria decision making

Once the Pareto Fronts and Pareto Sets approximations have been obtained,
the last step in the MOOD procedure is the selection of the solution or candi-
date solutions preferred by the designer. A �nal choice is needed even if most
of the preferences were considered in the optimisation process. Depending on
the number of design objectives, the visualisation and graphical interpretation
of the Pareto Front approximation is crucial. For the bi-objective problem, a
two-dimensional scatter plot is su�cient for data visualization.
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(a) Pareto Fronts approximations

(b) Pareto Sets approximations

Figure 3.4: Results from the optimisation process for the group of nominal plants with
τ ≤ 0.5. Pareto Sets approximations show a wide range of variation in the LADRC parame-
ters with larger rates of change than those of the LADRC parameters obtained in the Pareto
Sets approximations for plants with τ > 0.5 (see Figure 3.5b)

65



Chapter 3. Tuning Rules for Active Disturbance Rejection Controllers

(a) Pareto Fronts approximations

(b) Pareto Sets approximations

Figure 3.5: Results from the optimisation process for the group of nominal plants with
τ > 0.5. Pareto Sets approximations show a narrow range of variation in the LADRC pa-
rameters with lower rates of change than those of the LADRC parameters obtained in the
Pareto Sets approximations for plants with τ ≤ 0.5 (see Figure 3.4b)
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According to the results from the optimisation process, the following aspects
were considered for the decision-making stage.

� For data processing, two main groups were de�ned: Group 1 containing
data related to plants with a normalised delay τ ≤ 0.5 and Group 2 with
data belonging to plants with τ > 0.5.

� Three design alternatives distributed along the front were selected from
each Pareto Front approximation.

� For Group 1, the selection was made using the entire Pareto Front ap-
proximation.

� For Group 2, the selection was made by limiting the upper end of the front
such that the highest value for ε(θ) is 2.5. This criterion is based on the
fact that the di�culty in controlling a process increases as its normalised
delay increases [83]. Thus, lower values of ε(θ) are preferred for this group
of plants, which correspond to more robust closed-loop systems.

� Selected solutions are compared in the objective space with other alter-
natives related to PID and LADRC tuning rules.

Consider the �rst group of nominal plants (Group 1 ). To select the three
desired design alternatives, let the Pareto Fronts to be divided into two regions
according to bounds imposed on the mixed robustness measure. The upper
region comprises solutions for which 2.5 ≤ ε(θ) ≤ 3 and the lower region
includes those with 2 ≤ ε(θ) < 2.5.

On each region, a point corresponding to the Nash solution was calculated by
solving the problem [92]

max
(J1(θ),J2(θ))

(
J1

(
θ2
)
− J1 (θ)

) (
J2

(
θ1
)
− J2 (θ)

)
, (3.23)

where θ1 is the optimal vector (minimum) of the �rst design objective and
θ2 is the vector that minimises the second cost function. The Nash solution
(J1 (θ) , J2 (θ)) is considered a fair selection because it dominates the larger
number of points in the rectangular area (J1(θ

2)− J1(θ))(J2(θ
1)− J2(θ)) [92].

The third solution for Group 1 was selected as the midpoint of the Pareto
Fronts. This is, the solution meeting the condition ε(θ) = 2.5.
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(a) τ = 0.5

(b) τ = 0.75

Figure 3.6: Location of the selected solutions into the Pareto Fronts approximations taking
as example two nominal plants. (a) For plants in Group 1 , selected solutions are the Nash
solution from the upper region NS1, the midpoint MP, and the Nash solution from the lower
region NS2. (b) For plants in Group 2 the selected solutions are the upper end UP, the Nash
solution NS, and the bottom end BP.
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For the second group of plants (Group 2 ), the three selected solutions corre-
spond to the two ends of the front and the Nash solution.

Figure 3.6 illustrates the concepts explained above and solutions selected, tak-
ing as an example the Pareto Fronts approximations of the nominal plants with
τ = 0.5 (Group 1 ) and τ = 0.75 (Group 2 ).

The Pareto Fronts approximations and selected solutions when controlling the
nominal plants with τ ≤ 0.5 and τ > 0.5 are presented in Figure 3.7 and Fig-
ure 3.8, respectively. For comparison purposes, the performances obtained with
the second-order LADRC tuned with the rules from [32] (tagged as ADRCZ)
are shown for both groups. The formulae corresponding to this approach are
listed in Table 3.3.

Table 3.3: LADRC tuning rules from literature applicable to the control of FOPDT plants
in the form of (3.4). The LADRC performance points tagged in Figure 3.7 and Figure 3.8
as ADRCZ were obtained by tuning the controller (3.3) with the rules from [32]. The tuning
method from [30] is used for comparison section 4.1.1.

Tuning method Tuning rules

LADRC with robustness constraint [32]

λ = 1

b0 = λ
K

T

(
5.779

l
+

6.041

T

)
ωc =

3.841

l
+

0.297

T

ωo =
1.172

l
+

3.742

T

LADRC for high-order processes* [30]

Tuning parameter, k
* Applicable to FOPDT plants with l

T > 1 after its

approximation to K̃

/(
T̃ s + 1

)n

b0 =
K̃

n2T̃ 2

(
6454.1

k3
− 1427.26

k2

)

ωc =
10

knT̃

ωo =
100

knT̃
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Figure 3.7: Pareto Fronts approximations and selected solutions for controlling nominal plants with normalised delay τ ≤ 0.5.
The performances obtained with the PID tuning methods IMC, SIMC, AMIGO, and the rules from [92] (ONS), as well as the
LADRC tuning rules from [32] (ADRCZ), are included for comparison. The information related to the same plant is plotted in
the same colour.
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Figure 3.8: Pareto Fronts approximations and selected solutions for controlling nominal plants with normalised delay τ > 0.5.
The performances obtained with the PID tuning method AMIGO and the LADRC tuning rules from [32] (ADRCZ) are included
for comparison. The SIMC points have been excluded for proper visualisation because the Pareto optimal solutions always
dominate these alternatives. The information related to the same plant is plotted in the same colour.
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Likewise, the performances obtained with the PID tuning methods IMC, SIMC,
AMIGO, and the rules from [92] (labelled as ONS) are also included for Group
1. For Group 2, the Pareto alternatives are compared with the SIMC and
AMIGO approaches.

The Table 3.4 summarises the formulae used to tune the PID controllers and
the design considerations that were taken into account over the two-degree-of-
freedom con�guration

C(s) = Kc

(
b+

1

Tis
+ c

Tds
Td

10
s+ 1

)
R(s)

−Kc

(
1 +

1

Tis
+

Tds
Td

10
s+ 1

)
Y (s), (3.24)

where R(s) is the Laplace transform of the reference, Y (s) the Laplace trans-
form of the output, Kc the proportional gain, Ti the integral time, Td the
derivative time, and b and c are setpoint weights.

From Figure 3.7 and Figure 3.8, the following remarks are derived. Notice
that the Fronts move to the right in the objective space as the normalised
delay increases.

� The performances obtained with the PID controllers tuned by the IMC,
SIMC and the rules from [92] (ONS) are in the dominance area of the
Pareto Fronts belonging to plants from Group 1. Notably, the SIMC
points are dominated by the Pareto optimal solutions in all cases.

� For plants from Group 2, the performances obtained with the AMIGO
tuning method are outside the Pareto Fronts approximations due to the
constraint imposed on ε(θ). However, the alternative solutions corre-
sponding to the bottom end of the fronts have better disturbance rejection
with a reasonable level of robustness.

� The performances obtained with the tuning rules from [32] (ADRCZ) are
in the dominance area of the approximated Pareto Fronts for the entire
set of nominal plants. Even though the ADRCZ points are the results
of �tting curves, they tend to move away from the fronts as τ increases,
highlighting their suboptimal feature.
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3.4 LADRC tuning by multi-objective optimisation

Table 3.4: PID tuning rules from literature for the control of FOPDT plants in the form
of (3.4). The PID performance points plotted in Figure 3.7 and Figure 3.8 were obtained by
tuning the controller (3.24) with these rules.

Tuning method Tuning rules

IMC [85]

λ = 0.25 l as in [32]

b = 1, c = 1

Ti = T +
l2

2(λ+ l)

Kc =
Ti

K(λ+ l)

Td =
l2

2(λ+ l)

[
1− l

3Ti

]

SIMC [86]

Tc = l

b = 1

Ti =

{
min {T, 4(Tc + l)} , τ < 0.7

min
{
T + l

3
, 4(Tc + l)

}
, τ ≥ 0.7

Kc =


T

K(Tc + l)
, τ < 0.7

T + l
3

K(Tc + l)
, τ ≥ 0.7

AMIGO [87]

b =

{
0, τ ≤ 0.5
1, τ > 0.5

c = 0

Ti = l

(
0.4 l + 0.8T

l + 0.1T

)
Kc =

1

K

(
0.2 + 0.45

T

l

)
Td =

0.5 l T

0.3 l + T

Optimal-Nash [92]

0.1 ≤ l

T
≤ 2

b = 1, c = 1

Ti = T

[
−0.01197

(
l

T

)2

+ 0.5683
l

T
+ 0.4343

]

Kc =
1

K

[
0.233

(
l

T

)0.4582

+ 0.7349

(
l

T

)−0.9348
]

Td = T

[
−0.1206

(
l

T

)2

+ 0.5743
l

T
− 0.01306

]
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A set of Pareto optimal solutions with a trade-o� between disturbance rejec-
tion and robustness was obtained with the MOOD procedure developed for
the tuning problem of the second-order LADRC applied to FOPDT nominal
systems. The distribution of these solutions in the decision search space leads
to di�erent �tting curves depending on the preferred level of compromise be-
tween objectives. This idea is the core of the �tting procedure presented in
the next section.

3.5 Tuning rules for LADRC

The solutions obtained from the MOOD procedure correspond to the Pareto
optimal LADRC parameters suitable to control FOPDT plants in the form of
(3.5). These data were initially �tted to functions of the normalised delay τ .
Afterwards, the resulting expressions were scaled to obtain the LADRC tuning
rules applicable to the control of the general FOPDT system (3.4).

Data were �tted separately for the two previously de�ned groups of plants.
This was mainly because of the behaviour observed in the rate of change of the
parameters concerning the variation in the normalised delay (see Figure 3.4b,
Figure 3.5b). Additionally, in each group, the three optimal solutions selected
were used to �t three curves related to di�erent levels of robustness, taking τ
as independent variable. These levels of robustness were de�ned as follows.

� Low level (εlow): The LADRC tuned by this approximation will o�er
robustness of about 2.7 for processes with τ ≤ 0.5 and about 2.5 for
plants with τ > 0.5. For Group 1, the tuning rule was approximated
using the Nash solutions of the upper regions of the Pareto Fronts (NS1).
For Group 2, the curve was �tted using the upper ends of the Fronts (UP).

� Medium level (εmed): Processes with τ ≤ 0.5 controlled by LADRC tuned
according to this formulae will have robustness of approximately 2.5. In
the case of plants with τ > 0.5, the robustness of the closed-loop will
be about 2.3. The midpoints of the Pareto Fronts (MP) were used to
approximate the tuning function in the �rst group of systems and the
Nash solutions (NS) were used for the second group.

� High level (εhigh): The highest robustness of the closed-loop will be ap-
proximately 2.2 for systems with τ ≤ 0.5 and 2.0 for plants meeting
τ > 0.5. In Group 1 the approximation was made using the Nash solu-
tions of the lower regions of the Pareto Fronts (NS2), and in Group 2, the
bottom ends of the Fronts (BP) were used instead.
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3.5 Tuning rules for LADRC

The nominal values for the critical gain were �tted to power functions in the
case of systems with τ ≤ 0.5. The relevance of this type of adjustment was
validated by plotting the logarithm of the nominal critical gain values obtained
in the decision-making phase versus the logarithm of the normalised delay as
a linear relationship was observed. However, for systems with τ > 0.5, it
was concluded that �tting the b0 values to polynomial functions was more
appropriate.

Therefore, the corresponding tuning rule for the nominal value of the critical
gain when the second-order LADRC is used to control the FOPDT system is
given by (3.25) with kb, nb, ab, bb, and cb as constants.

b0 =


kb

(
τ

1− τ

)nb

, τ ≤ 0.5

ab

(
τ

1− τ

)2

+ bb

(
τ

1− τ

)
+ cb, τ > 0.5

(3.25)

On the other hand, the controller bandwidth values were �tted for both groups
to power functions. Consequently, the tuning rule for ωc is in the form of (3.26),
where kω and nω are constants.

ωc = kω

(
τ

1− τ

)nω

(3.26)

The resultant �tting functions for the three speci�ed levels of robustness are
presented in Figure 3.9 and Figure 3.10, and the corresponding parameters for
(3.25) and (3.26) are reported in the guide 3.5.1.

As the last step in the data processing, (3.25) and (3.26) were substituted in
the corresponding scaled parameters of (3.10) to obtain the general LADRC
tuning rules (3.27)-(3.29), which are now dependent on the three FOPDT plant
parameters, obtained straightforwardly by identi�cation techniques for many
processes.

b0 =


K

T 2

[
kb

(
τ

1− τ

)nb
]
, τ ≤ 0.5

K

T 2

[
ab

(
τ

1− τ

)2

+ bb

(
τ

1− τ

)
+ cb

]
, τ > 0.5

(3.27)
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ωc =
1

T

[
kω

(
τ

1− τ

)nω
]

(3.28)

ωo =
10

T

[
kω

(
τ

1− τ

)nω
]

(3.29)

In summary, the guide 3.5.1 for tuning the LADRC to control FOPDT plants
is presented. Each of the de�ned levels of robustness represents a compromise
between this objective and the disturbance rejection performance. This way,
the designer is provided with three closed-loop stable candidate controllers that
could be tested on the system for the �nal decision.

Furthermore, the designer could vary the values of the LADRC parameters
in the intervals obtained from the proposed rules to adjust the performance
according to the preferences. To help in this task, a tuning tool was developed
using App Designer from Matlab

® and is available at Matlab Central [64].
This app requires as input the FOPDT model. Through interaction with ro-
bustness level and manual tuning sliders, the user can visualise the closed-loop
response and evaluate the second-order LADRC performance with the aid of
some measures.

The tuning rules proposed in this section and the developed tuning tool al-
low some degree of designer involvement in the �nal selection of the LADRC
parameters but eliminate the time and complexity of performing the entire
optimisation process. It is highlighted that

The proposed tuning rules allow the computation of the three main LADRC
parameters: nominal critical gain b0, controller bandwidth ωc, and observer
bandwidth ωo. A range of values can be obtained for each parameter whose
limits are de�ned by the achievable robustness quality 2 ≤ ε ≤ 3. Thus, no
additional tuning parameters are provided. The LADRC designed with the
tuning method proposed here ensures closed-loop stability and a reasonable
compromise between disturbance rejection and loop robustness such that
1.3 ≤ MS ≤ 2 and 1 ≤ MT ≤ 1.4.
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3.5 Tuning rules for LADRC

(a) Fitting for Group 1, τ ≤ 0.5

(b) Fitting for Group 2, τ > 0.5

Figure 3.9: Tuning for the nominal values of the second-order LADRC critical gain. Mark-
ers indicate the Pareto optimal solutions NS1 (▲), MP (♦), NS2 (▼). Lines are the �tting
functions for the robustness levels εlow (−−), εmed (· · · ), εhigh (-·-).
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(a) Fitting for Group 1, τ ≤ 0.5

(b) Fitting for Group 2, τ > 0.5

Figure 3.10: Tuning for the second-order LADRC controller bandwidth. Markers indicate
the Pareto optimal solutions UP (▲), NS (♦), and BP (▼). Lines are the �tting functions
for the robustness levels εlow (−−), εmed (· · · ), and εhigh (-·-).
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3.5 Tuning rules for LADRC

Guide 3.5.1: Tuning guide for the Linear Active Disturbance Rejection Control (LADRC)
of First Order Plus Dead Time (FOPDT) systems

1. Approximate the process dynamics with the FOPDT model

G(s) =
K

Ts+ 1
e−ls.

2. Compute the normalised dead time, 0 ≤ τ ≤ 1, as

τ =
l

T + l
.

3. Decide whether the process belongs to Group 1: τ ≤ 0.5 or Group 2: τ > 0.5
according to the normalised dead time computed in step 2.

4. Use the tables given below to select the appropriate coe�cients for the tun-
ing rules according to preferences on the achievable approximated robustness
quality ε.

Group 1: τ ≤ 0.5

εlow εmed εhigh

ε 2.7 2.5 2.2

kb 24.129 25.632 27.952
nb −0.651 −0.601 −0.518
kω 1.946 1.938 1.903
nω −0.724 −0.681 −0.604

Group 2: τ > 0.5

εlow εmed εhigh

ε 2.5 2.3 2.0

ab 1.145 1.238 1.121
bb −11.110 −12.192 −11.921
cb 34.443 38.682 40.601
kω 1.982 1.972 1.927
nω −0.635 −0.625 −0.612

5. Substitute the coe�cients selected in step 4, the static gainK, and the apparent
time constant T in the following rules to compute the nominal value of the
critical gain b0, the controller bandwidth ωc, and the observer bandwidth ωo

for the second-order LADRC.

b0 =


K

T 2

[
kb

(
τ

1− τ

)nb
]
, τ ≤ 0.5

K

T 2

[
ab

(
τ

1− τ

)2

+ bb

(
τ

1− τ

)
+ cb

]
, τ > 0.5

ωc =
1

T

[
kω

(
τ

1− τ

)nω
]

ωo =
10

T

[
kω

(
τ

1− τ

)nω
]
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3.6 Validation of the LADRC tuning rules

This section presents two examples to validate the proposed tuning rules. The
load disturbance and setpoint responses to the unit step are compared with the
performances obtained with other controllers such as PID and LADRC tuned
by di�erent methods.

The performances are quanti�ed by the indices in the frequency domain MS,
MT, and ε, and the indices in the time domain ITSE, TV, and settling time
(t98%, in seconds).

Example 3.6.1 Consider the FOPDT lag-dominated system

G1(s) =
1

10s+ 1
e−2s (3.30)

The tuning guide 3.5.1 is used to illustrate the computation of the parameters
for the second-order LADRC according to the three levels of robustness. The
performances obtained with the resultant controllers are compared with those
achieved by the LADRC tuned with the rules from [32] and the IMC-PID,
SIMC-PID, AMIGO-PID, and the optimal-Nash-PID (ONS). Some further
analysis related to the loop frequency response and the closed-loop stability is
done.

Following the steps from Guide 3.5.1

1. From (3.30), the static gain is K = 1, the apparent time constant is
T = 10, and the apparent delay is l = 2.

2. The normalised dead time is

τ =
2

10 + 2
= 0.17 (3.31)

3. According to the normalised dead time from step 2, the system (3.30)
belongs to Group 1. Therefore, the three candidate controllers have ro-
bustness values of approximately 2.7 (εlow), 2.5 (εmed), and 2.2 (εhigh).

4. For example, if a controller with high robustness is preferred, the corre-
sponding coe�cients for the tuning rules are kb = 27.952 and nb = −0.518
for computation of b0, and kω = 1.903 and nω = −0.604 for computation
of ωc and ωo.

80



3.6 Validation of the LADRC tuning rules

5. The nominal value of the critical gain, the controller bandwidth, and the
observer bandwidth are calculated by substituting the coe�cients from
step 4 and the FOPDT parameters in the tuning rules. This is,

b0 =
1

100

[
27.952

(
0.17

1− 0.17

)−0.518
]
= 0.643 (3.32)

ωc =
1

10

[
1.093

(
0.17

1− 0.17

)−0.604
]
= 0.503 (3.33)

ωo = 1.903

(
0.17

1− 0.17

)−0.604

= 5.031 (3.34)

Steps 4 and 5 from the above procedure should be repeated if di�erent robust-
ness is desired. Consequently, the LADRC parameters for the three levels of
robustness (εlow, εmed, εhigh) are listed in Table 3.5. Additionally, the parame-
ters computed with the tuning rules proposed in [32] (labelled as ADRCZ) and
those corresponding to the PID controllers are included.

Table 3.5: Parameters for the control of plant G1(s). The PID parameters were calculated
according to the rules from Table 3.4, the ADRCZ values were computed with the formulae
from Table 3.3, and the remaining LADRC parameters were obtained following Guide 3.5.1.

LADRC b0 ωc ωo PID Kc Ti Td

εlow 0.688 0.624 6.243 IMC 4.320 10.8 0.751
εmed 0.674 0.580 5.795 SIMC 2.500 10 0
εhigh 0.643 0.503 5.031 AMIGO 2.450 5.867 0.943
ADRCZ 0.349 1.950 0.960 ONS 3.420 5.475 0.970

Figure 3.11 shows the closed-loop time responses of (3.30) with the three can-
didate controllers and the PID con�gurations. The resulting values for the
performance indices are reported in Table 3.6. On the one hand, it can be
seen that each of the proposed controllers o�ers a robustness level similar to
one of the PID alternatives with a lower ITSE for disturbance rejection. Like-
wise, the LADRC candidates drive the output back to the steady state faster
than the PID tuned with the IMC and the SIMC methods. This behaviour is
appreciated in Figure 3.11b.
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(a)

(b)

Figure 3.11: Closed-loop time responses of G1(s) when controlled with the second-order
LADRC tuned with the proposed rules. Comparison with the performance of the closed-loop
with PID controllers. (a) Unit step response and disturbance rejection response when a unit
step disturbance is applied to the input at t = 50 s. (b) Inset to the disturbance rejection
response in the time window t ∈ [50, 100] s.

82



3.6 Validation of the LADRC tuning rules

Table 3.6: Performance indices obtained when the plant G1(s) is controlled with PID
con�gurations and LADRC. The εhigh controller is more robust and produces lower ITSE in
disturbance rejection than the ADRCZ controller.

Disturbance rejection Setpoint following

MS MT ε ITSE TV t98% ITSE TV t98%

IMC 2.032 1.097 3.103 2.493 1.390 44.1 2.794 61.353 8.7
SIMC 1.590 1 2.353 6.871 1.087 46.2 6.235 2.662 12.1
AMIGO 1.446 1.135 2.029 3.774 1.250 33.6 26.096 2.038 28.7
ONS 1.767 1.181 2.545 1.741 1.370 26.7 4.029 48.374 18.5
ADRCZ 1.583 1.345 2.447 3.692 1.549 43.3 12.542 14.762 35.4
εlow 1.842 1.489 2.771 1.241 1.804 29.9 12.753 4.370 26.4
εmed 1.735 1.392 2.544 1.665 1.657 33.1 14.662 3.510 29.1
εhigh 1.598 1.258 2.236 2.977 1.470 31.4 19.496 2.564 25.9

On the other hand, in Figure 3.12, the closed-loop time responses of (3.30)
with the three LADRC candidates and the LADRC tuned with the rules from
[32] are plotted. According to the indices in Table 3.6, the proposed controllers
produce lower ITSE and settling times than the ADRCZ controller in the case
of a load disturbance, as shown in Figure 3.12b. Notice that the εhigh candidate
achieves a higher robustness level and better disturbance rejection. In addition,
the total variation of the control action is lower for this alternative.

In the case of setpoint following, the εlow controller produces a similar ITSE to
the ADRCZ. However, it is worth noting that the control actions produced by
the three alternatives are smoother, which is re�ected in the total variations in-
dices calculated. This is mainly because the initial values of the control signals
(sometimes referred to in the literature as proportional kick) are signi�cantly
lower than those reached by the ADRCZ controller.

The frequency measures reported in Table 3.6 for the control of G1(s) with
the εhigh LADRC are marked in Figure 3.13 which shows the magnitude of the
frequency response of the sensitivity function, the complementary sensitivity
function, and the sum of the above frequency responses, from which the ro-
bustness index ε is computed. With this candidate controller, the maximum
peaks MS and MT are within the ranges given by common design rules, and
their values vary in such ranges for any other controller whose parameters are
obtained from the proposed rules.

Let the εhigh controller be also used to validate Theorem 3.2.1 and Lemma 3.4.1.
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(a)

(b)

Figure 3.12: Closed-loop time responses of G1(s) when controlled with the second-order
LADRC tuned with the proposed rules. Comparison with the performance of the closed-loop
with the LADRC tuned using the rules from [32]. (a) Unit step response and disturbance
rejection response when a unit step disturbance is applied to the input at t = 50 s. (b) Inset
to the disturbance rejection response in the time window t ∈ [50, 100] s.
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Figure 3.13: Magnitudes of the frequency responses of the sensitivity function, complemen-
tary sensitivity function, and sum of the above frequency responses when the plant G1(s) is
controlled by the εhigh LADRC. The robustness indices MS, MT, and ε are marked.

Comparing (3.30) with (3.6), the gain scaling k = 1, the frequency scaling
ωp = 1/10, and nominal delay Θ = 2/10 are identi�ed. Therefore, G1(s) is a
scaled version of the nominal plant

Gn(s) =
1

s+ 1
e−0.2s, (3.35)

which was included in the batch of processes used in the MOOD procedure
addressed in section 3.4. For (3.35), the LADRC with the highest achiev-
able robustness has parameters b0 = 64.294, ωc = 5.031, and ωo = 50.312
(computed using (3.35) in Guide 3.5.1). The corresponding open-loop transfer
function is

L(s) = GA(s)Gn(s) =
3228.8 (s2 + 7.099s+ 15.53)

s (s+ 1) (s2 + 161s+ 9138)
e−0.2s, (3.36)

where GA(s) is the stabilising LADRC obtained by substituting its associated
parameters in (3.15).
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Figure 3.14: Magnitudes of the frequency responses of the open-loop transfer functions
L(s) = GA(s)G1(s) and L(s) = GA(s)Gn(s). The scaled loop L(s) has a crossover frequency
ωi = ωinωp, with ωin the crossover frequency of the nominal loop L(s).

Correspondingly, the open-loop transfer function involving the εhigh LADRC
and G1(s) is (3.37) with GA(s) as the scaled controller.

L(s) = GA(s)G1(s) =
322.88 (s2 + 0.710s+ 0.155)

s (10s+ 1) (s2 + 16.1s+ 91.38)
e−2s. (3.37)

The magnitudes of the frequency responses of (3.36) and (3.37) are presented
in Figure 3.14. As stated in Theorem 3.2.1, the nominal loop L(s) has a
crossover frequency ωin = 2.6 rad/s, and consequently, the crossover frequency
of the new scaled loop L(s) is ωi = ωinωp = 0.26 rad/s. Moreover, both loops
have the same stability margins and robustness properties.

Finally, the closed-loop stability is validated by evaluating the conditions of
Lemma 3.4.1. Let H(s) be the delay-free open-loop transfer function such
that H(s) = GA(s)G0(s) and G0(s) is equivalent to (3.30) with l = 0. Due
to the delay does not a�ect the magnitude of the frequency response of an
open-loop transfer function, from Figure 3.14 is deduced that the magnitude
of H(s) equals 1 (0 dB) at ωi = 0.26 rad/s, and from Figure 3.15 is clear that
the phase of H(s) is greater than the phase of −e2s at the crossover frequency.
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Figure 3.15: Phases of the frequency responses of the delay-free open-loop transfer function
H(s) and −e2s. The phase φ(H(jωi)) of H(s) at ωi = 0.26 rad/s is greater than the phase
φ
(
−ej2ωi

)
at the same crossover frequency.

Example 3.6.2 The FOPDT delay-dominated system is controlled.

G2(s) =
3

0.25s+ 1
e−s (3.38)

The static gain for this plant is K = 3, the apparent time constant T = 0.25,
and the normalised delay τ = 0.80. The performances achieved by the second-
order LADRC designed with the proposed rules are compared with PID con-
trollers tuned with the rules IMC, SIMC and AMIGO, and the LADRC ad-
justed with the rules from [32] (labelled asADRCz). In addition, a second-order
LADRC tuned using the formulae from [30] (tagged as ADRCH) was also con-
sidered for comparison. The latter tuning method is proposed for the control
of high-order plants, but it can be used for self-regulatory FOPDT systems
with τ/T above 0.46 by approximating the plant into the form K̃/(T̃ s + 1)n.
These tuning rules are listed in Table 3.3.

According to the empirical two-point method suggested in [30], the system
(3.38) is approximated to a high-order process by substituting in (3.39) the
steady-state value y∞ and the times t40% and t80% at which the step response
reaches 40% and 80% of the �nal value, respectively.
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K̃ = y∞/u

n =

(
1.075t40%
t80% − t40%

+ 0.5

)2

T̃ =
t40% + t80%

2.16n

(3.39)

From the step response of (3.38) with u = 1, y∞ = 3, t40% = 1.12 s, and
t80% = 1.40 s. Therefore,

G2(s) ≈
3

(0.051s+ 1)
23 . (3.40)

Comparing the proposed LADRC candidates with the PID controllers is con-
sidered �rst. Table 3.7 lists the corresponding parameters, and the closed-loop
responses obtained with such a set of controllers are presented in Figure 3.16.
Likewise, the performance indices computed are reported in Table 3.8. These
indices show that the robustness of the LADRC tuned with the proposed rules
is within the robustness quality achievable with PID con�gurations, and the
disturbance rejection can be improved. For example, the εhigh candidate is
more robust and produces lower ITSE than the SIMC-PID. Even a relaxation
in robustness, i.e. a controller whose robustness index is close to εmed, will
naturally improve the ITSE for disturbance rejection.

Table 3.7: Parameters for the control of plant G2(s). The PID parameters were calculated
according to the rules from Table 3.4, the ADRCZ and ADRCH values were computed with
the formulae from Table 3.3 and the remaining LADRC parameters were obtained following
Guide 3.5.1.

LADRC b0 ωc ωo PID Kc Ti Td

εlow 399.747 3.288 32.876 IMC 0.173 0.650 0.195
εmed 466.508 3.317 33.172 SIMC 0.097 0.583 0
εhigh 521.205 3.301 33.007 AMIGO 0.104 0.585 0.227
ADRCZ1 316.198 5.029 16.140
ADRCZ2 434.772 5.029 16.140
ADRCH1 535.722 3.663 36.630
ADRCH2 11079 8.571 85.714
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(a)

(b)

Figure 3.16: Closed-loop time responses of G2(s) when controlled with the second-order
LADRC tuned with the proposed rules. Comparison with the performance of the closed-loop
with PID controllers. (a) Unit step response and disturbance rejection response when a unit
step disturbance is applied to the input at t = 8 s. (b) Inset to the disturbance rejection
response in the time window t ∈ [8, 15] s.
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Table 3.8: Performance indices obtained when the plant G2(s) is controlled with PID and
LADRC designs. For all controllers, MT = 1. Under the same robustness requirement, the
LADRC designs tuned with the proposed rules o�er lower ITSE in disturbance rejection
than the LADRC tuned with other rules from the literature.

Disturbance rejection Setpoint following

MS ε ITSE TV t98% ITSE TV t98%

IMC 1.873 2.774 15.461 1.562 3.9 0.644 2.915 3.7
SIMC 1.568 2.187 25.191 1 7 1.205 0.236 5.7
AMIGO 1.401 1.933 22.618 1.081 6 1.129 0.275 4.4
ADRCZ1 1.761 2.624 17.256 1.340 5.3 1.208 0.362 4.5
ADRCZ2 1.472 2.079 22.016 1.035 5.2 1.595 0.331 4.7
ADRCH1 1.781 2.618 16.629 1.379 4.0 1.344 0.331 2.9
ADRCH2 1.521 2.229 31.763 1.049 7.1 2.052 0.344 6.1
εlow 1.798 2.615 16.033 1.544 4.9 1.380 0.318 4.1
εmed 1.638 2.296 17.834 1.272 5.3 1.552 0.313 4.7
εhigh 1.526 2.073 20.123 1.158 6.1 1.776 0.316 5.5

The proposed controllers are compared with other LADRC designs next. For
this purpose, consider the LADRC parameters reported in Table 3.7, labelled
ADRCZ1 and ADRCZ2. These controllers were designed by adjusting the λ
additional tuning parameter of the rules from [32] to λ = 0.88 to obtain a
low robustness LADRC and to λ = 1.21 to get a high robustness LADRC,
respectively, as quanti�ed in the ε column.

Similarly, the ADRCH1 and ADRCH2 parameters correspond to those calcu-
lated with the rules from [30] and the approximation (3.40). In this case, the
low robustness LADRC was obtained by adjusting the associated additional
tuning parameter to k = 2.34, and the high robustness LADRC was designed
with k = 1. A value of k above 2.77 leads the loop to instability.

With the above designs, the performances of the proposed controllers are con-
trasted with the ones of the LADRC with the same robustness. For example,
suppose the robustness requirement is relaxed. In that case, a robustness mea-
sure ε ≈ 2.6 is allowed, and the εlow controller improves (reduces) the ITSE
values of the disturbance rejection responses obtained with the ADRCZ1 and
ADRCH1 parameters, although the latter drives the output back to the steady-
state faster.
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(a) (b)

(c) (d)

Figure 3.17: Unit step and disturbance rejection responses of G2(s) when controlled with
the LADRC tuned with the proposed rules. Comparison with the responses to the LADRC
designed with the rules from [32] (ADRCZ1 and ADRCZ2) and [30] (ADRCH1 and ADRCH2).
A unit step disturbance is applied to the input at t = 8 s. (a)-(b) Controllers with low
robustness ε ≈ 2.6. (c)-(d) Controllers with high robustness ε ≈ 2.1− 2.2.
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On the other hand, with a high robustness objective of ε ≈ 2.1, the εhigh
candidate also produces lower ITSE than the ADRCZ2 and the ADRCH2 con-
trollers, o�ering a better setpoint tracking than the latter. It should be pointed
out that the lower robustness index computed with the rules from [30] is the
value reported in Table 3.8. Notice that the εmed LADRC, which has a closer
robustness measure to the ADRCH2, still improves the servo-regulatory oper-
ation. The above discussion is supported by the unit step and disturbance
rejection responses shown in Figure 3.17.

End of example 3.6.2 ■

The tuning rules for the LADRC, summarised in Guide 3.5.1, were used to
design control loops for lag-dominated and delay-dominated systems. The
results obtained were contrasted with those generated by the PID con�guration
tuned following widely accepted rules, and the LADRC adjusted with other
rules from the literature. It is concluded

The second-order LADRC designed with the proposed rules is a control
strategy alternative to PID control for FOPDT systems, potentially improv-
ing the step-type input disturbance rejection response. The designers are
provided directly with LADRC candidates that cover the robustness range of
the PID controllers tuned with classical rules that keep the trade-o� between
disturbance rejection and robustness.

The second-order LADRC designed with the proposed rules potentially im-
proves the step-type input disturbance rejection obtained with the LADRC
tuned with the rules from [32] and [30] (when applicable), even under the
same robustness requirement.

The LADRC tuned with the proposed rules may produce smoother control
actions than those of the LADRC adjusted according to [32] due to the
computed controller and observer bandwidths holding the relation ωc < ωo.

The proposed rules allow the computation of the LADRC parameters for
a broader family of FOPDT plants in contrast to the rules presented in
[30], applicable only to control FOPDT systems meeting l/T ≤ 0.46 and
with which the closed-loop stability is dependent on an additional tuning
parameter.
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3.7 Control of the Peltier thermoelectric module

In Example 2.6.1, it was demonstrated that the second-order LADRC is capa-
ble of controlling the temperature of the cold face of a thermoelectric module.
In the following, the control performance of the LADRC when tuned with the
rules presented in this chapter is addressed.

The Peltier cell behaviour, described by (2.44)-(2.57), in the freezing zone
(≈ −8 ◦C) is approximated by the FOPDT model [93]

Gp(s) =
−0.315

3.192s+ 1
e−0.4s. (3.41)

Consequently, for (3.41) the static gain isK = −0.315 ◦C/%, the time constant
T = 3.192 s, the apparent dead time l = 0.4 s, and the normalised delay is
τ = 0.11. The parameters of the three LADRC candidates obtained using the
above information in Guide 3.5.1 are reported in Table 3.9. Two additional
controllers are included for comparison purposes: the LADRC tuned with the
proposal from [32] (ADRCZ) and a PID whose parameters were calculated
using the SIMC method.

Table 3.9: Parameters for the control of the thermoelectric module. The ADRCZ values
were computed with the formulae from Table 3.3, the PID parameters were calculated ac-
cording to the rules from Table 3.4, and the remaining LADRC parameters were obtained
following Guide 3.5.1.

LADRC b0 ωc ωo PID Kc Ti Td

εlow −2.885 2.744 27.440 SIMC −12.667 3.192 0
εmed −2.758 2.496 24.957
εhigh −2.532 2.090 20.905
ADRCZ −1.613 9.696 4.102

Consider that the cold face of the module is stable at −5 ◦C, and a fault
in the power system reduces the input voltage by 10% of its nominal value.
The evolution of the temperature Tc and the required voltage to reject the
disturbance are shown in Figure 3.18. The corresponding performance indices
ITSE (◦C2 s), TV (%) and t98%(s) are included in Table 3.10.
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Figure 3.18: Disturbance rejection response of the Peltier thermoelectric module with the
second-order LADRC tuned with the proposed rules. Comparison with the performance of
the LADRC adjusted according to [32] (ADRCZ) and the SIMC-PID.

Table 3.10: Performance indices obtained from the disturbance rejection response of the
thermoelectric module controlled with PID and LADRC designs.

MS MT ε ITSE TV t98%

SIMC 1.590 1 2.353 2.190 10.807 11.9
ADRCZ 1.545 1.455 2.607 0.679 13.984 6.9
εlow 1.848 1.516 2.721 0.159 13.094 4.9
εmed 1.749 1.425 2.511 0.258 13.126 5.6
εhigh 1.613 1.299 2.232 0.639 13.153 7.2

As expected, the εlow controller produces the response with lower ITSE due to
the relaxation in the robustness requirement. In addition, the total variation
of control action and settling time are the lowest among the three proposals.

On the other hand, the εmed controller improves the performance obtained with
the ADRCZ parameters. The robustness index is slightly lower, indicating a
more robust closed-loop system, and the ITSE value re�ects that the output
stabilises faster with less overshoot.
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Figure 3.19: Setpoint following response of the Peltier thermoelectric module controlled by
the second-order LADRC tuned with the proposed rules. Comparison with the performance
of the LADRC adjusted according to [32] (ADRCZ) and the SIMC-PID.

The most robust controller εhigh produces a time response similar to that of
the ADRCZ, but the ITSE and TV values are slightly lower. Notice that this
controller also has a better disturbance rejection and robustness level than the
PID tuned by the SIMC method.

The thermoelectric module can be operated at di�erent temperatures. Due
to the non-linearities, the transient temperature response shows a di�erent
behaviour depending on the magnitude and direction of the setpoint changes.
An additional simulation was performed to test the LADRC alternatives under
this scenario. Figure 3.19 presents the time response of the cold face temper-
ature with di�erent setpoints, and the indices from Table 3.11 quantify the
performance.

The controllers tuned with the proposed rules guarantee the setpoint follow-
ing, and the steady state is reached in less time than with the other designs.
However, the ITSE values are above those calculated for the SIMC and the
ADRCZ controllers. To clarify this behaviour, the output overshoot (in % of
the setpoint change) has been included in Table 3.11. As shown, the SIMC
method produces the lowest overshoot followed by the εlow, εmed and εhigh tun-
ings. As expected, the overshoot in output increases for signi�cant changes in
the magnitude of the setpoint due to the non-linear nature of the system.
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Table 3.11: Performance indices obtained from the setpoint following response of the
thermoelectric module controlled with PID and LADRC designs.

Integral of Time Weighted Squared Error

Setpoint (◦C) SIMC ADRCZ εlow εmed εhigh

−8 to −6 0.515 1.781 1.623 2.037 3.118
−6 to 0 10.230 19.467 14.784 18.247 27.329
0 to −3 0.922 3.508 3.346 4.214 6.464
−3 to −10 5.046 19.061 17.826 22.481 34.683

Total Variation of control action

−8 to −6 49.838 96.288 24.025 21.689 17.908
−6 to 0 32.597 58.728 61.296 54.530 44.258
0 to −3 34.185 92.800 28.584 25.894 21.442
−3 to −10 54.506 96.285 60.307 55.708 47.510

Output overshoot

−8 to −6 2.769 21.463 8.825 9.031 9.332
−6 to 0 7.309 22.777 9.931 10.016 10.191
0 to −3 2.294 20.546 8.845 8.926 9.357
−3 to −10 2.113 19.366 8.033 8.313 8.872

Settling time

−8 to −6 7.2 7.9 4.6 5.1 6.3
−6 to 0 8.9 8.1 4.7 5.2 6.4
0 to −3 6.9 7.8 4.6 5.1 6.3
−3 to −10 6.9 7.9 4.6 5.1 6.3

In Figure 3.19, it is also shown that the three design alternatives can lead
to a lower variation of the control action in contrast with the abrupt change
produced by the other controllers when the setpoint changes. This kind of
peak may be damaging to the system. The corresponding TV indices from
Table 3.11 re�ect the above.

Finally, as in Example 2.6.1, the LADRC is tested when the thermoelectric
module is operated in the cool zone (≈ 4 ◦C). In this case, random noise with
variance σ2 = 0.005 and sampling frequency of 100Hz is added to the output
to emulate a temperature measured in the range Tc ± 0.225 ◦C.
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Figure 3.20: Setpoint following response of the Peltier thermoelectric module controlled by
the second-order LADRC tuned with the εlow set of parameters. Comparison with the per-
formance of the LADRC implemented with the Cascade Extended State Observer (CESO).

Figure 3.20 shows the temperature changes in the cool face produced by the
LADRC tuned with the εlow set of parameters and the corresponding changes
in the voltage. As can be seen, the LADRC achieves proper control in the
cool zone despite the noisy output. However, the control signal exposes the
inherent sensibility of the ESO to the high-frequency noise. The higher the
observer bandwidth, the better the state estimation at the cost of higher noise
impact in the control signal.

An alternative to reduce the noise in�uence in the input of a loop controlled
with LADRC is to replace the standard ESO with a cascade con�guration, as
recently proposed in [94]. The idea of the Cascade Extended State Observer
(CESO), in its most general con�guration, is to implement a cascade structure
of p levels, where each level is an ESO with associated observer bandwidth
ωo,i, such that ωo,i−1 < ωo,i < · · · < ωo,p (i = 1, 2, . . . , p).

According to [94], the number of levels and the observers bandwidths need to be
tailored to achieve noise suppression without worsening the tracking accuracy.
Therefore, consider that, for the thermoelectric module operating in the cool
zone, the LADRC is now implemented replacing the standard ESO with a
CESO of p = 3 levels. To clarify the LADRC with this CESO implementation,
the associated block diagram is presented in Figure 3.21.
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Figure 3.21: Block diagram for the control of the Peltier thermoelectric module using
LADRC with the three-level CESO.

The observers bandwidths (rad/s) were chosen as ωo,1 = 20.905, ωo,2 = 24.957,
and ωo,3 = 27.440. Notice that these values correspond to the three observer
bandwidths computed with the proposed rules. The remaining LADRC pa-
rameters were tuned as b0 = −2.885 and ωc = 2.744 rad/s from the εlow set.

The results of the LADRC with CESO are included in Figure 3.20. From a
qualitative comparison with the performance produced by the εlow controller,
noise suppression exists in the control action and the setpoint following per-
formance is preserved. That being the case, the LADRC with the three-level
CESO was straightforwardly designed using the sets of parameters computed
with the proposed rules, which points out that the proposed tuning method can
be used as starting point for the design of the LADRC loop with the CESO.
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Chapter 4

Modi�ed Active Disturbance

Rejection Predictive Control: a

�xed-order state-space

formulation for SISO systems

This chapter describes the Modi�ed Active Disturbance Rejec-
tion Predictive Control (MADRPC): a discrete-time algorithm that
merges the estimation-rejection capability of the ADRC with the
receding horizon feature of the MPC. The �rst section introduces
the approach together with its main highlights. The second section
brie�y describes the state-space MPC, and the third section presents
the discrete-time formulation of LADRC as preliminaries to the
fourth section, which introduces the proposed control architecture.
The disturbance rejector and the modi�ed predictive controller, the
main comprising structures of the proposed loop, are also described
in detail in the fourth section, together with the conditions for fea-
sibility and nominal stability of the overall loop. Finally, the �fth
section addresses the validation of the proposal through the control
of linear benchmark systems. The performance validation is ex-
panded to a non-linear benchmark with the control of a Continuous
Stirred Tank Reactor (CSTR).
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4.1 Introduction

This chapter presents a new control strategy that combines ADRC with state-
space MPC and it aims at controlling systems where a precise mathematical
model is not available. The proposed loop controls a system by applying a
receding horizon strategy on an assumed plant of �rst-order plus integrator
whose mismatch with the real process is compensated in the loop. The model
mismatch, external perturbations, and assumed plant states are obtained by
a third-order ESO, and the system constraints are directly considered in the
optimisation problem. The proposed loop is implemented as a discrete-time
algorithm with the following highlights.

� The estimation-rejection mechanism of the ADRC as an internal loop is
maintained to enforce the real plant dynamics to behave like a �rst-order
plus integrator modi�ed plant. Consequently, the predictive control prob-
lem is solved based on a �xed discrete state-space model of second-order,
despite the nature of the controlled system. This di�ers from the control
formulations of MPC with state observation, in which a complete-order
model still needs to be identi�ed, and the ESO is used to estimate the
model states and the state disturbance vector required for the computa-
tion of the predictive control law. Moreover, conditions for the feasibility
of the optimisation problem and the nominal stability are given.

� The modelling requirements on the real plant are reduced to natural
system characteristics such as static gain and apparent time constant
due to the ADRC estimation-rejection mechanism. Therefore, the model-
based feature of predictive control is relaxed, and the need for the detailed
identi�cation of the real system is eliminated.

� The constraints on the manipulated and controlled variables are directly
taken into account by reformulating the constraints of the optimisation
problem to incorporate the compensation term. The above addresses
the challenging handling of constraints in the ADRC con�gurations and
avoids that the manipulated variable acting on the system violates the
desired constraint after the predictive control law is compensated in the
loop.

� The proposed control strategy o�ers a closed-loop response that meets
performance criteria and system constraints, which is also robust against
model mismatch and general process variations encountered when con-
trolling highly non-linear processes.
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4.2 State-Space Model Predictive Control

Model Predictive Control refers to a set of advanced control methods in which
the control action is computed based on predictions of the output behaviour,
hence the importance of accurate modelling of the process to be controlled.
[35]. The most commonly used models are the step response (in Dynamic
Matrix Control, DMC), the transfer function (in GPC), and the discrete state-
space realisation of order n

xk+1 = Axk +Buk + νk

yk = Cxk,
(4.1)

where xk ∈ Rn×1 is the state vector, ν ∈ Rn×1 is a state disturbance vector,
y is the controlled variable, u is the manipulated variable, and A ∈ Rn×n,
B ∈ Rn×1, and C ∈ R1×n are the system matrices.

The MPC algorithm solves for each instant k an optimisation problem that
minimises the cost function (4.2), along a prediction horizon p, subject to
none, some or all of the constraints (4.3)-(4.5). Notation yf,i|k indicates that
future output at instant k + i is calculated based on conditions at instant
k; The same holds for the reference trajectory yr,i|k and the rate of input
∆ui|k = ui|k − ui−1. It is always assumed that the control horizon c satis�es
c ≤ p and that ∆ui|k = 0 for i ≥ c.

The cost function (4.2) considers the quadratic forms of the tracking error
∥yr,i|k − yf,i|k∥2γ and the rate of manipulated variable ∥∆ui|k∥2λ with scaling
factors γ and λ, respectively, and subject to the variables constrained between
their allowed lower and upper limits represented by the bar notations w and
w, correspondingly.

J =
p∑

i=1

∥yr,i|k − yf,i|k∥2γ +
c−1∑
i=0

∥∆ui|k∥2λ (4.2)

∆u ≤∆ui|k ≤ ∆u, i = 0, . . . , c− 1, (4.3)
u ≤ui|k ≤ u, i = 0, . . . , c− 1, (4.4)
y ≤yf,i|k ≤ y, i = 1, . . . , p. (4.5)
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When the discrete state-space model (4.1) is used to formulate the predictive
control problem, the objective function (4.2) can be written as (4.6) with the
variables de�ned as (4.7)-(4.11).

J = ∥yr − yf∥2Γ + ∥∆u∥2Λ (4.6)

yr =
[
yr,1|k, yr,2|k, . . . , yr,p|k

]⊤
(4.7)

yf =
[
yf,1|k, yf,2|k, . . . , yf,p|k

]⊤
(4.8)

∆u =
[
∆u0|k,∆u1|k, . . . ,∆uc−1|k

]⊤
(4.9)

Γ = diag(γ) ∈ Rp×p (4.10)

Λ = diag(λ) ∈ Rc×c (4.11)

In index (4.6), the deviation of p future outputs yf from the reference trajectory
yr is penalised through the diagonal weighting matrix Γ. Likewise, penalisation
of the actual and c−1 future control e�orts ∆u is introduced using the matrix
Λ. The output predictions are computed based on the current state (or an
estimation of it), the last applied input, and the unknown actual and future
input changes according to

yf = Pxk + V Buk−1 +wk + V νk︸ ︷︷ ︸
yfree

+G∆u, (4.12)

where matrices P ∈ Rp×p, V ∈ Rp×1, and G ∈ Rp×c are de�ned as

P =


CA
CA2

...
CAp

, (4.13)

V =


C

C(A+ I)
...

C(Ap−1 + · · ·+A+ I)

, (4.14)
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G =


CB · · · 0

C(A+ I)B · · · 0
...

. . .
...

C(Ap−1 + · · ·+A+ I)B · · · C(Ap−c + · · ·+A+ I)B

. (4.15)

In addition, the correction term wk ∈ Rp×1 (4.16) and the state disturbance
prediction model νk ∈ Rp×1 (4.17) are included in (4.12) to provide o�set-free
control (OF-MPC) [95].

wk =


w1|k
w2|k
...

wp|k

 = (yk − Cxk)


1
1
...
1

 (4.16)

νk =


ν1|k
ν2|k
...

νp|k

 = (xk −Axk−1 −Buk−1)


1
1
...
1

 (4.17)

When no constraints are imposed, the minimum of (4.6) can be directly cal-
culated as the matrix product (4.18). However, when constraints are active,
there is no explicit solution and the standard approach is to treat the new
problem as a standard quadratic one which is easily handled by solvers like
quadprog from Matlab or Mosek [96].

∆u =
(
G⊤ΓG+ Λ

)−1
G⊤Γ (yr − yfree) (4.18)

4.3 Discrete Linear Active Disturbance Rejection Control

It has been previously stated that the LADRC is a control algorithm based
on the idea that a detailed process model is unnecessary to control it. What
is more, in chapter 2, it was explained how LADRC relies on input-output
information to estimate the existing mismatch between the real system and an
assumed integrator-chain modi�ed plant used to design a linear state feedback
control law.
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Until this point, the LADRC formulation was presented in the continuous time
domain. However, its practical implementation requires the discretisation of
its main comprising block: the LESO. According to [97], the current-observer
con�guration o�ers improvement in terms of estimation accuracy and closed-
loop stability compared to the classical predictive-observer.

Let the extended state space model (2.32) of the second-order SISO system
introduced in section 2.4 be recalled here for convenience as (4.19), and let
x̂k = [ x̂1,k, x̂2,k, x̂3,k ]⊤ be its discrete-time estimated state vector. ẋ1

ẋ2

ẋ3

 =

 0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

A

 x1

x2

x3

+

 0
b0
0


︸ ︷︷ ︸

B

u+

 0
0
1


︸ ︷︷ ︸

E

h (4.19)

y =
[
1 0 0

]︸ ︷︷ ︸
C

 x1

x2

x3


In the current-ESO implementation, the estimation of the state vector and the
previous instant control input are used to compute (4.20), which is a prediction
of x̂k. Next, the current estimation of the state vector is obtained according to
(4.21) where yk has been incorporated to update the current estimation with
the most recent output measurement.

zk = Adx̂k−1 +Bduk−1 (4.20)
x̂k = zk + ℓd (yk − Cdzk) (4.21)

In equations (4.20)-(4.21) Ad, Bd, and Cd are the discrete versions of matrices
A, B, and C from (4.19) obtained through zero-order hold discretisation with
sampling time ts. This is,

Ad =


1 ts

t2s
2

0 1 ts

0 0 1

 Bd =


b0t

2
s

2

b0ts

0

 Cd =
[
1 0 0

]
. (4.22)
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Notice that substituting (4.20) in (4.21), the general update equation (4.23) for
the current-ESO is obtained with ℓd = [ℓd1, ℓd2, ℓd3]

⊤ as the vector of observer
gains.

x̂k = (Ad − ℓdCdAd) x̂k−1 + (Bd − ℓdCdBd)uk−1 + ℓdyk (4.23)

Similarly to the continuous time ESO, ℓd can be computed by equating the
observer characteristic equation with the desired characteristic equation for
the estimation error such that

|zI − (Ad − ℓdCdAd) | = (z − zd)
3
. (4.24)

Therefore, if the three observer poles are located in the same position inside
the unit circle [22], zd = exp (−ωots), the corresponding observer gains are
given by (4.25)-(4.27), with ωo denoting the observer bandwidth.

ℓd1 = 1− exp (−3ωots) (4.25)

ℓd2 =
3

2ts
[exp (−ωots)− 1]

2
[exp (−ωots) + 1] (4.26)

ℓd3 =
1

t2s
[1− exp (−ωots)]

3 (4.27)

Finally, the estimated state vector is used in (2.7) and (2.9) to obtain the
discrete control law

uk =
ωc

2 [yr,k − x̂1,k]− 2ωcx̂2,k − x̂3,k

b0
. (4.28)

In this sense, for each instant, x̂3,k ≈ f , and the total perturbation is cancelled
out from the system dynamics allowing the closed-loop response to be governed
by the proportional gains dependent on the controller bandwidth ωc.
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4.4 Constrained control loop with active disturbance

rejection and output predictions

In the previous sections, OF-MPC and LADRC were brie�y described. Let the
following comments about both algorithms be the introduction to this section.

On the one hand, if a proper model is available, OF-MPC becomes a robust
algorithm with an optimal control action that directly satis�es the process
constraints according to the optimisation problem feasibility. However, this
model-based feature plays against the system performance when a signi�cant
model mismatch arises, for example, in processes with challenging dynamics
and di�erent operating points.

On the other hand, LADRC locates itself almost on the opposite side of the
spectrum by keeping the information required from modelling to a minimum
and relying on its rejector mechanism to perform the disturbance rejection.
This con�guration o�ers proper control because it actively combines the non-
modelled dynamics in an estimated state without needing further knowledge.
Nevertheless, additional characteristic information about the system behaviour
may be bene�cial, resulting in an assumed plant di�erent from the conventional
integrator-chain form. Moreover, some important control aspects, such as the
system constraints, mainly handled by limiters inside the loop, could be incor-
porated into a more dedicated control law.

To take advantage of the unique bene�ts of the aforementioned control schemes
whilst enhancing each other, the control architecture of Figure 4.1 that merges
the LADRC disturbance rejector and the receding horizon feature of MPC is
proposed. Three main structures are identi�ed.

1O The system, which corresponds to the real process to be controlled and
whose precise mathematical model is unknown.

2O The disturbance rejector representing the active disturbance rejection
component of the loop. It includes a current-ESO intended for correctly
estimating system states and total perturbation and the sum-gain con�g-
uration that uses the estimated total perturbation to compensate for the
existing di�erences between the real and modi�ed plants. A general �rst
order plus integrator model is assumed as the modi�ed plant. Therefore,
the disturbance rejector is designed to overcome the possible structural
and parametric mismatch and the external disturbances acting on the
loop.
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Figure 4.1: Proposed control architecture. The system dynamics 1O is enforced by the
disturbance rejector 2O into a �rst order plus integrator plant (modi�ed plant) governed by
a modi�ed predictive controller 3O.

3O The modi�ed predictive controller designed to provide a control law for
the disturbance-free modi�ed plant. This control law results from a con-
strained optimisation process where a cost function involving the tracking
error and changes in input is minimised. By incorporating the predictive
control algorithm into the loop, the receding horizon characteristic of this
advanced control method is exploited in the servo-regulatory operation,
and constraints are directly considered.

4.4.1 The disturbance rejector

Let the �rst order plus integrator model (4.29) represent the dynamics of the
assumed modi�ed plant into which the disturbance rejector is expected to en-
force the real dynamics. The controlled variable is y, the manipulated variable
is u, K represents the static gain, T is the apparent time constant, and f is
the total perturbation.

ÿ = − 1

T
ẏ +

K

T
u+ f (4.29)
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Selection of a �rst-order plus integrator system as the modi�ed plant mainly
o�ers the following advantages: it constitutes a �xed mathematical represen-
tation of known order for the process to be controlled with a lower complex-
ity involved in the identi�cation of its parameters; It models the integral ef-
fect commonly present in industrial processes and approximate other types of
dominant dynamics through a term with a time constant. Compared to the
conventional chain-integrator form of LADRC, the additional dynamic infor-
mation represented by the time constant enhances the estimation ability of the
observer and increases the ESO e�ciency [98].

A continuous state-space realisation of (4.29) is[
ẋ1

ẋ2

]
=

[
0 1
0 −1/T

] [
x1

x2

]
+

[
0

K/T

]
u+

[
0
1

]
f

y =
[
1 0

] [ x1

x2

]
.

(4.30)

If zero-order hold discretisation with sampling time ts is used on (4.30), the dis-
crete state-space model obtained is (4.31) with a = exp (−ts/T ), and b0 = K/T
as the nominal value of critical gain.[

x1,k+1

x2,k+1

]
=

[
1 T (1− a)
0 a

] [
x1,k

x2,k

]
+ b0

[
Tts − T 2(1− a)

T (1− a)

]
uk +

[
Tts − T 2(1− a)

T (1− a)

]
fk

yk =
[
1 0

] [ x1,k

x2,k

] (4.31)

Assigning fk to a third state, the extended state vector x̂k = [x̂1,k, x̂2,k, x̂3,k]
⊤

is updated according to (4.32), where the observer matrices Ao, Bo, and Co

are de�ned as (4.33)-(4.35).

x̂k = (Ao − ℓoCoAo) x̂k−1 + (Bo − ℓoCoBo)uk−1 + ℓoyk (4.32)
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Ao =

 1 T (1− a) Tts − T 2(1− a)
0 a T (1− a)
0 0 1

 (4.33)

Bo = b0

 Tts − T 2(1− a)
T (1− a)

0

 (4.34)

Co =
[
1 0 0

]
(4.35)

Likewise, the observer gain vector ℓo is determined based on the desired lo-
cation of the observer poles inside the unit circle [22]. By following the same
approach used in the design of conventional current-ESO, the corresponding
gains are (4.36)-(4.38), with zo = exp (−ωots).

ℓo1 = 1− z3o
a

(4.36)

ℓo2 =
2a− ℓo1(1 + a) + ℓo3 [T

2(1− a)− aT ts]− 3z2o + 1

T (1− a)
(4.37)

ℓo3 =
(1− zo)

3

Tts(1− a)
(4.38)

Consequently, the design of the current-ESO in the proposed loop is dependent
on the apparent time constant of modi�ed plant T , the sampling time ts, and
the desired bandwidth ωo.

Let the control action a�ecting the system to be

uk = u0,k −
x̂3,k

b0
(4.39)

with u0,k denoting the value for instant k of a control action computed by a
predictive control algorithm. If (4.39) is substituted in (4.31), it follows that[

x1,k+1

x2,k+1

]
=

[
1 T (1− a)
0 a

] [
x1,k

x2,k

]
+ b0

[
Tts − T 2(1− a)

T (1− a)

]
u0,k

− b0

[
Tts − T 2(1− a)

T (1− a)

]
x̂3,k

b0
+

[
Tts − T 2(1− a)

T (1− a)

]
fk,

(4.40)
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and, under the premise that x̂3,k ≈ fk, the last two terms on the right hand
side of (4.40) cancel out, resulting in the disturbance-free modi�ed plant[

x1,k+1

x2,k+1

]
=

[
1 T (1− a)
0 a

]
︸ ︷︷ ︸

A

[
x1,k

x2,k

]
︸ ︷︷ ︸

xk

+ b0

[
Tts − T 2(1− a)

T (1− a)

]
︸ ︷︷ ︸

B

u0,k

yk =
[
1 0

]︸ ︷︷ ︸
C

[
x1,k

x2,k

] (4.41)

Up to this point, it has been shown how the current-ESO estimates the modi�ed
plant states and the total perturbation. When the latter is used to compute the
manipulated variable acting on the system, the model mismatch and external
disturbances are compensated, allowing the discrete-time realisation of the �rst
order plus integrator system from (4.41) to be used as a prediction model to
obtain the predictive control law u0,k.

4.4.2 The modi�ed predictive controller

Let JM be the quadratic cost index associated to the optimisation problem of
the modi�ed predictive controller such that

JM =
p∑

i=1

∥yr,i|k − yf,i|k∥2γ +
c−1∑
i=0

∥∆u0,i|k∥2λ, (4.42)

which results in
JM = ∥yr − yf∥2Γ + ∥∆u0∥2Λ, (4.43)

with ∆u0 =
[
∆u0,0|k,∆u0,1|k, . . . ,∆u0,c−1|k

]⊤
and yf as the vector of p output

predictions

yf = Pxk + V Bu0,k−1︸ ︷︷ ︸
yfree

+G∆u0. (4.44)

Notice that neither the correction term nor the disturbance prediction model
are included in (4.44). This is because the observer is providing the current
state vector xk of the modi�ed plant and consequently, matrices P ∈ Rp×2, V ∈
Rp×1, and G ∈ Rp×c are computed using the discrete state-space realisation
from (4.41).
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In order to incorporate the real system constraints in the optimisation problem
related to (4.42), the following formulation based on the classical Quadratic
Dynamic Matrix Control (QDMC) approach is proposed.

Firstly, consider the constraints on the manipulated variable speci�ed as (4.4).
For instant k, it holds that

u0|k ≤ u. (4.45)

From (4.39), u0|k can be rewritten as u0|k =
[
∆u0,0|k + u0,k−1

]
− (1/b0)x̂3,k and

substituting the latter in (4.45) leads to

∆u0,0|k ≤ u− u0,k−1 +
x̂3,k

b0
. (4.46)

Thus, the upper limit constraint on input magnitude u has been used to deter-
mine the corresponding upper limit constraint for the �rst decision variable of
(4.43), ∆u0,0|k, taking into account the contribution of the disturbance rejector
to the manipulated variable u0|k.

The above procedure is expanded along the control horizon as follows.

∆u0,1|k +∆u0,0|k ≤ u− u0,k−1 +
x̂3,1|k

b0

∆u0,2|k +∆u0,1|k +∆u0,0|k ≤ u− u0,k−1 +
x̂3,2|k

b0
...

∆u0,c−1|k + · · ·+∆u0,0|k ≤ u− u0,k−1 +
x̂3,c−1|k

b0

(4.47)

From equation (4.47) is evident that future values of the estimated total per-
turbation are required, which are not available. Still, it can be assumed that
x̂3,k remains constant over the control horizon, and its value is updated by the
ESO each time the optimisation problem needs to be solved. This is, with
x̂3,k = x̂3,1|k = · · · = x̂3,c−1|k, (4.47) turns into (4.48).
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∆u0,1|k +∆u0,0|k ≤ u− u0,k−1 +
x̂3,k

b0

∆u0,2|k +∆u0,1|k +∆u0,0|k ≤ u− u0,k−1 +
x̂3,k

b0
...

∆u0,c−1|k + · · ·+∆u0,0|k ≤ u− u0,k−1 +
x̂3,k

b0
.

(4.48)

A similar development is done to determine the lower limit constraints on ∆u0

as a function of the allowed lower limit u for the manipulated variable such
that

−∆u0,1|k −∆u0,0|k ≤ −u+ u0,k−1 −
x̂3,k

b0

−∆u0,2|k −∆u0,1|k −∆u0,0|k ≤ −u+ u0,k−1 −
x̂3,k

b0
...

−∆u0,c−1|k − · · · −∆u0,0|k ≤ −u+ u0,k−1 −
x̂3,k

b0
.

(4.49)

Gathering inequalities from (4.48) and (4.49) results in the matrix form

[
IL
−IL

]
︸ ︷︷ ︸

Au


∆u0,0|k
∆u0,1|k

...
∆u0,c−1|k


︸ ︷︷ ︸

∆u0

≤
[

u
−u

]
−
[

1
−1

]
u0,k−1 +

[
1
−1

]
ur,k︸ ︷︷ ︸

bu

,
(4.50)

where IL ∈ Rc×c is an all-ones lower triangular matrix; u ∈ Rc×1 and u ∈ Rc×1

are vectors of repeated elements u and u, respectively; 1 ∈ Rc×1 is an all-ones
vector, and ur,k = (1/b0)x̂3,k represents the contribution of the disturbance
rejector to the manipulated variable.

Attention is now drawn to handling constraints on the rate of change of input
given in the form of (4.3). Proceeding as before, for instant k, it holds that

u0|k − uk−1 ≤ ∆u. (4.51)
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Using (4.39) in (4.51), it follows that[
∆u0,0|k + u0,k−1 −

x̂3,k

b0

]
− uk−1 ≤ ∆u. (4.52)

Furthermore, uk−1 = u0,k−1 − (1/b0)x̂3,k−1. Thus, substituting the latter in
(4.52) and reorganising terms

∆u0,0|k ≤ ∆u− u0,k−1 + u0,k−1 +
x̂3,k

b0
− x̂3,k−1

b0

∆u0,0|k ≤ ∆u+
x̂3,k

b0
− x̂3,k−1

b0

∆u0,0|k ≤ ∆u+
∆x̂3,k

b0
.

(4.53)

Likewise, for future control moves, constraints become

∆u0,1|k ≤ ∆u+
∆x̂3,1|k

b0

∆u0,2|k ≤ ∆u+
∆x̂3,2|k

b0
...

∆u0,c−1|k ≤ ∆u+
∆x̂3,c−1|k

b0
.

(4.54)

However, as it was assumed that x3,k remains constant along the control hori-
zon, ∆x̂3,1|k = ∆x̂3,2|k = · · · = ∆x̂3,c−1|k = 0, indicating that the disturbance
rejector contribution to the manipulated variable is only a�ecting the con-
straint on the �rst decision variable ∆u0,0|k.

Constraints for the lower bound of ∆u0 based on ∆u are derived similarly to
that was performed for the upper bound. Therefore, constraints on the rate
of change of input are incorporated into the optimisation problem through
the matrix form (4.55), with I as the identity matrix, ∆u ∈ R(c−1)×1 and
∆u ∈ R(c−1)×1 as vectors of repeated elements ∆u and ∆u respectively, and
0 ∈ R(c−1)×1 as the zero vector.
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[
I
−I

]
︸ ︷︷ ︸

A∆u


∆u0,0|k
∆u0,1|k

...
∆u0,c−1|k


︸ ︷︷ ︸

∆u0

≤


∆u

∆u

−∆u

−∆u

+


ur,k

0
−ur,k

0


︸ ︷︷ ︸

b∆u

(4.55)

Lastly, constraints (4.5) on output are introduced into the optimisation prob-
lem in the same fashion as the classical QDMC approach because the prediction
vector (4.44) is dependent only on the current state vector xk and past input
u0,k−1. Hence, de�ning y ∈ Rp×1 and y ∈ Rp×1 as vectors of p elements y and
y, respectively

[
G
−G

]
︸ ︷︷ ︸

Ay

≤


∆u0,0|k
∆u0,1|k

...
∆u0,c−1|k


︸ ︷︷ ︸

∆u0

≤
[

y − yfree

−y + yfree

]
︸ ︷︷ ︸

by

. (4.56)

In summary, the optimisation problem for the modi�ed predictive controller
of the proposed loop is stated as (4.57), with constraints matrices de�ned in
(4.50), (4.55), and (4.56).

min∆u0
{∥yr − yf∥2Γ + ∥∆u0∥2Λ}

s.t.

 A∆u

Au

Ay

∆u0 ≤

 b∆u

bu

by

 (4.57)

4.4.3 Stability and feasibility

The closed-loop stability of the control architecture from Figure 4.1 can be
addressed based on the separation principle under which the disturbance re-
jector and the modi�ed predictive controller constitute two cascaded systems
that can be independently designed. If the stability of these two comprising
structures is assured, then the closed-loop stability is guaranteed [99].
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Let ek = xk − x̂k be the discrete-time estimation error such that

ek+1 = (Ao − ℓoCoAo) ek. (4.58)

Thus, the discrete ESO from the disturbance rejector is stable if the gains
vector ℓo is designed by assuring that matrix Ao − ℓoCoAo, representing the
observation error dynamics, has all its eigenvalues inside the unit circle. This
principle holds in gains (4.36)-(4.38), which are only dependent on the sampling
time and the observer bandwidth. A detailed presentation of the Input-to-State
stability properties of the discrete ESO is presented in [47]. Notice that the
ESO comprising the proposed loop can be seen as a particular realisation of
the discrete generalised ESO addressed in [47] in which the matrices are always
de�ned by (4.33)-(4.35).

On the other hand, the asymptotic stability of the modi�ed predictive con-
troller can be assured by including a terminal constraint in the optimisation
problem (4.57) [100], such that the predicted outputs are forced to converge
to the desired reference at the end of the prediction horizon and to remain at
this setpoint for several desired additional instants. For this purpose, consider
the vector of additional n future outputs over the prediction horizon p

ỹf =
[
yf,p+1|k, yf,p+2|k, . . . , yf,p+n|k

]⊤
, (4.59)

which is recursively computed as

ỹf = P̃ x̂k + Ṽ Bu0,k−1︸ ︷︷ ︸
ỹfree

+G̃∆u0, (4.60)

with P̃ ∈ Rn×2, Ṽ ∈ Rn×1, and G̃ ∈ Rn×c also obtained by using the as-
sumed disturbance-free state space (4.41) in expressions (4.13)-(4.15). Using
this formulation, (4.57) is additionally subject to the equality constraint

G̃∆u0 = ỹr − ỹf , (4.61)

where ỹr ∈ Rn×1 is a vector with all its components equal to the desired
reference value yr,p|k.

115



Chapter 4. Modi�ed Active Disturbance Rejection Predictive Control

The approach in which a constraint in the form of (4.61) is included in the MPC
optimisation problem is usually referred to in the literature as the Constrained
Receding-Horizon Predictive Control (CRHPC) [101], and if (4.61) holds, then
yf,p+i|k = yr,p|k for i = 1, 2, . . . , n, which brings a monotonically convergent cost
and guarantees the closed-loop stability for �nite horizons [102]. The number
of additional n output predictions is related to the system order. Therefore,
for the modi�ed predictive controller, n = 2 always as the prediction model is
a �xed second-order state space realisation resembling the assumed modi�ed
plant of �rst-order plus integrator. Moreover, imposing this constraint on the
optimisation problem leads to the condition that the control horizon must be
selected according to c ≥ n = 2, setting a lower value for the tuning of c in the
proposed constrained loop.

Notice that (4.57) can also include constraints on the rate of change of the
manipulated variable, its magnitude, and the output. Imposing restrictions
on predictive control can lead to feasibility problems. That is, the optimiser
may not �nd a solution that allows the system to be within the prede�ned
conditions [96]. A common approach from an engineering perspective is to
soften the output constraints since they are often desired rather than required
in contrast to the hard input constraints associated with physical limitations
of the system, such as actuator ranges and slew rates [35]. Therefore, to deal
with infeasibility, the cost index (4.42) of the modi�ed predictive controller can
be reformulated as (4.62), where the last two terms are included to penalise
with the weight ε1 the slack variable ξ1 that quanti�es the violation of the
output constraint, and through the weight ε2 the slack variable ξ2 associated
to the equality constraint [103].

JM =
p∑

i=1

∥yr,i|k−yf,i|k∥2γ+
c−1∑
i=0

∥∆u0,i|k∥2λ+
p∑

i=1

∥ξ1,i|k∥2ε1+
p+2∑

i=p+1

∥ξ2,i|k∥2ε2 (4.62)

With the introduction of the slack variables plus the stability constraint, the
optimisation problem (4.57) is transformed in (4.63), where 0 and 1 are all-
zeros and all-ones matrices of proper dimensions, respectively. The above
reformulation guarantees that the modi�ed predictive controller computes a
feasible control law for the modi�ed plant, leading future outputs to stabilise
at a computed reference.
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min∆u0,ξ {∥yr − yf∥2Γ + ∥∆u0∥2Λ + pε1ξ
2
1 + 2ε2ξ

2
2}

s.t.


A∆u 0 0
Au 0 0
Ay −1 0
0 −1 0
0 0 1


 ∆u0

ξ1
ξ2

 ≤


b∆u

bu

by

0
∞


[
G̃ 0 −1

]  ∆u0

ξ1
ξ2

 = ỹr − ỹf

(4.63)

Finally, it is worth clarifying that the proposed control architecture can be im-
plemented using the formulations (4.57) or (4.63) for the modi�ed predictive
controller. If (4.57) is the one selected, then the design relies on the proper
selection of the tuning parameters to obtain a closed-loop stable response ac-
cording to the desired performance, as is the standard approach in the classical
MPC and ADRC implementations. On the contrary, the optimisation problem
(4.63) addresses the stability and feasibility challenges, which let the designer
test a broader range of combinations of the predictive controller parameters,
given that the disturbance rejector adequately compensates for the total per-
turbation.

4.5 Validation examples for the Modi�ed Active Disturbance

Rejection Predictive Control

In this section, the control architecture of Figure 4.1, referred to hereafter
as Modi�ed Active Disturbance Rejection Predictive Control (MADRPC), is
validated with di�erent types of systems. The modi�ed predictive controller
operates under the formulation (4.63) in all cases. This is, the designs seek the
desired performance while assuring feasibility and closed-loop stability.

Guide 4.5.1 lists general guidelines for selecting MADRPC parameters based on
the practical experience reported in the literature on MPC tuning and discrete
controllers implementation. This guideline proved adequate for the MADRPC
loop design associated with the examples presented in this section.

Before addressing the validation examples, let the following be remarked.
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The proposed control (Figure 4.1) combines the disturbance rejector mech-
anism of the ADRC with the receding horizon strategy of the MPC. This
integration is done mainly by preserving the internal loop of the classical
ADRC structure that includes the ESO together with the sum-gain con�gu-
ration, through which the real dynamics is enforced to behave like the mod-
i�ed plant, and by rede�ning the optimisation problem constraints in the
form of (4.50), (4.55), and (4.56) to directly incorporate the compensation
term ur,k. Consequently, the discrepancies between the real system and the
assumed plant and the external disturbances are actively compensated in the
loop relaxing the predictive controller modelling requirement to a second-
order general integral system. Also, the inclusion of the compensation term
in the constraints de�nition aims at maintaining the controlled and manip-
ulated variables, and rate of change of manipulated variable within the real
constraints bands. The name MADRPC is motivated by these characteris-
tics.

From a practical application perspective, the MADRPC o�ers advantages
in the control of systems with no identi�ed model because the only mod-
elling required information is the approximation of the control gain b0 and
the desired apparent time constant T . As a result, the future outputs (4.44)
are obtained with a �xed second-order state-space prediction model, and the
size of the optimisation problem (4.57) (or (4.63)) is only dependent on the
horizon lengths. Additionally, the constraints on the controlled variable,
the manipulated variable, and the rate of change of the manipulated vari-
able can be included, and the closed-loop stability can be imposed through
constraint (4.61).

The MADRPC design requires selecting the classical parameters involved in
the MPC design (prediction horizon, control horizon, cost function weight-
ings) besides the ESO bandwidth ω0 and the modi�ed plant parameters (b0,
T ). These parameters should be appropriately selected for the trade-o�
among the performance requirements.
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Guide 4.5.1: Guide for the implementation of the Modi�ed Active Disturbance Rejection
Predictive Control (MADRPC).

1O For the system.

a) Identify the process constraints on the manipulated and controlled variables,
and decide on the desired closed-loop performance coherently with the con-
straints imposed.

b) Select the sampling time, ts.

From open-loop
step response [104]

Shannon-Nyquist
theorem

From closed-loop
desired bandwidth [105]

t95%
15

≤ ts ≤ t95%
4

ts ≈ π

ωmax

1

40fB
≤ ts ≤ 1

20fB

2O For the disturbance rejector (4.32)-(4.39).

c) Select the observer bandwidth ωo according to the sampling frequency ωs =
2π

ts
[106].

ωs

10
≤ ωo ≤ ωs

5

d) Determine the modi�ed plant apparent time constant T and the nominal value
of the critical gain b0, for example, using the suggestions from Guide 2.5.1.

3O For the modi�ed predictive controller (4.57) or (4.63)∗ and (4.50), (4.55)-(4.56).

e) Select the control horizon c and prediction horizon p [107]. The latter may be
computed considering t0 as the open-loop (for self-regulatory plants) or desired
closed-loop settling time.

Control horizon Prediction horizon

1 (2∗) ≤ c ≤ p p ≈ to
ts

f) Select the weighting factors γ, λ. For example, for a �xed γ, small values
for λ lead to faster responses but with possible overshoot. Conversely, if λ
increases, smoother inputs are achieved at the cost of a slower disturbance
rejection response.

The parameters computed following the above steps should be considered as starting

values and retuned iteratively according to the expected performance.
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4.5.1 A classical problem of motion control

It is desired to control the shaft angle of a direct-current motor modelled as
(4.64) [108] with parametric uncertainty for the static gain K = 2.5− 20%,
and for the apparent time constant T = 0.9 + 20% s.

GM(s) =
2.5

s (0.9s+ 1)
(4.64)

Regarding Figure 4.1 and following Guide 4.5.1, consider.

1O For the system.

a) The goal is to produce shaft movements of about 15◦ with no overshoot
in approximately two seconds by manipulating the input voltage in the
range |u| ≤ 24V and allowing input changes of |∆u| ≤ 5V.

b) A sampling time of ts = 0.05 s is chosen.

2O For the disturbance rejector.

c) As the loop sampling frequency is ωs = 2π/ts = 40π rad/s, the ESO
bandwidth ωo = 20 rad/s is selected.

d) From (4.64) the nominal static gain is K = 2.5 and the nominal apparent
time constant is T = 0.9. Therefore, b0 ≈ K/T ≈ 2.8.

3O For the modi�ed predictive controller.

e) The control horizon is set as c = 9 and the prediction horizon is selected
as p = 40.

f) The error weighting and the input rate weighting are set as γ = 1 and
λ = 0.1, respectively. The slack variables weights are set to ε1 = ε2 = 105.

As shown in Figure 4.2, the MADRPC drives the shaft angle to the desired
setpoints satisfying the performance requirements and constraints. Further-
more, in the presence of model uncertainty (K,T ), the disturbance rejector
compensates for the total perturbation allowing the MADRPC to produce an
output response very similar to that of the nominal case (K,T ). The same is
not valid if the system is controlled by a constrained OF-MPC designed with
the same parameters and full access to the states; the closed-loop response
deteriorates because an overshoot appears.
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Figure 4.2: Closed-loop response of the DC motor subject to PID-control, OF-MPC and
MADRPC for di�erent reference steps. Nominal system: K, τ ; System with uncertainty:
K, τ . System constraints: |u| ≤ 24V, |∆u| ≤ 5V, yf,p+i|k = yr,p|k, i ∈ [1, 2].
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A PID controller tuned with the SIMC rules [86] (Kc = 1.6, Ti = 1, Td = 0.9)
has been included in Figure 4.2 as an alternative comparative controller. The
MADRPC outperforms the PID in the presence of uncertainty while keeping
the changes in input within the desired limits.

The functioning of the disturbance rejector can be validated through the step
response of the modi�ed plant [25]. This is, an input step applied instead
of the governing control input u0 in Figure 4.1 should produce the open-loop
response of the modi�ed plant, which is expected to asymptotically change
at a constant rate following the step response of the assumed �rst-order plus
integrator system.

The above behaviour is presented in Figure 4.3 for di�erent values of the ESO
bandwidth. Notice that x̂1 and x̂2 are the estimations of the output and its
rate of change for each instant. Consequently, x̂1 starts to follow a quadratic
growth and then exhibits a linear tendency after approximately two times the
time constant. This monotonic response drives x̂2 to a steady-state equal the
desired static gain.

On the other hand, the disturbance rejector accuracy is dependent on the ESO
bandwidth. For a low observer bandwidth, for example, ωo = 5 rad/s, there is
a slight di�erence between the desired �rst-order plus integrator response and
the modi�ed plant output. However, as the bandwidth increases, the modi�ed
plant responses tend to be indistinguishable.

(a) (b)

Figure 4.3: Open-loop response of the modi�ed plant of DC motor with uncertainty K, τ
under variations in the ESO bandwidth compared to the desired modi�ed plant (�rst-order
plus integrator). (a) Estimated output. (b) estimated rate of output.
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With the selected ESO bandwidth ωo = 20 rad/s, the MADRPC actively com-
pensates for the real system uncertainty and the closed-loop output satis�es
the desired performance.

Finally, Figure 4.4 shows that the MADRPC satis�es the closed-loop stability
constraint imposed while controlling the uncertain DC motor. Figure 4.4a plots
the sequences of p + n future outputs computed at three di�erent instants in
the time window t ∈ [0, 4]. The predicted outputs settle at the desired setpoint
of 15 (◦) at the end of the prediction horizon of p = 40 instants and remain
unchanged for the imposed n = 2 consequent instants. Moreover, the cost
function exhibits a monotonic convergence to zero along the said time window,
as seen in Figure 4.4b.

(a)

(b)

Figure 4.4: Closed-loop stability validation of the MADRPC when controlling the DC
motor. (a). Equality constraint satisfaction yf,p+i|k = yr,p|k, i ∈ [1, 2]. (b). Monotonic
convergence of the cost function.
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4.5.2 Linear benchmark systems: high-order systems

The proposed MADRPC is now validated through the control of two di�erent
linear examples resembling varied dynamics of common interest in literature,
which are considered benchmark systems [109]. These are a fourth-order sys-
tem with its pole spacing dependent on a parameter and a third-order plant
with a right-hand plane zero or non-minimum phase behaviour. The case-study
systems are listed in Table 4.1, together with the nominal values adopted here.

Table 4.1: Linear benchmark systems and its nominal values

Benchmark system Parameters

GF (s) =
K

(s+ 1) (βs+ 1) (β2s+ 1) (β3s+ 1)
K = 1 β = 0.5

GR(s) =
1− βs

(τs+ 1)
3 β = 1 τ = 1

The OF-MPC and the LADRC were also designed to control the aforemen-
tioned benchmark systems for comparison purposes. The OF-MPC, when no
model mismatch exists, is considered a performance reference scheme because a
complete, i.e. full-state model was used for its design. Therefore, the �rst vali-
dation objective was to test the MADRPC capability to emulate the OF-MPC
performance with the advantage of a relaxation in the modelling requirement
because of the disturbance rejector. On the other hand, it was expected that
the MADRPC would outperform the conventional LADRC due to the modi�ed
prediction control law acting on the assumed modi�ed plant.

As the MADRPC and LADRC algorithms uses their corresponding ESO con-
�gurations, a current-type Luenberger observer of complete order was used to
estimate the OF-MPC model states required for output predictions. In order to
assign the same observer bandwidth of the ESO from MADRPC, the OF-MPC
observer poles si were designed by solving the characteristic equation (4.65),
which is only dependent on the system order n and desired bandwidth ωo, and
then mapped as zi to the unit circle through (4.66) with sampling time ts.
The remaining parameters of the OF-MPC and the tuning parameters of the
MADRPC were selected as discussed in Guide 4.5.1.
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(
s

ωo

)2n

= (−1)
n+1 (4.65)

zi = exp (sits) (4.66)

In the case of the LADRC, Guide 3.5.1 was used to compute the main three
design variables b0, ωc, and ωo under the premise that the benchmark sys-
tems from Table 4.1 are adequately approximated by �rst-order plus dead
time models, and thus, the parameters computed with the proposed rules of-
fers a stable closed-loop response with a medium robustness speci�cation. The
approximation was performed following the method of moments reported in
[83], according to which the parameters of the �rst-order plus delay model are
given by 

K = G(0)

Tar = −G′(0)

G(0)

T 2 =
G′′(0)

G(0)
− T 2

ar

l = Tar − T

(4.67)

In (4.67), the �rst and second-order derivatives of the model transfer function
G(s) at s = 0 are used to compute the FOPDT approximation parameters.
This methods gives similar results to those obtained, for example, using the
half-rule [86].

Table 4.2 gathers the FOPDT approximations of the benchmark systems from
Table 4.1 computed with (4.67).

Table 4.2: Linear benchmark systems and its approximated FOPDT model

Benchmark system FOPDT model

GF (s) =
1

(s+ 1) (0.5s+ 1) (0.25s+ 1) (0.125s+ 1)

1

1.152s+ 1
e−0.723s

GR(s) =
1− s

(s+ 1)
3

1

1.414s+ 1
e−2.586s
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The design parameters for the three control algorithms are reported in Ta-
ble 4.3. It is worth clarifying that these control parameters were tuned con-
sidering that the main goal in servo operation, when possible, is to drive the
system to the desired setpoint with an overshoot OS ≤ 2% and a settling time
t98% lower than the natural pace of the system while constraints are satis�ed.
For this purpose, the control loops were designed with sampling time ts = 0.1 s.

Table 4.3: Parameters for the control of the linear benchmark systems from Table 4.1. p,
prediction horizon; c, control horizon; γ, weighting for error; λ, weighting for input rate;
b0, nominal critical gain; T , apparent time constant ωo, ESO bandwidth; ωc, controller
bandwidth.

GF (s) GR(s)

LADRC OF-MPC MADRPC LADRC OF-MPC MADRPC

p - 50 50 - 85 85
c - 10 5 - 20 20
γ - 0.2 1 - 0.08 0.001
λ - 1 0.1 - 1 5.5
b0 25.68 - 2.4 10.37 - 4.5
T - - 1 - - 1.62
ωo 23.20 5 5 9.6 12 12
ωc 2.32 - - 0.96 - -

(a) (b)

Figure 4.5: Open-loop response of the modi�ed plants GFm(s) and GRm(s) of the nominal
linear benchmark systems from Table 4.1. (a) Estimated output. (b) estimated rate of
output.

126



4.5 Validation examples for the Modi�ed Active Disturbance Rejection Predictive Control

As mentioned in subsection 4.5.1, the open-loop response of the modi�ed plant
is an indicator of the ESO convergence and the MADRPC disturbance rejec-
tor capability to enforce the real plant to behave like the assumed dynamics.
Therefore, a unit step input was applied to the modi�ed plants corresponding
to the nominal linear benchmark systems from Table 4.1.

As can be seen in Figure 4.5a, the output of each modi�ed plant resembles
the desired dynamics of a �rst-order plus integrator model with the constant
rate of change plotted in Figure 4.5b. The above shows that the disturbance
rejector compensates for the ignored high-order dynamics; thus, the modi�ed
predictive controller can be designed to govern the assumed process.

Two scenarios were considered for validation. In the �rst one, the real plants
to be controlled correspond to the nominal systems, and in the second one,
the nominal parameters of each benchmark process were varied to test the
designed control algorithms against uncertainty. Moreover, a step-type input
disturbance was added to the manipulated variable in both scenarios at an
instant when the output had reached the steady-state.

Quanti�cation of performance was done through the indices reported in Ta-
ble 4.4. The settling time t98%, percentage of overshoot OS (or absolute value
of undershoot |US| in case of GR(s)), and total variation of control action TVs

were computed for servo operation. In contrast, the percentage of maximum
deviation MD, ITAE, and total variation TVd were calculated in regulatory
operation.

The closed-loop responses of system GF (s) when controlled by LADRC, OF-
MPC, and MADRPC are presented in Figure 4.6. The MADRPC algorithm
meets the required setpoint tracking performance and satisfy the constraints
similarly to the OF-MPC. However, notice that in the �rst scenario, the OF-
MPC has no model mismatch and complete state estimation. In contrast,
the MADRPC manages to control the process assuming a �xed state-space
realisation computed based on the values of the nominal critical gain and the
apparent time constant. The MADRPC overcome the non-modelled dynamics
and drives the output to the reference in a similar settling time to OF-MPC
and with an overshoot within the desired band. Besides, the MADRPC reaches
the setpoint in half of the time than the conventional LADRC.

During the second scenario, where the model mismatch is introduced, the
OF-MPC holds the tracking performance at the cost of an increase in the
total variation of the input, which is also re�ected in the disturbance rejection
response.
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Table 4.4: Performance indexes for the control of the linear benchmark systems from
Table 4.1. The uncertainties a(b%) and a(b%) indicate that the parameter a was increased
or decreased by b % of its nominal value, respectively.

GF (s)

Uncertainty Controller t98% (s) OS (%) TVs MD (%) ITAE TVd

none
LADRC 6.4 8.2 1.25 46.13 3.30 1.32
OF-MPC 3.2 0 0.91 27.86 0.68 1.70
MADRPC 2.9 0.8 1.04 26.64 0.68 2.82

β(20%)
LADRC 6.3 5.1 1.09 43.22 2.49 1.14
OF-MPC 3.4 0.5 2.35 25.24 0.74 4.20
MADRPC 2.9 1.2 0.90 24.02 0.49 2.11

GR(s)

Uncertainty Controller t98% (s) |US| TVs MD (%) ITAE TVd

none
LADRC 12.6 0.03 0.92 74.03 28.49 1.22
OF-MPC 5.3 0.16 2.08 48.54 3.61 6.25
MADRPC 7.7 0.05 1.23 69.95 13.43 1.71

β(20%)
τ(2%)

LADRC 12.1 0.05 0.92 78.89 28.58 1.30
OF-MPC 5.7 0.35 8.93 95.18 3.78 30.16
MADRPC 9.4 0.08 1.28 79.85 14.50 2.10

Although the maximum deviations from the desired reference produced by the
MADRPC are comparable with those produced for the OF-MPC, about 25%,
the MADRPC returns the output to the steady state in less time and with
a smoother variation in the control signal than the OF-MPC as re�ected in
the ITAE index. The disturbance rejection capability of the MADRPC also
outperforms that of the LADRC.

On the other hand, Figure 4.7 shows the closed-loop responses of system GR(s).
In this case, the non-minimum zero produces an inverse response in the out-
put. The OF-MPC leads the controlled variable to the reference in a time
that results lower than the open-loop settling time of the process, even when
there is a model mismatch. The MADRPC satis�es the desired overshoot, but
the output is about 2 s slower than the response produced by the OF-MPC,
although the MADRPC loop settles 5 s faster than LADRC in the nominal
case.
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Figure 4.6: Closed-loop response of the linear benchmark system GF (s) subject to LADRC,
OF-MPC, and MADRPC when the desired reference is set to one and a step-type input
disturbance is applied to the system at steady-state. System constraints: |u| ≤ 1.2; |∆u| ≤
0.5; y ≤ 1.5, yf,p+i|k = yr,p|k, i ∈ [1, n].
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Figure 4.7: Closed-loop response of the linear benchmark system GR(s) subject to LADRC,
OF-MPC, and MADRPC when the desired reference is set to one and a step-type input
disturbance is applied to the system at steady-state. System constraints: |u| ≤ 5; |∆u| ≤ 1;
y ≤ 2, yf,p+i|k = yr,p|k, i ∈ [1, n].
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The complete model information used within the OF-MPC aids this algorithm
in the disturbance rejection performance resulting in lower deviations and
ITAE indexes than those produced by the MADRPC and LADRC schemes in
the absence of uncertainty. However, the MADRPC and LADRC o�er a higher
level of robustness in contrast to OF-MPC, which, for the model mismatch in-
troduced, produces oscillations in the manipulated variable that worsen the
inverse response and deteriorate both the servo and regulatory operation. The
MADRPC o�ers better setpoint following and disturbance rejection than con-
ventional LADRC, with the advantage that all constraints are directly taken
into account in the computation of the control law.

4.5.3 Control of a nonlinear benchmark system: The Continuous

Stirred Tank Reactor

The functioning of the Continuous Stirred Tank Reactor (CSTR) was intro-
duced in section 2.6. The CSTR is considered a benchmark system in pro-
cess control because it constitutes a vital unit operation, particularly in the
chemical industry [110], and, as it was explained previously, according to the
formulation of the mass and energy balance equations, the concentration and
temperature of the reactor can be controlled through the �ow rates or the jacket
temperature. In the following, these two scenarios are analysed to validate the
proposed MADRPC algorithm. Additionally, the closed-loop performance is
compared to OF-MPC and LADRC schemes.

Control of the reactor concentration

As �rst case, let the di�erential equations (2.65)-(2.67) be rewritten as (4.68)-
(4.69) [111]. In this con�guration, the controlled variable is the concentration
of reactant A, Ca, and the manipulated variable is the coolant �ow rate, Fj.
The steady-state solution of the non-linear equations for a speci�c value of
Fj leads to the operating points of the system. For example, with a coolant
�ow rate Fj = 103L/min, the concentration and temperature of reactor are,
correspondingly, Cas = 0.09mol/L and Tss = 438.77K, which indicates states
of high conversion and high release of energy. Description of variables and
their corresponding nominal values for this example are listed in Table 4.5.
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Ċa =
F

V
(Ca0 − Ca)− k0Ca exp

(
− E

RTs

)
(4.68)

Ṫs =
F

V
(T0 − Ts) +

∆H

ρcp
k0Ca exp

(
− E

RTs

)

+ Fj

ρjcj
ρcpV

[
1− exp

(
− UA

Fjρcp

)]
(Tj − Ts) (4.69)

Table 4.5: Parameters for the control of the CSTR concentration (subsection 4.5.3) [111],
[112].

Variable Value Units Description

V 100 L Reactor volume
k0 7.2× 1010 min−1 Reaction rate constant
E/R 1× 104 K Activation energy term
∆H 2× 105 Cal/mol Heat of reaction
UA 7× 105 Cal/(minK) Heat transfer term
ρ, ρj 1× 103 g/L Liquids densities
cp, cj 1 Cal/(gK) Heat capacities
F 100 L/min Inlet �ow rate
Ca0 1 mol/L Feed concentration
T0 350 K Feed temperature
Tj 350 K Coolant temperature

Around the selected operating point, the system is open-loop stable, as shown
in Figure 4.8. However, the non-linear dynamics become more evident as the
coolant �ow rate varies from its nominal value producing an under-damped-
type response in the reactor concentration. Therefore, the control goal is to
drive the system such that the reactant concentration Ca follows the desired
setpoint with no overshoot, and it is required that the coolant �ow rate operates
in the range 80 ≤ Fj ≤ 115 with changes |∆Fj| ≤ 1.

The system was simulated with the three control algorithms: OF-MPC, the
proposed MADRPC, and LADRC. For the OF-MPC design, (4.68)-(4.69) were
linearised around the selected operating point and discretised with sampling
time ts = 0.083min. The corresponding state-space model is (4.70) with[
x1, x2

]⊤
=
[
Ca, T

]⊤
, u = Fj, and y = Ca.
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Figure 4.8: Open-loop evolution of concentration Ca when the coolant �ow rate is varied
from its nominal value Fj = 103L/min. The highly non-linear behaviour becomes more
evident as the concentration reaches values far from the operating point Cas = 0.09mol/L.

[
x1,k+1

x2,k+1

]
=

[
0.2248 −3.42× 10−3

133.3 1.501

] [
x1,k

x2,k

]
+

[
1.3071× 10−4

−0.0926

]
uk

yk =
[
1 0

] [ x1,k

x2,k

]
(4.70)

As the sampling rate is ωs = 75.7 rad/min, a current observer with bandwidth
ω = 15 rad/min was designed to estimate the states of (4.70). These estimated
states are used within the OF-MPC algorithm to predict the output along
a prediction horizon p = 29 with a control horizon c = 10 and weighting
coe�cients γ = 2.22 and λ = 0.05. As in the previous validation examples,
the OF-MPC algorithm was implemented with the operating constraints, the
equality constraint to assure stability and their corresponding slack variables
with weights ε1 = ε2 = 105.

On the other hand, the disturbance rejector of the MADRPC was designed as
follows: the values of the apparent time constant T and nominal critical gain
b0 were deduced from the open-loop response. As shown in Figure 4.8, for
changes of 2min/L in the coolant �ow rate, the reactant concentration varies
approximately in 0.01mol/L with a mean settling time of 5min.
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Therefore, the modi�ed plant parameters were set as T = 1min and b0 =
0.03mol/(minL). The ESO bandwidth was chosen as ωo = 15 rad/min, and
the modi�ed predictive controller parameters were designed as p = 29, c = 15,
γ = 10, λ = 0.001, and ε1 = ε2 = 105.

Finally, for the LADRC design, the same bandwidth ωo = 15 rad/min was
selected for the ESO, the controller bandwidth was set as ωc = 10 rad/min,
and the nominal value of control gain had to be tuned to b0 = 3mol/(minL)
for the system to be closed-loop stable.

The closed-loop response of the CSTR is presented in Figure 4.9. A multi-step
reference was applied to the system to test the dynamic behaviour when the
concentration Ca is required to increase or decrease from its nominal value.
What is more, uncertainty was included in the process at t = 125min reduc-
ing the feed concentration and increasing the reaction rate constant by 2%
of its corresponding nominal values, and at t = 270min when the coolant
temperature was increased from 350K to 352K.

According to the performance indices listed in Table 4.6, the MADRPC fol-
lows the desired setpoints with no overshoot and a settling time inferior to
3min when the reference values are over the nominal concentration. The loop
becomes slower for setpoints under Cas, but the MADRC algorithm is still the
fastest.

Table 4.6: Performance indexes computed when the concentration of the CSTR from
Table 4.5 is controlled with LADRC (L), OF-MPC (O) and the proposed MADRPC (M).

Settling time (min ) Overshoot % Total variation

Setpoint L O M L O M L O M

0.09 to 0.11 12.53 3.24 2.74 0 0 0 3.93 2.80 2.87
0.11 to 0.12 11.29 3.15 2.66 0 1.18 0 3.23 2.22 2.60
0.12 to 0.135 Osc. 13.20 2.57 Osc. 16.10 0 Osc. 5.41 4.08
0.135 to 0.125 12.45 5.81 2.66 0.53 11.62 0 2.86 2.14 3.23
0.125 to 0.11 11.45 3.07 2.74 0 0.13 0 4.71 3.11 4.48
0.11 to 0.08 16.27 3.90 3.07 0 0 0 11.92 8.84 8.97
0.08 to 0.05 25.23 5.98 3.65 0 0 0 16.70 13.75 13.75

Time (min) Max. deviation % ITAE Total variation

125 to 150 22.24 12.81 5.40 0.18 0.03 0.01 5.96 7.35 9.33
270 to 300 9.69 6.78 2.86 0.11 0.01 0.003 2.47 2.48 4.04
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Figure 4.9: Closed-loop response of the CSTR from Table 4.5 subject to LADRC, OF-MPC,
and MADRPC. System constraints: 80 ≤ Fj ≤ 115, |∆Fj | ≤ 1, CAf,p+i|k = CAr,p|k, i ∈
[1, 2].
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Notice that OF-MPC and LADRC produces an oscillating behaviour (referred
to as Osc. in Table 4.6) when the concentration is increased from 0.12mol/L
to 0.135mol/L, as seen in the inset of the concentration from Figure 4.9. Al-
though the OF-MPC manages to settle the output in the desired value, the
detriment in the response is also present at the beginning of the next transient
when CA decreases to 0.125mol/L causing that the system reaches the steady
state with overshoot. The above exhibits the dependence of the OF-MPC on
an accurate model, especially in the operating regions where the non-linear
behaviour is more prominent, and the limitations of the LADRC to overcome
such di�cult dynamics.

With the selected tuning parameters, the MADRPC algorithm is also superior
in terms of disturbance rejection. For example, the inset from Figure 4.9
also shows the response of the three algorithms to the �rst alteration in the
operating conditions at t = 125min. The MADRPC returns the concentration
to the reference level producing the lowest deviation and the fastest response,
as evidenced by the ITAE index. This rapid disturbance rejection increases
the total variation of the coolant �ow rate. However, the algorithm computes
control actions that satisfy the given operation constraints.

Control of the reactor temperature

Consider now a CSTR in which it is desired to control the reactor tempera-
ture Ts by manipulating the coolant temperature Tj. The non-linear di�eren-
tial equations (4.71)-(4.72) [113] govern the process with the parameters and
nominal values from Table 4.7. Under this operation, a coolant temperature
Tj = 311.1K leads the system to the steady state Cas = 9.341 × 10−2 mol/L,
Ts = 385K.

Ċa =
F

V
(Ca0 − Ca)− k0Ca exp

(
− E

RTs

)
(4.71)

Ṫs =
F

V
(T0 − Ts) +

∆H

ρcp
k0Ca exp

(
− E

RTs

)
+

UA

ρcpV
(Tj − Ts) (4.72)

In Figure 4.10, the open-loop response of the reactor temperature to changes in
coolant temperature is presented. In this case, the critical zone for operation
of the CSTR is reached when Tj is decreased by 5K, although the non-linear
behaviour is also evident for positive changes in the manipulated variable.
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Table 4.7: Parameters for the control of the CSTR temperature (subsection 4.5.3) [113].

Variable Value Units Description

V 100 L Reactor volume
k0 7.2× 1010 min−1 Reaction rate constant
E/R 8750 K Activation energy term
∆H 5× 104 Cal/mol Heat of reaction
UA 5× 104 J/(minK) Heat transfer term
ρ 1× 103 g/L Liquid density
cp 0.239 J g/K Heat capacity
F 100 L/min Inlet �ow rate
Ca0 1 mol/L Feed concentration
T0 350 K Feed temperature

Figure 4.10: Open-loop evolution of the reactor temperature Ts when the coolant tempera-
ture is varied from its nominal value Tj = 311.1K. The reactor experiences severe non-linear
behaviour, particularly when the coolant temperature is decreased by 5K.

The OF-MPC, MADRPC, and LADRC algorithms were designed similarly
to the previous example, with the control purpose for the system to reach a
desired reactor temperature with a settling time of less than 3min and the
minimum overshoot possible.
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In addition, the input and rate of input constraints 291 ≤ Tj ≤ 331, |∆Tj| ≤ 6
were imposed, and process uncertainty was introduced at times t = 125min
when the inlet �ow rate is increased by 10% of its nominal value, and at
t = 425min with a reduction of the feed temperature from 350K to 347K.

For the OF-MPC, the state-space model (4.73) was obtained by linearising
(4.71)-(4.72) around the selected operating point and discretising the resultant
continuous linear model with Ts = 0.1min. The model states are de�ned as[
x1, x2

]⊤
=
[
Ca, T

]⊤
, the input is u = Tj, and the output y = T .[

x1,k+1

x2,k+1

]
=

[
−0.0074 −0.0045
172.331 1.589

] [
x1,k

x2,k

]
+

[
−5.0512× 10−4

0.2786

]
uk

y(k) =
[
0 1

] [ x1,k

x2,k

]
(4.73)

A current-Luenberger observer was designed such that ω = 10 rad/min to
estimate the states from (4.73) for future output predictions along an horizon
p = 10 with control horizon c = 5 and weighting coe�cients γ = 1, λ = 0.03,
and ε1 = ε2 = 105.

From Figure 4.10, the apparent time constant for the modi�ed plant of the
proposed MADRPC was computed as T = 0.15min, and the nominal value
of critical gain was approximated by b0 ≈ ∆Ts/T ≈ 25K/min. Likewise,
the ESO bandwidth was set to ωo = 10 rad/min and the modi�ed predictive
control parameters to p = 10, c = 5, γ = 1, and λ = 0.3. To maintain the
same state estimation rate, the observer bandwidth of the LADRC was also
adjusted to ωo. The remaining LADRC parameters were tuned as b0 = 25 and
ωc = 3 rad/min.

Under the control designs mentioned above, the CSTR closed-loop response is
as shown in Figure 4.11 with the performance indices from Table 4.8. In this
case, the OF-MPC algorithm o�ers the fastest transition between reference
values when the setpoints are in the range Tss + 10K. However, an overshoot
superior to 2% is produced along the whole operation, worsening in the critical
zone where the controlled variable is required to settle in the range Tss− 10K,
as seen in the inset from the temperature. The above is due to the highly
non-linear dynamics that the CSTR exhibits in this region (see Figure 4.10).
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Figure 4.11: Closed-loop response of the CSTR from Table 4.7 subject to LADRC, OF-
MPC, and MADRPC. System constraints: 291 ≤ Tj ≤ 331, |∆Tj | ≤ 6, CTjf,p+i|k =
CTjr,p|k, i ∈ [1, 2].
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Table 4.8: Performance indexes computed when the temperature of the CSTR from Ta-
ble 4.7 is controlled with LADRC (L), OF-MPC (O), and MADRPC (M).

Settling time (min) Overshoot % Total variation

Setpoint L O M L O M L O M

385 to 390 7.90 0.90 2.50 0 2.98 0 9.74 9.15 8.08
390 to 395 8.30 1 2.50 0 5.65 0 10.59 7.33 6.90
395 to 390 8.10 1 2.60 0 6.11 0 12.79 11.57 11.50
390 to 385 7.60 0.70 2.60 0 3.98 0 11.70 13.91 12.47
385 to 375 6.50 3.70 3.10 0 21.86 0 20.57 84.43 22.93
375 to 380 6.70 2.90 2.80 0 63.98 0 8.50 82.77 19.57
380 to 385 7.30 1 2.50 0 21.59 0 8.90 20.13 10.77

Time (min) Max. deviation K ITAE Total variation

125 to 150 2.99 1.53 1.98 20.70 0.17 1.48 10.49 9.19 7.52
425 to 300 0.98 0.47 0.68 4.03 0.03 0.29 4.16 4.30 3.04

On the other hand, both LADRC and MADRPC algorithms can ful�l the
control task and avoid overshoot, although MADRPC is the one driving the
system to the desired points in the required time. What is more, the MADRPC
tends to maintain a mean settling time of approximately 2.6 s throughout the
complete operation satisfying the imposed constraints.

Finally, in terms of disturbance rejection, the increase in the inlet �ow rate and
decrease in its temperature bring challenges to the system, which are appro-
priately handled by the three control schemes. The MADRPC improves the
disturbance rejection compared to LADRC, producing lower deviations from
the setpoint and computed ITAE indices. Through additional simulations, it
was veri�ed that a reducing the weight of the input changes from the MADRPC
could produce a better disturbance rejection response at the cost of increasing
the total variation of the control action. In contrast, a variation in the OF-
MPC parameters in an attempt to reduce the overshoot only deteriorates the
oscillations in the zone Tss − 10K.
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Conclusions and future research

directions

This chapter closes the dissertation. The �rst section draws
conclusions that answer the research questions stated in chapter 1.
The second section discusses future research directions.
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5.1 Conclusions

This thesis presented new strategies to design control loops under the Active
Disturbance Rejection Control (ADRC) framework. In this sense, three contri-
butions are given: a guide for the design and application of conventional linear
active disturbance rejection controllers (LADRC), a set of rules for the tuning
of LADRC applicable to the implementation of control loops where the pro-
cess to be controlled is approximated to a �rst-order plus dead time (FOPDT)
system, and a control architecture that merges the receding horizon strategy
of the state-space MPC with the disturbance estimation and rejection capabil-
ity of the LADRC intended for the control of constrained linear or non-linear
processes with no identi�ed nominal model.

In the conventional ADRC formulation, a precise model of the process, whether
linear or non-linear, is not required to control it. To formulate the control
problem under the disturbance rejection framework, once the manipulated and
controlled variables have been identi�ed, the dominant dynamics order and the
nominal value of the critical gain must be selected.

It is a common practice to implement �rst-order or second-order ADRC for-
mulations under the premise that these approximations appropriately describe
the dominant dynamics. On the one hand, if a mathematical representation of
the process behaviour is available, it results useful if it is de�ned in the form of
an input-output model due to all neglected dynamics and unknown terms are
regarded as the total perturbation, and the critical gain can be approximated
from the model. On the other hand, the relative or dominant order and the
nominal value of the critical gain can be deduced from the input-output signals
analysis by measuring the apparent time constant and the apparent static gain
from an open-loop response.

The ADRC order and critical gain de�nitions lead to the selection of the canon-
ical form, which is the assumed behaviour of the modi�ed plant. For the con-
ventional ADRC, the above corresponds to an integrator chain. This way, the
disturbance rejector of the ADRC loop enforces the actual process to behave
like a modi�ed cascaded integrator governed by the state-feedback control law.
The designer chooses to incorporate the available process information in the
canonical form. However, the main feature of the ADRC technology is that
the control design can be performed even when the available information is
minimal.
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Regarding the LADRC design, the LESO and linear control law gains must
be computed. The bandwidth parameterization has simpli�ed this task by
de�ning all the loop gains in terms of the observer and controller bandwidths.
Nevertheless, selecting these two parameters for the conventional LADRC for-
mulation could turn into a challenging tuning process, even though the desired
performance o�ers good starting points.

The LADRC design under the conventional framework, which is the �rst contri-
bution of this dissertation, is consolidated in Guide 2.5.1, supported by Tables
2.1 and 2.2. With this guide, the control practitioner interested in the ADRC
subject can explore the control of systems using this technology and relate the
ADRC theoretical knowledge to the practical application.

Each year, many scienti�c articles are published in the ADRC research area.
In the range of successful applications, two non-linear examples, one single-
input single-output and one multiple-input multiple-output, were chosen to
validate the ADRC algorithm and to illustrate the use of Guide 2.5.1. For both
examples, the necessary process information was deducted from the open-loop
time response and the gains tuning was done according to the desired closed-
loop performance. Consequently, it was veri�ed that the ADRC could be used
to control highly non-linear processes in unstable or stable operating points.
Depending on the gains tuning, an improvement in the disturbance rejection
can be expected compared to the classical PID controller.

The examples addressed following Guide 2.5.1 were simulated in Matlab
®,

and the corresponding �les were uploaded to the open-access platform Matlab
Central [63]. Likewise, the guide for design and application of active distur-
bance rejection controllers was published as the tutorial article [61].

One of the controversial discussions about the LADRC design is related to what
are the parameters that certainly should be tuned for implementation. The
bandwidth parameterization focused on the controller and observer bandwidths
assumes that the nominal value of the critical gain can be approximated from
the process knowledge. This is somewhat true as shown in chapter 2. However,
when the controlled process presents lag-dominant or delay-dominant dynam-
ics, the critical gain parameters may need to be retuned to a higher value
from its initial approximation. Indeed, some literature suggests that this is
the only parameter that should be adjusted because the closed-loop desired
performance is used to compute the controller bandwidth, which is then scaled
to obtain the observer bandwidth.
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For First-order plus dead time (FOPDT) systems, the computation of the
three main LADRC parameters becomes challenging because the closed-loop
stability region expands as the nominal value of the critical gain is allowed
to increase. Besides, the shape of this region is such that if a high observer
bandwidth is desired, a low controller bandwidth must be selected to remain
within the stability bounds. The contrary holds that if the controller band-
width is expected to increase, the maximum allowed observer bandwidth tends
to decrease.

Into a broader stability region, better disturbance rejection performance can
be obtained. Notably, lower ITSE values are computed from the response to
a step-type input disturbance at the cost of less robust loops, which evidences
the con�icting nature of these design objectives. Therefore, by performing a
Multi-objective Optimisation Design (MOOD) procedure under the Generate-
First Choose-Later (GFCL) context, a set of solutions can be obtained with
di�erent trade-o�s between the ITSE and robustness. Moreover, the MOOD
procedure performed for controlling di�erent FOPDT nominal plants provides
an array of solutions whose analysis leads to the derivation of functions for the
computation of the LADRC triads.

The Multi-objective Evolutionary Algorithms (MOEA) are valuable tools for
searching for the approximations of the optimal solutions (Pareto Set) and their
corresponding objective values (Pareto Front). The de�nition of the optimisa-
tion problem used by the MOEA and the MOEA itself in�uences the results
obtained from the optimisation process. In this thesis, the ϵ↗−MOGA was
used to simultaneously minimise the loop robustness and the ITSE from the
disturbance rejection response produced by the LADRC tuned with candidates
parameters selected from a search space inside a stability region such that the
design objectives were within desired ranges covering the possible performance
indices produced by other reference controllers.

The optimisation problem was formulated using bandwidth parameterization
to reduce the decision variables to the nominal value of the critical gain and
the controller bandwidth. The observer bandwidth was set as ten times the
controller bandwidth selected. With the above, a clear tendency in the array
of solutions was recognised, i.e. each of the Pareto Sets approximations was
located in an identi�ed region of the search space, and the solution sets were
moving, keeping their distribution throughout the space, as the normalised
delay increased.
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Multi-criteria Decision Making (MCDM) is the last step in the MOOD proce-
dure. This step was performed to derive a set of tuning rules for the LADRC
design, considering that it would be helpful for the designer to have a few
controller options to evaluate but without the need for tuning any extra pa-
rameter. Consequently, three solutions from each Pareto approximation were
selected according to three levels of robustness quality.

Following the graphical distribution of the chosen solutions, the data were �tted
to three formulae for each tuning parameter. Furthermore, The rules were
deduced separately for two groups comprising, on the one hand, the FOPDT
general systems with normalised delay less or equal to 0.5 and, on the other
hand, the FOPDT general plants whose normalised delay is greater than 0.5.
For example, the nominal value of the critical gain decays exponentially as the
normalised delay increases for the �rst of the groups and follows a quadratic
behaviour for the second one.

The second contribution of this dissertation is summarised in Guide 3.5.1. The
three main LADRC parameters: the nominal value of critical gain, the con-
troller bandwidth, and the observer bandwidth, can be computed by selecting
a desired quality of robustness (low, medium, or high) and substituting the pa-
rameters from the approximation of the actual plant behaviour to a FOPDT
model into the given rules. Besides, a range of values can be obtained for each
LADRC parameter whose limits are de�ned by the achievable loop robustness.

The proposed rules were validated with control of lag-dominated and delay-
dominated systems, as well as the control of temperature on the cold face of a
thermoelectric module, showing that these rules o�er satisfactory performance
for load disturbance rejection and setpoint following. Compared to the per-
formance produced on the same systems for PID controllers and the LADRC
con�guration tuned with the dominant rules from the literature, the LADRC
designed with the proposed tuning guide potentially improves the step-type
input disturbance rejection.

The rules from Guide 3.5.1 were derived considering only two indices for the
simultaneous minimisation, one related to the disturbance rejection of LADRC
capability. The above is because the hypothesis at the beginning of the research
was that through a GFCL multi-objective optimisation approach is possible to
obtain solutions with a trade-o� between the design objectives, re�ected in the
deduced rules. Moreover, it was desired to compare the performance achieved
with the LADRC tuned with the resulting formulae to that obtained with the
dominant LADRC rules from [32], which were developed using the same design
objectives but with the AOF approach.
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The rules from [32] o�er an additional tuning parameter, as is the case with
the widely accepted PID rules for FOPDT plants. In this dissertation, a com-
parison in the decision space was made among the Pareto alternatives obtained
with the performed MOOD procedure and the alternatives computed with the
other PID and LADRC rules by setting their corresponding additional tuning
parameters to the values suggested by the authors. Usually, a designer inter-
ested in a set of rules seeks orientation about adjusting any additional variables;
commonly, the proposals include the nominal value for them because that value
produces proper performance.

From another point of view, a comparison among the Pareto Fronts approxi-
mations (design concepts) computed with the di�erent controllers would have
been possible. In this case, Pareto Fronts approximations are obtained by vary-
ing the unique tuning parameter of each of the reference sets of rules. Plotting
these on the same objective space as the approximated Fronts obtained from
the MOOD gives an insight into the design concepts performance, represent-
ing an alternative approach for the data visualisation required for the MCDM
stage.

The work developed for formulating the LADRC tuning rules from Guide 3.5.1
was published as the research article [61]. An interactive tuning software was
also developed as complementary material during its preparation. This tool
is available at Matlab central [64] and allows the user to adjust the LADRC
parameters by varying the robustness speci�cation. On the other hand, the
designer can modify the LADRC parameters within closed intervals to evaluate
the overall loop performance.

The ADRC is nowadays considered an established control technology that pro-
poses a reformulation of the control problems under the disturbance estimation
and rejection framework. Many researchers view it as a strategy outside the
model-based control methods because it can be implemented with a minimum
knowledge of the controlled process. The core of the ADRC is its disturbance
rejector, which makes it possible that an assumed disturbance-free modi�ed
plant is enforced on the controlled system. Therefore, the controller is de-
signed to govern that desired plant instead of the uncertain one.

The active rejection of the total perturbation results in an attractive charac-
teristic that raises interest in integrating the ADRC topology with the model-
based techniques, for example, with the Model-Predictive Control (MPC). One
of the directions to perform the above integration results from implementing
the state-space MPC using a discretised LESO to estimate the system states
and the total perturbation to make predictions of the disturbance vector. This
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approach resembles the MPC with a state estimation con�guration in which a
detailed mathematical model is still needed, and the LESO aids in estimating
the slight deviations from that prediction model.

Alternatively, this thesis proposes the Modi�ed Active Disturbance Rejection
Predictive Control (MADRPC) that maintains the disturbance rejector of the
ADRC loop to enforce the actual process to behave like a �rst-order plus inte-
grator plant, which includes the integral e�ect commonly present in industrial
processes and approximate other types of dominant dynamics through a term
with a time constant to enhance the estimation capability of the current-type
LESO. As a result, a predictive control law to govern the modi�ed plant is
computed based on a second-order state-space realisation with only two model
parameters: the apparent time constant and the nominal value of the control
gain.

One signi�cant advantage of the MADRPC is that the modelling requirement
is relaxed because the prediction problem is solved based on a �xed discrete
state-space model, despite the nature of the real system. Thus, the size of the
optimisation problem is exclusively dependent on the horizon lengths, and the
need for detailed identi�cation of the real system is eliminated.

When the disturbance rejector of the ADRC is used to enforce a system to
behave like an assumed plant, the manipulated variable is the sum of two con-
tributions. One is computed by a controller governing the modi�ed plant, and
the other is a factor of the total perturbation. Supposing that the MPC is used
as a controller, the handling of constraints is challenging because the predictive
control law is further compensated in the loop, and there is a possibility that
the constraint imposed to solve the optimisation problem may be violated due
to the compensation. In the MADRPC, the constraints of the optimisation
problem are reformulated to include the compensation term. In this way, the
constraints of the manipulated and controlled variables are directly considered.

The MADRPC is the third contribution of this dissertation. Its control loop
architecture is shown in Figure 4.1, and general guidelines for its implementa-
tion are given in Guide 4.5.1. The disturbance rejector uses the disturbance
compensation term to transform the controlled system into a general integral
plant which constitutes the prediction model of the modi�ed predictive con-
troller. The optimisation problem is de�ned such that the tracking error and
the predictive control law rate are penalised subject to inequality constraints
that include the compensation term computed from the estimation of the total
perturbation and an equality constraint that forces the predictions to converge
to a de�ned reference to assure the future output stability. Moreover, the opti-
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misation problem feasibility is addressed by softening some of the constraints
with the introduction of slack variables. Consequently, the MADRPC inte-
grates the receding horizon strategy of state-space MPC with the disturbance
estimation and rejection mechanism of ADRC suitable for controlling systems
with no detailed model.

When combining ADRC with the state-space MPC, the challenge of meeting
performance requirements arises because of the relaxation made in modelling.
The MADRPC was validated in the control of linear and non-linear benchmark
systems. The disturbance rejector of the MADRPC actively compensates for
the total perturbation, which includes parameter uncertainty and external dis-
turbances. Therefore, with the proposed control scheme is possible to achieve
similar performance to that obtained with the MPC that uses a known lin-
earised model of complete-order, a correction term, and constant state dis-
turbance predictions to provide o�set-free control. Moreover, the MADRPC
was more robust than OF-MPC and conventional LADRC when it operated a
CSTR unit in regions of prominent non-linear dynamics o�ering proper servo-
regulatory performance while satisfying constraints.

The MADRPC requires tuning the classical MPC parameters besides the ESO
bandwidth and the modi�ed plant parameters. The above should be appro-
priately selected for the trade-o� among the performance requirements. Guide
4.5.1 gives information to compute starting values for the parameters, but its
iterative tuning may be needed.

The MADRPC strategy was written in scienti�c article format for publication
and is currently under review.

5.2 Future research directions

This thesis was developed considering the ADRC as the primary research topic.
Chapter 2 was written to give the interested researcher a general framework
for designing active disturbance rejection controllers. Because of that, the
implemented block diagrams of the simulation examples and their associated
Matlab codes were publicly shared. As the research progressed, it was found
that there is a growing interest in developing software tools for custom so-
lutions of ADRC, as is the case of the ADRC Toolbox [114]. In this sense,
creating ADRC-based software solutions for the continuous and discrete-time
implementations is considered a future research direction as complementary
material that aids in the theoretical and practical understanding of ADRC
technology.
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Chapter 2 also reviewed the canonical forms adopted in the literature for the
ADRC modi�ed plant. As they are concerned with incorporating process
knowledge to enhance the ESO estimation, the proposal of new identi�cation
algorithms that provide the required information in the ADRC disturbance
estimation and rejection framework would be a valuable contribution.

In chapter 3, an overall analysis of the con�icting objectives regarding the
tuning of the LADRC was done. From that, it is identi�ed as future research
the possibility of expanding the objective space to include other performance
criteria, for example, the total variation of the control signal. The parameter-
ization (3.13) for the observer bandwidth oriented the optimisation process to
a particular area of the stability region, and as a result, smooth manipulated
signals were obtained. It would be of interest to analyse the trade-o�s among
other design objectives.

In the MCDM stage from the MOOD procedure performed in chapter 3, three
alternatives were chosen from the Pareto Fronts approximations according to
a speci�ed robustness level, leading to three formulae for each LADRC tuning
parameter depending on the normalised delay. For future work, the research
could focus on going through the entire Fronts approximation and how doing
this would be linked to selecting the alternatives in the Sets approximations.
It is important to emphasise that the methodological approach in chapter 3
is ultimately expected to provide a set of parameters (solutions) distributed
following some sort of tendency dependent on the normalised delay to �t their
computation to formulae. Therefore, it would be challenging to �nd a way to
go through the Sets approximations and subsequently �t the data to functions,
especially if more than two design objectives are considered.

Chapter 3 showed how the proposed tuning rules were used to design the
Cascaded-ESO (CESO) for its implementation as part of the LADRC loop
used to control the thermoelectric module. This example opens up research
questions related to optimising the LADRC with CESO. Following the same
methodological approach from chapter 3, it would be interesting to study the
possibility of deriving tuning rules for the LADRC with CESO based on MOOD
procedures suitable for the FOPDT approximations. The introduction of new
parameters related to the CESO as the number of its levels makes this a chal-
lenging research idea.
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The MADRPC parameters selection (modi�ed plant parameters, horizons and
weighting coe�cients) was oriented in chapter 4 through Guide 4.5.1. These
guidelines were su�cient for the tuning of the reported case studies. Still,
future work can be directed towards the MADRPC parameter tuning, con-
sidering the trade-o� between di�erent performance objectives for which the
GFCL multi-objective approach would be helpful. The design objectives can
be related to design requirements of interest, such as settling time, overshoot
and total variation of control action.

Another research direction goes with the extension of the MADRPC to MIMO
systems. In this case, each manipulated channel could be treated as a modi-
�ed plant of the �rst-order plus integrator. With this approach, each controlled
variable would be assumed to have �xed dynamics, and the coupling and ex-
ternal disturbances would be lumped in the total perturbation related to each
channel. Moreover, the state-space formulation of the MADRPC would al-
low the control of a plant with no identi�ed model as a �xed order system of
2ny states, with ny as the number of controlled outputs. The challenge here
would be linked to selecting the dominant input-output pairs under the DDC
framework or managing the static coupling and formulation for non-squared
systems.
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