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36 A B S T R A C T37
38

Ensemble Kalman filter methods have been successfully applied for data assimilation and pa-39

rameters estimation through inverse modeling in various scientific fields. We have developed40

a new generic software package for the solution of inverse problems implementing the Ensem-41

ble Smoother with Multiple Data Assimilation (genES-MDA). It is an open-source, platform-42

independent Python-based program. Its aim is to facilitate the management and configuration43

of the ES-MDA through several programming tools that help in the preparation of the different44

steps of ES-MDA. genES-MDA has a flexible workflow that can be easily adapted for the im-45

plementation of different variants of the ensemble Kalman filter and for the solution of generic46

inverse problems. This paper presents a description of the package and some application exam-47

ples. genES-MDA has been tested in three synthetic case studies: the solution of the reverse flow48

routing for the estimation of the inflow hydrograph to a river reach using observed water levels49

and a calibrated forward model of the river system, the identification of the hydraulic conductiv-50

ity field using piezometric observations and a known forward flow model, and the estimation of51

the release history of a contaminant spill in an aquifer from measured concentration data and a52

known flow and transport model. The results of all these tests have demonstrated the flexibility53

of genES-MDA and its capabilities to efficiently solve different types of inverse problems.54
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1. Introduction61

Inverse problems are of great interest in several research and application areas as they allow to infer unknown62

parameters from a set of measurements (i.e., Capilla et al., 1999; Zhou et al., 2012; Franssen and Gómez-Hernández,63

2002; Capilla et al., 1998; Feyen et al., 2003; Wen et al., 1999; Li et al., 2012; Gómez-Hernández et al., 2003). Inverse64

problems are ill-posed, so their solution is challenging and more difficult than the corresponding forward problem.65

Many approaches have been proposed in the literature to solve inverse problems; good overviews can be found in Sun66

(1994); Tarantola (2005); Zhou et al. (2014). Applications of inverse modeling can be found in different fields such as67

surface and subsurface hydrology, geophysics, communication theory, optics, radar, acoustic, petroleum engineering,68

meteorology, oceanography, astronomy, among others.69

ORCID(s): 0000-0002-9313-6999 (V. Todaro); 0000-0002-5154-7052 (M. D’Oria); 0000-0002-8357-1348 (M.G. Tanda);
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genES-MDA: a generic open-source software for ES-MDA

This work presents a generic (in the sense that it does not depend on a specific forward model or state-transition70

equation) open-source software for the solution of inverse problems based on ensemble Kalman Filter (EnKF) tech-71

niques, more precisely on the Ensemble Smoother with Multiple Data Assimilation (ES-MDA) introduced by Emerick72

and Reynolds (2012, 2013). The EnKF, initially proposed by Evensen (1994), is a Monte Carlo-based implemen-73

tation of the Kalman filter (Kalman, 1960) able to handle estimation problems for high-dimensional, nonlinear and74

non-Gaussian systems. Since the introduction of the EnKF, many variants have been developed and applied for data75

assimilation and estimations of system states and parameters, one of which is the ES-MDA.76

There are some open source data assimilation libraries that use Kalman filter methods, such as the Data Assimilation77

Research Testbed (DART; Anderson et al., 2009), PEST++ (White et al., 2020), the Ensemble-based Reservoir Tool78

(ERT, available from https://github.com/equinor/ert), the Parallel Data Assimilation Framework (PDAF; Nerger and79

Hiller, 2013), and the open Data Assimilation library (openDA; Ridler et al., 2014). DART consists of tools that80

implement the EnKF and the Ensemble Adjustment Kalman Filter (EAKF; Anderson, 2001) techniques. PEST++81

includes PESTPP-IES, a localized iterative ensemble smoother tool for history matching and uncertainty quantification.82

ERT is a tool designed to perform model updating and data assimilation of reservoir models using ensemble-based83

methods. PDAF is a software environment that provides optimized data assimilation algorithms based on the EnKF84

and the Local Ensemble Transform Kalman Filter (LETKF; Hunt et al., 2007). Similarly, OpenDa is an open-source85

toolbox for the development and application of data assimilation and calibration algorithms such as the Ensemble86

Square-Root filter (EnSR; Tippett et al., 2003).87

In this paper, we present genES-MDA, a new generic software package for the solution of inverse problems by88

means of an iterative ensemble smoother. Compared to available software packages, the key novelty of genES-MDA89

is its flexibility to handle very different problems and the provision of several tools that allow optimizing the ES-MDA90

settings improving the algorithm performance. Although genES-MDA specifically implements the ES-MDA, it would91

be quite simple to adapt the code to other ensemble-based methods. The code is written in Python, is open source and92

provides many functionalities to make it as flexible and efficient as possible. It is designed to solve problems in three93

dimensions, one and two-dimensional problems must be cast as three-dimensional ones with fixed values for one or94

two of their coordinates. An important aspect of the software is that it is designed with the capability of estimating95

continuously varying parameters in time, as in the works by Todaro et al. (2019, 2021). Ensemble Kalman filter96

techniques are usually applied in the context of inverse problems for model calibration and the identification of time-97

independent parameters (see e.g., Butera et al., 2021; Godoy et al., 2021; Silva et al., 2021; Xu and Gómez-Hernández,98

2016; Xu et al., 2020; Gómez-Hernández and Xu, 2021).99

A full description of the package and how to use it is included in the following, together with three synthetic100

case studies related to surface and groundwater hydrology. The examples show the applicability of genES-MDA to101
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different types of inverse problems. The first example solves the reverse flow routing problem in a river reach, the102

second concerns the estimation of a hydraulic conductivity field, and the last one deals with the identification of the103

release history of point-source groundwater pollutants.104

The paper is organized as follows: Section 2 presents an overview of the ES-MDA methodology; in Section 3,105

the software package is described in detail; Section 4 outlines the results of three genES-MDA applications; and106

conclusions are drawn in Section 5.107

2. Ensemble smoother with multiple data assimilation108

The ensemble smoother with multiple data assimilation (ES-MDA) (Emerick and Reynolds, 2013) is an iterative109

data assimilation method that estimates model parameters (such as hydraulic conductivities or pumping rates) from110

a set of measurements (such as piezometric heads or flow rates). The process of estimating components of a model111

from observations of the state of the system is referred to as solving an inverse problem. Every inverse problem has112

associated a forward model, which is the analytical or numerical model that provides the state of the system given that113

all parameters and forcing terms are known. Parameters are seldom known, particularly in earth sciences applications,114

and for this reason the solution of the inverse problem is so relevant.115

The ES-MDA workflow starts with an initialization phase followed by an iterative phase consisting of two steps: a116

forecast step and an update step. The initialization phase consists in the generation of an initial ensemble of parameter117

realizations of size 𝑁𝑒, an ensemble of observation errors, and the establishment of the number of iterations (multiple118

data assimilations) 𝑁 to perform together with the set of inflation coefficients {𝛼𝑖, 𝑖 = 1,… , 𝑁} required by the ES-119

MDA. The observation errors are assumed to follow a Gaussian distribution with zero mean and given variance. The120

coefficients 𝛼𝑖 must satisfy121

𝑁
∑

𝑖=1

1
𝛼𝑖

= 1, (1)

which ensures coherence in the treatment of the observation errors between the smoother with a single assimilation122

and the smoother with multiple data assimilation. Here, the scheme by Evensen (2018) is adopted for the definition of123

these coefficients124

𝛼𝑖 = 𝛼′𝑖

( 𝑁
∑

𝑖=1

1
𝛼′𝑖

)

, (2)
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where 𝛼′𝑖 are computed as125

𝛼′𝑖+1 =
𝛼′𝑖
𝛼𝑔𝑒𝑜

. (3)

The coefficient 𝛼′1 must be a non-zero value and 𝛼𝑔𝑒𝑜 is a constant factor that defines the extent of the change of 𝛼𝑖126

from one iteration to the next. A gradual decrease of 𝛼𝑖, obtained with 𝛼𝑔𝑒𝑜 > 1, can improve the performance of the127

procedure, since it helps to avoid overcorrections in the initial updates when the misfit between model predictions and128

observations is usually large.129

After the initialization phase, the method proceeds iteratively with the forecast and the update steps.130

1. Forecast step131

At each iteration 𝑖, for each realization 𝑗 of the ensemble of parameters 𝐗𝑗,𝑖 ∈ ℜ𝑁𝑝 , the forward model is run to132

obtain the model predictions, of which a subset 𝐘𝑗,𝑖 ∈ ℜ𝑚 is extracted coinciding with the same locations and133

times as the observations 𝐃 ∈ ℜ𝑚
134

𝐘𝑗,𝑖 = 𝑔
(

𝐗𝑗,𝑖
)

, (4)

where 𝑔 (⋅) is an operator that includes the forward model plus an observation function to extract the predictions135

at the 𝑚 spacetime locations where observation have been taken.136

2. Update step137

The ensemble of parameters is updated according to the equation138

𝐗𝑗,𝑖+1 = 𝐗𝑗,𝑖 + 𝐂𝑖
𝐗𝐘

(

𝐂𝑖
𝐘𝐘 + 𝜶𝑖𝐑

)−1 (𝐃 +
√

𝜶𝑖𝜺𝑗 − 𝐘𝑗,𝑖
)

, (5)

where 𝐂𝑖
𝐗𝐘 ∈ ℜ𝑁𝑝×𝑚 is the cross-covariance matrix between parameters and predictions, 𝐂𝑖

𝐘𝐘 ∈ ℜ𝑚×𝑚 is the139

auto-covariance matrix of predictions and 𝐑 ∈ ℜ𝑚×𝑚 is the auto-covariance matrix of the measurement errors,140

which are assumed to be uncorrelated. 𝜺𝑗 ∈ ℜ𝑚 is the vector of measurement errors for realization 𝑗. 𝐂𝑖
𝐗𝐘 and141

𝐂𝑖
𝐘𝐘 are computed at each iteration 𝑖 as142

𝐂𝑖
𝐗𝐘 = 1

𝑁𝑒 − 1

𝑁𝑒
∑

𝑗=1

(

𝐗𝑗,𝑖 − 𝐗𝑖

)(

𝐘𝑗,𝑖 − 𝐘𝑖

)𝑇
, (6)
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𝐂𝑖
𝐘𝐘 = 1

𝑁𝑒 − 1

𝑁𝑒
∑

𝑗=1

(

𝐘𝑗,𝑖 − 𝐘𝑖

)(

𝐘𝑗,𝑖 − 𝐘𝑖

)𝑇
, (7)

where 𝐗𝑖 and 𝐘𝑖 are the ensemble means, at iteration 𝑖, of 𝐗 and 𝐘, respectively.143

Then, the iteration index advances and the procedure goes back to the forecast step until the last iteration.144

Some modifications to the original algorithm can be applied to improve its performance and overcome some prob-145

lems that may limit its applicability. For instance, the update step can be performed in a transformed space that avoids146

the appearance of negative parameter values. In such case, the ensemble of parameters is transformed before per-147

forming the update step (Eq. (5)) and back-transformed after the updating prior to the next forecast. The logarithmic148

and square root transformations are commonly used to handle non-negative data; other type of transformations can149

be useful to limit the parameter space to a suitable range. A different transformation can be used for each parameter;150

particularly when different types of parameters are estimated simultaneously.151

To avoid overshooting for strongly non-linear problems, a linear relaxation can be performed on the ensemble of152

parameters at the end of each update step, modifying the values resulting from (5) as follows153

�̃�𝑗,𝑖+1 = (1 −𝑤)𝐗𝑗,𝑖+1 +𝑤𝐗𝑗,𝑖, (8)

where 𝑤 is a relaxation coefficient between 0 and 1.154

Another issue of ensemble-based methods is the undersampling problem, which may occur when the ensemble size155

is small and therefore not statistically representative. This can lead to filter divergence and the appearance of long-156

range spurious correlations. Since the computational time depends on the ensemble size, as the procedure requires 𝑁𝑒157

runs of the forward model for each iteration, it is convenient to limit the number of ensemble realizations. Covariance158

localization and covariance inflation are two techniques developed to handle the undersampling problem. Several159

covariance localization (CL) approaches are presented in the literature to mitigate the long-range spurious correlation160

problem (Houtekamer and Mitchell, 1998; Hamill et al., 2001; Anderson, 2007; Chen and Oliver, 2009). CL is usually161

applied based on spatial distances among the variables. In genES-MDA, we implemented a localization approach that162

takes into account both spatial and temporal distances, so that it can also be applied for the estimation of time and163

spacetime dependent parameters. CL is applied by an elementwise multiplication of the covariance matrices obtained164

from Eqs. (6) and (7) by distance dependent correlation matrices165
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�̃�𝑖
𝐗𝐘 = 𝜌𝑖𝐗𝐘◦𝐂

𝑖
𝐗𝐘, (9)

�̃�𝑖
𝐘𝐘 = 𝜌𝐘𝐘◦𝐂𝑖

𝐘𝐘, (10)

where ◦ represents the Schur product and 𝜌𝑖𝐗𝐘 and 𝜌𝐘𝐘 are distance correlation matrices between parameters and166

observations and between observations and observations, respectively. 𝜌𝑖𝐗𝐘 and 𝜌𝐘𝐘 may depend on space, time or167

spacetime distances; for this last case, the correlations in space (𝜌𝑖𝐗𝐘,𝑠 and 𝜌𝐘𝐘,𝑠) and time (𝜌𝑖𝐗𝐘,𝑡 and 𝜌𝐘𝐘,𝑡) are com-168

puted separately and then coupled via a Schur product:169

𝜌𝑖𝐗𝐘 = 𝜌𝑖𝐗𝐘,𝑠◦𝜌
𝑖
𝐗𝐘,𝑡, (11)

𝜌𝐘𝐘 = 𝜌𝐘𝐘,𝑠◦𝜌𝐘𝐘,𝑡. (12)

An interesting inverse problem is the identification of the spatial coordinates of some feature, for instance the170

release location of a contaminant in an aquifer. In these cases, the parameters themselves (the spatial coordinates)171

change in space after each iteration and so do the distances between the parameter being estimated and the observation172

locations. For these applications, the distance matrices 𝜌𝑖𝐗𝐘,𝑠 and 𝜌𝑖𝐗𝐘,𝑡 must be recomputed after each iteration.173

The elements of the correlation matrices are computed using the fifth-order correlation function by Gaspari and
Cohn (1999), which smoothly reduces the correlations between points for increasing distances and cuts off long-range
correlations above a specific distance

𝜌 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

− 1
4

(

𝛿
𝑏

)5
+ 1

2

(

𝛿
𝑏

)4
+ 5

8

(

𝛿
𝑏

)3
− 5

3

(

𝛿
𝑏

)2
+ 1, 0 ≤ 𝛿 ≤ 𝑏;

1
12

(

𝛿
𝑏

)5
− 1

2

(

𝛿
𝑏

)4
+ 5

8

(

𝛿
𝑏

)3
+ 5

3

(

𝛿
𝑏

)2
− 5

(

𝛿
𝑏

)

+ 4 − 2
3

(

𝛿
𝑏

)−1
, 𝑏 ≤ 𝛿 ≤ 2𝑏;

0, 𝛿 ≥ 2𝑏;

(13)

where 𝛿 is the parameter-observation or observation-observation distance in space (𝛿𝑖𝑋𝑌 ,𝑠 and 𝛿𝑌 𝑌 ,𝑠) or time (𝛿𝑋𝑌 ,𝑡174

Todaro, D’Oria, Tanda, Gómez-Hernández: Preprint submitted to Elsevier Page 6 of 25

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



genES-MDA: a generic open-source software for ES-MDA

and 𝛿𝑌 𝑌 ,𝑡). The coefficient 𝑏 defines the spatial (𝑏𝑠) or temporal (𝑏𝑡) distance at which correlation is lost.175

Undersampling can also cause filter divergence. Covariance inflation is a technique developed to overcome this
problem (Anderson and Anderson, 1999; Li et al., 2009; Liang et al., 2011; Zheng, 2009). Here, we follow the scheme
proposed by Anderson and Anderson (1999). At the end of each update step, after the linear relaxation is applied (Eq.
(8)), each realization of the updated and relaxed ensemble of parameters, �̃�𝑗,𝑖+1, suffers a linear inflation around its
mean, 𝐗𝑖+1

̃̃𝐗𝑗,𝑖+1 = 𝑟
(

�̃�𝑗,𝑖+1 − 𝐗𝑖+1

)

+ 𝐗𝑖+1. (14)

with 𝑟 being an inflation coefficient slightly larger than 1.176

3. Software package description177

genES-MDA can be used with any Python-based platform and does not require an installation. The software178

consists of a main module, two subordinate modules, a tools package and some text input files (Fig. 1). All files need179

to be downloaded to the same folder preserving the directory hierarchy. The ESMDA.py is the main module containing180

the script implementing the ES-MDA method. The code is generic and does not depend on the specific case study.181

Mod.py is a subordinate module used to manage the forward model; it contains the functions that write the model input182

files, run the forward model and read the model outputs. InputSettings.py is the subordinate module to configure the183

algorithm. Mod.py and InputSettings.py depend on the specific problem at hand and they must be modified by the user.184

The Tools package includes different modules with the instruments to build the initial ensemble of parameters, generate185

the observation errors, apply localization, perform parameter transformations and calculate some evaluation metrics.186

Files Obs.txt and Par.txt are mandatory input files with information about observations and parameters. Furthermore,187

three optional external input files can be defined: Ens.txt file with an initial ensemble of parameters and Errors.txt and188

R.txt files that contain the measurement error matrix and its covariance matrix, respectively. Alternatively, the initial189

ensemble, the measurement errors and its covariance matrix can be generated within the code package. Finally, folder190

called Model contains all input and output files used to run the forward model.191

All components of the software package are presented in the following subsections.192

3.1. Input files193

The input files provide information about the parameters to estimate and the available observations. They are194

free-format text files that can be edited with any text editor.195

- Obs.txt (mandatory): This file contains the observation data and their locations and sampling times. Each row196
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pertains to an observation. The spatial location is given in terms of 𝑥, 𝑦 and 𝑧 coordinates. It must be written as197

follows:198

1st column: 𝑥-coordinate199

2nd column: 𝑦-coordinate200

3nd column: 𝑧-coordinate201

4rd column: sampling time202

5th column: observed value203

If spatial coordinates or sampling times are not needed or observations are time/space independent, they must204

be replaced with NaN. One- and two-dimensional problems must be cast as three-dimensional ones by using a205

fixed dummy value for the coordinates that are in the second and/or third dimensions as needed.206

- Par.txt (mandatory): This file contains information about the parameters that are to be estimated. Its structure207

is similar to the previous one with the spacetime coordinates of the parameter location in the first four columns208

plus a reference value in the 5th column. The reference value is of interest for comparison purposes in synthetic209

cases where the solution of the inverse problem is known. If a parameter does not depend on space or time210

its coordinates or time must be replaced with NaN. As with Obs.txt, one- and two-dimensional problems must211

be cast at three-dimensional ones with dummy coordinate values as needed. If the reference solution is not212

available, its value should be set to NaN.213

- Ens.txt (optional): This file contains the initial ensemble of parameters. Each column is a realization of the214

parameters in the same order as they are input to the Par.txt file. There are as many columns as realizations.215

- Errors.txt (optional): This file contains the observation errors 𝜀. Each column is a realization of the observation216

errors in the same order as observations are input to the Obs.txt. There are as many columns as realizations.217

- R.txt (optional): This file contains the observation error covariance matrix 𝐑.218

3.2. Tools package219

The tools package consists of five modules designed to build the initial ensemble of parameters, generate the220

observation errors, specify when and how to apply covariance localization, perform parameter transformations and221

back-transformations and compute evaluation metrics. The modules are described in the following subsections.222

EnsembleGenerator.py223

The EnsembleGenerator.py module contains the functions to build the initial ensemble of parameters. Three op-224

tions are available: to assume that all parameters are homogeneous, in which case, each realization will have a different225
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constant value drawn from a chosen probability distribution; to assume that they are heterogeneous and independent,226

in which case, each parameter is drawn independently of each other from a chosen probability distribution; to assume227

that they have some spatial continuity, in which case, the parameters are generated using smooth functions; in the latter228

case, the parameters take the values of discretized probability distribution functions that differ among the realizations229

because the hyperparameters that define each function are generated randomly.230

The available functions are:231

- Random: Initial parameter realizations are random values selected from a uniform distribution. The required232

input arguments are: the extreme values of the range, the number of parameters and the ensemble size.233

- PdfGamma: Initial parameter realizations are the values of discretized gamma functions defined as

𝑓 (𝑡) = 𝐴 + 𝐵 ⋅
1

𝑘𝑛𝛤 (𝑛)
𝑡𝑛−1𝑒−𝑡∕𝑘, (15)

where 𝑡 is time or spatial coordinate, 𝐴 represents a base amount of the considered variable, 𝐵 is the volume234

under the Gamma function, 𝑛 is the shape coefficient, 𝑘 is the scale coefficient and 𝛤 (𝑛) is the gamma function.235

The hyperparameters 𝐴, 𝐵, 𝑛 and 𝑘 are drawn from uniform distributions. The required input arguments are:236

the minimum and maximum values for the four hyperparameters, a discretized vector of variable 𝑡, the number237

of parameters and the ensemble size.238

- PdfGammaNpeaks: Initial parameter realizations are the values of discretized functions given by a sum of 𝑀
gamma functions

𝑓 (𝑡) = 𝐴 +
𝑀
∑

𝑟=1
𝐵𝑟 ⋅

1
𝑘𝑛𝑟𝑟 𝛤

(

𝑛𝑟
) 𝑡𝑛𝑟−1𝑒−𝑡∕𝑘𝑟 . (16)

For all𝑀 Gamma functions, each hyperparameter is drawn from the same uniform distribution. Input arguments239

are the same as in the previous function, plus the value of 𝑀 .240

- PdfNormal: Initial parameter realizations are the values of discretized Gaussian functions

𝑓 (𝑡) = 𝐴 + 𝐵 ⋅
1

𝜎
√

2𝜋
𝑒−

1
2

(

𝑡−𝜇
𝜎

)

, (17)

where 𝑡 is time or spatial coordinate, 𝐴 is a base amount of the considered variable, 𝐵 is the volume under the241

Gaussian function and 𝜇 and 𝜎 are the mean and variance of the distribution. The hyperparameters 𝐴, 𝐵, 𝜇 and242

𝜎 are drawn from uniform distributions. The required input arguments are: the minimum and maximum values243

for hyperparameters, a discretized vector of variable 𝑡, the number of parameters and the ensemble size.244
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- ConstantRandom: Initial parameter realizations are constant values drawn from a uniform distribution. The re-245

quired input arguments are the minimum and maximum values of the parameter range, the number of parameters246

and the ensemble size.247

- ConstantNormal: Initial parameter realizations are constant values drawn from a known Gaussian distributions.248

The required input arguments are the mean and the variance of the Gaussian function, the number of parameters249

and the ensemble size.250

ErrorGenerator.py251

ErrorGenerator.py is the module used to generate the observation errors. It consists of two functions that return252

the ensemble of measurement errors and its covariance matrix. The options are:253

- NormalError: It generates random errors normally distributed with zero mean and fixed variance. The required254

input arguments are the variance, the number of observations and the ensemble size.255

- PercNormalError: It generates errors based on a user-defined percentage 𝑝 that serves to set the standard256

deviation of a Gaussian distribution according to the relationship 3𝜎 = 𝑝∕100 ⋅ 𝑜𝑏𝑠, where 𝑜𝑏𝑠 is the observed257

value. The error of each observation is selected from a normal distribution with zero mean and variance 𝜎2; in258

this way, in 99.7% of the times the error is between ±𝑝∕100 ⋅ 𝑜𝑏𝑠. The user can specify a minimum variance259

value to avoid too small errors. The required input arguments are the observation vector, the value 𝑝, the lower260

limit of the variance, the number of observations and the ensemble size.261

Localization.py262

Localization.py is the module used to perform covariance localization. It contains two functions that return the263

correlation matrices (Eq. (13)) based on spatial or temporal distances. The options are:264

- TimeLocal: It generates the temporal correlation matrices. The required input arguments are the time correla-265

tion distance (coefficient 𝑏 in Eq. (13)), the vectors of parameter times, and the observation times.266

- SpaceLocal: It generates the spatial correlation matrices. The required input arguments are the spatial corre-267

lation distance (coefficient 𝑏 in Eq. (13)), the location of parameters, and the location of observations.268

Transformation.py269

Transformation.py is the module to perform parameter transformations and back-transformations. It uses the vector270

of parameters in their physical space as input and returns them in the transformed space as output, and vice versa for271

the back-transformations. In case of bounded transformations, the bounded space interval must be specified. The272

functions available are listed below:273

Todaro, D’Oria, Tanda, Gómez-Hernández: Preprint submitted to Elsevier Page 10 of 25

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



genES-MDA: a generic open-source software for ES-MDA

- Log_forward: Parameters are log transformed.274

- Log_backward: Parameters are back-transformed from log space.275

- LogLim_forward: Parameters are log transformed into the bounded space [𝑎,𝑏] following the modified log-
transformation:

𝑦 = 𝑓 (𝑥) = log
(𝑥 − 𝑎
𝑏 − 𝑥

)

. (18)

- LogLim_backward: Parameters are back-transformed from the modified log space:

𝑥 = 𝑓−1(𝑦) =
(𝑏 − 𝑎) 𝑒𝑦

1 + 𝑒𝑦
+ 𝑎. (19)

- SquareRoot_forward: Parameters are transformed using the square root transformation.276

- SquareRoot_backward: Parameters are back-transformed from square root space.277

- SquareRootLim_forward: Parameters are transformed using the square root transformation in the bounded
space [𝑎,𝑏]:

𝑦 = 𝑓 (𝑥) =
(𝑥 − 𝑎
𝑏 − 𝑥

)
1
2 . (20)

- SquareRootLim_backward: Parameters are back-transformed from the modified square root space:

𝑥 = 𝑓−1(𝑦) =
(𝑏 − 𝑎) 𝑦2

1 + 𝑦2
+ 𝑎. (21)

Metrics.py278

Metrics.py provides the following functions to compute performance metrics:279

- RMSE calculates the root mean square error between actual and predicted values

𝑅𝑀𝑆𝐸 =

√

√

√

√

√

∑𝑛
𝑖=1

(

𝑆 𝑖 − 𝑂𝑖

)2

𝑛
, (22)

where 𝑛 is the sample size (number of parameters or observations), 𝑆 𝑖 is the ensemble mean of the 𝑖-th estimated280

value and 𝑂𝑖 is the 𝑖-th actual value.281
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- AES calculates the average ensemble spread

𝐴𝐸𝑆 =

√

∑𝑛
𝑖=1 𝜎

2
𝑖

𝑛
, (23)

where 𝑛 is the sample size and 𝜎2𝑖 is the ensemble variance of the 𝑖-th parameter.282

- NSE calculates the Nash-Sutcliffe efficiency criterion

𝑁𝑆𝐸 =

⎛

⎜

⎜

⎜

⎝

1 −

∑𝑛
𝑖=1

(

𝑆 𝑖 − 𝑂𝑖

)2

∑𝑛
𝑖=1

(

𝑂𝑖 − 𝑂
)2

⎞

⎟

⎟

⎟

⎠

⋅ 100, (24)

where 𝑛 is the sample size, 𝑆 𝑖 is the ensemble mean of the 𝑖-th estimated parameter, 𝑂𝑖 is the 𝑖-th actual value283

and 𝑂 is the average of the actual values.284

- RSS calculates the residual sum of squares between actual and estimated data

𝑅𝑆𝑆 =
𝑛
∑

𝑖=1

(

𝑆 𝑖 − 𝑂𝑖

)2
, (25)

where 𝑛 is the sample size, 𝑆 𝑖 is the ensemble mean of the 𝑖-th estimated parameter and 𝑂𝑖 is the 𝑖-th actual285

value.286

- spatial_distance calculates the spatial distance between actual and estimated locations. It is used when
parameters to be estimated are spatial coordinates.

𝐿 =
√

(

𝑥𝑠 − 𝑥0
)2 +

(

𝑦𝑠 − 𝑦0
)2 +

(

𝑧𝑠 − 𝑧0
)2 (26)

where 𝑥𝑠, 𝑦𝑠 and 𝑧𝑠 are the ensemble means of the estimated coordinates and (

𝑥0, 𝑦0, 𝑧0
) is the actual location.287

3.3. Modules288

In the following, we describe the three modules of genES-MDA with their tasks and functionalities.289

ESMDA.py290

ESMDA.py is the main module of genES-MDA. It depends on the numPy and OS Python libraries and does not291

require modification by the user. This module contains the main codes to perform the ES-MDA and calls all the292

subordinate modules. At the beginning of the run, the user is prompted to choose whether to use the default settings293
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or not: if the answer is yes, the input information is read from the InputSettings module; otherwise, the code interacts294

with the user prompting on screen for the general settings.295

Mod.py296

Mod.py is the module that links genES-MDA with the forward model. The forward model must have the ability of297

being run using a system command through an executable file or batch file, and read input and produce output ASCII298

files. All model files must be contained in the Model subfolder. Mod.py must be adapted according to each specific299

application. It is up to the user to handle the link between genES-MDA and the forward model by modifying the300

functions that allow to write the input files, run the model and read the outputs. It should be noted that there are several301

Python packages that provide useful tools to interact with widely used software, which could be integrated into this302

module. The Examples folder in the software distribution contains three examples on how to write this module, two of303

which interact with a Python package for the creation of the input files and reading the output files. Mod.py includes304

three functions:305

- write_input writes the parameters to be estimated in the input files of the forward model. More than one input306

file may need to be modified depending on the model to be used and the parameter types to be estimated. To307

facilitate the writing of the input files, it is suggested to create template files that map the parameters into their308

proper locations in the forward model input files; and then edit them making use of appropriate keywords. The309

function argument is a vector containing a parameter realization 𝐗𝑗,𝑖.310

- run contains the command to execute the forward model;311

- read_output reads the results after the model run from the output files of the forward model. It contains the312

instructions on how to extract the values of interest by defining their specific location or searching for specific313

keywords in the output files. The function returns the vector 𝐘𝑗,𝑖 containing the model predictions corresponding314

to the parameter realization 𝐗𝑗,𝑖 and coinciding with the same locations and times of the observations.315

To enable reading of output files, instruction files are created that contain a set of instructions (including locating316

specific line numbers or searching for specific text) that enable extraction of output values to be compared with site317

observation data.318

InputSettings.py319

InputSettings.py is the module containing the input information required by genES-MDA. It depends on the specific320

problem at hand. The user needs to define the number of iterations 𝑁 , the 𝛼𝑔𝑒𝑜 coefficient (Eq. (3)) and the relaxation321

coefficient 𝑤 (Eq. (8)). Then, the user indicates whether to generate ensembles of parameters and observation errors,322
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whether to apply inflation and localization corrections, and whether to perform parameter space transformation. If the323

answer to any of the previous questions is yes, the user must define the corresponding parameters: ensemble size 𝑁𝑒,324

inflation coefficient 𝑟 (Eq. (14)), type of covariance localization (spatial and/or temporal, standard, or iterative). Then,325

the user must modify the following functions:326

- Func_ens is used to set up the generation of the initial ensemble of parameters when this ensemble is not read327

from the external file Ens.txt. The EnsembleGenerator.py module is used to select how to generate the ensemble.328

The function arguments are the matrix obtained after reading the Par.txt file and 𝑁𝑒. Func_ens returns the initial329

ensemble of parameters 𝐗.330

For instance, if the user needs to build an ensemble made of random values in the range [5,150], the function is331

def Func_ens(par, ens):

from Tools import EnsembleGenerator

N_par=par.shape[0]

Ensemble=np.zeros((N_par,ens))

(Min,Max)=(5,150)

Ensemble=EnsembleGenerator.Random(Min,Max,N_par,ens)

return Ensemble

- Func_err is used to set up the generation of the ensemble of observation errors and its covariance matrix when332

they are not read from the external files Errors.txt and R.txt. The ErrorGenerator.py module is used to select how333

to generate them. The function arguments are the vector of observations, and the ensemble size (𝑁𝑒). Func_err334

returns the ensemble of measurements errors 𝜺 and its covariance matrix 𝐑.335

For instance, if the user needs to generate an ensemble of observation errors normally distributed with zero mean336

and variance 1⋅10−4, the function is337

def Func_err(Obs, ens):

from Tools import ErrorGenerator

N_obs=Obs.shape[0]

var_y=1e-4

eps,R=ErrorGenerator.NormalError(var_y, N_obs, ens)

return (eps,R)

- forward_transf is used to set up the parameter space transformation. It uses the Transformation.py module338

and the only argument is the ensemble of parameters. It returns the ensemble of parameters in the transformed339
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space.340

For instance, to log transform the parameters, the function is written341

def forward_transf(xx):

from Tools import Transformation as T

xx=T.Log_forward(xx)

return xx

- backward_transf is used to back-transform the parameters into their physical space. Like forward_transf,342

it makes use of the Transformation.py module. The function argument is the updated ensemble of parameters in343

the transformed space, returning it back-transformed.344

For instance, to back-transform from the log space, the function is written345

def forward_transf(xx):

from Tools import Transformation as T

xx=T.Log_backward(xx)

return xx

- localization is used to set up the covariance localization; it makes use of the Localization.py module. The346

template function provided in the repository only needs to be modified to provide specific values for the space347

and time correlation distances in Eq. (13) in case localization is to be applied.348

InputSettings.py module includes two functions that allow defining the performance metrics:349

- Metrics_obs is used to select the metrics to be used to evaluate the performance by comparing actual obser-350

vations and predicted values. It makes use of the Metrics.py module. The function arguments are the ensemble351

of parameter estimates, Xprev, the ensemble of state variable predictions at observation location pred, and the352

observations obs. It returns a dictionary containing the selected metrics.353

For instance, if the user wants to compute the RMSE between observations and model prediction and the AES,354

the function is355

def Metrics_obs(Xprev,pred,obs):

from Tools import Metrics as m

par=Xprev

RMSE_obs=[m.RMSE(obs.flatten(), pred.mean(1))]

AES=[m.AES(par)]
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metrics_dict ={}

for variable in ['RMSE_obs','AES']:

metrics_dict[variable]=eval(variable)

return metrics_dict

- Metrics_obs_par is used when a reference solution is available. The RMSE of the parameters can also be356

calculated. The function is like the previous one with an additional argument True_par containing the reference357

parameter values.358

Template files for all of these modules are provided in the software repository, together with the specific files for359

the three example applications described next.360

4. Example applications361

genES-MDA has been tested in three case studies. All the examples are available on GitHub as explained in the362

Code Availability section. The first example presents the reverse flow routing problem in a river reach; then, two363

groundwater case studies are discussed: the identification of a conductivity field using hydraulic head information,364

and the estimation of the release history of a contaminant spill in an aquifer based on concentration data.365

4.1. Case1: reverse flow routing366

The reverse flow routing is the process to estimate the inflow hydrograph at ungauged locations in a river reach367

on the basis of available information at downstream gauged stations (D’Oria and Tanda, 2012; D’Oria et al., 2014).368

The numerical model describing the forward routing is the Hydrologic Engineering Center River Analysis System369

(HEC-RAS v. 5.0.7) of the US Army Corps of Engineers (Brunner, 2010). genES-MDA is tested using one of the370

HEC-RAS example projects, freely downloadable from the site http://www.hec.usace.army.mil/software/371

hec-ras/download.aspx. After downloading HEC-RAS, the test project is contained in the subfolder "Example372

Data\1D Unsteady Flow Hydraulics" and labeled "Multiple Reaches with Hydraulic Structures". The river system,373

sketched in Fig. 2, consists of two rivers (Butte Creek and Fall River), which merge at the Sutter Junction; Fall River374

is divided into two reaches named Upper Reach and Lower Reach. Two bridges, one on the Butte Creek River and one375

on the Lower Reach, and a culvert on the Upper Reach complete the system.376

genES-MDA is applied to estimate the inflow hydrograph to the Butte Creek River (River station 0.4 in Fig. 2). The377

upstream boundary condition at River station 10.4 in Fig. 2 is a known flow hydrograph and the downstream boundary378

condition at station 9.3 in Fig. 2 is the normal depth, computed using Manning’s equation based on a known bed slope.379

The observations are water levels collected on the Lower Reach downstream of the bridge section (River station 9.6380

in Fig. 2). The reference observations were obtained through a forward routing of the actual inflow hydrograph to the381
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Butte Creek River provided by the HEC-RAS example. The total simulation time is three days, the upstream discharge382

hydrograph and the observed stage hydrograph were both discretized in intervals of 1 hour, resulting in a total number383

of parameters to identify (𝑁𝑝) of 73, and the same number of observations (𝑚).384

For this case study, genES-MDA requires four Python libraries; numpy, os, win32com and pydsstools. The latter is385

freely downloadable from https://github.com/gyanz/pydsstools. Note that the examples provided have been386

prepared to run under a Windows operating system computer; the package can be used with a MacOS computer or a387

Linux one, in which cases, the libraries to interface with the operating systems will be different. The pydsstools python388

library is used to manage the HEC-DSS data base files.389

Mod.py is adapted for this specific problem as follows. The write_input routine copies the latest estimate of the390

inflow hydrograph to the Butte Creek River in the input file of HEC-RAS with extension .u##. The original file in391

the example (“3ReachUnsteady.u01”) is copied to a template file (“3ReachUnsteady.tpl”), which is read and used as392

the baseline to build the new input file. The function run contains the command to run the current HEC-RAS model393

making use of the HECRAS Controller (Goodell, 2014). The function read_output reads the stage hydrograph at394

the station where observations are collected. The results of the HEC-RAS are stored in a HEC-DSS database file.395

InputSettings.py is modified to set up an optimal algorithm configuration. The ES-MDA was performed using396

an ensemble of 35 realizations; the initial ensemble is constituted of Gaussian functions generated using the function397

PdfNormal of the Ensemble_Generator.py module. For each ensemble, the coefficients of the Gaussian function (Eq.398

(17)) are selected randomly from uniform distributions over fixed ranges: A ∈ U[2,7] m3/s, B ∈ U[1.5⋅10−6,1.5⋅10−5]399

m3, 𝜇 ∈ U[5.2⋅10−4,1.4⋅10−5] s, and 𝜎 ∈ U[1.0⋅10−4,3.9⋅10−4] s. The observation errors were generated using the400

NormalError function of the Errors_Generator.py module; these are normally distributed with zero mean and variance401

equal to 1⋅10−4 m2. The total number of iterations is set to 6 and a decreasing 𝛼 series is obtained with 𝛼𝑔𝑒𝑜=3 (Eq.402

(3)). The module Localization is used to apply temporal covariance localization with a correlation time length of403

10 h (𝑏𝑡 in Eq. (13)). Covariance inflation is applied with an inflation factor equal to 1.01 (𝑟 in Eq. (14)). Fig. 3404

shows the actual and estimated inflow hydrographs (as the median of the predicted hydrographs) with its uncertainty405

interval. Fig. 4 shows the observed and predicted stage hydrographs. Both the discharge and stage hydrographs are406

well reproduced.407

The ES-MDA performance is evaluated using the root mean square errors between observed and predicted water408

levels (RMSE𝑜𝑏𝑠 = 3 ⋅ 10−3 m) and between actual and estimated discharge values (RMSE𝑝𝑎𝑟=0.10 m3/s), the Nash-409

Sutcliffe efficiency coefficient for the estimated parameters (NSE𝑝𝑎𝑟=99.99 %) and the parameter average ensemble410

spread (AES=0.55 m3/s). All the metrics confirm the capability of genES-MDA to solve the inverse problem.411
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4.2. Estimation of a hydraulic conductivity field412

The second application is the estimation of a zoned hydraulic conductivity field from hydraulic head data obtained413

through a pumping test. The reference permeability field (Fig. 5) is taken from the literature (Ayvaz, 2010); it is414

composed of 5 homogeneous zones, the conductivity values of which can be read in Table 1. The groundwater flow415

was modeled with MODFLOW 2005 (Harbaugh, 2005) under steady-state flow conditions. The two-dimensional416

model has a grid spacing in the 𝑥 and 𝑦 directions of 100 m and the aquifer saturated thickness is 30 m. The aquifer417

has constant hydraulic heads on the upper-left (100 m) and lower-right (80 m) boundaries are no-flow condition at the418

other boundaries. The flow rate extracted by the well is 3000 m3/day. Observations (hydraulic heads) were collected419

at the eleven monitoring points (𝑚=11) shown in Fig. 5; their values were obtained by a forward run of MODFLOW420

using the actual hydraulic conductivity field. The parameters to be estimated are the homogeneous conductivity values421

of each zone (𝑁𝑝=5).422

For this case study, genES-MDA requires the numpy, math and os libraries and the FloPy package. FloPy is a423

Python interface to MODFLOW, developed by Bakker et al. (2016), that allows to build model input files, run the model424

and read outputs through Python scripts. The functions of module Mod.py, write_input, run and read_output,425

are adapted making use of the FloPy package to update the permeability values by modifying the Layer Property Flow426

(LPF) file, run MODFLOW and extract the predicted hydraulic heads at observation locations.427

InputSettings.py was built for the following ES-MDA configuration. The ensemble of realizations is 30, which428

are initially generated as uniform random values in the range [5, 150] m/day using the function Random of the En-429

semble_Generator.py module. The observation errors were generated using the NormalError function of the Er-430

rors_Generator.py module; they are normally distributed with zero mean and variance equal to 1⋅10−4 m2. The total431

number of iterations is equal to 5 and a series of decreasing 𝛼 is obtained with 𝛼𝑔𝑒𝑜=3 (Eq. (3)). Covariance localization432

was not applied, and covariance inflation was applied with an inflation factor equal to 1.01 (𝑟 in Eq. (14)).433

Table 1 reports the actual and estimated parameters, with their 90% confidence interval computed from the ensem-434

bles. The estimated field reproduces well the conductivities of the reference aquifer as well as the observed hydraulic435

heads (Table 2). The RMSE between observations and predictions, at the last iteration, is equal to 0.01 m. The con-436

clusion is that the code is able to reconstruct the aquifer with little uncertainty.437

4.3. Recovering the release history of two simultaneous point-source groundwater contamination438

events439

genES-MDA has been applied to the Ayvaz (2010) case study. It deals with the estimation of the release history440

of two simultaneous point-source contaminant events from observed concentration data. The groundwater system is441

the same as the previous example with two pollution sources (of known location) and seven concentration monitoring442
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Table 1
Case 2 - Actual and estimated (ensemble median) hydraulic conductivities with its 90% confidence interval (5th-95th
percentiles).

Parameter Actual Estimated
(m/day) (m/day)

𝐾1 34.56 34.52 (33.91, 35.51)
𝐾2 17.28 17.24 (16.74, 17.75)
𝐾3 8.64 8.74 (8.39, 9.07)
𝐾4 25.92 26.08 (24.79, 27.78)
𝐾5 60.48 61.2 (58.01, 64.25)

Table 2
Case 2 - Observed and predicted (ensemble median) hydraulic heads with its 90% confidence interval (5th-95th percentiles).

Observation Actual Estimated
(m) (m)

O1 98.07 98.06 (98.05, 98.07)
O2 97.28 97.25 (97.24, 97.29)
O3 93.27 93.26 (93.24, 93.27)
O4 90.77 90.75 (90.72, 90.78)
O5 92.72 92.71 (92.68, 92.77)
O6 84.79 84.78 (84.75, 84.81)
O7 82.15 82.14 (82.12, 82.16)
O8 84.98 84.97 (84.92, 85.01)
O9 82.04 82.03 (82.01, 82.04)
O10 80.80 80.79 (80.76, 80.81)
O11 80.39 80.38 (80.37, 80.39)

wells (Fig. 6).443

MODFLOW 2005 (Harbaugh, 2005) and MT3DMS (Zheng and Wang, 1999) are combined to model the ground-444

water flow and mass transport, respectively. Groundwater flow is under steady-state condition. The hydraulic param-445

eters and geometry characteristics of the model are the same as described above; effective porosity is equal to 0.3,446

longitudinal and transversal dispersivities are 40 m and 4 m, respectively. The initial condition is zero concentration447

everywhere. The total simulation time is 5 years, divided into 10 equal stress periods of 6 months. A conservative448

pollutant is released simultaneously from two sources during the first four stress periods with different fluxes. The449

parameters to be estimated are the four values of the released fluxes for each source (𝑁𝑝=8). The observations are450

pollutant concentrations collected at the seven monitoring wells (Fig. 6) at the end of each year (𝑚=28), which were451

obtained by a forward run using the actual release history.452

genES-MDA uses the FloPy package to couple the Python code with MODFLOW and MT3DMS. The Source-Sink453

Mixing (SSM) file is modified by the write_input function of the module Mod.py, in order to update the contaminant454

release history at each iteration. MT3DMS is run from the run function. The predicted concentrations at the locations455

where observations are available is performed in the read_output function.456

InputSettings.py is written for the following ES-MDA configuration. The number of realizations is 50, which457

are initially generated as random values in the range [1000,9000] kg/day using the function Random of the Ensem-458

Todaro, D’Oria, Tanda, Gómez-Hernández: Preprint submitted to Elsevier Page 19 of 25

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



genES-MDA: a generic open-source software for ES-MDA

Table 3
Case 3 - Actual and estimated (ensemble median) source fluxes with their 90% confidence interval (5th-95th percentiles).

Source Stress period Actual Estimated
(kg/day) (kg/day)

S1 SP1 2074 2090 (1948, 2242)
SP2 4838 4878 (4527, 5168)
SP3 3715 3738 (3293, 3986)
SP4 3024 3009 (2886,3214)

S2 SP1 3024 3026 (2994, 3050)
SP2 7776 7764 (7560, 7967)
SP3 5616 5612 (5215, 5957)
SP4 4061 4027 (3798, 4332)

ble_Generator.py module. The observation errors were generated using the PercNormalError function of the Er-459

rors_Generator.py module; they are normally distributed with zero mean and variances computed according to the460

percentage error 𝑝=2%. The total number of iterations was equal to 5 and a decreasing 𝛼 obtained with 𝛼𝑔𝑒𝑜=2 (Eq.461

(3)) was adopted. The spatiotemporal covariance localization was applied considering a correlation time length of 5462

years (𝑏𝑡, Eq. (13)) and a correlation space length of 2500 m (𝑏𝑠, Eq. (13)). The covariance inflation is applied with a463

factor equal to 1.01 (𝑟, Eq. (14)).464

In Table 3, the actual and estimated parameters with their uncertainty intervals are compared. The estimated mass465

fluxes reproduce well the reference solution, the RMSE between observed and estimated concentrations is 2⋅10−3 g/l.466

The results are in agreement with other literature works (see e.g., Ayvaz, 2010; Jamshidi et al., 2020). The conclusion467

is that the code can also address problems of contaminant source identification.468

5. Code running469

To verify the results presented using genES-MDA, the software package should be downloaded and, from the470

subfolder corresponding to each one of the three cases, the python command ES_MDA should be run using the default471

settings.472

6. Conclusions473

This paper presents the Python software package genES-MDA, a model-independent and open-source code to474

solve generic inverse problems by means of the Ensemble Smoother with Multiple Data Assimilation. genES-MDA475

provides several functionalities that allow implementing alternative configurations of the algorithm suited for diverse476

problems. genES-MDA was tested using three synthetic examples in the context of surface and subsurface hydrology:477

the solution of the reverse flow routing problem in a river reach, the estimation of the hydraulic conductivity field, and478

the identification of the release history of a contaminant spill in an aquifer. In addition, genES-MDA has been already479

applied for the solution of more complex real case studies, see e.g., Todaro et al. (2021) and D’Oria et al. (2021). The480
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good results of all tests demonstrate the capabilities of genES-MDA and its flexibility to solve different types of inverse481

problems with good performance.482

Furthermore, genES-MDA has a flexible workflow that can be easily adapted for other variants of the Ensemble483

Kalman filter. Future works will focus on the improvement of the software package by integrating different EnKF meth-484

ods, including alternative covariance inflation approaches, and implementing a parallelized version to take advantage485

that, being an ensemble-based method, several realizations can be evaluated at once as done in Xu et al. (2013).486

7. Limitations and future developments487

The software package presented in this paper is the first version of genES-MDA and has some limitations that will488

be addressed in future versions of the code. For instance, several approaches to performing covariance localization489

and covariance inflation exist in the literature, not all of which are available in the code; they will be incorporated in490

future versions.491

The Transformation module could include new functions to perform the parameter space transformation. In partic-492

ular, the normal-score transformation (Zhou et al., 2011) will be added to handle non-Gaussian distributed parameters.493

Although Ensemble Kalman filters have been demonstrated to be able to achieve good solutions even working with494

non-Gaussian parameters, they are optimal for multi-Gaussian distributed parameters. The normal-score transforma-495

tion has been proven to give very good results for highly non-Gaussian parameters.496

One of the main disadvantage of ES-MDA is the need to define a priori the number of iterations 𝑁 and the inflation497

coefficients 𝛼𝑖; their optimal values are determined by trial and error. Automatic procedures will be integrated into498

genES-MDA to adaptively select 𝑁 and 𝛼𝑖 following the works by other researchers (see e.g. Le et al., 2016; Emerick,499

2019).500

Another possible improvement of the software package could be the introduction of a more general input control501

file that interacts (or replaces) the InputSettings module. For example, an external file that groups the inputs following502

the JSON file format, which can be easily managed within Python, could be used.503
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Code availability section509

Name of code: genES-MDA510

Developer: Valeria Todaro511

Contact address: Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze512

181/A, 43124 Parma, Italy513

E-mail: valeria.todaro@unipr.it514

Year first available: 2022515

Hardware required: none516

Software required: Python517

Program language: Python518

Program size: 21.4 MB519

Source codes: https://github.com/ValeriaTodaro/genES-MDA520

References521

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., Avellano, A., 2009. The data assimilation research testbed: A community facility.522

Bulletin of the American Meteorological Society 90, 1283–1296. doi:10.1175/2009bams2618.1.523

Anderson, J.L., 2001. An ensemble adjustment kalman filter for data assimilation. Monthly Weather Review 129, 2884–2903. doi:10.1175/524

1520-0493(2001)129<2884:aeakff>2.0.co;2.525

Anderson, J.L., 2007. Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D: Nonlinear526

Phenomena 230, 99–111. doi:10.1016/j.physd.2006.02.011.527

Anderson, J.L., Anderson, S.L., 1999. A monte carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and528

forecasts. Monthly Weather Review 127, 2741–2758. doi:10.1175/1520-0493(1999)127<2741:amciot>2.0.co;2.529

Ayvaz, M.T., 2010. A linked simulation-optimization model for solving the unknown groundwater pollution source identification problems. Journal530

of Contaminant Hydrology 117, 46–59. doi:10.1016/j.jconhyd.2010.06.004.531

Bakker, M., Post, V., Langevin, C.D., Hughes, J.D., White, J.T., Starn, J.J., Fienen, M.N., 2016. Scripting MODFLOW model development using532

python and FloPy. Groundwater 54, 733–739. doi:10.1111/gwat.12413.533

Brunner, G.W., 2010. HEC-RAS, River Analysis System Hydraulic Reference Manual Version 4.1. US Army Corps of Engineers, Institute for534

Water resource. Hydrologic Engineering Center. Davis, California.535

Butera, I., Gómez-Hernández, J.J., Nicotra, S., 2021. Contaminant-source detection in a water distribution system using the ensemble kalman filter.536

Journal of Water Resources Planning and Management 147. doi:10.1061/(asce)wr.1943-5452.0001383.537

Capilla, J.E., Gömez-Hernández, J.J., Sahuquillo, A., 1998. Stochastic simulation of transmissivity fields conditional to both transmissivity and538

piezometric head data—3. application to the culebra formation at the waste isolation pilot plan (wipp), new mexico, usa. Journal of Hydrology539

207, 254–269.540

Capilla, J.E., Rodrigo, J., Gómez-Hernández, J.J., 1999. Simulation of non-gaussian transmissivity fields honoring piezometric data and integrating541

soft and secondary information. Mathematical Geology 31, 907–927.542

Todaro, D’Oria, Tanda, Gómez-Hernández: Preprint submitted to Elsevier Page 22 of 25

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://dx.doi.org/10.1175/2009bams2618.1
http://dx.doi.org/10.1175/1520-0493(2001)129<2884:aeakff>2.0.co;2
http://dx.doi.org/10.1175/1520-0493(2001)129<2884:aeakff>2.0.co;2
http://dx.doi.org/10.1175/1520-0493(2001)129<2884:aeakff>2.0.co;2
http://dx.doi.org/10.1016/j.physd.2006.02.011
http://dx.doi.org/10.1175/1520-0493(1999)127<2741:amciot>2.0.co;2
http://dx.doi.org/10.1016/j.jconhyd.2010.06.004
http://dx.doi.org/10.1111/gwat.12413
http://dx.doi.org/10.1061/(asce)wr.1943-5452.0001383


genES-MDA: a generic open-source software for ES-MDA

Chen, Y., Oliver, D.S., 2009. Cross-covariances and localization for EnKF in multiphase flow data assimilation. Computational Geosciences 14,543

579–601. doi:10.1007/s10596-009-9174-6.544

D’Oria, M., Mignosa, P., Tanda, M.G., 2014. Bayesian estimation of inflow hydrographs in ungauged sites of multiple reach systems. Advances in545

Water Resources 63, 143–151. doi:10.1016/j.advwatres.2013.11.007.546

D’Oria, M., Mignosa, P., Tanda, M.G., Todaro, V., 2021. Estimation of levee breach discharge hydrographs: comparison of inverse approaches.547

Hydrological Sciences Journal , 1–11doi:10.1080/02626667.2021.1996580.548

D’Oria, M., Tanda, M.G., 2012. Reverse flow routing in open channels: A bayesian geostatistical approach. Journal of Hydrology 460-461, 130–135.549

doi:10.1016/j.jhydrol.2012.06.055.550

Emerick, A.A., 2019. Analysis of geometric selection of the data-error covariance inflation for ES-MDA. Journal of Petroleum Science and551

Engineering 182, 106168. doi:10.1016/j.petrol.2019.06.032.552

Emerick, A.A., Reynolds, A.C., 2012. History matching time-lapse seismic data using the ensemble kalman filter with multiple data assimilations.553

Computational Geosciences 16, 639–659. doi:10.1007/s10596-012-9275-5.554

Emerick, A.A., Reynolds, A.C., 2013. Ensemble smoother with multiple data assimilation. Computers & Geosciences 55, 3–15. doi:10.1016/j.555

cageo.2012.03.011.556

Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using monte carlo methods to forecast error statistics.557

Journal of Geophysical Research 99, 10143. doi:10.1029/94jc00572.558

Evensen, G., 2018. Analysis of iterative ensemble smoothers for solving inverse problems. Computational Geosciences 22, 885–908. doi:10.559

1007/s10596-018-9731-y.560

Feyen, L., Gómez-Hernández, J., Ribeiro Jr, P., Beven, K.J., De Smedt, F., 2003. A bayesian approach to stochastic capture zone delineation561

incorporating tracer arrival times, conductivity measurements, and hydraulic head observations. Water resources research 39.562

Franssen, H., Gómez-Hernández, J., 2002. 3d inverse modelling of groundwater flow at a fractured site using a stochastic continuum model with563

multiple statistical populations. Stochastic Environmental Research and Risk Assessment 16, 155–174.564

Gaspari, G., Cohn, S.E., 1999. Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteorological565

Society 125, 723–757. doi:10.1002/qj.49712555417.566

Godoy, V.A., Napa-García, G.F., Gómez-Hernández, J.J., 2021. Ensemble smoother with multiple data assimilation as a tool for curve fitting and567

parameter uncertainty characterization: Example applications to fit nonlinear sorption isotherms. Mathematical Geosciences doi:10.1007/568

s11004-021-09981-7.569

Gómez-Hernández, J., Franssen, H.J.H., Sahuquillo, A., 2003. Stochastic conditional inverse modeling of subsurface mass transport: a brief review570

and the self-calibrating method. Stochastic Environmental Research and Risk Assessment 17, 319–328.571

Gómez-Hernández, J.J., Xu, T., 2021. Contaminant source identification in aquifers: A critical view. Mathematical Geosciences doi:10.1007/572

s11004-021-09976-4.573

Goodell, C., 2014. Breaking the HEC-RAS code : a user’s guide to automating HEC-RAS. h2ls, Portland, Or.574

Hamill, T.M., Whitaker, J.S., Snyder, C., 2001. Distance-dependent filtering of background error covariance estimates in an ensemble kalman filter.575

Monthly Weather Review 129, 2776–2790. doi:10.1175/1520-0493(2001)129<2776:ddfobe>2.0.co;2.576

Harbaugh, A.W., 2005. MODFLOW-2005: the u.s. geological survey modular ground-water model–the ground-water flow process. doi:10.3133/577

tm6a16.578

Houtekamer, P.L., Mitchell, H.L., 1998. Data assimilation using an ensemble kalman filter technique. Monthly Weather Review 126, 796–811.579

doi:10.1175/1520-0493(1998)126<0796:dauaek>2.0.co;2.580

Todaro, D’Oria, Tanda, Gómez-Hernández: Preprint submitted to Elsevier Page 23 of 25

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://dx.doi.org/10.1007/s10596-009-9174-6
http://dx.doi.org/10.1016/j.advwatres.2013.11.007
http://dx.doi.org/10.1080/02626667.2021.1996580
http://dx.doi.org/10.1016/j.jhydrol.2012.06.055
http://dx.doi.org/10.1016/j.petrol.2019.06.032
http://dx.doi.org/10.1007/s10596-012-9275-5
http://dx.doi.org/10.1016/j.cageo.2012.03.011
http://dx.doi.org/10.1016/j.cageo.2012.03.011
http://dx.doi.org/10.1016/j.cageo.2012.03.011
http://dx.doi.org/10.1029/94jc00572
http://dx.doi.org/10.1007/s10596-018-9731-y
http://dx.doi.org/10.1007/s10596-018-9731-y
http://dx.doi.org/10.1007/s10596-018-9731-y
http://dx.doi.org/10.1002/qj.49712555417
http://dx.doi.org/10.1007/s11004-021-09981-7
http://dx.doi.org/10.1007/s11004-021-09981-7
http://dx.doi.org/10.1007/s11004-021-09981-7
http://dx.doi.org/10.1007/s11004-021-09976-4
http://dx.doi.org/10.1007/s11004-021-09976-4
http://dx.doi.org/10.1007/s11004-021-09976-4
http://dx.doi.org/10.1175/1520-0493(2001)129<2776:ddfobe>2.0.co;2
http://dx.doi.org/10.3133/tm6a16
http://dx.doi.org/10.3133/tm6a16
http://dx.doi.org/10.3133/tm6a16
http://dx.doi.org/10.1175/1520-0493(1998)126<0796:dauaek>2.0.co;2


genES-MDA: a generic open-source software for ES-MDA

Hunt, B.R., Kostelich, E.J., Szunyogh, I., 2007. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform kalman filter.581

Physica D: Nonlinear Phenomena 230, 112–126. doi:10.1016/j.physd.2006.11.008.582

Jamshidi, A., Samani, J.M.V., Samani, H.M.V., Zanini, A., Tanda, M.G., Mazaheri, M., 2020. Solving inverse problems of unknown contaminant583

source in groundwater-river integrated systems using a surrogate transport model based optimization. Water 12, 2415. doi:10.3390/w12092415.584

Kalman, R.E., 1960. A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82, 35–45. doi:10.1115/1.3662552.585

Le, D.H., Emerick, A.A., Reynolds, A.C., 2016. An adaptive ensemble smoother with multiple data assimilation for assisted history matching. SPE586

Journal 21, 2195–2207. doi:10.2118/173214-pa.587

Li, H., Kalnay, E., Miyoshi, T., 2009. Simultaneous estimation of covariance inflation and observation errors within an ensemble kalman filter.588

Quarterly Journal of the Royal Meteorological Society 135, 523–533. doi:10.1002/qj.371.589

Li, L., Zhou, H., Hendricks Franssen, H.J., Gómez-Hernández, J.J., 2012. Modeling transient groundwater flow by coupling ensemble kalman590

filtering and upscaling. Water Resources Research 48.591

Liang, X., Zheng, X., Zhang, S., Wu, G., Dai, Y., Li, Y., 2011. Maximum likelihood estimation of inflation factors on error covariance matrices for592

ensemble kalman filter assimilation. Quarterly Journal of the Royal Meteorological Society 138, 263–273. doi:10.1002/qj.912.593

Nerger, L., Hiller, W., 2013. Software for ensemble-based data assimilation systems—implementation strategies and scalability. Computers &594

Geosciences 55, 110–118. doi:10.1016/j.cageo.2012.03.026.595

Ridler, M.E., van Velzen, N., Hummel, S., Sandholt, I., Falk, A.K., Heemink, A., Madsen, H., 2014. Data assimilation framework: Linking an596

open data assimilation library (OpenDA) to a widely adopted model interface (OpenMI). Environmental Modelling & Software 57, 76–89.597

doi:10.1016/j.envsoft.2014.02.008.598

Silva, T.M., Bela, R.V., Pesco, S., Barreto, A., 2021. ES-MDA applied to estimate skin zone properties from injectivity tests data in multilayer599

reservoirs. Computers & Geosciences 146, 104635. doi:10.1016/j.cageo.2020.104635.600

Sun, N.Z., 1994. Inverse Problems in Groundwater Modeling. Kluwer Academic.601

Tarantola, A., 2005. Inverse Problem Theory and Methods for Model Parameter Estimation. CAMBRIDGE.602

Tippett, M.K., Anderson, J.L., Bishop, C.H., Hamill, T.M., Whitaker, J.S., 2003. Ensemble square root filters. Monthly Weather Review 131,603

1485–1490. doi:10.1175/1520-0493(2003)131<1485:esrf>2.0.co;2.604

Todaro, V., D’Oria, M., Tanda, M.G., Gómez-Hernández, J.J., 2019. Ensemble smoother with multiple data assimilation for reverse flow routing.605

Computers & Geosciences 131, 32–40. doi:10.1016/j.cageo.2019.06.002.606

Todaro, V., D’Oria, M., Tanda, M.G., Gómez-Hernández, J.J., 2021. Ensemble smoother with multiple data assimilation to simultaneously estimate607

the source location and the release history of a contaminant spill in an aquifer. Journal of Hydrology 598, 126215. doi:10.1016/j.jhydrol.608

2021.126215.609

Wen, X.H., Capilla, J.E., Deutsch, C., Gómez-Hernández, J., Cullick, A., 1999. A program to create permeability fields that honor single-phase610

flow rate and pressure data. Computers & Geosciences 25, 217–230.611

White, J.T., Hunt, R.J., Fienen, M.N., Doherty, J.E., 2020. Approaches to highly parameterized inversion: PEST++ version 5, a software suite for612

parameter estimation, uncertainty analysis, management optimization and sensitivity analysis. doi:10.3133/tm7c26.613

Xu, T., Gómez-Hernández, J.J., 2016. Joint identification of contaminant source location, initial release time, and initial solute concentration in an614

aquifer via ensemble kalman filtering. Water Resources Research 52, 6587–6595. doi:10.1002/2016wr019111.615

Xu, T., Gómez-Hernández, J.J., Chen, Z., Lu, C., 2020. A comparison between ES-MDA and restart EnKF for the purpose of the simultaneous616

identification of a contaminant source and hydraulic conductivity. Journal of Hydrology , 125681doi:10.1016/j.jhydrol.2020.125681.617

Xu, T., Gómez-Hernández, J.J., Li, L., Zhou, H., 2013. Parallelized ensemble kalman filter for hydraulic conductivity characterization. Computers618

Todaro, D’Oria, Tanda, Gómez-Hernández: Preprint submitted to Elsevier Page 24 of 25

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://dx.doi.org/10.1016/j.physd.2006.11.008
http://dx.doi.org/10.3390/w12092415
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.2118/173214-pa
http://dx.doi.org/10.1002/qj.371
http://dx.doi.org/10.1002/qj.912
http://dx.doi.org/10.1016/j.cageo.2012.03.026
http://dx.doi.org/10.1016/j.envsoft.2014.02.008
http://dx.doi.org/10.1016/j.cageo.2020.104635
http://dx.doi.org/10.1175/1520-0493(2003)131<1485:esrf>2.0.co;2
http://dx.doi.org/10.1016/j.cageo.2019.06.002
http://dx.doi.org/10.1016/j.jhydrol.2021.126215
http://dx.doi.org/10.1016/j.jhydrol.2021.126215
http://dx.doi.org/10.1016/j.jhydrol.2021.126215
http://dx.doi.org/10.3133/tm7c26
http://dx.doi.org/10.1002/2016wr019111
http://dx.doi.org/10.1016/j.jhydrol.2020.125681


genES-MDA: a generic open-source software for ES-MDA

& Geosciences 52, 42–49. doi:10.1016/j.cageo.2012.10.007.619

Zheng, C., Wang, P.P., 1999. MT3DMS : a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and620

chemical reactions of contaminants in groundwater systems; documentation and user’s guide.621

Zheng, X., 2009. An adaptive estimation of forecast error covariance parameters for kalman filtering data assimilation. Advances in Atmospheric622

Sciences 26, 154–160. doi:10.1007/s00376-009-0154-5.623

Zhou, H., Gómez-Hernández, J.J., Franssen, H.J.H., Li, L., 2011. An approach to handling non-gaussianity of parameters and state variables in624

ensemble kalman filtering. Advances in Water Resources 34, 844–864. doi:10.1016/j.advwatres.2011.04.014.625

Zhou, H., Gómez-Hernández, J.J., Li, L., 2012. A pattern-search-based inverse method. Water Resources Research 48.626

Zhou, H., Gómez-Hernández, J.J., Li, L., 2014. Inverse methods in hydrogeology: Evolution and recent trends. Advances in Water Resources 63,627

22–37. doi:10.1016/j.advwatres.2013.10.014.628

Todaro, D’Oria, Tanda, Gómez-Hernández: Preprint submitted to Elsevier Page 25 of 25

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://dx.doi.org/10.1016/j.cageo.2012.10.007
http://dx.doi.org/10.1007/s00376-009-0154-5
http://dx.doi.org/10.1016/j.advwatres.2011.04.014
http://dx.doi.org/10.1016/j.advwatres.2013.10.014


genES-MDA: a generic open-source software for ES-MDA

List of Figures629

1 Software package structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27630

2 Case 1 - HEC-RAS geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28631

3 Case 1 - Actual and estimated inflow hydrographs. The ensemble of estimated hydrographs is summa-632

rized by its median value and the 90% confidence interval (5th-95th percentiles). . . . . . . . . . . . 29633

4 Case 1 - Observed and predicted water levels. The ensemble of predicted water levels is summarized634

by its median value and the 90% confidence interval (5th-95th percentiles). . . . . . . . . . . . . . . 30635

5 Case 2 - Reference permeability field; the squares mark the monitoring locations and the triangles, the636

well locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31637

6 Case 3 - Aquifer model; the squares denote the monitoring locations and the triangles indicate the638

pollution sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32639

Todaro, D’Oria, Tanda, Gómez-Hernández: Preprint submitted to Elsevier Page 26 of 25

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



genES-MDA: a generic open-source software for ES-MDA

Figure 1: Software package structure.
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Figure 2: Case 1 - HEC-RAS geometry.
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Figure 3: Case 1 - Actual and estimated inflow hydrographs. The ensemble of estimated hydrographs is summarized by
its median value and the 90% confidence interval (5th-95th percentiles).
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Figure 4: Case 1 - Observed and predicted water levels. The ensemble of predicted water levels is summarized by its
median value and the 90% confidence interval (5th-95th percentiles).

Todaro, D’Oria, Tanda, Gómez-Hernández: Preprint submitted to Elsevier Page 30 of 25

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



genES-MDA: a generic open-source software for ES-MDA

Figure 5: Case 2 - Reference permeability field; the squares mark the monitoring locations and the triangles, the well
locations.
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Figure 6: Case 3 - Aquifer model; the squares denote the monitoring locations and the triangles indicate the pollution
sources.
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