0
IMSF POLITECNICA D(S)//C

DE VﬂL E NC] Al DEPARTAMENT DE SISTEMES

INFORMATICS | COMPUTACIO

UNIVERSITAT POLITECNICA DE VALENCIA

Dept. of Computer Systems and Computation

Acoustic adaptation of automatic speech recognition
systems in educational environments

Master's Thesis

Master's Degree in Artificial Intelligence, Pattern Recognition and
Digital Imaging

AUTHOR: Mas Molla, Gerard
Tutor: Juan Ciscar, Alfonso
Cotutor: Sanchis Navarro, José Alberto

ACADEMIC YEAR: 2022/2023

UNIVERSITAT POLITECNICA DE VALENCIA
DEPARTAMENT DE SISTEMES INFORMATICS I COMPUTACIO

UNIVERSITAT
POLITECNICA
DE VALENCIA

MASTER’S THESIS

Acoustic Adaptation of
Automatic Speech Recognition Systems
in educational environments

Master’s Degree in Artificial Intelligence, Pattern Recognition
and Digital Imaging
Academic Course 2022/2023

Gerard Mas Molla

Advisers:
Dr. Alfons Juan Ciscar
Dr. Albert Sanchis Navarro

ABSTRACT / RESUM / RESUMEN

Abstract

Acoustic adaptation of Automatic Speech Recognition (ASR) systems is a field of
great interest in different ASR domains and, particularly, in educational environments
such as the UPV. In general, the main goal of this task is that of improving the
general purpose ASR systems taking into account the specific acoustic conditions of
the application domain. In this work, we will review the state-of-the-art in terms of
acoustic adaptation of ASR systems and apply the ones that we find more interesting
for educational environments and, more precisely, for the UPV media repository.

Resum

L’adaptacio acustica de sistemes de reconeixement automatic de la parla (ASR) és
una tasca de gran interés en diversos dominis d’aplicacié de 'ASR i, en particular,
en entorns educatius com ara el de la propia UPV. En general, ’objectiu principal
d’aquesta tasca és la millora de sistemes d’ASR de proposit general tenint en compte
particularitats acustiques especifiques del domini d’aplicacié. En aquest treball es
proposa fer una revisié de l'estat de I'art en adaptacié acustica de sistemes d’ASR i
aplicar les técniques que es consideren més adequades per a entorns educatius i, en
particular, per al repositori UPV média.

Resumen

La adaptacion acustica de sistemas de reconocimiento del habla (ASR) es una tarea
de gran interés en distintos dominios de aplicaciéon del ASR y, en particular, en en-
tornos educativos como el de la propia UPV. En general, el objetivo principal de
esta tarea es el de mejorar sistemas de ASR de proposito general teniendo en cuenta
particularidades acusticas especificas del dominio de aplicaciéon. En este trabajo se
propone hacer una revision del estado del arte en adaptacion actstica de sistemas de
ASR y aplicar las técnicas que se consideren mas adecuadas para entornos educativos
y, en particular, para el repositorio UPV media.

iii

CONTENTS

[Abstract / Resum / Resumen|

P

Automatic speech recognition|

2.4.1 Language model| Lo

2.4.3 Hybrid decoding| L L.

P25

Acoustic adaptation|o oo oo

BA Taskd

13.4.1 Task-adaptation| L.
3.4.2 Speaker-adaptation|.o

Self-supervised acoustic adaptation|

7]

Baseline system|

7

Acoustic adaptation| L. Lo L oo

3

Integration ot the new AMs into the hybrid decoder|

a

Results and comparison| 0L,

iii

DN DN

Contents

[Speaker-aware self-supervised acoustic adaptation|

.1 Baseline system| 0oL
5.2 Acoustic adaptation|

.3 Integration of the new AMs into the hybrid decoder|

.4 Results and comparison|

|[Appendix: Sustainable Development Goals|

vi

35
.......... 35
.......... 36
.......... 38
.......... 40

41
.......... 41

55

DSIC, UPV

CHAPTER 1

INTRODUCTION

This work explores the state-of-the-art techniques for acoustic adaptation of Auto-
matic Speech Recognition (ASR) systems, with the aim of applying the techniques
that suit the best the use case of the Universitat Politécnica de Valéncia (UPV) media
repository in the Spanish language.

In this chapter, we describe the motivation for this work, as well as the context in
which it is carried out. In addition, an outline of the document can be found at the
end of the chapter.

1.1 Motivation

Automatic Speech Recognition (ASR) applications are well established in the every-
day of today’s society in the form of personal assistants (Amazon’s AlexaEL Google’s
Assistamﬂ Samsung’s BixbyEl, Apple’s Siriﬂ..), answering machines, medical applica-
tions [[75] [79] 58|, [25] and automatic transcription of media repositories. They usually
provide very accurate transcriptions of a given speech audio, although they are highly
sensitive to noisy environments and speech peculiarities, as well as very dependant on
the tasks they were trained on. There has been a lot of efforts put on mitigating the
noise problem and improving environment generalisation of ASR systems [36], [74], [26],
but as with most tasks, specific domain-adapted systems provide considerably better
results than general-purpose systems.

This Master’s Thesis is carried out while working with the Machine Learning
and Language Processing (MLLP) research grou;ﬂ Since 2014, the MLLP has been
providing the Universitat Politécnica de Valéncia (UPV) with automatic transcription,
translation and dubbing for the UPV Media platform, producing more than 2.7K
hours of unsupervised labeled audio only taking into account the poliMédia videos

Uhttps://developer.amazon.com/en-GB/alexa. Last accessed: 11-07-2023
2https://assistant.google.com /. Last accessed: 11-07-2023
3https://www.samsung.com/us/apps/bixby/, Last accessed: 11-07-2023
4https://www.apple.com /siri/, Last accessed: 11-07-2023
Shttps://www.mllp.upv.es. Last accessed: 11-07-2023

https://developer.amazon.com/en-GB/alexa
https://assistant.google.com/
https://www.samsung.com/us/apps/bixby/
https://www.apple.com/siri/
https://www.mllp.upv.es

Chapter 1. Introduction

(knowledge pills recorded under very specific conditions at the UPV). However, the
systems that provide with these services are general-purpose systems built to perform
well in all kind of tasks.

Considering this situation, and taking advantage of the fact that all of the poliMeé-
dia videos are recorded under the same conditions (exactly equal rooms with the same
professional equipment in each one of them), this Master’s Thesis aims to apply state-
of-the-art techniques for acoustic adaptation to adapt the acoustic model of the ASR
system to the poliMeédia task using unsupervised labeled acoustic data generated with
the same model. In addition, we will use the adapted systems to re-adapt them to
the speakers in the test set using the same principle. Finally, the experimentation
performed on this work aims to open the door to adapting systems under streaming
conditions, using the self-generated data to adapt the acoustic model to a task in real
time.

1.2 Main objectives

The main objectives of this work are the following:

e To explore and gather the most promising acoustic adaptation techniques and
apply them.

e To work with big amounts of unsupervised data and use it as training data.

e To improve the results of the baseline system on the poliMédia corpus by adapt-
ing it with unsupervised data.

e To perform speaker-adaptation with the baseline system to improve the results
for each speaker on the poliMédia corpus.

1.3 Document structure

This document is structured as follows: First, Chapter [2] will introduce the reader to
the general concepts of ASR that are necessary before delving deeper into this work,
as well as introducing state-of-the-art techniques currently used in ASR applications
and acoustic adaptation. Then, Chapter [3] will present the poliMédia corpus and the
unsupervised data, the processing performed and the tasks considered, as well as the
tools used to carry out this work. Thereupon, Chapter [l and Chapter [f] will describe
in detail the work developed to adapt the acoustic models to the poliMédia task
and to the test speakers, respectively, as well as their experimental results. Finally,
Chapter [6] summarizes the work done, give some concluding remarks and introduce
some future lines of work and investigation.

The reader is recommended to read the document sequentially, as it has been writ-
ten to do so. Each chapter introduces new concepts that will be used in the chapters
that succeed. However, if the reader is already experienced with ASR technologies,
Chapter [can be skipped.

2 DSIC, UPV

CHAPTER 2

AUTOMATIC SPEECH
RECOGNITION BACKGROUND

This chapter gives an introduction into the Acoustic Speech Recognition (ASR) field,
going through the basics of the technologies that underpin it. It is structured as
follows: First, Section introduces the reader to the ASR research field, briefly
summarizing its history. Second, Section goes through the basics of machine
learning needed to understand the field of ASR. Then, Section introduces neu-
ral networks, going from their origins and evolution to state-of-the-art architectures
relevant to this work. After that, Section puts the concepts explained in the pre-
vious sections together to expose the different components of an ASR system. Next,
Section explores adaptation techniques and studies their applicability to the con-
text of the acoustic adaptation in ASR. Finally, Section [2.6] introduces the evaluation
methods of the different components of an ASR system, as well as the evaluation of
the whole ASR system put together.

2.1 Introduction

ASR is a pattern recognition task in which, given an acoustic signal as input, extracts
the most probable sequence of words corresponding to its transcription. In contrast
to human transcription, producing automatic transcripts is cheap and efficient. This
opens up a scenario where large technology companies devote large amounts of re-
sources to improving their ASR techniques, making ASR one of the most popular
fields within machine learning today.

The first ASR systems, completely analogical, were focused on simple tasks with
a small amount of words. An example of these systems can be IBM’s Shoebox'] an
ASR system developed in 1962 that was able to recognize numbers from 0 to 9 and

YR ENNAS

math operators such as “plus”, “minus” or “total” in order to provide with an speech

Ihttps://www.ibm.com/ibm/history/exhibits/specialprodi/specialprodi_7.html. Last ac-
cessed: 20-06-2023.

https://www.ibm.com/ibm/history/exhibits/specialprod1/specialprod1_7.html

Chapter 2. Automatic Speech Recognition Background

interface for an adding machine. Later on, with the introduction of the Hidden Markov
Models (HMMs), the ASR systems started to work with probability, allowing them
to cover considerably bigger vocabularies. Years after that, with the introduction of
new methods and models to estimate the probabilities of the HMMs, as well as the
introduction of context-aware models that fitted better to the task, the quality of the
automatic transcriptions improved drastically, reaching the level of quality of today’s
ASR systems, where the automatic transcriptions performed with good conditions are
often difficult to distinguish from the human transcriptions [33] [65] [68].

Nowadays, ASR is applied to all kind of environments with acceptable results
in terms of quality, allowing us to have automatic transcription services even in a
smartphone or tablet. It is applied to automatically transcribe videos in media repos-
itories, to build answering machines, to build easier methods for interacting with
machines and even in very delicate environments like medical applications and health
care. Here, ASR systems are in charge of automatically transcribe the conversations
inside surgery rooms, medical recipes or telematic appointments. However, ASR is
also used to assist in speech recognition of people with diseases like dysarthriaEI or
Alzheimer [75] [79].

Aside from medical-specific applications, ASR can be used to help deaf people or
people with hearing diseases, allowing them to access to media resources by auto-
matically transcribing their content. This case is specially appreciated in educational
environments, where automatic transcription allows these people to access to quality
education, ensuring everyone’s right to education, comprised in the article 26 of the
universal declaration of human rightsﬂ Furthermore, if we combine ASR applica-
tions with machine translation (MT) and text-to-speech (TTS), we can make media
resources even more accessible, breaching the language barriers [50] [51].

The field of ASR has a large active community that put a lot of effort on build-
ing open toolkits for developing ASR systems such as Kaldi [52] or HTK [77], as
well as big open audio datasets like Mozilla’s Common Voice [6], LibriSpeech [48],
TED-LIUM [55], Europarl-ASR [20] or VoxPopuli [72]. Thanks to these efforts, ASR
applications are nowadays easily accessible for everyone.

2.2 Machine learning

Machine learning is a research field of science that uses computer algorithms to au-
tomatically discover regularities in data by applying pattern recognition techniques
and use these regularities to classify them into different categories [10]. More specifi-
cally, it focuses on analyzing the statistical properties of patterns, usually expressed
as probability densities [I7].

The main goal of a machine learning system is to assign a label ¢ to a given sample.
However, in order to be able to correctly analyze real life objects, first they need to
be represented with a set of representative features, extracted by the means of an ad

2Dysarthia is a disease that affects the motor system, difficulting the patient’s ability to pronounce
and causing their speech to become more difficult to understand.

3https://www.un.org/en/about-us/universal-declaration-of-human-rights. Last accessed: 11-07-
2023

4 DSIC, UPV

https://www.un.org/en/about-us/universal-declaration-of-human-rights

2.3. Neural networks

hoc feature extraction process and stored in a feature vector . Then, the machine
learning system has to estimate the probability function p(c|x), that measures the
probability of an object represented by the feature vector x belonging to a class c.
Usually, and specially when dealing with linear classifiers, the classification function
can be computed by using the Bayes’ theorem. This theorem relates the probability
of an object « belonging to a class ¢ to the probability of ¢ yielding . Thus, applying
this theorem, the classification function can be expressed as:

¢ = argmax p(c|x) = argmax p(@le)p(c) (2.1)
ceC ceC p(x)

Note that ¢ refers to the estimated class that yields the maximum value of p(c|x).

However, since p(x) is constant to ¢, it can be safely removed from the denomina-

tor. It is important to note that, with this modification, we are not estimating p(c|x),

but a score that keeps the relation with it. This can be done since the aim of a ma-

chine learning system is to minimize the classification error and, therefore, its success

does not depend on the magnitude of the output scores, but on the ratio between

them. With this modification, the final equation for a machine learning classifier can
be expressed as:

¢ = argmax p(zx|c)p(c) (2.2)
ceC

The statistical models used are the result of fitting their parameters through a
training process. This training process can be either supervised, if the training sam-
ples are labeled (this is, they are associated to a ground truth class), or unsupervised,
if they are not, even though machine learning is mostly associated with supervised
training processes. In both cases, the goal of the system is to classify unlabeled sam-
ples as accurately as possible in the inference process. Figure [2.1] shows a schematic
of a machine learning system.

Following the statistical approaches of machine learning, there are many typi-
cal binary classifiers for classifying linear data, such as probability distributions [23]
and mixtures of probability distributions [22] 31l [70, B8], support vector machines
(SVM) [I4] [47] or, as used in most modern solutions, neural networks.

2.3 Neural networks

Neural networks is the most popular concept when it comes to artificial intelligence
and machine learning, even for non-expert people. This is mostly because of their
ability of tackling difficult problems by learning from very big amounts of data. In
the current days, there are many variations of neural networks, but they are all based
on the original perceptron model.

2.3.1 Perceptron and multi-layer perceptron

The perceptron [54] is a statistical supervised learning linear classifier model, capable
of classifying between two classes. It is referred to as a function that maps an input

DSIC, UPV 5

Chapter 2. Automatic Speech Recognition Background

Training Real
Samples Samples

Preprocessing and
feature extraction

Preprocessing and
feature extraction

Feature Feature
vectors vectors

|

Classification

Eq.

Estimated
class

Figure 2.1: Generic pattern recognition system.

xTq \
' f(z)
D —
Figure 2.2: Representation of a perceptron as a neuron.

vector x to a binary output value f(x) that can be expressed as:

fl®) = (2.3)

1 fw-z+b>0
0 otherwise

Where w is a trainable vector of weights, « is the input feature vector and b is a
trainable bias parameter.

This model is also often represented relating it with natural neurons, as it can
be seen as a cell that retrieves an array of connexions as an input through its den-
drites, and outputs the result of some internal processing through its axon terminals.
Figure shows the representation of the perceptron as a neuron for D dimensional
vector classification.

However, the problem of the perceptron is that, as we already mentioned, it is a

6 DSIC, UPV

2.3. Neural networks

linear classifier for two-class problems. This is why these models started to grow first
in parallel, to add more classes, and then in layers, to generate more complex decision
boundaries. The result of this evolution is the multilayer perceptron (MLP)[24], which
laid the foundation for modern neural networks. As a result of stacking more units
and layers, the equation for a MLP can be expressed as:

My
sh=Y 0,5 1< <M, 1<I<L (2.4)
=0

Where sé- is the output of the j** neuron in layer I, . is the weight of the connexion

ji
between neurons si_l é—, M is the number of neurons in layer [and L is the
total number of layers. Figure [2.3] shows the structure of a generic MLP.

input layer 1% hidden layer L' hidden layer OutPut layer

Figure 2.3: Representation of a multilayer perceptron. Layers are connected between
them, being the input of the n-th layer the output of the n — 1-th.

2.3.2 Feed forward neural networks

Even though the MLP allowed the perceptron classifier to tackle multi-class tasks
with complex decision boundaries, it is still a linear classifier, as it is a combination of
several linear subunits. To solve this problem, the equation of the MLP was modified,
adding a non-linear function called “activation function” to the output of each neuron.
The resulting equation can be expressed as:

M1

sh=g() 05 -si) 1< <M, 1<I<L (2.5)
1=0

Where g¢(-) is a non-linear function. Examples of non-linear activation functions
can be ReLU (Equation , Sigmoid (Equation , hyperbolic tangent (Equa-
tion or Softmax [35]. This modification, with the introduction of the back-

DSIC, UPV 7

Chapter 2. Automatic Speech Recognition Background

propagation training algorithm [56], led to the modern neural networks, allowing
them to deal with non-linear decision boundaries and giving them the ability of train-
ing with big amounts of data. A neural network without loops, where the information
can only flow in one direction, is called Feed-forward network [8] (FFN). This type of
network can be used both for regression, where the raw values of the output neurons
are taken, and classification, where there is a softmax function that takes the output
values and converts them into a unary probability mass. The softmax function is
expressed as:

on(zn) = _exp(za) (2.6)

o €xP(zm)

ReLU(z;) = maz(0, z;) (2.7)
1
o(z) = HTP(—Z@‘) (2.8)

exp(z;) — exp(—2;)
exp(z;) + exp(—=z;)

tanh(z;) = (2.9)

The FFNs usually are build with several hidden layers (usually more than two).
At this point, we can start talking about Deep Learning and Deep Neural Networks
(DNN), even though it is not clear where to put the line. A bigger number of hidden
layers allows the network to do a deeper feature analysis, since the layers that are
closer to the input extract more low-level features, whereas the latter layers can
represent more high-level features [78].

2.3.3 Recurrent neural networks

FFNs are great models for classifying independent samples, but they are not designed
for using temporal information, even though there are works that use them by directly
appending the temporal context to the input [40]. To attack this problem, the recur-
rent neural networks (RNN) [60] were introduced. In essence, they are FNNs where
the input information of every layer in the i*" timestep of the sequence is represented
by appending the output of the same layer in the i — 1** timestep. By this mean,
RNNS5 are able to cope with temporal sequences as input with better results than reg-
ular FNNs in temporal-dependent tasks [59]. In the field of ASR, they can be both
used for language and acoustic modeling [41} 57]. Figure shows the mechanism of
an RNN unit.

However, the RNN have a practical limitation when it comes to take into account
a very long history of context. Since the memory information is updated in every
iteration of the net, it tends to fade out. This phenomenon is known as gradient
vanishing [49].

8 DSIC, UPV

2.3. Neural networks

RNN u
n

== e

Figure 2.4: Representation on how the mechanism of an RNN cell works.

2.3.4 Long-short term memory models

The Long-Short Term Memory (LSTM) models [27] are a kind of RNN with a more
complex memory system. They include three control gates that act as throttling
factors to regulate the usage of the context data. First, the input gate controls how
important it is to consider the current sample to predict the output. Then, the forget
gate is applied to determine the importance of remembering the current sample for
future iterations. Finally, there is an output gate that decides how important it is to
propagate the cell’s information to the following units. These three gates allow the
LSTM cell to handle the memory information in a better way than how the RNNs do
it, allowing these networks to consider potentially infinite context lengths. Figure
represents an schematic of the memory mechanism of an LSTM cell.

However, the downside of the LSTMs is that they are sequential models, which
forces them to process a signal in a sequential way. This means that dependencies can
only be considered in one direction, in addition to having to process the entire signal
to predict a single sample. To solve the first problem, the LSTM networks evolved,
giving raise to the Bidirectional LSTM (BLSTM) [63] models. The BLSTM models
are, in essence, two LSTM networks that analyze the signal one in each direction,
solving the problem of the direction of the dependencies.

Figure [2.6] shows the idea of BLSTM bidirectionality. In it, the frames represent
time instant and nodes f; and b; are the states of the nets in such instant. The f;
nodes are responsible of processing the input data forwards, while b; nodes process it
backwards.

With the introduction of BLSTMs came improvements in many tasks such as MT
or ASR, since they allowed to detect references to “future” words. Still, while its
bidirectionality brings improvements in temporal-dependent tasks, it also introduces
an improvement in the computational cost, since they are two LSTMs in parallel.
Aside from that, although these models were introduced to overcome the problem
of gradient vanishing, they still struggled to successfully consider large contexts. In
order to solve it, the attention-based models where introduced [13].

DSIC, UPV 9

Chapter 2. Automatic Speech Recognition Background

- Forget gate

(

Input data @ Memory @ Output data
Input gate
- Output gate

Figure 2.5: Schema of the memory mechanism of an LSTM cell. Nodes labeled with x
denote the multiplication of their inputs.

ft—l ft
f—1 e
be—1 by
t—1 t t—1 t
(a) Long short term memory (b) Bidirectional long-short term
network. memory network.

Figure 2.6: Long-short term memory network (left) vs bidirectional long-short term
memory network (right).

Attention mechanisms allow to process an entire signal in parallel to capture the
most important content for each element in it while keeping a time complexity of
O(n) with the length of the signal. When combined with recurrent models, the
attention models allowed to capture dependencies in very large contexts, resulting in
an improvement in the results without drastically improving the time complexity.

10 DSIC, UPV

2.4. Automatic speech recognition

2.3.5 Transformer models

The Transformer architecture [71] was introduced to solve the time-complexity prob-
lem of the sequential RNNs by relying on the attention mechanisms. To get rid of
sequentially processing the full context, the Transformer architecture introduces a new
self-attention mechanism that can relate two elements in the same sequence, comput-
ing the dependences between them, in a similar way to how a syntactic analysis is
done. This way, the time complexity of the model is drastically reduced, since the
self-attention can be computed in O(1).

This architecture is based on a encoder-decoder structure inherited from the MT
models, where both parts are formed by blocks consisting on stacked attention mod-
ules and FFNs. Here, the encoder maps an input sequence of symbols X to a sequence
of continuous representations Z that will be used as input by the decoder. Given Z,
the decoder can map the sequence to an output symbol sequence Y .

Aside from the reduction in time complexity compared to the RNNs, the com-
bination of attention mechanisms granted the Transformers the ability of handling
potentially infinite histories, which resulted in even better results, especially with
very complex time-dependent tasks [32]. This quickly positioned the Transformers
as the state-of-the-art models to analyze sequences, being quickly adopted in a large
number of tasks. Nowadays, Transformers are considered the SOTA in ASR applica-
tions, being applied in LMs, AMs and even in end-to-end systems [73] [7].

2.4 Automatic speech recognition

Having gone through the basic knowledge to understand the contents of this work, the
ASR aims to correctly transcribe an input speech sample by modeling the probability
p(w|x) of a word sequence w given and input audio feature vector . This probability
can be directly estimated using a sequence-to-sequence (seq-to-seq) model, aiming to
reduce the complexity of the task by using only one model. However, this approach is
hard to use since it requires a significant amount of hours of labelled speech for training
the model, restricting its usage only to big companies or economically well-supported
research groups. On the other hand, this probability p(w|x) can be decomposed
by using Bayes’ theorem. With this, the probability can be simplified into to main
components:

w = argmax p(w|x) = argmax p(x|w)p(w) (2.10)
weL* weL*

In this new equation, we can distinguish two different probabilities: the probability
p(x|w) of an acoustic feature vector & given a word sequence w, which can be thought
of as the probability of w being represented with x, and the probability p(w) of a word
sequence w in a language. The first one can be modeled with an acoustic model (AM),
whereas the latter can be estimated with a language model (LM), combining both of
them in a decoding step. Since there are two different models that are combined to
decode the best sequence of words w, this approach is called hybrid approach.

DSIC, UPV 1 1

Chapter 2. Automatic Speech Recognition Background

This approach allows to exploit more abundant data sources since, although the
acoustic model is still limited to training with labelled acoustic data, the language
model can be trained with monolingual text data. Hence, it allows to build robust
and powerful LMs that can significantly expedite raw ASR performance. However,
since the nature of each of the components is different, this approach presents some
problems that need to be fixed. On one side, each of the components work in a
different probabilistic scale, which causes that, sometimes, the contribution of the
LM becomes irrelevant for the decoding process. This is why an scaling factor « that
scales the probability yielded by the LM is introduced, as represented in equation [2.11]
On the other side, and since both models have been trained separately, it is difficult
to achieve a final system as robust as an end-to-end model. This problem makes the
decoding step very important and, thus, an exhaustive exploration of the decoding
parameters is needed in order to find an optimal combination.

w = argmax p(x|w)p(w)® (2.11)
weL*

2.4.1 Language model

AS mentioned, the LM is in charge of modelling the probability p(w) of a sequence of
words w in a language L. To do so, it aims to represent the structure of the language
L by computing the probability of every word sequence w in the language L, which
is usually approximated with the probability p(w;|w;...w;—1) of a word w; given its
context w;...w;—1 where j <4 as follows:

I+1
p(w) ~ Hp(wi|w:;a1x(i_n+170)) (2'12)
=1

Where I is the length of w, n is the maximum history length considered, w?Jr” is

the sequence of words (wj...wj4,) € w and wo and wy; represent the special tokens
for the start and end of the sentence, respectively. Since the LM aims to build a
probability distribution on every word sequence w € L*, all probabilities are subject
to:

> Pw) =1 (2.13)
welL*

One of the most common approaches to language modeling are n-gram models. In
ASR, n-grams are contiguous sequences of n words, usually referred to by its length
(unigrams, bigrams...). N-grams approximate p(w) as the probability P(w;|w!~} +1)
of a word w; given an n-sized word sequence wZ:}L 41 as context. They are easy-to-
build LMs, since the probabilities are empirically estimated by counting the number
of occurrences of each n-gram in a training corpus and normalizing it to the number
of occurrences of its history [2I]. This can be formalized as:

i—1 i—n—+1
w;|w; — = " 2.14
p(| i n+1) N(wz:i+1) ()

].2 DSIC, UPV

2.4. Automatic speech recognition

Where N(w) is the amount of times a word sequence w appears in the training
data. This method is very useful for estimating the probability of sequences seen in
the training corpus, but it is unable to assign a non-zero probability to a sequence that
was not seen in the past. To cope with these kind of sequences, there are smoothing
techniques consisting on interpolating different models [18] [34] or re-distributing the
probabilities assigned to lesser seen sequences [19, [I1], among others [37].

In more recent works, neural approaches to language modeling have been intro-
duced [9]. They were mostly based on RNNs [4I], more precisely LSTMs with atten-
tion mechanisms [I2} [39], since they are able to consider sequential data dependencies
providing good results. Nowadays, the Transformer-based models are capable of build-
ing powerful LMs, as they are able to process long sequences in parallel, aside from
their generalisation capabilities [73 [7]. As a product of this, they are the state-of-
the-art and the go-to architecture when building LMs.

In terms of the data processing for language modeling, there are different ap-
proaches, mainly depending on the expected output of the system. Essentially, no
characters other than those belonging to words of the language must be left on the
corpus. In the case of Spanish, for example, all characters not contained in the Latin
alphabet should be removed. It is also interesting to re-write all the characters using
the same encoding format (i.e. UTF-8).

2.4.2 Acoustic model

The acoustic model, in charge of modeling P(x|w), is the component that relates the
acoustic signal with the phonetic units in the hybrid approach. It is trained with
labelled acoustic data, either by humans or previous ASR systems, and is usually
modeled with Hidden Markov models (HMMs), since these are specially good at
modelling time-dependant tasks, in combination with some other classification system
that models the transition probabilities between the hidden states. Formally, we can
define an HMM M as follows:

M=(Q,% A, B) (2.15)

Where @ is a set of finite states, X is a finite set of symbols or alphabet, 7 is an
initial probability vector, A is a matrix with the probabilities of transitioning from a
certain state ¢; to another state g;11 with ¢;,¢;+1 € @, and B is a matrix with the
probabilities of emitting a symbol z; € ¥ from a certain state ¢; € @ in a timestep t.
Figure[2.7)contains a representation of a three-state hidden Markov model. These kind
of models are used to model Markovian processes, which are random time-dependant
processes, like the human speech. More concretely, in the ASR context, the HMMs
are used to model acoustic phonemes or triphonemes (phonemes with past and future
context). With this idea in mind, the probability of an HMM that models a phoneme
f generates an acoustic sequence ® can be expressed as:

lq|

Pp(x) = > [Platla—1)P(xilar) (2.16)

qeQR* t=1

DSIC, UPV 13

Chapter 2. Automatic Speech Recognition Background

Where q is a state sequence with t timesteps, z; is the vector in position ¢ at the
acoustic vector sequence @, P(g;|q;—1) is the transition probability A, _, 4,) between
states g;—1 and ¢q;, and P(2¢|g;) is the emission probability By, »,) of emitting z; in
state q;.

Aia Az Az

5

ST m A Ai o A Az s A As g
e O Oan O O

Figure 2.7: Representation of an HMM. Qo represents the initial state, with an initial
transition probability contained in 7. ¢1,¢2 and g3 are states in @), with transitions
between them whose probabilities are contained in A. FE is the final state of the model.

As mentioned, the emission probabilities are usually modelled with external mod-
els, traditionally being these Gaussian mixtures (GMMSs) trained with an Expectation-
Maximization (EM) algorithm. This combination is usually referred to as GMM-
HMMs. Then, these model transitioned to using FFNs, convolutional NNs or other
types of neural networks, since they are more powerful in generalisation than GMM.
However, more modern approaches have used RNNs (more concretely, BLSTMs) for
estimating the transition probabilities, since human speech has temporal dependen-
cies to be considered. Nowadays, there are already acoustic models based on the
Transformer architecture but, unlike in other tasks, they are not yet established as a
better alternative to the BLSTMs.

In terms of the treatment process of the data, the traditional process for obtaining
the feature vectors consists on applying a set of filters to the acoustic signal through
its frequency spectrum. This set of filters can vary depending on the interests of the
task, but it is usually either a set of Mel frequency cepstral coeficients (MFCC) or
a set of filterbanks. Figure [2.8] represents how the filters are applied through the
frequency domain of the input signal.

2.4.3 Hybrid decoding

In the hybrid approach to ASR, the decoding step is the process where all the compo-
nents are put together to extract a sequence of words given a sequence of input acoustic
vectors. There are different approacches to hybrid decoding, being Weighted Finite
State Transducers decoders [43] (WFST) and History-Conditioned Search based de-
coders [46] (HCS) two of the most popular ones. In this work, we are going to focus
on the HCS decoders.

In a decoding process, a graph containing all the HMM states is unfolded over
time, updating the transition probabilities between them by using both the AM and
the LM. The transition in the decoder graph can be both inner transitions in the
HMMs or transitions between different HMMs, called across-word transitions. With
this idea in mind, the AM is queried to update the probabilities between the inner
transitions inside a single HMM, while the LM is queried to update the probabilities

14 DSIC, UPV

2.4. Automatic speech recognition

Amplitude
o ° =
o =] o
|

I
'S

o
)

T

T T T T T T
0 1000 2000 3000 5000 6000 7000 8000

4000
Frequency (Hz)

Figure 2.8: Representation of the structure of a bank of filters that can be used for
extracting acoustic feature vectors. The filters are applied through the frequency domain,
obtaining a feature vector of n components where n is the number of filters in the bank.

Figure 2.9: Simplified decoder for single word recognition. A simplified language {"gris",
"crisis", "cristal"} is considered.

of the across-word transitions. If we simplify this problem to single word recognition,
we can see the HMM graph as a prefix tree where each state represent a phoneme, as
seen in Figure In a same manner, if we abstract the decoder to word-nodes, the
whole decoding graph can be seen as a concatenation of prefix trees via across-word
connections. Figure zooms out the representation of Figure to show this idea
adapted to multi-word recognition.

Since this process has to deal with a large graph concatenating the whole vocabu-
lary every time a word node is reached, the latency of the system can be compromised,
denying the streaming applications of hybrid systems. Lots of efforts were made to
overcome this problem, which led to the conclusion that unnecessary queries to the
LM should be avoided, at it is the slowest component of the system. Following this
solution path, and to avoid unnecessary queries when performing look-ahead oper-
ations [45], the usage of look-ahead tables were introduced [29]. These look-ahead
tables are usually build from a simplified version of the big LM, usually via a super-
aggressive pruning process or a different m-gram model where m < n. Since their

DSIC, UPV 15

Chapter 2. Automatic Speech Recognition Background

p(crisis| BEG) p(gris| BEG)

(cristal| BEG)

*e

o

p(erisis|eristal) p(gris|cristal)

p(cristal|cristal)

cristal :ogris i

Figure 2.10: Hybrid decoder for multiple word recognition. The language considered is
the same as in Figure[2.9]and the sequence recognized was "cristal gris". Probabilities
consider a bigram language model and denote the language model factor for the words in
each node

size is significantly smaller than the big LM, their speed is also drastically higher,
although they are not as precise. This modification allows to drastically reduce the
amount of queries to the big LM, being the latter only queries when a word-node is
reached. With this, aside from other upgrades like variance regularisation [61], lazy
evaluation and language model history recombination [29], the decoding complexity
is reduced, allowing it to perform even in streaming environments.

2.5 Acoustic adaptation

The acoustic adaptation is a technique that aims to obtain better results overall in an
ASR task by slightly modifying the acoustic model according to the tasks peculiarities.
However, domain adaptation is a general concept in machine learning, that also aims
to do so. It is defined as the process of adapting a model trained with data in a
certain domain X, and a certain set of labels) to a different domain X; that shares
the same set of labels) [44]. In this definition, X5 can be a domain formed with real
images of cats and dogs, X; is a domain conformed by artistic paintings of the same
animals, and) is a set of labels {“cat”, “dog”}.

Domain adaptation is comprised in the field of transfer learning, which aims to take
advantage of the similarity between data of different tasks to obtain better results in
tasks with fewer labeled data. This situation opens the door to tackling the domain
adaptation problem with different methods, such as fine-tuning the model, adding
adapter layers or using self-supervised learning.

The fine-tuning approach is usually carried out by performing a second training
process on the model, albeit with a significantly lower learning rate. This allows
the model to learn from the new data and “move” its knowledge to perform better
on the new task, although usually it loses performance on its original domain as a

].6 DSIC, UPV

2.5. Acoustic adaptation

Adapter Layer

Add & Norm

Multi-Head
Attention

L
\ J

Figure 2.11: Schematic on the aplication of the adapter layers to a transformer encoder
block.

consequence. The key factor on this process is the adjustment of the leaning rate,
since a higher learning rate will cause the model to forget its original task. This
approach is vastly used when using big pre-trained models to tackle a task with fewer
data, such as using a large CNN model like a DenseNet that was trained with the
ImageNet corpus to analyze images of paving and classify them in whether or not it
is damaged.

Another popular technique used for taking advantage of pre-trained models is the
addition of adapter layers to the model. This approach is mostly used when both
the source domain and the target domain are somehow similar. In this approach,
we can modify a model with parameters ® = (61, 02) by adding a third operation
in the middle with a set of parameters 03 so that ® = (01,03,02). Now, we can
fine-tune the original model, but freezing the original parameters (61,802), so that
the only set of parameters that will be modified is @3. The aim on this technique
is to change the behaviour of the original model, but allowing the original set of
parameters to remain untouched. Usually the added parameters are linear, assuming
that the difference between the two domains can be linearly computed and allowing
a faster convergence. However, and since this approach is usually utilized with big
transformer-based models with a large number of parameters, it usually yields a bigger
and slower model, which can be harmful for application domains where the system
latency is important.

Finally, the other major adaptation technique is the self-training or pseudo-labeling.
The basic idea of this technique is “to use the model itself to infer predictions on un-

DSIC, UPV 17

Chapter 2. Automatic Speech Recognition Background

labeled data, and then treat these predictions as labels for subsequent training” [44].
Self-training is commonly applied in to manners. In the first way, the pseudo-labels
are predicted for the entire collection of data to, then, train the model in combination
with the labelled data. In the second way, the model is used to label a subset of
the unlabeled data that is used to immediately train the model. The first method is
mostly useful when dealing with enormous collections of data [76], whereas the second
is often used in more sophisticated contexts [64].

In the field of ASR, where it is very easy to obtain large amounts of unlabeled
data, this last technique is specially interesting. Furthermore, if we consider that, in
hybrid systems, the process of obtaining the output transcription (and, therefore, the
pseudo-labels) involves both the AM (that is to be adapted) and a powerful LM that
has a lot of knowledge on the structure of the language, we can consider that this
process takes advantage of the knowledge of the LM to correct the behaviour of the
AM.

However, and since it will be used later in this work, we are going to devote
a paragraph to L2 regularisation and a method called empirical Bayes. Empirical
Bayes is a set of procedures widely used in variational methods in Deep Learning to
estimate the weights of a model where latent variable spaces are high-dimensional.
However, in the specific case of this work, where we need to adapt an existing model to
a new domain, it can be interesting to apply this technique, as it allows to perform a
training process were the new model receives a penalty based on the distance between
its weights and the previous model’s that can be computed using the L2 regularisation,
among other distance-based regularisations. The L2 is a measure of distance that can

be easily expressed as d(p,q) = Zﬁ;o(pn — qn)?, where p and ¢ are points in a
N-dimensional euclidean space. Putting everything together, the loss function that
would be applied using this technique is:

N
L2 Loss(w') = Loss(w') + L2 penalty(w') = Loss(w') + Y (w}, —wi)* (2.17)
n=0

Where w are the weights of the model, 7 is the iteration of the training process and
N is the dimension of the model. This technique allows to train the base model with
a lower risk of overfitting it, which is the usual problem of the finetuning methods.

2.6 ASR Evaluation

There are several metrics available to evaluate the performance of an ASR system
and its components. Trained ASR systems can be evaluated using the word error rate
(WER) on supervised labelled data. The WER is defined as the minimum edition
distance between the reference and the infered transcription. It is similar to the
Levenshtein distance of edition, allowing insertion, deletion and substitution of words.
It is computed with the following formula:

].8 DSIC, UPV

2.6. ASR Evaluation

wer=1tD+5 (2.18)
|R|
Where I, D and S are the total count of insertions, deletions and substitutions,
respectively, and |R)| is the total length of the reference transcription. However, aside
from the WER, the individual components of an ASR can be evaluated individually
by using the FER, for the AM, and the PPL, for the LM.
On one side, the perplexity (PPL) is the metric to minimize in the training process
of a language model. The PPL of a given sequence of words w can be formally
expressed as:

PPL(w) = 2~ wlegp(w) (2.19)

Where f% log p(w) is an estimation of the cross-entropy for w when it is sufficiently
long. It can also been intuitively expressed as the average number of path that can
follow a given word in a sequence.

On the other side, the acoustic model can be evaluated by using the frame error
ratio (FER), which can be easily defined as:

F,
FER=—""9 (2.20)
Ftotal

Where Fyrong is the number of uncorrectly classified frames, while Fyotq; is the
total number of frames in the acoustic sequence.

DSIC, UPV 19

Chapter 2. Automatic Speech Recognition Background

20 DSIC, UPV

CHAPTER 3

MEDIAUPV DATASET, TASKS
AND TOOLS

In this chapter, the poliMédia dataset is described, exposing the MediaUPV repos-
itory, the original poliMeédia dataset and the automatic transcriptions used in this
work as unsupervised training data. The two tasks considered for this work are ex-
plained, as well as the data processing steps performed. Aside from this, the tools
used in this work are exposed.

The chapter is structured as follows: Section|3.1|exposes the MediaUPYV repository,
the poliMédia dataset and the unsupervised data that was automatically generated
by the baseline system. After that, Section lists the tools used to develop this
work. Then, Section details the processing steps performed to clean the data
and prepare it for its usage. Finally, Section explains the two tasks that were
considered for this work.

3.1 PoliMédia dataset description

The MediaUPV repository is a professional UPV service for creation, storage and
diffusion of educational videos [67, [2]. It was launched in 2007, firstly thought of
as a platform where UPV lecturers could produce high-quality short videos at dedi-
cated UPV studios, with the aim of supporting blended learning through prerecorded
“knowledge pills”, usually referred to as poliMedias. With the time, the platform also
became the main video service for the UPV to provide MOOCs [4, [3], helping the
university to become one of the most renowned MOOC providers in Spanish, with
more than 85 MOOCs and 290 editions already completed, more than 2.3 enrolments,
and two of the 100 most popular online courses of all time [I]. Apart from poliMe-
dias, MediaUPV has been expanded to include self-produced videos by students and
lecturers, known as poliTubes. Finally, since joining the Opencast consortium in 2011,
UPYV has deployed lecture capture technology to 84 locations, retrieving more than
600h per year and uploading them to MediaUPV for their distribution to students

21

Chapter 3. MediaUPV dataset, tasks and tools

only [66].

Although MediaUPV comprises diverse kinds of educational material, this work
will focus only on PoliMedias due to their simplicity in terms of duration, speakers and
audio quality. PoliMedias are produced at dedicated and standarized video-recording
studios at the UPV. They are 4x4 metre rooms equipped with a white backdrop, video
camera, capture station, pocket microphone, lighting and AV equipment including a
video mixer and an audio noise gate. To record a poliMeédia, the lecturers come
to a poliMédia studio with their slides prepared after making an appointment via a
web service. Once in the studio, the system automatically embeds the video of the
lecturer with their slides into the video output. Then, with review and approval of
the lecturer, the resulting video is uploaded as a poliMédia to MediaUPV.

The number of videos uploaded to MediaUPV has been increasing steadily since
2007, with more than 97000 videos in June 2023. As with normal face-to-face lectures,
most of the poliMedias are produced in Spanish, followed, although not very closely,
by Catalan and English as shown in Table However, there are already initiatives
that focus on matching these numbers, as Catalan is a co-official language at the
UPV and English is important for its global competitiveness, aside from the fact
that promoting multilingualism means that all supported languages must be treated
equally with regard to available resources.

Table 3.1: PoliMedia lecturers for Spanish (Es), Catalan (Ca) and English (En).

Es Ca | En
Number 23192 | 623 | 2869
Duration (h) | 4167 | 74 | 359
Total (%) 86.9 | 2.3 | 10.8

The MediaUPV repository is constantly evolving in terms of size and complexity,
being this the reason why the sub-set constituted by the poliMedias has been cho-
sen as a case study in many EU projects. Aside from that, since the transLectures
project [62], there has been poliMédia-adapted ASR/MT systems that transcribed
and translated content to make it available in all the supported languages and enrich
the platform with raw multilingual subtitles. At first, since the systems were not as
accurated as modern systems, the subtitles required post-editing. With this idea in
mind, a user-friendly tool for reviewing was integrated into the production workflow,
allowing both the author and non-author users to easily review and correct the cap-
tions and translations [69] 42} [63] [T5]. However, with more modern systems, there is
no longer the need of reviewing the automatic subtitles, being them often directly fit
for non-supervised publication.

This initiative of automatically transcribing and translating poliMedias has gen-
erated a large corpus of unsupervised transcribed audio that can be used for training
or adapting systems. More precisely, since the publication of the poliMeédia corpus
(114.46 hours in Spanish), around 2.6K hours of unsupervised audio were created only
counting the poliMedias.

For this work, we focused in the poliMédia corpus, being this a subset of the videos

22 DSIC, UPV

3.2. Tools used

in the MediaUPV repository constituted only by poliMedias, as they are all produced
in a standarized manner, opening the possibility for task-adapt experiments. More
precisely, and since MLLP’s ASR systems are mostly monolingual, we decided to work
on the Spanish partition of the corpus, since it has the most hours among the different
language partitions. With this, we are left with 2.732 hours of unsupervised audio
across 17K videos to be processed.

3.2 Tools used

This section details the main tools used in order to develop the final acoustic models:
the transLectures-UPV toolkit (TLK) and TensorFlow.

3.2.1 TLK

TLK [I6] is a state-of-the-art toolkit developed by the MLLP-VRAIN research group
at the Universitat Politécnica de Valéncia (UPV), under the context of the transLec-
tures European project [62]. It is a toolkit that aims to perform every action in the
acoustic pipeline, aside from implementing a one-pass decoder capable of transcribing
speech in streaming. It is the toolkit used for building the winner ASR system for the
Albayzin-RTVE Speech-To-Text Challenge on their 2018 and 2020 editions [30} [28§].
In this work, TLK was used for preprocessing the acoustic data, aligning the tran-
scriptions with the audio, training the model and recognising. The following tools
were used:

e tLtask-preprocess: it is a feature extraction tool. It takes wav files as an
input, preprocesses them and outputs their feature vectors, that can be either
MFCC or filter bank vectors.

e tLtask-train: it takes the feature vectors generated with tLtask-preprocess
to train acoustic models. It is able to work with monophoneme and triphone
models, as well as convert triphoneme models into tied phone models. It uses
the Baum-Welch and the Viterbi algorithms to estimate parameters. It can be
used to train a new model or to adapt an existing one.

e tLtask-recognise: it is the tools that implements the hybrid decoder. It takes
acoustic feature vectors and obtains the most probable hypothesis using the
previously trained AM and LMs.

3.2.2 TensorFlow

TensorFlow [5] is an open-source toolkit developed by the Google Research team. It
aims to provide a friendly environment for creating and training machine learning
models. It uses dataflow graphs to represent the states of the models and the com-
putation flow. In this work, TensorFlow is internally used by tLtask-train to build
and train the BLSTM used in the BLSTM-HMM acoustic model. In order to be able
to work with TensorFlow with acoustic feature vectors, they need to be converted to

DSIC, UPV 23

Chapter 3. MediaUPV dataset, tasks and tools

a representation that the toolkit can use. For this, the feature vectors were converted
to TFRecords, a TensorFlow format used to represent sequential samples that can be
easily processed by the BLSTM.

3.3 Data processing

As mentioned in Section there are two main treatments in the traditional ASR
data preprocessing: the acoustic data preprocess and the text data preprocess. In
this work, since it is based on adapting an existing model, the data needed to be
preprocessed following the same directions as in the training of the baseline model.

On the one hand, the text data was processed to be left with only lower-cased
unicode characters from the Latin alphabet following the following steps. First, it is
needed to tokenize the text in order to obtain minimum text units to work with. This
process can be done by sepparating the text by literal words, treating every word in the
original corpus as a token. However, this method comes with a catch, as the words that
do not appear in the training process won’t exist in the final vocabulary. To overcom
this problem, there are techniques like byte-pair encoding (BPE) or Sentencepiece,
which break down words by their stem and modifications, allowing to obtain even
smaller units that may help to understand words that do not appear in the training
set. However, since the original model was trained with the traditional tokenization,
the tokenization in this work used the first method. After this, the text needed to be
normalized by expanding the abbreviations (i.e. sr. — sefior, sra. — sefora...) and
rewriting the numbers with their corresponding words (i.e. 3 — three). Finally, a
cleaning step was performed to remove every non-alphabetical word left in the corpus,
trim the text and remove empty lines to obtain a clean dataset. To perform these
steps, we used the awk language, the sed utility and the num2words Python library
with a few modifications, which already provides support for several languages in its
base version, including Spanish, among other less used Unix utilities.

On the other hand, the acoustic data was obtained by first converting the poliMeé-
dia videos to 16 bit little endian wav files in mono mode and a sampling frequency
of 16kHz. After that, the acoustic feature vectors were generated by sampling the
audio signal in windows of 50 ms with a 10 ms overlapping between them. Aside
from that, the windows are shaped with a Hamming process, consisting on aplying
the next formula:

(3.1)

() = {0.540.46cos2]7{;‘, 0<n<N-1

0, otherwise

Where N is the length of the window (50 ms, in this case). This treatment allows
to smooth both ends of the window, as taking the raw shape of the window cuts the
audio too abruptly. Next, the windows are processed using a fast Fourier Transform
(FFT) algorithm to compute the discrete Fourier transform (DFT), that is defined
as:

24 DSIC, UPV

3.4. Tasks

N—1
Xp=3Y @ e T vheo, . N1 (3.2)
n=0
Where i is the unitary imaginary number. Following this, we applied a set of
filterbanks (Section with 85 components, obtaining the final set of acoustic vec-
tors that will be fed to the BLSTM. All this steps were performed by using the
tLtask-preprocess tool.

3.4 Tasks

From this dataset we extracted two tasks: adaptation to the poliMédia environment,
where we adapt the baseline model to perform better in the poliMeédia task, and
speaker-adaptation, where we adapt the model to the particularities of each speaker
of the test set. Considering this, and in order to avoid interferences between both
tasks, we extracted from the first task’s dataset every video with a speaker that
appears in the test set.

3.4.1 Task-adaptation

The first task considered for this work was to adapt the model to the poliMeédia
environment. For this, we took all the non-supervised poliMedias automatically tran-
scribed by the baseline system in a production setup to train the same model. As
mentioned in section (self-learning), this idea aims to take advantage of the robustness
of the LM to adapt the AM to adverse conditions. This is because in the decoding
process, the LM uses its knowledge on the structure of the language to correct the
words that were misheard by the AM, resulting in a sort of semi-supervised labels that
can be re-used for training. After having removed the videos from the test speakers
and removing problematic videos (without audio, text or with any kind of anomally),
the training set for this task was left with 2634 hours of unlabeled audio data.

For the development and test sets, we used the actual development and test par-
titions of the original poliMédia corpus. By doing this, we can measure the impact of
the training process over unsupervised data over the real poliMédia task.

3.4.2 Speaker-adaptation

The second task for this work is to adapt the model to the speakers in the test set of
the original poliMédia corpus. The approach for this task was to adapt the baseline
model, generating a new model for each speaker, where each model is adapted to the
particularities of every speaker’s speech.

Initially, most of the poliMedias created by the speakers of the original test set
had their transcriptions supervised by humans, which left us with roughly 1.3 hours
of unsupervised audio data and leaving 4 out of the 5 speakers without unsupervised
data to adapt. However, we were able to acces the unsupervised version of these
videos after a few weeks, which left us with 4 hours shared between 4 out of the 5 test

DSIC, UPV 25

Chapter 3. MediaUPV dataset, tasks and tools

speakers, with a representative amount of hours for 3 of them. Table shows the
distribution of these videos among the 5 speakers in the test split with and without

the supervised version of their videos.

Table 3.2: Distribution of the unsupervised data among the test speakers.

Speaker | Original data (h) | Unlocked non-sup. (h)
Sp. 1 0.13 1.14
Sp. 2 1.17 1.30
Sp. 3 0.00 1.63
Sp. 4 0.00 0.18
Sp. 5 0.00 0.00
Total 2.30 4.25

In this case, we devoted a video from each speaker for development purposes.
Since this task could be used over the time, adapting a model with every inference
process, we decided to select the last video from each speaker, simulating a case where
the model used the previous videos from every speaker to improve the results on the
following one. On the other hand, we used the poliMédia test partition for testing,
evaluating each speaker with their own videos from the original test.

26

DSIC, UPV

CHAPTER 4

SELF-SUPERVISED ACOUSTIC
ADAPTATION

This chapter exposes the work developed over the first task proposed in Section[3.4] It
is structured as follows: First, Section exposes the baseline system and its results
on the poliMédia task. Then, Section describes in detail all the steps performed
to adapt the acoustic models for, in Section integrating them into the final system
and evaluate their performance. Finally, Section [£.4] presents the results obtained
with our proposed systems and compares them with the baseline results.

4.1 Baseline system

As mentioned in this task has as a goal to adapt MLLP’s current production ASR
system in Spanish to improve its results on the poliMédia task by using self-generated
unsupervised data. This baseline system consists on a one-pass decoder [29] with a
BLSTM-HMM acoustic model and an interpolation of a Transformer LM (TLM) and
an n-gram model as a language model. This system features various tweaks presented
in [7] that allows it to recognise in streaming environments without losing performance
compared to its offline version [28]. More concretely, the LM interpolation combines
a 4-gram LM with 55K entries and a TLM based on a transformer decoder with 24
transformer layers, 12 attention heads, 4096 unit-FFNs and a model dimension of
768. In the case of the AM, which is the model that is going to be adapted in this
work, it is a BLSTM with 8 layers and 1024 units per layer, an output layer of 10041
units with a previous bottleneck layer of 200 units. It was initially trained with 85
component filterbank acoustic vectors and a total amount of arround 3900 hours of
audio retrieved from different datasets. With all this, Table contains the results
obtained by this system in the poliMeédia task.

Apart of being used to transcribe educational videos in poliMédia, this system is
currently providing automatic transcription services to APunt and TV3, the auto-
nomic television providers for the Valencian Country and Catalonia, respectively.

27

Chapter 4. Self-supervised acoustic adaptation

Table 4.1: Results of the baseline system on the poliMedia dataset.

‘ Dev ‘ Test
Baseline‘ 7.6 ‘ 8.5

4.2 Acoustic adaptation

With the baseline results defined, we started this task by preparing the data. As
mentioned in Section [3:4] after selecting the data for each task, we were left with
around 2634 hours of audio. From this point, we performed an initial study to check
if there were videos that, even if they had audio and transcriptions, could present a
problem. With this, we found 31 videos with white noise and around 70 videos with
very bad audio quality, which caused the system to return an intelligible transcription.
We opted for removing those videos, as they roughly represented the 0.6% of the total
amount of training data. However, it opened the possibility that a bigger percentage
of the data could present similar issues. This phenomenon could be explained by the
fact that, although the poliMedias are recorded in very standardized conditions, there
can be technical problems that may not be detected if the video is not supervised
afterwards. Also, due to the big volume of video data stored in the UPVMedia
repository, there may be some non-poliMédia videos downloaded in our data dump.

Once in this point, we started processing our data. For this, we replicated the
preprocessing steps performed by the baseline system: For the text part, we removed
the punctuation marks and all the non-Latin characters, expanded the abbreviations,
tokenized the corpus into words, transliterated the numbers and performed a cleaning
step. At the end, we were left only with plain text without punctuation marks,
numbers or abbreviations, only with characters from the Latin alphabet encoded
with Unicode. In the side of the audio data, we converted the video files into wav files
and extracted the feature vectors using the tLtask-preprocess utility. From this
point, in order to be able to train the model with our data, we need to align it. The
alignment process is performed to locate the text data inside the acoustic data. For
this, we performed a recognition with the baseline’s AM to obtain the position of each
phoneme of the transcription, inside the audio data. The next step was to normalize
the audio vectors. It is possible to normalize them at video-level by taking into
account every sample in the video before normalizing. However, as we mentioned in
the previous section, our baseline system was built to be able to recognise in streaming
environments, where you can’t see the future and, thus, normalize the samples at
video-level. For this, we performed a normalization process that simulates an on-
the-fly normalization by using a sliding context window, similar to the normalization
process that the decoder performs in inference time. The final data processing step
was to convert the feature vectors into tFrecords, tensorFlow’s sample format, to be
ready to train the net.

Next, once the processing step had finished, we prepared the training environment.
From all the adaptation techniques mentioned in Section[2.5] we decided to explore the
one based on empirical Bayes and L2 regularisation, combining it with self-learning.

28 DSIC, UPV

4.2. Acoustic adaptation

19.9 |-

195 -

FER

19.1 -

18.7 -

18.3 - —|_ B

Epoch

Figure 4.1: Evolution of the FER over the training process for A = {0.1,0.5,1.0} through
4 epochs

The reason for this decision was that self-learning can be used to train with large
amounts of self-generated unsupervised data, which is the main idea of this work, but
it is usually applied by performing some fine-tuning process. However, from previous
experiences of the MLLP group, performing a fine-tuning is a delicate process, as it
demands a very specific learning rate that allows the net to learn the new domain, but
without overfitting to it. With this idea in mind, and to try to overcome the problem
of setting a correct learning rate for the fine tuning process, we can introduce the
regularisation term to the training loss function as in Equation 2.17} allowing us to
use a more aggressive learning rate while reducing the risk of overfitting by inducing
a bigger penalty the more the new model differs from the previous one.

Once the training process was defined and the data was preprocessed, the next
step was to adapt the models. In this case, we proposed 3 regularisation parameters
A = {0.1,0.5,1} to explore its effect on the training evolution. All the training
processes where performed with an initial learning rate ir = 2.225¢ — 5. As mentioned
in Section [2.6] the evaluation metric used in the training process of acoustic models is
the frame error rate (FER), that measures the rate between correct and wrong frame
classifications. The evolution of the training process can be seen in Figure

Every epoch took around 2 days running on a NVIDIA RTX 2080ti card. As it
can be seen, the evolution is not constant, as it varies from improving the result to
worsening it. This phenomenon could be explained due to the fact that we did not
explore different learning rate values and may be mitigated by using lower values.

DSIC, UPV 29

Chapter 4. Self-supervised acoustic adaptation

193 -

19.1 -

18.9 -

FER

18.7 -

18.5 -

18.3 T

Epoch

Figure 4.2: Evolution of the FER over the training process for A = {2.0,5.0} through 2
epochs

However, it can be seen that there is a tendency to smooth this behaviour with
greater values of A\. Considering this tendency, we decided to launch to more training
processes, now with A = {2.0,5.0}. However, due to time constraints, it was only
possible to complete two epochs on each process. Figure [.2] shows the evolution of
the fer during both trainings.

Although 2 epochs are not enough for extracting conclusions, we can see that
the behaviour experienced with lower values for A seems to have been even more
smoothed. At the absence of further exploration, and attending to the absolute best
result obtained by every model, we could hypothesise that the best values for A are
A ={1.0,2.0}, with a best FER score of 18.333 and 18.363, respectively.

4.3 Integration of the new AMs into the hybrid de-
coder

Once all the models were trained, the next step was to integrate them into the decoder,
considering the same setup as with the baseline system. For this, we designed an
experimentation environment arround the tool tLtask-recognise. This tool, which
implements TLK’s decoder, receives both the AM and the LM and performs the
decoding step, leaving some adjustable hyperparameters to tune this process. From
those hyperparameters, and since this work adapted the acoustic part of the system,

30 DSIC, UPV

4.3. Integration of the new AMs into the hybrid decoder

8.3 -

> > > > >
| (O T
UNEREOO.|
cocouir

79 1 I I ,«’+' |

WER

Epoch

Figure 4.3: WER scores plotted against the GSF values explored.

the exploration will focus on:

o GSF or Grammar Scale Factor, used to scale the weight of the LM with respect
to the AM in the decoding step. It matches the a factor in Equation |2.11

e PSF or Prior Scale Factor, used to scale the prior probabilities p(s;) of the
HMM states learned by the AM.

The rest of the hyperparameters (LMHR, HP, LMHP, BEAM...) were left with
the values that were considered optimal for the baseline system, since they are not
directly related to the AM model. tLtask-recognise also allows to tune the size of
the “future” context in frames given to the AM via the LA (Look-Ahead) parameter.
However, we focused on comparing our system with the offline version of the baseline
system (check Table , so we fixed this parameter to LA = 99 frames, which
is the standard Look-ahead value used by MLLP’s offline systems. Having set the
experimental environment and the parameters to explore, we decided to explore the
GSF parameter with values GSF = {6,7,8,9,10,11,12}, and PSF with the values
PSF = {0.5,0.6,0.7,0.8,0.9,1.0}, being GSF = 10 and PSF = 0.8 the optimal
values for the baseline system. To perform this exploration, we decided to do a two
step exploration to reduce the number of test cases. With this plan, we first fixed
the PSF parameter and explored the GSF values and, then, we fixed GSF to the
best value we found to explore the values of PSF. For this exploration, we used the
model yielded by the last epoch of training for each value of A, this is, the model

DSIC, UPV 31

Chapter 4. Self-supervised acoustic adaptation

T

A=01 ——
8.1 8

A=05 -—-

A=10 —
8.0 - A=20 -— 7

A=50 ——
-+ ———

WER

7.7

7.6

7.5 -

7.4

Epoch

Figure 4.4: Results of the PSF exploration in WER scores.

trained after 4 epochs for A = {0.1,0.5,1.0}, and 2 epochs for A = {2.0,5.0}. The
first exploration was performed with a fixed PSF = 0.8. Figure plots the WER
results obtained against the GSF values explored.

In the light of the results, we can see that the GSF value that provided the best
results overall is GSF = 8. This result, 2 points lower than the optimal value of the
baseline system, could be explained by taking into account that the GSF parameter
gives more importance to the AM (and less to the LM) with higher values. Considering
that we adapted the AM to the poliMédia task, the AM has more expert knowledge
and, thus, we can give it more weight and rely less on the language structure knowledge
of the LM. After exploring GSF and having set it to the best value, GSF = 8, we
explored the proposed values for PSF. Figure [I.4] shows the results in WER plotted
against the considered PSF values.

Based on the outcome, we can see that the value that provides the best results
is PSF = 0.7. With both experiments finished and analyzed, we can conclude that
the best combination of hyperparameters is GSF = 8, PSF = 0.7, which yields best
result of 7.5 WER points with the model trained with A = 1.0.

4.4 Results and comparison
Once we finished the hyperparameter exploration and obtained an optimal combina-

tion, we compared our results with the baseline results. The recognition process was
performed in all cases using the tLtask-recognise command-line tool from TLK

32 DSIC, UPV

4.4. Results and comparison

Table 4.2: WER % results of our ASR systems compared to the baseline system. Our
systems are represented by their regularisation value A. Results on the development
partition of poliMédia have been added to complete the comparison.

Dev | Test
Baseline | 7.6 8.5
A=0.1 7.9 8.3
A=0.5 7.7 8.3
A=1.0 7.5 8.3
A=2.0 74 | 8.2
A=5.0 7.4 8.3

using the test partition from the poliMédia corpus. Table [4:2] summarizes the WER
figures obtained for all 6 systems considered.

In the light of the results, the system that provided the best WER score is the one
adapted with A = 2.0, obtaining a 4% relative improvement over the baseline results.
However, this comparison is not complete, as the models trained with A = {2.0,5.0}
were trained only during 2 epochs, whereas the rest of the models were trained during
4 epochs. Although the system that provided the best results is the one with the
A = 0.2 AM, a clear future work line is to evaluate all the models with an equal
training time and compare them in equal circumstances.

DSIC, UPV 33

Chapter 4. Self-supervised acoustic adaptation

34 DSIC, UPV

CHAPTER 5

SPEAKER-AWARE
SELF-SUPERVISED ACOUSTIC
ADAPTATION

This chapter compiles the work done to adapt the baseline system to the speakers,
as explained in Section Its structure follows this outline: Section describes
the baseline system and defines the baseline results. Then, Section exposes the
work done to adapt the acoustic model to the speakers in the test set of poliMédia.
Next, Section integrates the adapted AMs to the decoder to build our proposed
speaker-adapted systems. Finally, Section [5.4] exposes the results of our proposed
systems and compares them to the baseline results.

5.1 Baseline system

As explained in Section this task aims to adapt the baseline system previously
considered in this work to each speaker on the original poliMeédia test split using
unlabelled data. The baseline system, is already explained with more detail in Sec-
tion although we will give a brief description here. It is a system based on a
one-pass decoder with the ability of performing on streaming environments without
losing performance. Its language model consists on an interpolation of a 4-gram LM
with a Transformer-based LM, whereas the acoustic model is a BLSTM-HMM with
8 BLSTM layers of 1024 units each and an output layer of 10041 units. The AM
was trained with around 3900 hours of audio retrieved from different tasks. Table (.2]
exposes the WER scores of the baseline system over each speaker on the test split of
the poliMedia corpus.

35

Chapter 5. Speaker-aware self-supervised acoustic adaptation

Table 5.1: Baseline results on each speaker of the poliMeédia test speaker.

Baseline results

Test speaker 1 6.6
Test speaker 2 9.9
Test speaker 3 7.4

5.2 Acoustic adaptation

As mentioned in Section [3.4] we were left with a total amount of 4 hours shared
among 4 of the 5 speakers in the test split. However, as it can be seen from Table[3.2]
only three of them had a significative amount of hours to allow speaker adaptation.
For this, we decided to discard speakers 4 and 5 and focus only on speakers 1,2 and
3, with 1.14,1.30 and 1.63 hours, respectively.

Once we decided the speakers and the task was defined, we started to prepro-
cess the unsupervised data. At this point, we performed the same preprocess steps
that were used to train the baseline AM. Since these steps are already described in
the previous chapter, the reader is redirected to Section [£.2] if it has not been red
yet. However, a brief description is given in the following lines: to process the text
data, we removed every non-Latin character and punctuation marks, expanded the
abbreviations, transliterated the numbers and encoded the text in Unicode format.
On the side of the acoustic data, we extracted filterbank vectors with 85 components
using the tLtask-preprocess tool and aligned them with their transcriptions us-
ing the baseline model. Then, we normalized the data by simulating an on-the-fly
normalizing step and converted the feature vectors and their labels to a tensorFlow
representation of sequential samples named tFrecords.

Once all the data was processed, we were ready to train the new models. For
the training process, we decided to follow the empirical Bayes approach that was
introduced in the previous section. However, since the amount of training data was
very low, specially when compared to the previous task, we directly thought of using
higher values for the regularisation parameter to avoid overfitting. Based on this
reasoning, we decided to train with A = {1.0,2.0,5.0}. We also used the same learning
rate as in the previous task (Ir = 2.225¢ — 5) to allow us to compare the impact of
the empirical Bayes technique in both tasks. With the training environment already
defined, Figure shows the evolution of the training process across the epochs in
terms of FER.

Each epoch took around 5 minutes running on a NVIDIA RTX 2080ti. As it
can be seen, even if the training parameters are the same, the particularities of each
speaker’s speech have a clear effect on the results. In the case of Speaker 3, the
training process yielded an improvement of the previous results, evolving slowly but
constantly towards lower FER scores. However, on another note, Speaker 2 presented
a very different behaviour. In this case, the FER evolved in a way more random
manner, alternating between increasing and decreasing its value. In the middle of
both cases, Speaker 1 presents an stable FER value throughout the whole training

36 DSIC, UPV

5.2. Acoustic adaptation

32

£

e +
-8 ,+,+ “+ ++._+.+._|_- +.+'++-+»"t
Speaker 2
24 }\ = 10 _|_ —
o A=20 -+ -
L A=50 -+

Speakgr 3

5 10 15 20 25 30
Epoch

Figure 5.1: Evolution of the FER over the training process for A = {1.0,2.0,5.0} for each
speaker.

process, improving slightly in comparison to the first stages. With this variety of cases,
we can clearly see the effect of the regularisation parameter: In cases where the model
performance evolves smoothly, it does not make a big difference. However, in cases
where the training process loses control over the model evolution, the regularisation
term allows to smooth this behaviour.

If we focus on the independent results of every speaker, it can be seen that they are
very disparate, with speaker 3 being the only one to have obtained improvements after
the training. After analyzing the results, we concluded that it was not interesting to
explore other values of regularisation, as the cases in which the model lost performance
couldn’t be attributed to a bad selection of parameters, but to a poor amount of
training data. However, we could conclude that, in all the cases, the models trained
with A = 5.0 yielded the best results. Still, and since the hybrid approach of ASR
considers the AM and LM separately, an increase or decrease on the training metrics
of one of them does not mean that the final system will see the same tendency applied
on the WER results.

DSIC, UPV 37

Chapter 5. Speaker-aware self-supervised acoustic adaptation

10.0 E
Speaker 2
. P

8.0 -

7.0 -

WER

50 -
Speaker 1

3.0 T
Speaker 3

2'07:l:i,‘...i,:I:T.i.'—F“-—!—"' i e

Figure 5.2: Results in WER of the exploration of the GSF parameter.

5.3 Integration of the new AMs into the hybrid de-
coder

The next step after training the models was to integrate them into the decoder and test
them in terms of WER. As in the previous Chapter (in Section , we designed an
experimentation environment around the tLtask-recognise tool and proceeded in a
similar way: We explored the GSF and PSF hyperparameters over the development
set in a two-step exploration. First, we fixed the PSF value to PSF = 0.8 and
explored the values for GSF. Then, we fixed the GSF parameter to the best value
we obtained in the exploration and repeated the process for PSF. The considered
parameters were the same as in the previous Chapter: GSF = {6,7,8,9,10,11,12}
and PSF = {0.5,0.6,0.7,0.8,0.9,1.0}. Figure relates the WER values obtained
with the explored GSF values.

Looking at the results, we can say that, although the results differ by small inter-
vals, the value for GSF that provided the best result overall is GSF = 10. It may be
important to note that, since the development partition of this task is also generated
with pseudo-labels, results that are closer to 0 may represent models that are closer
to the baseline. In addition, note that the models that suffered bigger changes with
respect to the baseline model present a bigger impact of the regularisation parameter
on the final WER. Once optimal value for the GSF parameter was fixed to GSF = 10,
we explored the values for the PSF parameter, with the results plotted in Figure[5.3]

Looking at the results, it is important to note that the baseline system yielded a

38 DSIC, UPV

5.3. Integration of the new AMs into the hybrid decoder

10.0 - B
Speaker 2

8.0 - i

7.0 -

WER

5.0

Speaker 1

3.0 B
Speaker 3

1.0 -

Epoch

Figure 5.3: WER results against the PSF values explored.

Table 5.2: Results in terms of WER of our proposed speaker-adapted systems in
comparison with the baseline system. Our systems are represented by their regularisation
value A. Results on the development have been added to complete the comparison.

Sp1 Dev | Test Sp 2 Dev | Test Sp 3 Dev | Test
A=1.0 52 | 6.0 A=1.0 8.8 | 10.7 A=1.0 1.3 | 83
A=20 5.1 6.1 A=20 8.5 10.6 A=20 1.6 8.4
A=5.0 5.2 6.2 A=5.0 8.8 | 10.5 A=5.0 1.3 8.5
Baseline | 0.0 6.6 Baseline | 0.0 9.9 Baseline | 0.0 7.4

transcription with a WER score of 0.0. This is due to the fact that this transcription
was generated in the past by the same model. As we can see from the results, the
results are also separated by small intervals, but the value that performs the best
is PSF = 0.8. This triggered our curiosity, as these are the same optimal values
as the baseline system. This may be explained by considering that the different
acoustic models that we trained did not differ much from the baseline system and,
thus, the difference may not be enough to provoke a change in these hyperparameters.
With this, we can state that the best hyperparameters for this systems are GSF =
10, PSF = 0.8. However, in this case we can not identify a value for A\ that performs
better than the others.

DSIC, UPV 39

Chapter 5. Speaker-aware self-supervised acoustic adaptation

5.4 Results and comparison

Once the systems are ready and we explored the optimal hyperparameters, we can
compare them against the baseline system with the test split. As with the previous
Chapter, the recognition process was performed in all cases using the tLtask-recognise
command-line tool from TLK using the test partition of the poliMédia corpus.

In the light of the results, we can see that Speakers 2 and 3 did not improve their
baseline result, having obtained scores that are 6% and 10.8% worse, respectively.
However, in the case of Speaker 1, all three systems improved the baseline results,
with a 9% improvement in the case of the best result (the one with A = 1.0). With
this results, we can conclude that, with this amount of training data, we can not
make sure that speaker adaptation will always improve the results of an all-purpose
system. However, in the cases where it achieves an improvement on the result, it
can be considered a significative improvement. However, further exploration of this
technique with more training data is left to be done.

40 DSIC, UPV

CHAPTER 6

CONCLUSIONS AND FUTURE
WORK

This work has exposed the process of adapting the acoustic part of a hybrid ASR
system to a certain task. To do this, we explored the state-of-the-art techniques for
acoustic adaptation of ASR systems and selected the ones that suited the best our
case. Then, we applied them to adapt an acoustic model using more than 2.6K hours
of unsupervised audio data, pseudo-labeled with the same system that is going to
be adapted. Finally we combined our adapted acoustic models with the rest of the
components of the baseline system to ensemble our proposed adapted systems, and
compared them with the results of the baseline system.

With respect to the tasks considered, we proposed to different tasks. The first one
was adaptation to the poliMédia task, which has very specific audio characteristics,
using all the media labelled with the baseline system since it was put in production,
back in 2020. The second task was to perform speaker-adaptation, also using unsu-
pervised self-labeled data. For this second task, we considered 3 out of the 5 speakers
with videos on the test split of the poliMédia corpus and adapted our systems by
using their videos recorded afterwards.

For the first task, following the results from the comparison between our best ASR
system proposed and the baseline system, it can be said that the goal of improving
the existing results was achieved, as our best system achieved a WER improvement
of 4% w.r.t. the baseline model. In the case of the second task, we were only able
to improve the results for one of the speakers we considered, but we achieved an
impressive 9% improvement w.r.t. the baseline system.

6.1 Future Work

This work leaves many aspects that can be further explored and are open for improve-
ment. Some of them are:

41

Chapter 6. Conclusions and future work

e To perform an exhaustive exploration for the combination of learning rate and
regularisation parameter for the training process. In this work, we used Ir =
2.225e—5 in every training process we performed, varying only the regularisation
parameter A. However, a further exploration is needed to find a balance between
these two parameters.

e To study our poliMédia dump and check for strange data. In this work, we found
various cases of videos without audio or transcription, videos that only had white
noise in the audio channel, or videos that are not classified as poliMeédia.

e To explore the speaker adaptation task with a bigger amount of data. For this
work, we only had access to 4 hours of data, leaving us with between 1 and
2 hours for each speaker we considered. If suspect that, with more data, the
results will improve.

e To repeat the comparison between the systems of the first task with equal
conditions for all the models. Due to time constraints, two out of the five
proposed AMs were trained during two epochs, whereas the other tree models
where trained during four epochs.

42 DSIC, UPV

[1]

2]

3]

4]

[5]

[6]

7]

18]

19]

BIBLIOGRAPHY

ClassCentral, 2023. The 100 most popular online courses of all time (2023).
https://www.classcentral.com/report /most-popular-online-courses. Retrieved on
June 2023.

MediaUPV, 2020. The MediaUPV repository. https://media.upv.es. Retrieved
on June 2023.

UPValenciaX, 2020. UPValenciaX: UPV as an edX member.
https:/ /www.edX.org/school /upvalenciax. Retrieved on June 2023.

UPVX, 2020. UPVX: The MOOC initiative at the UPV. https://www.upvx.es.
Retrieved on June 2023.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler,
Josh Meyer, Reuben Morais, Lindsay Saunders, Francis M. Tyers, and Gre-
gor Weber. Common Voice: A massively-multilingual speech corpus. CoRR,
abs/1912.06670, 2019.

Pau Baquero-Arnal, Javier Jorge, Adria Giménez, Joan Albert Silvestre-Cerda,
Javier Iranzo-Sanchez, Albert Sanchis, Jorge Civera, and Alfons Juan. Improved
Hybrid Streaming ASR with Transformer Language Models. In Proc. Interspeech
2020, pages 2127-2131, 2020.

G. Bebis and M. Georgiopoulos. Feed-forward neural networks. IEEE Potentials,
13(4):27-31, 1994.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A

Neural Probabilistic Language Model. J. Mach. Learn. Res., 3(null):1137-1155,
March 2003.

43

https://www.classcentral.com/report/most-popular-online-courses
https://media.upv.es
https://www.edX.org/school/upvalenciax
https://www.upvx.es

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

German Bordel, M Inés Torres, and Enrique Vidal. Back-off smoothing in a
syntactic approach to language modelling. In ICSLP, volume 94, pages 851-854,
1994.

Thomas Cherian, Akshay Badola, and Vineet Padmanabhan. Multi-cell LSTM
Based Neural Language Model, 2018.

Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and
Yoshua Bengio. Attention-Based Models for Speech Recognition. In NIPS, 2015.

Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. In Machine
Learning, pages 273-297, 1995.

A Pérez Gonzalez de Martos, Joan Albert Silvestre-Cerda, JD Valor Miro,
J Civera, and A Juan. Mllp transcription and translation platform. In Proceed-
ings of 10th European Conference on Technology Enhanced Learning. EC-TEL,
2015.

M. A. del Agua, A. Giménez, N. Serrano, J. Andrés-Ferrer, J. Civera, A. San-
chis, and A. Juan. The Translectures-UPV Toolkit. In Juan Luis Navarro Mesa,
Alfonso Ortega, Anténio Teixeira, Eduardo Hernéndez Pérez, Pedro Quin-
tana Morales, Antonio Ravelo Garcia, Ivan Guerra Moreno, and Doroteo T.
Toledano, editors, Advances in Speech and Language Technologies for Iberian
Languages, pages 269-278, Cham, 2014. Springer International Publishing.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.
Wiley, New York, 2 edition, 2001.

U. Essen and H. Ney. On smoothing techniques for bigram-based natural lan-
guage modelling. In Acoustics, Speech, and Signal Processing, IEEE Interna-
tional Conference on, pages 825-828, Los Alamitos, CA, USA, apr 1991. IEEE
Computer Society.

William A Gale and Geoffrey Sampson. Good-turing frequency estimation with-
out tears. Journal of quantitative linguistics, 2(3):217-237, 1995.

Gongal V. Garcés Diaz-Munio, Joan Albert Silvestre-Cerda, Javier Jorge, Adria
Giménez, Javier Iranzo-Sanchez, Pau Baquero-Arnal, Nahuel Rosello, Alejan-
dro Pérez-Gonzalez de Martos, Jorge Civera, Albert Sanchis, and Alfons Juan.
Europarl-ASR: A large corpus of parliamentary debates for streaming asr bench-
marking and speech data filtering/verbatimization. In Proc. Interspeech 2021,
Brno (Czech Republic), 2021.

Ismael Garcia Varea. Traduccion automdtica estadistica: modelos de traduccion
basados en mdzima entropia y algoritmos de biusqueda. PhD thesis, Universitat
Politécnica de Valéncia, 2003. Advisor: Francisco Casacuberta Nolla.

44: DSIC, UPV

Bibliography

22]

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

[32]

Adria Giménez Pastor. Bernoulli HMMs for Handwritten Text Recognition. PhD
thesis, Universitat Politécnica de Valéncia, 2014. Advisors: Alfons Juan Ciscar
and Jesis Andrés Ferrer.

Mokhtar M Hasan and Pramod K Mishra. Robust gesture recognition using gaus-
sian distribution for features fitting. International Journal of Machine Learning
and Computing, 2(3):266, 2012.

Simon Haykin. Neural networks: a comprehensive foundation. Prentice Hall
PTR, 1994.

Caroline Henton. Bitter pills to swallow. asr and tts have drug problems. Inter-
national Journal of Speech Technology, 8:247-257, 2005.

Takuya Higuchi, Nobutaka Ito, Takuya Yoshioka, and Tomohiro Nakatani. Ro-
bust mvdr beamforming using time-frequency masks for online/offline asr in
noise. In 2016 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 5210-5214. IEEE, 2016.

Sepp Hochreiter and Jiirgen Schmidhuber. Long Short-Term Memory. Neural
Comput., 9(8):1735-1780, November 1997.

Javier Jorge, Adria Giménez, Pau Baquero-Arnal, Javier Iranzo-Sanchez, Ale-
jandro Pérez, Gongal V. Garcés Diaz-Munio, Joan Albert Silvestre-Cerda, Jorge
Civera, Albert Sanchis, and Alfons Juan. MLLP-VRAIN Spanish ASR Systems
for the Albayzin-RTVE 2020 Speech-To-Text Challenge. In Proc. IberSPEECH
2021, pages 118-122, 2021.

Javier Jorge, Adria Giménez, Javier Iranzo-Sanchez, Jorge Civera, Albert San-
chis, and Alfons Juan. Real-Time One-Pass Decoder for Speech Recognition
Using LSTM Language Models. In Proc. Interspeech 2019, pages 3820-3824,
2019.

Javier Jorge, Adria Martinez-Villaronga, Pavel Golik, Adria Giménez, Joan Al-
bert Silvestre-Cerda, Patrick Doetsch, Vicent Andreu Ciscar, Hermann Ney, Al-
fons Juan, and Albert Sanchis. MLLP-UPV and RWTH Aachen Spanish ASR
Systems for the IberSpeech-RTVE 2018 Speech-to-Text Transcription Challenge.
In Proc. IberSPEECH 2018, pages 257261, 2018.

A. Juan and E. Vidal. Bernoulli mixture models for binary images. In Proceedings
of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.,
volume 3, pages 367-370 Vol.3, 2004.

Shigeki Karita, Nanxin Chen, Tomoki Hayashi, Takaaki Hori, Hirofumi Inaguma,
Ziyan Jiang, Masao Someki, Nelson Enrique Yalta Soplin, Ryuichi Yamamoto,
Xiaofei Wang, Shinji Watanabe, Takenori Yoshimura, and Wangyou Zhang. A
comparative study on transformer vs rnn in speech applications. In 2019 IEEFE
Automatic Speech Recognition and Understanding Workshop (ASRU), pages 449—
456, 2019.

DSIC, UPV 45

Bibliography

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Joshua Y. Kim, Chunfeng Liu, Rafael A. Calvo, Kathryn McCabe, Silas C. R.
Taylor, Bjorn W. Schuller, and Kaihang Wu. A comparison of online automatic
speech recognition systems and the nonverbal responses to unintelligible speech,
2019.

Woosung Kim, Sanjeev Khudanpur, and Jun Wu. Smoothing issues in the struc-
tured language model. In INTERSPEFECH, pages 717-720. Citeseer, 2001.

Johannes Lederer. Activation Functions in Artificial Neural Networks: A Sys-
tematic Overview, 2021.

Andrew Maas, Quoc V. Le, Tyler M. O’Neil, Oriol Vinyals, Patrick Nguyen, and
Andrew Y. Ng. Recurrent neural networks for noise reduction in robust asr. In
INTERSPEECH, 2012.

Christopher Manning and Hinrich Schutze. Foundations of statistical natural
language processing. MIT press, 1999.

Geoffrey J. McLachlan and Suren Rathnayake. On the number of components
in a Gaussian mixture model. WIRFEs Data Mining and Knowledge Discovery,
4(5):341-355, 2014.

Hongyuan Mei, Mohit Bansal, and Matthew R. Walter. Coherent Dialogue with
Attention-Based Language Models. In AAAI 2017.

Yajie Miao. Kaldi+pdnn: Building dnn-based asr systems with kaldi and pdnn,
2014.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev Khu-
danpur. Recurrent neural network based language model. volume 2, pages 1045—
1048, Jan 2010.

Juan Daniel Valor Mir6, Joan Albert Silvestre-Cerda, Jorge Civera, Carlos Turro,
and Alfons Juan. Efficiency and usability study of innovative computer-aided

transcription strategies for video lecture repositories. Speech Communication,
74:65-75, 2015.

Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted finite-state trans-
ducers in speech recognition. Computer Speech € Language, 16(1):69-88, 2002.

Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press,
2022.

David Nolden. Progress in Decoding for Large Vocabulary Continuous Speech
Recognition. PhD thesis, RWTH Aachen University, Computer Science Depart-
ment, RWTH Aachen University, Aachen, Germany, April 2017.

David Nolden, Hermann Ney, and Ralf Schliiter. Time conditioned search in
automatic speech recognition reconsidered. In Eleventh Annual Conference of
the International Speech Communication Association, 2010.

46 DSIC, UPV

Bibliography

[47]

48]

[49]

[50]

[51]

[52]

53]

[54]

[55]

[56]

[57]

Mohammadreza Asghari Oskoei and Huosheng Hu. Support Vector Machine-
Based Classification Scheme for Myoelectric Control Applied to Upper Limb.
IEEF Transactions on Biomedical Engineering, 55(8):1956-1965, 2008.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Lib-
rispeech: An ASR corpus based on public domain audio books. In 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5206-5210, 2015.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of train-
ing Recurrent Neural Networks, 2012.

Alejandro Pérez, Gongal Garcés Diaz-Munio, Adria Giménez, Joan Albert
Silvestre-Cerda, Albert Sanchis, Jorge Civera, Manuel Jiménez, Carlos Turro,
and Alfons Juan. Towards cross-lingual voice cloning in higher education. Engi-
neering Applications of Artificial Intelligence, 105:104413, 2021.

Alejandro Manuel Pérez Gonzalez de Martos. Deep Neural Networks for Auto-
matic Speech-To-Speech Translation of Open Educational Resources. PhD thesis,
Universitat Politécnica de Valéncia, 2022.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek,
Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,
Jan Silovsky, Georg Stemmer, and Karel Vesely. The Kaldi speech recognition
toolkit. In IEEE 2011 Workshop on Automatic Speech Recognition and Under-
standing. IEEE Signal Processing Society, December 2011. IEEE Catalog No.:
CFP11SRW-USB.

Anupama Ray, Sai Rajeswar, and Santanu Chaudhury. Text recognition using
deep BLSTM networks. In 2015 FEighth International Conference on Advances
in Pattern Recognition (ICAPR), pages 1-6, 2015.

F. Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386—408, 1958.

Anthony Rousseau, Paul Deléglise, and Yannick Estéve. TED-LIUM: an auto-
matic speech recognition dedicated corpus. In Proceedings of the Eighth Inter-
national Conference on Language Resources and Evaluation (LREC’12), pages
125-129, Istanbul, Turkey, May 2012. European Language Resources Association
(ELRA).

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323:533-536, 1986.

Hagim Sak, Andrew Senior, Kanishka Rao, and Frangoise Beaufays. Fast and
Accurate Recurrent Neural Network Acoustic Models for Speech Recognition,
2015.

DSIC, UPV 47

Bibliography

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Antonia Schulte, Rodrigo Suarez-Ibarrola, Daniel Wegen, Philippe-Fabian
Pohlmann, Elina Petersen, and Arkadiusz Miernik. Automatic speech recognition
in the operating room—an essential contemporary tool or a redundant gadget?
a survey evaluation among physicians in form of a qualitative study. Annals of
Medicine and Surgery, 59:81-85, 2020.

Dev Shah, Wesley Campbell, and Farhana H. Zulkernine. A comparative study
of Istm and dnn for stock market forecasting. In 2018 IEEFE International Con-
ference on Big Data (Big Data), pages 4148-4155, 2018.

Alex Sherstinsky. Fundamentals of Recurrent Neural Network (RNN) and
Long Short-Term Memory (LSTM) network. Physica D: Nonlinear Phenomena,
404:132306, mar 2020.

Yongzhe Shi, Wei-Qiang Zhang, Meng Cai, and Jia Liu. Efficient One-Pass
Decoding with NNLM for Speech Recognition. IEEE Signal Processing Letters,
21(4):377-381, 2014.

Joan Albert Silvestre-Cerda, Miguel Del Agua, Gongal Garcés, Guillem Gasco,
Adria Giménez-Pastor, Adria Martinez, Alejandro Pérez Gonzalez de Martos,
Isafas Sanchez, Nicolds Serrano Martinez-Santos, Rachel Spencer, Juan Daniel
Valor Miro, Jests Andrés-Ferrer, Jorge Civera, Alberto Sanchis, and Alfons Juan.
transLectures. In Proceedings of IberSPEECH 2012, pages 345-351, Madrid
(Spain), 2012.

Joan Albert Silvestre-Cerda, Alejandro Pérez, Manuel Jiménez, Carlos Turro,
Alfons Juan, and Jorge Civera. A system architecture to support cost-effective
transcription and translation of large video lecture repositories. In 2018 IEEE
International Conference on Systems, Man, and Cybernetics, pages 3994-3999.
IEEE, 2013.

Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini,
Ekin D. Cubuk, Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch: Simpli-
fying semi-supervised learning with consistency and confidence, 2020.

Andreas Stolcke and Jasha Droppo. Comparing human and machine errors in
conversational speech transcription. CoRR, abs/1708.08615, 2017.

Carlos Turro, Ignacio Despujol Zabala, Aristoteles Canero, and Jaime Busquets.
Deployment and analysis of lecture recording in engineering education. Proceed-
ings - Frontiers in Education Conference, FIE, 2015, 02 2015.

Carlos Turro, Miguel Ferrando-Bataller, Jaime Busquets, and Aristoteles Canero.
Polimedia: a system for successful video e-learning. 06 2009.

Zoltan Tiiske, George Saon, and Brian Kingsbury. On the limit of English con-
versational speech recognition. CoRR, abs/2105.00982, 2021.

48 DSIC, UPV

Bibliography

[69]

[70]

[71]

72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

Juan Daniel Valor Mir6, Joan Albert Silvestre-Cerda, Jorge Civera, Carlos Turro,
and Alfons Juan. Efficient generation of high-quality multilingual subtitles for
video lecture repositories. In Design for Teaching and Learning in a Networked
World: 10th European Conference on Technology Enhanced Learning, EC-TEL
2015, Toledo, Spain, September 15-18, 2015, Proceedings 10, pages 485-490.
Springer, 2015.

Vidushi Vashishth, Anshuman Chhabra, and Deepak Kumar Sharma. GMMR: A
Gaussian mixture model based unsupervised machine learning approach for opti-
mal routing in opportunistic IoT networks. Computer Communications, 134:138—
148, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All you
Need. ArXiv, abs/1706.03762, 2017.

Changhan Wang, Morgane Riviére, Ann Lee, Anne Wu, Chaitanya Talnikar,
Daniel Haziza, Mary Williamson, Juan Miguel Pino, and Emmanuel Dupoux.
VoxPopuli: A large-scale multilingual speech corpus for representation learning,
semi-supervised learning and interpretation. CoRR, abs/2101.00390, 2021.

Chenguang Wang, Mu Li, and Alexander J. Smola. Language Models with Trans-
formers. CoRR, abs/1904.09408, 2019.

Felix Weninger, Hakan Erdogan, Shinji Watanabe, Emmanuel Vincent, Jonathan
Le Roux, John R Hershey, and Bjorn Schuller. Speech enhancement with lstm
recurrent neural networks and its application to noise-robust asr. In Latent Vari-
able Analysis and Signal Separation: 12th International Conference, LVA/ICA
2015, Liberec, Czech Republic, August 25-28, 2015, Proceedings 12, pages 91-99.
Springer, 2015.

Dominika Woszczyk, Stavros Petridis, and David Millard. Domain adversarial
neural networks for dysarthric speech recognition, 2020.

I. Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and Dhruv Mahajan.
Billion-scale semi-supervised learning for image classification, 2019.

Steve J. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev, and P. Woodland.
The HTK Book Version 8.4. Cambridge University Press, 2006.

Dong Yu and Li Deng. Automatic Speech Recognition: A Deep Learning Ap-
proach. Springer Publishing Company, Incorporated, 2014.

Luke Zhou, Kathleen C. Fraser, and Frank Rudzicz. Speech Recognition in
Alzheimer’s Disease and in its Assessment. In Proc. Interspeech 2016, pages
1948-1952, 2016.

DSIC, UPV 49

LIST OF FIGURES

2.1 Generic pattern recognition system.| 6
2.2 Perceptron representation| Lo 6
2.3 Multilayer perceptron| L oL, 7
2.4 Recurrent neural network cell schemal 9
2.5 LSTM memory celll 10
........................... 10
2.7 Representation ot an HMM., 14
2.8 Audio preprocessing with filters| o000 15
2.9 Simplified decoder| oo 15
12.10 Hybrid decoder tor multiple word recognition| 16
2.11 Adapter layers| 17
4.1 Evolution of the FER over the first training process| 29
4.2 Evolution of the FER over the second training process| 30
B3 GSF exploration]ot v it 31
4.4 PSFEF exploration| oL 32
[5.1 Evolution of the FER on speaker adaptation|. 37
5.2 esults in of the exploration of the parameter. 38
b.3 WER results against the PSF values explored.. 39

o1

LIST OF TABLES

3.1 PoliMedia lecturers for Spanish (Es), Catalan (Ca) and English (En).| 22
3.2 Speaker-adaptation data statistics| 26
4.1 Baseline results on poliMedial 28
4.2 Final results and comparison with baseline|. 33
[p.1 _Baseline results on the poliMedia test speakers,| 36
5.2 Speaker adaptation results|. 39

53

UNIVERSITAT
POLITECNICA
DE VALENCIA

APPENDIX

SUSTAINABLE DEVELOPMENT GOALS

Degree to which the work relates to the Sustainable Development Goals (SDGs).

Sustainable development goals

High

Medium

Low

Not
applicable

SDG 1.

No poverty.

X

SDG 2.

Zero hunger.

X

SDG 3.

Good health and well-being.

SDG 4.

Quality education.

SDG 5.

Gender equality.

SDG 6.

Clean water and sanitation.

>

SDG 7.

Affordable and clean energy.

SDG 8.

Decent work and economic growth.

SDG 9.

Industry, innovation and Infrastructure.

>

SDG 10.

Reduced Inequality.

SDG 11.

Sustainable cities and communities.

SDG 12.

Responsible consumption and production.

SDG 13.

Climate action.

SDG 14.

Life below water.

SDG 15.

Life on land.

MR |

SDG 16.

Peace and justice strong institutions.

SDG 17.

Partnerships to achieve the goal.

Departament de Sistemes Informatics i Computacié

Cami de Vera, s/n, 46022, Valéncia

T +34 963 877 350

F +34 963 877 359
depsic@upvnet.upv.es - www.dsic.upv.es

‘A UNIVERSITAT
POLITECNICA
DE VALENCIA

Reflexion on the relation of the TFG/TFM with the SDGs and with the most related SDG(s).

This work fits with the United Nations’ Sustainable Development Goals (SDGs). In particular,
with SDG 4, on “Quality Education”, which aims to “ensure inclusive and equitable quality
education and promote lifelong learning opportunities for all”.

Within SDG 4, the most related targets to this work are:

e /.3 By 2030, ensure equal access for all women and men to affordable and quality technical,
vocational and tertiary education, including university.

e /.4 By 2030, substantially increase the number of youth and adults who have relevant skills,
including technical and vocational skills, for employment, decent jobs and entrepreneurship.

e /.5 By 2030, eliminate gender disparities in education and ensure equal access to all levels
of education and vocational training for the vulnerable, including persons with disabilities,
indigenous peoples and children in vulnerable situations.

This work contributes to increasing accessibility to educational resources for everyone (target
4.3), including people with hearing disabilities and persons with fewer resources or without ac-
cess to formal education systems (target 4.5), aside from those whose acces to educational and
formation resources requires them to learn and master a foreign language (target 4.4).

Departament de Sistemes Informatics i Computacié
Cami de Vera, s/n, 46022, Valencia

T +34 963 877 350

F 434 963 877 359

depsic@Qupvnet.upv.es - www.dsic.upv.es

	Abstract / Resum / Resumen
	Introduction
	Motivation
	Main objectives
	Document structure

	Automatic Speech Recognition Background
	Introduction
	Machine learning
	Neural networks
	Perceptron and multi-layer perceptron
	Feed forward neural networks
	Recurrent neural networks
	Long-short term memory models
	Transformer models

	Automatic speech recognition
	Language model
	Acoustic model
	Hybrid decoding

	Acoustic adaptation
	ASR Evaluation

	MediaUPV dataset, tasks and tools
	PoliMèdia dataset description
	Tools used
	TLK
	TensorFlow

	Data processing
	Tasks
	Task-adaptation
	Speaker-adaptation

	Self-supervised acoustic adaptation
	Baseline system
	Acoustic adaptation
	Integration of the new AMs into the hybrid decoder
	Results and comparison

	Speaker-aware self-supervised acoustic adaptation
	Baseline system
	Acoustic adaptation
	Integration of the new AMs into the hybrid decoder
	Results and comparison

	Conclusions and future work
	Future Work

	Appendix: Sustainable Development Goals

