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A B S T R A C T   

The purpose of this research is deploying a proximal sensing solution using non-invasive and cost-effective 
sensors onboard an Autonomous Ground Vehicle (AGV) as a feasible way for building high-resolution maps of 
water potential in vineyards. The final objective is offering growers a practical system to make decisions about 
water management, especially for arid climatic conditions. The monitoring AGV was entirely developed within 
this research context, and as a result, it is a machine specifically designed to endure off-road conditions and harsh 
environments. The autonomous vehicle served as a massive, non-invasive, and on-the-go data collector robotic 
platform. The sensors used for measuring the relevant field variables were two spectral reflectance sensors (SRS), 
an infrared radiometer, and an on-board weather sensor. The collected data were displayed on comprehensible 
grid maps using the Local Tangent Plane (LTP) coordinate system. The proposed model has a coefficient of 
determination R2 of 0.69, and results from combining six parameters: the canopy and air temperatures (as the 
temperature difference), the relative humidity, the altitude difference, the Normalized Difference Vegetation 
Index (NDVI), and the Photochemical Reflectance Index (PRI). The strongest relationships found in this study 
were between the temperature difference and PRI, with an R2 of 0.75, and the temperature difference with the 
leaf water potential with an R2 of 0.61. The practical use of these high-resolution maps includes irrigation 
scheduling and harvest zoning for sorting grape quality, with a further use as inputs to complex artificial in
telligence algorithms considering larger areas or complementing airborne data. Future improvements to make 
the models more robust and versatile will entail considering additional variables, locations, or grapevine culti
vars, and even other crops grown in vertical trellis systems.   

1. Introduction 

Climate change has been sometimes denied, but the reality inferred 
from data seems clear as more research is available every year: climate 
conditions nowadays are different compared to a few decades ago. 
Increasing temperatures are affecting different sectors, being agriculture 
one of the sectors mostly affected by its consequences, since plant 
growth depends directly on the ambient conditions. Significant changes 
in ambient temperatures have made that some wineries like Bodegas 
Torres (Fernandez Esteban, 2019) buy fields at higher (cooler) latitudes 
in Spain. Similarly, not only temperatures, but also the availability of 
water, made Spottswoode Estate Vineyard and Winery, in California 
(USA), experiment with new vine varieties to find new ways of maxi
mizing water use, as their vines were found to be at risk of collapse in the 
ripening and maturation periods (Della Cava, 2019). 

Optimizing the use of water for agriculture has become increasingly 
important due to the consequences of climate change, which are leading 

to more frequent droughts, heat waves, or alteration of the precipitation 
patterns (Fraga et al., 2017; Jones and Alves, 2012; Ortuani et al., 2019; 
Santos et al., 2020). As a result, any task related to save water will be 
crucial, and acquiring new habits for the growers in regular irrigation 
practices will be needed. Ortuani et al. (2019) have demonstrated that 
varying irrigation practices such as variable-rate drip irrigation can lead 
to reductions of water use by 18%, compared to the regular irrigation 
practices made by the owner in a commercial vineyard, without losses in 
yield and berry quality, and even resulting in a more homogeneous 
grape maturation in time. Some concerns, however, have been claimed 
by wine producers regarding such water-saving policies, on the hy
pothesis that the key attributes of the final wine can be affected by these 
irrigation practices. Intrigliolo et al. (2008) found large differences in 
the wine components (also in the grapes and must) between non- 
irrigated and irrigated vines, but there were practically no differences 
among vines with slightly different irrigation rates, this is, irrigating one 
group of plants at 100% of the estimated crop evapotranspiration (ETc) 
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until harvest, and another group of plants at 50% ETc until veraison and 
then at 100% ETc thereafter. This result provides evidence to decrease 
high irrigation rates with the purpose of optimizing water use for 
vegetation, but it also requires knowing how much water is adequate for 
each vine to produce at its highest potential. This information turns key 
for those winemakers that stress their vines at late phenological stages to 
get wines of higher quality, as severe water deficits can make the plants 
reach the permanent wilting point. In vineyards that are not flat, when 
basins form within the field, water tends to accumulate in the soil, and 
this water reserve can reach up to 50% for some kinds of soil. This 
phenomenon has been observed in the testing field for the present 
research in Portugal, and it had already been noticed in Spain. The 
altitude difference influences the water status of plants due to this water 
reserve, which further depends on rain and runoff (Rovira-Más and Sáiz- 
Rubio, 2013). Due to its robustness, the predominant method to assess 
plant water status in viticulture has been through the measurement of 
the plant water potential with a pressure chamber, originally developed 
by Scholander et al. in 1965 (Rienth and Scholasch, 2019). The plant 
water potential, despite being one of the parameters mostly used in 
irrigation monitoring (Santesteban et al., 2011; Tysseyre et al., 2005), 
implies using a methodology that is slow, destructive, with limited 
temporal and spatial resolution (Ihuoma and Madramootoo, 2017), and 
requiring excessive labor efforts, which often results tedious as operators 
need to carry heavy equipment under the strong midday sun of the 
summer. The present research study uses the hand-held pressure 
chamber for ground truth validation, but it aims, precisely, at devel
oping a valid, rapid, objective, and non-invasive alternative to consis
tently determine grapevine water status. 

Several indices have been reported to be good indicators for 
detecting water stress. The photochemical reflectance index, or PRI 
(Gamon et al., 1997), is one of them, and it was considered in this 
approach because the sensor measuring it, portable, small, and cost- 
effective, was suitable for being integrated in a ground robot, as 
required for this application. The PRI has been considered an early in
dicator of water stress (Evain et al., 2004; Ihuoma and Madramootoo, 
2017; Suárez et al., 2009; Thenot et al., 2002; Williams, 2010), and thus, 
it can contribute to characterize vine water status (González-Flor et al., 
2019). The fact that changes in physiological indicators of water stress 
and PRI showed stronger correlations at canopy level (Yang et al., 2019), 
makes this index even more interesting for the present study, as the on- 
board sensors were close to the canopy and pointing at the vine leaves. 
The normalized difference vegetation index (NDVI), the best-known 
index used as a numerical indicator of vegetation greenness, has been 
also used for irrigation scheduling (Ihuoma & Madramootoo, 2017), or 
some of its variants, like the Normalized Reference Index (Pôças et al., 
2017). Apart from the PRI and the NDVI, Cohen et al. (2005) corrobo
rated that leaf temperature can be used as an indicator of the leaf sto
matal conductance and plant water stress, as the increase in plant water 
stress is linked to leaf stomatal closure and implies a rise in leaf tem
perature. Guisard (2009) extended this relationship to a canopy level by 
addressing the canopy temperature as an indicator of water stress in 
grapevines. In order to normalize the canopy temperature so that the 
physiological effect of stomatal dynamics on the canopy heat balance 
can be separated from the physical effects of radiation, convection, and 
vapor pressure (Testi et al., 2008), the difference between canopy 
temperature and air temperature was proposed as a water stress indi
cator instead of just canopy temperature (Idso et al., 1981). 

The measurement of the crop indicators described above has typi
cally implied high physical efforts and labor demands, especially for 
growers applying the principles of Precision Agriculture, or specifically 
for this context, Precision Viticulture. However, the promising alliance 
of agriculture and robotics can make that regular field operations result 
more efficient and less physically-demanding for producers by intro
ducing robotic platforms to perform multiple tasks (Fountas et al., 2020; 
Saiz-Rubio et al., 2015; Saiz-Rubio & Rovira-Más, 2020; Sarri et al., 
2020). Despite the availability of numerous studies proposing 

alternatives to measure vineyard water status, no solutions have been 
found for non-invasive monitoring from an autonomous ground vehicle 
to assist vineyard growers with routine tasks as irrigation and harvest
ing. Suárez et al. (2008) studied PRI as an indicator of water stress via 
airborne imaging techniques, but the advantage of monitoring water 
status from an Autonomous Ground Vehicle (AGV), as proposed in this 
work, rests on the field of view, which guarantees that only the region of 
interest is being measured with no interference of soil or weeds, and on 
the fact that climatic parameters are measured at vine level. 

The purpose of this paper is to present and evaluate a practical 
methodology for the cost-effective monitoring of water status in vine
yards. The solution envisioned involves obtaining high resolution maps 
of water potential to help growers in decision-making processes related 
to irrigation and harvesting. Water potential is estimated from a pro
posed mathematical model that combines ambient and crop parameters, 
using a robot (AGV) for the massive and on-the-go data collection from 
non-invasive sensors. 

2. Materials and methods 

2.1. Description of the AGV and its on-board field sensors. 

Fig. 1 illustrates the main components of the AGV. Its external di
mensions are 1 m wide, 1.2 m long, and 1.2 m tall with the GPS antenna 
folded, and a mass of approximately 200 kg. The robot is powered by a 
stack of three Li-ion batteries (EasyBlade 24, VARTA Storage GmbH, 
Nördlingen, Germany) providing 25.9 V and 192 Ah. The AGV can be 
handled with a joystick for loading, unloading, and mission placement, 
being the human-robot interaction established through a Graphic User 
Interface (GUI) as well as a set of different color lights, such as the mode 
indicator of Fig. 1 that indicates if the AGV is in autonomous mode 
(orange), manual mode (blue), or in stand-by mode (green). The robot 
incorporates head and rear lights to ease manual maneuvers with low 
illumination because it can also navigate at night. 

The navigation approach utilized by the AGV to autonomously travel 
along the vineyard rows is based on local perception. The system uses a 
3D sensor (O3M150, ifm electronic GmbH, Essen, Germany) combined 
with a non-rotational lidar rangefinder (Multi-Ray LED Scanner 
OMD8000-R2100-R2-2 V1, Pepperl + Fuchs, Mannheim, Germany), and 
four ultrasonic sensors (UC2000 30GM IUR2 V15, Pepperl + Fuchs, 
Mannheim, Germany). The central computer on-board the robot in
cludes a fanless processor (IRTBPCFNLALD9H, Irontech, Gerona, Spain) 
that manages the sensors through a data acquisition card (NI USB-6216, 
National Instruments, Austin, Texas, USA). The explanation of this 
navigation system falls outside the scope of this article, but a detailed 
description is available in Rovira-Más et al. (2020). The AGV is pro
grammed to apply safety measures in case of unexpected situations, 
stopping and releasing an acoustic signal when it encounters an obstacle 
in the middle of the row. It also incorporates a safety bumper that cuts 
the tractive power immediately when the bumper is physically acti
vated, as well as three emergency (E-stop) buttons to be pressed by users 
if needed. The AGV is equipped with a GPS (Global Positioning System) 
receiver (SX-Blue, Anjou, Quebec, Canada). The GPS receiver is used for 
sensor data positioning and field mapping rather than for navigation 
purposes. 

The AGV carries three non-invasive crop sensors facing to the right 
side of the vineyard canopy. The Apogee SI-421 infrared radiometer 
(Apogee Instruments, Inc., Logan, Utah, USA), displayed in Fig. 1 as 
canopy temperature sensor, measures canopy temperature at a rate of 1.8 
Hz and uses the SDI-12 protocol. Its field of view (FOV) covers 36◦, 
resulting in a circular FOV of approximately 0.5 m in diameter according 
to the distance from the sensor to the vegetation. The spectral sensors to 
measure the Normalized Difference Vegetation Index (NDVI) and the 
Photochemical Reflectance Index (PRI) come in four different units: 
NDVI-hemispherical (Ni), NDVI-field stop (Nr), PRI-hemispherical (Pi) 
and PRI-field stop (Pr) (SRS for NDVI and PRI, METER Group, Inc., 
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Pullman, WA, USA). These units are spectral reflectance sensors (SRS) 
that measure the electromagnetic radiation reflected from canopy sur
face after being corrected to current illumination conditions. The NDVI 
is calculated through bands with a peak wavelength of 650 nm ± 2 nm 
(with 50 nm full width half maximum, or FWHM) and 810 nm ± 2 nm 
(with 40 nm FWHM). The PRI bands are centered at 532 nm and 570 nm 
with 10 nm FWHM. Both SRS sensors have a field of view of 36◦ (shown 
as SRS sensors in Fig. 1), or a circular diameter of about 0.50 m, and use a 
hemispherical 180◦-FOV Teflon diffuser unit that makes cosine- 
corrections based on incident irradiation (shown as SRS sensors – sky- 
correcting units in Fig. 1). The sky-correcting units look upwards. 
Finally, the ambient sensor T7311-2 (COMET SYSTEM, s.r.o., Rožnov 
pod Radhoštěm, Czech Republic) provides measurements of the local 
ambient around each vine monitored, in particular, air temperature 
(◦C), atmospheric pressure (hPa), dew temperature (◦C), and relative 
humidity (%). This sensor is shown uncovered in Fig. 1. 

2.2. Data collection and field mapping procedure with the AGV 

The AGV must be guided with the joystick to the initial position, 
usually the beginning of the first vineyard row, to start taking data for 
building the crop map. If GPS performance is at normal levels, the 
operator turns on the Data button of the GUI to start recording all the 
data set (time, position, ambient, and crop parameters), and then selects 

the autonomous mode to start moving. The AGV moves along the center 
line every other row. The GPS antenna is located in the center of the AGV 
(Fig. 1), getting the coordinates of the trajectory followed by the robot. 
However, the map-building software also calculates the coordinates of 
the canopy section at which the crop sensors are pointing at (Rovira-Más 
et al., 2021), with the intention of having the crop parameters perfectly 
associated to their actual coordinates in the field (Fig. 2a). In fact, when 
the AGV detects that there is no vegetation to sense according to the 
ultrasonic sensor, crop data is not recorded as, for example, during the 
headland turns or when there are gaps without vegetation within a row. 
When the map is complete, the operators retrieve the data with a pen
drive through one of the USB ports of the AGV. Field data are saved as 
ASCII text files (.txt format) and shapefile format (.shp). 

The mapping technique to represent field variables follows a global- 
referenced grid approach (Rovira-Más, 2012). Geodetic coordinates are 
not suitable for precise operations in agriculture fields. As crop fields can 
be considered small and flat compared to the Earth, the representation of 
crop maps with a Local Tangent Plane (LTP) coordinate system facili
tates repeatability during a season and compatibility over the years 
(Rovira-Más and Sáiz-Rubio, 2013). The LTP coordinate system uses 
Euclidean geometry, allowing the representation of maps in Cartesian 
axes with north, east, altitude, and distances expressed in meters. In 
addition, the LTP coordinate system allows end-users and owners choose 
a convenient local origin within the field being mapped, so that 

Fig. 1. Main components of the Autonomous Ground Vehicle (AGV) from rear and side-front views. Details of crop sensors and their Field of View (FOV).  

Fig. 2. AGV path and vineyard rows of the testing site (a); Irrigation rates of the rows monitored by the AGV (b); and vineyard blocks for ground-truthing with the 
rows and their irrigation rates (c). 
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coordinates always result in manageable numbers. This representation 
can produce maps of regular square cells after a transformation from 
LTP coordinates to global grid cells. The size of the cell side can also be 
chosen by the user to further customize maps. In the present work, the 
chosen size of the cell side was 2 m, so that rows spaced 2 m apart could 
be differentiated. This differentiation of the rows was important for the 
application of specific irrigation rates as one of the key variables to 
manage in the experiments. The complete process to create global grid 
maps is described in further detail by Saiz-Rubio and Rovira-Más (2013). 

2.3. Data collection with a hand-held pressure chamber for ground-truth 
validation 

Leaf water potential (Ψleaf) is assumed to represent the mean soil 
water potential around plant roots, and it is a good indicator of the leaf 
water status (Ihuoma and Madramootoo, 2017). For this reason, the leaf 
water potential was used for ground truth validation of the actual hydric 
status of vine leaves, as it can give satisfying results for assessing vine 
water status in spite of its physically-demanding practical disadvantages 
(Rienth and Scholasch, 2019). Leaf water potential was determined 
using a Scholander pressure chamber (Model 600, PMS Instrument 
Company, Albany, OR, USA). The mode of operation with a pressure 
chamber started with taking a leaf, then cutting a portion of its petiole 
with a cutter, and placing it inside the sealed chamber. Pressurized air is 
slowly released at constant rate into the chamber. As the pressure in
creases onto the leaf, the xylem sap is forced out until a drop becomes 
visible at the cut end of the petiole. The pressure applied until the 
appearance of the drop is equal and opposite to the water potential of the 
sample (Rienth and Scholasch, 2019). 

The testing field (Fig. 2a) had grower-induced hydric status vari
ability achieved with a differential drip irrigation system. In sustained 
deficit irrigation, growers irrigate at a fraction of full crop evapotrans
piration (ETc) throughout the growing season, which is a useful way to 
save water while maximizing production (Williams, 2010). In order to 
induce water status variability in the vines, different water regimes were 
applied to several rows. The irrigation planning was managed according 
to leaf water potential measurements carried out regularly by the winery 
technicians. The actual irrigation rates applied are displayed in Table 1. 
Three different water regimes were established in six rows with two 
replicates for each water regime. Fig. 2b shows the three different 
treatments given to the vines: a 60% of the crop evapotranspiration 
(ETc), a 30% of the ETc, and a 15% of the ETc, and Fig. 2c displays the 
water regimes and blocks considered in this study. Climate data and 
reference evapotranspiration (ET0) was estimated from weather pa
rameters recorded at a meteorological station located nearby, and from 
the Penman-Monteith equation according to the Food and Agriculture 
Organization (FAO) (Fernández-Novales et al., 2021). The ETc is 
calculated multiplying the ET0, which is the reference evapotranspira
tion, by the specific coefficient of the crop (Kc). 

2.4. Experimental design and testing vineyard 
Although field testing has been ongoing from 2017, the definitive 

eleven experiments with the last version of the robot featuring the 
complete crop sensor suite took place in the summer of 2020. The 
reference plot is located in the Douro Superior sub-region, in a vineyard 
of the Symington Family Estates winery (Quinta do Ataíde, Portugal) at 
latitude 41◦ 14′ 41.4′′ N and longitude 7◦ 06′ 52.9′′ W. The seven-year- 

old Vitis vinifera L. cv. Touriga Nacional grafted on 196–17 rootstocks is 
trained in a vertical shoot position system (VSP), and pruned in Royat 
single cordon, with a row spacing of 2.20 m and 1 m between plants in 
the same row. The soil is schistic and predominantly acidic. The manual 
measurements of water potential with the pressure chamber involved six 
vineyard rows with two different irrigation treatments (Fig. 2c): three 
rows irrigated with 15% of the ETc, and the other three rows irrigated 
with 60% ETc, applied according to Table 1. Six blocks per row were 
selected based on vine vigor roughly defined by the NDVI distribution of 
the plot from aerial images acquired in a yearly basis. Each block of 5 m 
comprised five vines. Of these, two sunlit mature representative leaves 
per vine at medium canopy height were selected to measure the leaf 
water potential using the Scholander pressure chamber. Overall, a total 
of 36 blocks were monitored in two periods of the day: morning and 
midday. Fig. 2c shows the blocks of vines in black numbers (blocks 3 and 
4, blocks 9 and 10, block 18 and 19), while rows are displayed in white 
with a background color depending on the irrigation rate of the row. 

Fig. 2a displays the path followed by the AGV over a satellite map of 
the testing vineyard (Google Earth Pro, Google LLC, Mountain View, CA, 
USA). The starting position of the robot-generated map was at co
ordinates E = -77 m and N = -578 m from the user-defined local origin 
(Fig. 2b). This local origin was placed in a neighboring testing field 
located north-northeast of the represented map; that is why the co
ordinates in the Cartesian axes appear negative. The AGV is designed to 
monitor the right canopy side every two rows, which made the AGV 
monitor four rows irrigated at 15% ETc, five rows irrigated at 30% ETc, 
and five rows irrigated at 60% ETc (Fig. 2b). The average velocity of the 
AGV during field mapping was 1.5 km/h, with an average sampling rate 
of 0.6 Hz to record time, position, ambient, and crop parameters. 

Table 2 summarizes the main characteristics of the eleven field ex
periments conducted in 2020, whose data were taken on 7th and 8th of 
August, and on 9th and 10th of September, alternating the mapping time 
among predawn, morning, midday, or night. However, the nocturnal 
and part of the predawn tests occurred without the natural illumination 
that spectral reflectance sensors (NDVI and PRI) required, resulting less 
informative than the maps acquired during the day, either in the 
morning or at midday. Along each test identifier, Table 2 indicates the 
number of valid (filtering outliers) data retrieved for each test, the date 
when the test was done, the period of the day at which the test took 
place, and the UTC time (Coordinated Universal Time) at which the 
experiment registered the first and the last datum. The local time in 
Portugal was one hour ahead the UTC time. The AGV carried out two 
kind of tests: the ‘block’, and the ‘map’, as shown in the fifth column of 
Table 2. The type of test named ‘map’ was configured for the robot to 
start saving data in the first row continuously until reaching the last vine 
of the last row. According to the location of the crop sensors in the AGV 
facing the right side of the vine row, and its forward direction indicating 
the robot heading, the sensed rows for the tests involving the full map 
were: 32 (first monitored row, Fig. 2b), 31, 28, 27, 24, 23, 20, 19, 16, 15, 
12, 11, 8, and 7 (last monitored row, Fig. 2b). The type of tests classified 
as ‘block’ in Table 2, refers to data taken by the AGV only in the spaces, 
or blocks, marked in red in Fig. 2c, following a stop-and-go procedure. 
For such tests, each block was delimited by metal posts in the vineyard, 
and clearly labelled with numbers to facilitate field testing and avoid 
sampling mistakes. The AGV was positioned at the beginning of each 
block, and the data recorded along the canopy section were those 
comprised within the labelled posts. For the blocks of rows 32, 29, 23, 
17, 14, and 8, leaf samples were picked from the canopy for the manual 
measurements with the pressure chamber, assuring the necessary 
ground truth validation for the model-based predictions of vine water 
status. The set of data from tests T1, T2, T3, T4, T5, T6, and T8 is 
published in (Saiz-Rubio et al., 2021), and contains the following col
umns: Hour (Spanish summer time. The UTC is that value minus 2 h), 
Minutes, Seconds, Latitude, and Longitude of the AGV antenna, East, 
and North of the AGV antenna, East, and North of the crop, Altitude, 
Canopy temperature, Ambient temperature, Pressure, Humidity, 

Table 1 
Irrigation rates (15% and 60%) applied in the monitored rows for the studied 
field.  

Regime 1ET0 Aug ET0 Sept 2Kc Rate Aug Rate Sept 

mm mm (L/ha per week) (L/ha per week) 

15% 27 19 0.7 48,000 32,000 
60% 106 75 0.7 184,000 131,000  

1 ET0: reference evapotranspiration; 2 Kc: crop coefficient. 
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Compass heading (direction), NDVI, PRI (averaged), Row, Irrigation 
rate, Space, and Scholander pressure when it was measured. 

Fig. 3 displays the block diagram for the overall data process. The 
data files saved in the AGV as text files sort information in various col
umns representing time, position, navigation, climatic conditions, and 
canopy-related parameters. The parameters relevant for this study pro
vided the test timing, robot position, site-specific ambient conditions, 
leaf temperature, and vegetative indices. Specifically, the robot position 
comprises three kind of coordinates: the geodetic coordinates directly 
retrieved from the GPS receiver as latitude (sexagesimal degrees), 
longitude (sexagesimal degrees), and altitude (meters); the north (me
ters), east (meters), and altitude (meters) LTP coordinates of the AGV; 
and the north (m), east (m), and altitude coordinates of the crop canopy. 
Crop coordinates are the ones used for building crop maps. The ambient 
parameters monitored with the robot were the following: air tempera
ture (◦C), barometric pressure (hPa), and relative humidity (%). The 
crop parameters include the canopy temperature (◦C), the NDVI, and the 
PRI, being both vegetative indices dimensionless in the range − 1 to 1. 
The data automatically recorded by the AGV was filtered to remove 
outliers, keeping NDVI values higher than 0 and below 1 to circumvent 
saturation, or maintaining PRI estimates between − 1 and 1. The ground- 
truth data mentioned in Fig. 3 refers to the leaf water potential (Ψleaf) 
manually measured with the pressure chamber, initially output by the 

chamber’s manometer as pressure in bar and transformed here for 
standardization purposes to MPa. These manual data were collected by 
experienced technicians, and therefore are considered reliable without 
the need of further conditioning. Each manual measurement was pre
cisely associated to crop coordinates, such that manual and automatic 
data were comparable. All the data, both manually and automatically 
gathered, were conveniently represented over grid maps featuring the 
same configuration, which facilitated the comparison and statistical 
correlation among them. This compatibility was guaranteed, in partic
ular, with a common size of the grid maps covering the total area of the 
testing field, and always maintaining cells with an area of 4 m2 (2 m × 2 
m). Each such square cell contained precise information about air 
temperature, atmospheric pressure, ambient relative humidity, canopy 
temperature, NDVI, and PRI. For those cells containing more than one 
measurement of the same parameter, the average value was considered 
and plotted. Grid maps are easy to interpret because each cell is assigned 
a color code according to the range within which the specific value of 
each parameter falls. Field maps and statistical analyses were carried out 
with Statgraphics Centurion XVII (Statgraphics Technologies, Inc., The 
Plains, VA, USA), Matlab (versions R2016b, and R2020a, The Math
Works, Inc., Natick, MA, USA), and Microsoft Excel (version 2016, 
Microsoft Corporation, Redmond, WA, USA). 

To pursue the goal of enouncing a model to automate field mea
surements and avoid manual data gathering, the suitable tests were 
those with both ground-truth and robot collected measurements. Thus, 
the tests used in the statistical analysis were T1 and T2 complete, and 
from T3, T4, and T5 only the values corresponding to rows 32 and 8 
because only sunlit leaves were considered in both manual and auto
matic tests. The statistical models were computed with multiple 
regression on the tests T6 to T11. In particular, five models were 
launched and those with R2 higher than 58% were evaluated in detail by 
spatially comparing the water potential predicted with the models and 
the actual values and ranges. Models with an unnatural distribution of 
water potential for the experimental conditions tested were discarded. 
The final water potential model was evaluated and used to determine 
zones of similar water potential, which were shown to winery techni
cians for their confirmation and assessment (Fig. 3). 

3. Results 

Fig. 4 shows the evolution of ambient and crop parameters for the 
testing vineyard during season 2020. The plot depicts the mean values 
for each test, which gives an idea of the general variation along August 
and September. In Fig. 4a, mean ambient and mean canopy tempera
tures follow the same trend, being the ambient (air) temperature always 
above canopy temperature. As expected, the lowest temperatures were 
registered at predawn whereas the maximum temperatures occurred at 
midday. The ambient temperatures in August were high as a conse
quence of a heat wave, but not as high as Fig. 4a shows for tests T1 (7th 
Aug – mor), T2 (7th Aug – mid), and T6 (8th Aug – mid). The reason for 
that is the lack of a protective cover for the ambient sensor probe as 

Table 2 
Characteristics of the field experiments with the AGV in 2020 season.  

Test name AGV data points Manual data points Date (in 2020) Period Start – End (UTC time) Type Ground-Truth 

T1 1 556 36 7 Aug Morning 8:25 – 10:10 block Yes 
T2 1 557 36 7 Aug Midday 12:32 – 16:00 block Yes 
T3 9 533 12 9 Sep Morning 9:03 – 10:29 map Yes 
T4 9 484 12 9 Sep Midday 12:29 – 13:40 map Yes 
T5 8 989 12 10 Sep Morning 1 8:27 – 9:48 map Yes 
T6 11 135 – 8 Aug Midday 10:44 – 12:14 map No 
T7 10 914 – 10 Sep Morning 2 10:04 – 11:32 map No 
T8 10 199 – 10 Sep Midday 11:57 – 13:13 map No 
T9 4 053 – 9 Sep Predawn 5:26 – 7:49 map No 
T10 2 259 – 8 Aug Night 21:59 – 23:27 map No 
T11 3 643 – 8 Aug Predawn 4:40 – 6:11 map No  

Fig. 3. Field data processing from data collection to representation 
and evaluation. 
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indicated by ISO 17714:2007. Tests in September, however, were done 
with the probe properly covered from direct sun radiation. Fig. 4a also 
depicts the mean values of the relative humidity, which show two 
interesting peaks at predawn coinciding with minimum air tempera
tures; the contrary is true for midday relative humidity. The lack of 
illumination in the test that took place at night prevented the use of the 
passive sensors measuring PRI and NDVI (Fig. 4b), but ambient pa
rameters could be measured (Fig. 4a). Fig. 4b displays the mean values 
of PRI and NDVI for each test. Mean PRI values were clearly higher in 
August with an average estimate of 0.43 in comparison to the 0.15 found 
for September, being higher at midday than in the morning. The same 
trend is found with the NDVI, which shows a decreasing index along the 
season with an average NDVI for August of 0.72 in contrast to 0.59 for 
September. 

The model for predicting water potential (MPa), represented by Eq. 
(1), was obtained after applying multilinear regression to the data sets. 
The predicted water potential Ψpred, is a function of six significant field 
variables: the PRI, the altitude difference ΔAlt (m) as the altitude of each 
point minus the minimum altitude of the field (153.8 m), the NDVI, the 
temperature difference (ΔT) between canopy temperature (◦C) and 
ambient temperature (◦C), and the relative humidity RH (%). The R2 for 
this model was 0.69 (Fig. 5). The data sets used for this model considered 
the data registered for morning and midday tests in September when the 
probe of the ambient sensor was properly shielded, but not the data 
coming from August tests to avoid biasing errors, as the ambient tem
perature is involved in the model with a considerable weight. Non-linear 
relationships were also formulated but with inferior results. 

Ψpred (MPa) = 0.340⋅PRI − 0.042⋅ΔAlt + 0.017⋅NDVI − 0.025⋅ΔT

+ 0.005⋅RH − 1.394 (1) 

The complete statistical analysis considers the individual correla
tions among parameters with a higher likelihood of being related from a 
physiological standpoint. The principal results of these correlations are 

systematically plotted in Fig. 6, where test timings and irrigation rates 
are independently marked for each correlation studied. The first corre
lation analyzed (Fig. 6a) is PRI versus NDVI, with an R2 of 0.38. In that 
plot, higher PRI corresponds to August at midday independently of the 
irrigation rate, followed by PRI values registered in August morning 
tests, again independently of the irrigation rate. The same occurs for 
September tests despite having lower PRI average values than August 
tests (Fig. 4): higher values for midday tests than for morning tests with 
independency of the irrigation rate. The low R2 seems related to the 
disparity in variability distribution; large variations in the NDVI corre
spond to very strait variations of the PRI. This is clear, for example, for 
the September 60% morning test, which shows a variation of NDVI of 
0.5–0.75 whereas the PRI is contained in the range 0 – 0.1. Fig. 6b plots 
the PRI versus the temperature difference ΔT, with a consistent coeffi
cient of determination R2 of 0.75. The representation in Fig. 6b leaves 
out the test conducted in August at midday to avoid the influence of an 
overheated probe as a result of a missing shield to prevent direct sun 
radiation. Unlike Fig. 4 that only considers average values, Fig. 6a yields 
positive values for the temperature difference, which implies situations 
and rows with canopy temperatures well above the air temperature. 
August tests, by contrast, registered ambient temperatures significantly 
higher than canopy temperatures, leading to negative estimates for ΔT. 
The six tests (performed in different months and at different time of the 
day) used to calculate the statistical correlation between the PRI and ΔT 
evidenced a strong linear dependency between both parameters. Fig. 6c 
plots canopy temperature versus PRI, and the fact that R2 is 0.32 in
dicates that canopy temperature without the ambient correction 
through the air temperature –in real time– severely reduces the signif
icance of the relationship between both parameters. This finding is 
important because airborne imagery can track canopy temperature 
remotely, but real-time corrections with the ambient conditions around 
the vines are out of reach. As previously observed (Fig. 6a), large vari
ations in canopy temperature are found for similar values of PRI, as for 
instance, a PRI of 0.25 can be measured for either 28 ◦C or 37 ◦C (August 
60% morning). In addition, only the morning tests carried out in 
September showed different canopy temperature according to the irri
gation rates, with lower temperature for irrigated rows (60%). In other 
words, for the extreme heat at midday, irrigation did not make any 
difference in canopy temperature. Fig. 6d plots canopy temperature 
versus leaf water potential manually measured with the pressure 
chamber. With an R2 of 0.30, this result recalls the output of Fig. 6c; 
point scattering results in a lack of coherence for most of the tests when 
comparing with the canopy temperature. Again, the effect of the 
ambient conditions somehow masks the potential link between water 
status and leaf temperature. The need of a real-time correction with the 
air temperature becomes necessary, with the implications for proximal 
sensing still holding. This was achieved in Fig. 6e for September tests, 
which plots manually collected water potential versus temperature dif
ference ΔT. The positive effect of correcting canopy temperature with 
ambient conditions duplicated the R2 to 0.61, with the meaningful 
scattering of Fig. 6e. The way the midday test for low irrigated vines 
(15% ETc) clusters itself on the negative half (ΔT) of the plot is 

Fig. 4. Mean values for August and September tests (2020): (a) Relative humidity, ambient temperature, and canopy temperature; and (b) PRI and NDVI.  

Fig. 5. Water potential model derived from September tests.  
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remarkable, because the irrigated rows measured at the same time were 
just in the opposite side of the plot with a positive ΔT. Overall, plants 
with a higher irrigation rate (60% ETc) had less negative water potential, 
which indicates a milder level of plant water stress. 

A crucial advantage of grid maps is the convenience of spatially 
representing variables of interest that result from merging various pa
rameters affecting the same area; for this study in particular, the variable 
of interest is leaf water potential, which depends on the six variables of 
the model defined by Eq. (1). Fig. 7a shows the water potential map 
obtained with Eq. (1) and the field data of test T3, carried out on 9th 
September from 9 am to 10.30 am (UTC, morning test). The color code 
simply provides a threshold value of − 1.2 MPa to distinguish high and 
low likelihood of hydric stress. Obviously, such a threshold will nor
mally depend on the moment of the day, as a water potential classified as 
moderate at midday would probably be severe in the morning. Fig. 7b 
and Fig. 7c display the NDVI and the altitude grid maps for the testing 
field, respectively. In all three maps there is a different trend for the 
center-right region of the field. In the case of the NDVI, it corresponds to 
high vigor according to the threshold chosen of 0.65; for the altitude, 
that area corresponds to lower height; and for the water potential, which 
depends on the two previous maps, it corresponds to a less water 
stressed zone according to the threshold of − 1.2 MPa. Estimated water 
potential maps for other tests followed a general trend similar to that of 
Fig. 7a, but with interesting differences due to variations in some of the 
parameters involved such as the PRI. 

Fig. 8 shows the spatial distribution of the PRI along the tests con
ducted in August and September in the experimental vineyard, together 

with the alternating irrigation rates and the exposure of each row as 
sunlit or shaded. In general terms, the PRI always reached higher values 
in the upper-right section of the field. In test T6, PRI values were posi
tive, whereas zero and negative values erratically appeared during 
September tests T3 and T4. When comparing outcomes based on day 
timing for September tests, PRI values were higher for midday than in 
the morning. Interestingly, for the early morning test T3 (Fig. 8b) the 
majority of near-zero values correspond to the sunlit side of the rows, 
but for the midday test T4 (Fig. 8c) many negative PRI values were 
registered in the shaded side of the rows. 

The physical meaning of the PRI is related to the photosynthetic 
efficiency of the vines’ leaves, and therefore it is a complex parameter to 
interpret. Fig. 8 provides a spatial–temporal analysis of its distribution 
within the vineyard, but deeper insights underlie in the graph of Fig. 9, 
where the ordinate axis shows the PRI, ΔT, canopy temperature and 
ambient temperature, whereas the abscissa axis shows the test timing in 
minutes. The right axis indicates the moving direction or heading. In 
particular, the AGV monitored the sunlit side of the canopy when 
heading was around 250◦, and the shaded side when heading was about 
60◦. The graph also highlights the rows that were sunlit or shaded with a 
different background color for the rows, and the irrigation rates of 60%, 
30%, or 15% of the ETc. Sunlit canopies kept PRI values near zero or 
slightly above for these midday conditions; however, the PRI had a 
wider dispersion for the shaded rows with most values oscillating in the 
range − 1 to 1. Air temperature was steadily growing along the test, 
which is something expected as the test began at 12:29 UTC and ended 
at 13:40 UTC (midday test). The highest temperatures in the 

Fig. 6. Individual correlations for season 2020: (a) PRI vs NDVI; (b) PRI vs ΔT; (c) PRI vs canopy temperature; (d) Leaf water potential vs canopy temperature; and 
(e) Leaf water potential vs ΔT. 

Fig. 7. Grid maps for T3: (a) Estimated water potential (MPa); (b) altitude (m); and (c) NDVI.  
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experimental vineyard have been recorded in the afternoon, around 
16:00 UTC. Canopy temperatures, on the contrary, show an oscillating 
pattern with higher measurements for the sunny side of the canopy, 
although overall, the canopy temperature remained stable in average. As 
a result, ΔT was negative for all the rows except for the first, in which it 
was close to zero. This means that in midday conditions, the air tem
perature is typically above the canopy temperature, unlike morning 
conditions. 

Table 3 shows the canopy temperature and PRI when comparing 
sunlit and shaded canopy sides. The difference in canopy temperature 
between sunlit and shaded leaves reached 1.8◦ during morning test T3 
(September). For midday test T4 (September) when the sun was more 
vertically aligned, these differences were smaller and reached 1.6◦. 
However, the PRI behaved inversely; higher values were registered for 
the shaded canopy side with differences up to 0.15. 

The statistical analysis revealed, with a confidence level of 95%, that 
both manually and predicted water potential produced significant dif
ferences for rows irrigated differently, in particular with rates 15% ETc 
versus 60% ETc. The final stage of this research consists of quantifying 
how close measured and predicted water potential are for the suite of 
situations studied, and how tests differ among them. Fig. 10 depicts the 
predicted water potential respect the real values for tests T1 (a), T2 (b), 
T3 (c), and T4 (d); T3 is plotted in Fig. 7a as a grid map. As manual 
measurements were conducted at 36 selected points of the experimental 
vineyard (Fig. 2c), there is no point in drawing a complete grid map of 
the estimations carried out with the pressure chamber, but the analysis 
of residuals can be performed through Table 4, and Table 5. The results 
drawn from those tables indicate that average errors ranged from 0.79 
(T5 test, Table 5) to 2.43 (T1 test, Table 4). The mean absolute error, or 
MAE, has been used to measure prediction accuracy. MAE is the average 
absolute difference between the predicted value and the actual value at 
some specific point (Moroney, 2021). Thus, the average error of Table 4 
and Table 5 has been calculated as MAE: the sum of the predicted water 
potential values minus the sum of actual water potential values (Scho
lander). The result is made positive (taking the absolute value), and then 
dividing by 36 points for T1 and T2, or by 12 for T3, T4, and T5. 
Reasonably, the model estimates better the tests performed in 
September than in August (Fig. 10, Table 5), as the final statistical model 
was chosen from that conformed by September tests (Fig. 10a,b), but 
also, the test T2 (Fig. 10b) had a similar low error despite being a test 
from August (midday). However, the test T1 (Fig. 10a) from August at 
morning, had higher errors in the estimates. Those estimates are lower 
than the real Scholander values, which makes sense as the September 

Fig. 8. Maps showing the spatial and temporal variability of PRI: midday in August (a), morning in September (b), and midday in September (c).  

Fig. 9. PRI, ΔT, canopy temperature, and air temperature for test T4 (September at midday).  

Table 3 
Mean values of canopy temperature and PRI collected with the AGV on sunlit 
and shaded canopy sides.  

Test Month Period Variable Mean value Difference 
Sunlit 
canopy 

Shaded 
canopy 

[Sunlit – 
Shaded] 

T6 August Midday Tcanopy 37.65 36.78 0.87 
PRI 0.26 0.37 − 0.11 

T3 September Morning Tcanopy 27.6 25.8 1.8 
PRI 0.01 0.16 − 0.15 

T4 September Midday Tcanopy 34.78 33.15 1.63 
PRI 0.10 0.23 − 0.13  
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values (statistical model) had lower temperatures. 
The importance of the analysis of residues, i.e. the difference be

tween predicted and actual values, rests on the fact that it allows to 
assess how good a model is regardless of the method used to define it. At 
present, there is a plethora of modelling techniques – Principal 
Component Analysis (PCA), multivariate analysis, Artificial Intelligence 
(AI) techniques…- some more complex than others, but the real focus 
would be on the goodness of the fit and the versatility of the model as 
many diverse situations as possible. 

According to Fig. 3 (block diagram), the ultimate feedback has to be 
received from the wine maker as the final end-user of the produced 
grapes. The experimental vineyard (Fig. 2) used in this study is actually a 
commercial vineyard, which has been the source of two distinct wines. 
While oenologists do not actually draw a zone map every harvest, they 
analyzed the grapes coming from these experience-determined zones as 
well as the properties of the resulting wines. Due to the specific envi
ronmental characteristics of 2020, the west section of the vineyard in 
Fig. 7a allowed for a separate vinification of the grapes. Those vines 
reached a potential for a higher class wine when compared to the rest of 
the field, with an economic gain that can reach 85% of the value 
compared to the base blend. 

4. Discussion 

This study proposes a methodology and a model, to assess grapevine 
water status from a set of specific relevant parameters measured non- 
invasively from an AGV. The representation of variability across 
selected field parameters and sought hydric state was enhanced with 
their precise display in grid maps, upon which appeared interesting 

relationships among parameters; some already mentioned in the state of 
the art, and some new or overlooked. Although the data feeding the 
water status model was gathered in 2020, the experimental field has 
been closely monitored by the AGV since 2017. As a result, the evolution 
of key parameters along each season has been richly documented, 
helping to understand how ambient local conditions affect vineyard 
behavior. Canopy temperature, for instance, is directly influenced by 
ambient temperature and relative humidity. On-the-go NDVI measure
ments from the AGV revealed an alternative perspective to monitoring 
vineyard vigor and health from proximity. Such a high-resolution 
monitoring also revealed unexpected measurements for midday condi
tions (Fig. 4b), which point at coupling effects between NDVI spectral 
measurements including crop-sensor orientation and sun radiation in
tensity. Unlike the widespread NDVI, the less known PRI was also 
tracked seasonally with the AGV, with a decreasing trend along the 
season that coincided with previous studies (Magney et al., 2016). 
Specifically, mean PRI values were higher in August (0.26–0.39) than in 
September (0.06–0.16), and they were higher at midday than in the 
morning, following a trend similar to the canopy temperature. But what 
made PRI interesting was gaining insights in how reactive it was on a 
daily basis, as PRI is set to monitor the diurnal photosynthetic regulation 
of plants, including subtle dynamics arising from alternations in physi
ological activity (Gamon et al., 2015). The fact that the daily trend of 
PRI has been reported to yield different results depending on the crop or 
even on the specie (Merlier et al., 2015) makes its analysis intriguing, 
taking into account the particular characteristics of the vine variety 
Touriga Nacional used in this research. Furthermore, controversial re
sults have been reported on the PRI differences for sunlit and shaded 
sides of the canopy. Zhang et al. (2016) for several tree species and Evain 

Fig. 10. Measured and predicted water potential values per row in August: T1 (a), and T2 (b) tests, and September: T3 (c), and T4 (d) tests.  
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et al. (2004) for vineyards, both reported lower PRI values for sunlit 
leaves than for shaded leaves, which totally coincides with the results of 
this study as shown in Table 3 or Fig. 9. However, Yang et al., 2019 
reported just the opposite for wheat, i. e. lower PRI for the shaded side of 
the canopy than for the sunlit side. Nevertheless, considering that 
grapevines have a lignified trunk and behave in a similar trend to other 
trees when compared to annual crops, it makes sense to corroborate 
lower PRI estimates for sunlit leaves. While the results of intensive data 

acquisition for the PRI resulted informative and novel, the mechanisms 
involved in PRI variation are complex and many physical, biochemical, 
and physiological factors can affect diurnal and seasonal PRI patterns at 
foliar, canopy and ecosystemic levels (Zhang et al., 2016), leaving still a 
long way open for research. 

The intense monitoring of multiple field parameters led to multiple 
relationships among them: some stronger than others, and some more 
interesting than others. A strong relationship between PRI and canopy 
temperature was already noticed for airborne techniques in corn, with 
R2 of 0.72 (Suárez et al., 2009) and R2 of 0.82 (Rossini et al., 2013). 
Interestingly, moving from remote zenithal views to sub-meter side 
views, and changing large coverage images by sampled canopy areas 
well below the square meter, led to a completely different scenario. For 
this study, such relationship resulted in an R2 of 0.32 (Fig. 6c), which is 
in line with researchers reporting that plant temperature is linearly 
related to evapotranspiration and largely influenced by site-specific 
microclimatic conditions and their changes, such as air temperature, 
wind speed, or radiation intensity (Maes and Steppe, 2012; Poirier- 
Pocovi and Bailey, 2020). It is important to keep in mind that the pre
sent research brings novelty in two aspects: crop proximity and massive 
sampling, and consistency with prior results under diverse conditions 
implies a solid step forward for understanding plant physiological re
sponses. When the real-time difference between air and canopy tem
peratures was defined as a key modeling parameter instead of just the 
canopy temperature, its correlation with the PRI improved significantly 
up to an R2 of 0.75 (Fig. 6b). The advantages of using this temperature 
difference for assessing water status had been already reported for 
airborne images of corn (Rossini et al., 2013), and for field-fixed sensors 
in squash, alfalfa, and soybeans (Idso et al., 1981). As a matter of fact, 
Testi et al. (2008) claimed that taking the difference of temperatures 
makes sense because that normalization can unlink physiological effects 
on the canopy heat balance from the physical effects of radiation, con
vection, and vapor pressure. But yet more interesting for automated 
water stress assessment is the strong correlation found between leaf 
water potential and temperature difference, with an R2 of 0.61 as plotted 
in Fig. 6e, and the lack of a stronger correlation with water potential 
when air temperature is not considered, with a weak R2 of 0.30 (Fig. 6d). 
In the same line of thought, Ehrler et al. (1978) stated that if canopy 
temperature could respond to changes in plant water potential, and 
therefore, be used for long term crop monitoring, the temperature dif
ference was better for sensing plant response to drought. In addition to 
the temperature difference, other variables included in the water po
tential model proposed in this study (Eq. (1), Fig. 5) have been reported 
to respond to water potential as well; in particular, the PRI (Evain et al., 
2004; Ihuoma & Madramootoo, 2017; Suárez et al., 2008; Thenot et al., 
2002) and the NDVI (Ihuoma and Madramootoo, 2017), which not only 
responded to the natural growth rate of plants, but also to the changes 

Table 4 
Block-by-block analysis of residuals for non-invasive estimation of water po
tential: tests T1 and T2.  

Point T1 T2 

Real Pred Error Real Pred Error 

1 − 0.98 − 1.55 0.58 − 1.43 − 1.42 − 0.01 
2 − 0.98 − 1.53 0.55 − 1.34 − 1.41 0.07 
3 − 0.93 − 1.52 0.60 − 1.40 − 1.32 − 0.08 
4 − 0.73 − 1.51 0.78 − 1.33 − 1.34 0.02 
5 − 1.25 − 1.57 0.32 − 1.53 − 1.35 − 0.17 
6 − 1.25 − 1.57 0.32 − 1.55 − 1.39 − 0.16 
7 − 0.70 − 1.55 0.85 − 1.70 − 1.42 − 0.28 
8 − 0.78 − 1.55 0.77 − 1.73 − 1.40 − 0.33 
9 − 0.63 − 1.46 0.83 − 1.53 − 1.35 − 0.17 
10 − 0.63 − 1.50 0.88 − 1.69 − 1.35 − 0.34 
11 − 1.08 − 1.57 0.50 − 1.55 − 1.39 − 0.16 
12 − 0.98 − 1.60 0.62 − 1.58 − 1.36 − 0.21 
13 − 1.60 − 1.44 − 0.16 − 1.35 − 1.43 0.08 
14 − 1.63 − 1.46 − 0.17 − 1.57 − 1.40 − 0.17 
15 − 0.93 − 1.43 0.50 − 1.33 − 1.32 0.00 
16 − 1.50 − 1.43 − 0.07 − 1.40 − 1.29 − 0.11 
17 − 1.43 − 1.55 0.13 − 1.68 − 1.43 − 0.25 
18 − 1.38 − 1.53 0.16 − 1.50 − 1.49 − 0.01 
19 − 0.60 − 1.54 0.94 − 1.05 − 1.50 0.45 
20 − 0.80 − 1.55 0.75 − 1.40 − 1.48 0.08 
21 − 0.88 − 1.51 0.63 − 1.03 − 1.39 0.37 
22 − 0.85 − 1.55 0.70 − 1.23 − 1.43 0.21 
23 − 1.33 − 1.59 0.26 − 1.48 − 1.46 − 0.02 
24 − 1.25 − 1.58 0.33 − 1.60 − 1.49 − 0.11 
25 − 1.25 − 1.54 0.29 − 1.40 − 1.46 0.06 
26 − 1.15 − 1.56 0.41 − 1.43 − 1.43 0.01 
27 − 1.12 − 1.51 0.39 − 1.45 − 1.37 − 0.08 
28 − 1.23 − 1.52 0.30 − 1.53 − 1.43 − 0.09 
29 − 1.38 − 1.54 0.17 − 1.63 − 1.42 − 0.21 
30 − 1.38 − 1.57 0.20 − 1.55 − 1.44 − 0.11 
31 − 1.05 − 1.66 0.61 − 1.55 − 1.24 − 0.31 
32 − 0.90 − 1.62 0.72 − 1.65 − 1.23 − 0.42 
33 − 0.98 − 1.56 0.58 − 1.48 − 1.27 − 0.21 
34 − 0.95 − 1.51 0.56 − 1.45 − 1.25 − 0.20 
35 − 1.45 − 1.51 0.06 − 1.63 − 1.39 − 0.24 
36 − 1.48 − 1.52 0.05 − 1.50 − 1.38 − 0.12 
Absolute error   16.72   5.90 
MAE (Avg error)   0.46   0.16  

Table 5 
Block-by-block analysis of residuals for non-invasive estimation of water potential: tests T3, T4 and T5.  

Point T3 T4 T5  

Real Pred Error Real Pred Error Real Pred Error 

1 − 1.20 − 1.23 0.03 − 1.60 − 1.62 0.02 − 1.38 − 1.39 0.01 
2 − 0.98 − 1.25 0.27 − 1.53 − 1.53 0.01 − 1.43 − 1.36 − 0.07 
3 − 1.08 − 1.21 0.13 − 1.68 − 1.51 − 0.16 − 1.28 − 1.26 − 0.02 
4 − 1.15 − 1.22 0.07 − 1.43 − 1.51 0.09 − 1.25 − 1.27 0.02 
5 − 1.20 − 1.28 0.08 − 1.53 − 1.60 0.08 − 1.38 − 1.28 − 0.09 
6 − 1.23 − 1.29 0.06 − 1.53 − 1.59 0.07 − 1.38 − 1.30 − 0.07 
7 − 1.00 − 1.19 0.19 − 1.35 − 1.28 − 0.07 − 1.15 − 1.18 0.03 
8 − 1.10 − 1.16 0.06 − 1.45 − 1.28 − 0.17 − 1.13 − 1.14 0.02 
9 − 1.03 − 1.12 0.09 − 1.33 − 1.25 − 0.08 − 1.13 − 1.09 − 0.04 
10 − 1.10 − 1.13 0.03 − 1.33 − 1.27 − 0.05 − 1.13 − 1.09 − 0.03 
11 − 1.15 − 1.19 0.04 − 1.48 − 1.34 − 0.14 − 1.33 − 1.15 − 0.17 
12 − 1.25 − 1.19 − 0.06 − 1.43 − 1.36 − 0.06 − 1.27 − 1.16 − 0.11 
Absolute error  1.13   1.00   0.68  
MAE          
(Avg error)  0.09   0.08   0.06   
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originated by introducing different irrigation rates in the experimental 
setup of this research. In fact, the NDVI has been linearly related to 
canopy growth (Trout et al., 2008), and canopy growth has been shown 
to be a key factor determining grapevine water use (Williams and Ayars, 
2005). 

The value of the present analysis rests on the power of field data 
understood as the right balance between quantity and quality. In that 
respect, the suite of sensors selected for this research resulted advanta
geous for the non-invasive monitoring of water status in grapevines from 
an AGV. The benefits of using infrared radiometers for recording canopy 
temperature, as a nondestructive and cost-effective technology that can 
be mounted on mobile platforms, has been proved to detect differences 
between sunlit and shaded canopy sides (King et al., 2021), showing that 
sunlit leaves were significantly warmer in confirmation of Table 3 and in 
agreement with Van Zyl (1986). The real-time combination of the 
infrared radiometer, the PRI sensor, and the NDVI sensor with the 
ambient sensor providing air temperature and relative humidity, greatly 
improved the estimation of water potential and facilitated the graphical 
representation of its spatial distribution over the vineyard. The maps 
displayed in Fig. 7 reproduce recognizable features of the monitored 
vineyard based on grower’s records. The NDVI map, in particular, re
sembles to the airborne-based NDVI map delivered by a service company 
hired by the owner in a yearly basis. However, a parameter that will 
need a further analysis is the altitude difference. It improved the water 
potential prediction model in this research as it is highly related to the 
water readily available for the plant in fields with noticeable differences 
in altitude, but special caution is needed when interpreting the weight of 
this parameter in future models as the altitude difference presents a 
non-linear behavior, and therefore more diverse, and larger data sets are 
needed for a deeper statistical study. 

Several outcomes from this study invite to search deeper in the pa
rameters recorded by the AGV. The contribution of PRI to water stress 
detection, for example, is affected by canopy structure, cover, and 
viewing geometry (Panigada et al., 2014; Rossini et al., 2013), and 
although Thenot et al. (2002) demonstrated the sensitivity of PRI to 
water stress conditions, the effects of stress on the canopy structure may 
also affect the reflectance signal, something that needs to be further 
studied. Other parameters, in addition, also present important chal
lenges that need being addressed before their integration in water po
tential models, as water stress can affect the characteristics of the fruits 
and the future wine both positively and negatively. Despite the fact that 
Alves et al. (2013, 2012) reported that non-irrigated grapevines expe
rienced severe water stress and consequently lower photosynthetic 
rates, many vines that are water stressed have been found to bear fruit 
with a higher concentration of sugar than vines that are given more 
water (Williams, 2010). By contrast, moderate levels of irrigation have a 
positive impact on leaf gas exchange rates, and on yield and berry 
quality (Alves et al., 2013). As the potential quality of wines has been 
shown to be affected by water stress, the precise estimation of water 
potential to set optimal irrigation rates will be crucial for producing 
premier wines. For the experiments conducted in the testing vineyard, 
leaf water potential –both manually collected with the pressure chamber 
and predicted with the robot– showed significant differences for rows 
differently irrigated at 15% ETc and at 60% ETc. 

5. Conclusions 

The automation of data recording with AGVs (Autonomous Ground 
Vehicles) resulted instrumental to characterize a vineyard with massive 
data. This characterization led to confirm some general trends while 
finding new relationships between vegetative indices, crop features, and 
ambient conditions. In this line, the correlation between temperature 
difference ΔT and PRI with an R2 of 0.75, and between ΔT and ground- 
truth leaf water potential with an R2 of 0.61, both indicate the capacity 
of real-time non-invasive sensing to extract relevant physiological in
formation from the plants. The particular combination of canopy-air 

temperature difference ΔT with spectral indices PRI and NDVI pro
vided good prospects for defining a novel model capable of tracking 
water potential non-invasively and from moving platforms, with a co
efficient of determination R2 of 0.69. However, the model was fit with 
data acquired in September and in a particular region. A natural 
extension of this work will necessarily try to make the model more 
robust with data from diverse regions, altitudes, and latitudes. The 
representation of large amounts of data coming from multiple field tests 
was possible thanks to the rationalization of measurements in grid-based 
maps while maintaining global references with the local tangent plane 
(LTP) coordinate system. Not only visualization was enhanced but also 
the correlation among parameters was facilitated. In the end, the high- 
resolution maps of water potential developed in this work have multi
ple destinations for end-users: first, the spatial variations of vine hydric 
state provide truthful information at the time of deciding a dynamic 
irrigation schedule; second, to define differentiated harvesting zones, as 
wine quality greatly improves when grapes of diverse properties are not 
mixed, and the relationship between hydric stress and grape quality has 
been previously proved; and third, serving as a complement for airborne 
data or anonymized large-scale data handled by other public or private 
institutions. In addition to stimulate delving into the spectral indices 
NDVI, PRI, and other ones bringing complementarity, this research may 
encourage the acquisition of massive data from crops with autonomous 
ground vehicles, as a facilitator and forerunner for the further applica
tion of sophisticated artificial intelligence (AI) algorithms that help 
growers better understand how plants grow and produce fruit under a 
changing and unpredictable environment. 
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Intrigliolo, D.S., Castel, J.R., Cárcel, S., 2008. Effects of crop level and irrigation on yield 
and wine quality of tempranillo grapevines in a dry year. In: Acta Horticulturae. 
International Society for Horticultural Science, pp. 371–378. 

Jones, G.V., Alves, F., 2012. Impact of climate change on wine production: a global 
overview and regional assessment in the Douro Valley of Portugal. Int. J. Glob. 
Warm. 4, 383–406. 

King, B.A., Tarkalson, D.D., Sharma, V., Bjorneberg, D.L., 2021. Thermal Crop Water 
Stress Index Base Line Temperatures for Sugarbeet in Arid Western U.S. Agric. Water 
Manage. 243, 106459. https://doi.org/10.1016/j.agwat.2020.106459. 

Maes, W.H., Steppe, K., 2012. Estimating evapotranspiration and drought stress with 
ground-based thermal remote sensing in agriculture: a review. J. Exp. Bot. 63, 
4671–4712. 

Magney, T.S., Vierling, L.A., Eitel, J.U.H., Huggins, D.R., Garrity, S.R., 2016. Response of 
high frequency Photochemical Reflectance Index (PRI) measurements to 
environmental conditions in wheat. Remote Sens. Environ. 173, 84–97. https://doi. 
org/10.1016/j.rse.2015.11.013. 
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