
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Escuela Técnica Superior de Ingeniería Informática

Life Cycle Management of Serverless Microservices using
Amazon Web Services

Trabajo Fin de Grado

Grado en Ingeniería Informática

AUTOR/A: Yatsenko , Oleksandr

Tutor/a: Moltó Martínez, Germán

CURSO ACADÉMICO: 2022/2023

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 Resumen
 El presente Trabajo Fin de Grado consiste en el análisis y creación de

 aplicaciones basadas en microservicios utilizando técnicas de “serverless
 computing”. Como una plataforma en la nube se va a utilizar el proveedor de
 Cloud público Amazon Web Services y sus servicios. Para demostrar la parte
 práctica y aplicar todas las técnicas se va a usar una aplicación Severless de
 ejemplo “Airline Booking”. Se analizarán las estrategias necesarias para el
 Despliegue, Escalado, Actualización, Visibilidad/Traceo y Securización.

 Palabras clave: Microservicios, AWS, AWS Lambda, AWS X-RAY, Cognito,
 Blue/Green despliegue, Canary release, AWS SAM.

 Abstract
 This Final Project consists of analysis and creation of microservices using

 "serverless computing" techniques. As a cloud platform, the Amazon Web
 Services public Cloud provider and its tools will be used. To demonstrate the
 practical part and apply all the techniques, the exemplary Serverless application
 "Airline Booking" will be used. The necessary strategies for Deployment,
 Scaling, Update, Visibility / Tracing and Securing will be analyzed.

 Keywords: Microservices , AWS, AWS Lambda, AWS X-RAY, Cognito, Blue/Green
 deploy, Canary release, AWS SAM.

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 2

 Table of Contents

 Chapter 1. Introduction 5
 1. Motivation 6
 2. Objectives 8
 3. Structure of Document 8

 Chapter 2. Related Technologies and Tools 9
 1. Deployment. AWS SAM & Serverless framework 9
 2. Scaling. AWS Lambda 11
 3. Updating. Canary release and blue-green deployment 12
 4. Visibility and Traceability. AWS X-Ray 17
 5. Securing. Amazon Cognito 19
 6. Tools 21

 Chapter 3. Exemplary Microservices-based Application 27
 1. Application architecture 27
 2. Project structure 28

 Chapter 4. Deployment 31
 1. Deploy 31
 2. Scaling. Lambda functions 35
 3. Cognito 44
 5. AWS X-RAY 53

 Chapter 5. Conclusions and Future Work 57
 Bibliography 59
 Appendix. SDG 62

 3

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 Figure 1 AWS Lambda Diagram 12
 Figure 2 Canary release 14
 Figure 3 Blue-green deployment 15
 Figure 4 X-RAY 18
 Figure 5 Amazon Cognito 20
 Figure 6 Free tier account 22
 Figure 7 GitHub page 23
 Figure 8 Visual studio code 24
 Figure 9 NodeJs & npm 26
 Figure 10 Application structure 28
 Figure 11 Application structure 29
 Figure 12 Lambda functions 30
 Figure 13 Amplify hosting 32
 Figure 14 Permissions policies 32
 Figure 15 Deployed application 32
 Figure 16 Deployed application on AWS 33
 Figure 17 IAM user 34
 Figure 18 Amplify initialization 34
 Figure 19 Amplify result 35
 Figure 20 Backend environment 35
 Figure 21 Provisioned Concurrency 36
 Figure 22 Scale-up code for Lambda 39
 Figure 23 Succeeded test Scale-up function 39
 Figure 24 Scale-down code for Lambda 40
 Figure 25 Succeeded test Scale-down function 41
 Figure 26 Monitor resource usage code for Lambda 43
 Figure 27 Succeeded test Monitor resource usage function 43
 Figure 28 Access AWS services with a user pool and an identity pool 44
 Figure 29 New user pool 46
 Figure 30 Identity pool 46
 Figure 31 Canary creation 47
 Figure 32 Canary monitoring 48
 Figure 33 Canary runs 49
 Figure 34 IAM role for Blue/Green deployment 49
 Figure 35 ELS 50
 Figure 36 Launch configuration 50
 Figure 37 Auto Scaling group 50
 Figure 38 CodeDeploy creation 50
 Figure 39 Deployment group creation 51
 Figure 40 New deploy on CodeDeploy 51
 Figure 41 Active instances in CodeDeploy 51
 Figure 42 Blue environment 52
 Figure 43 Green environment before deployment 52
 Figure 44 Green environment after 52
 Figure 45 X-RAY traces option 53
 Figure 46 X-RAY SDK installation 54
 Figure 47 X-RAY implementation 55
 Figure 48 X-RAY traces 55

 4

https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.lnxbz9
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.206ipza
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.44sinio
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.3ygebqi
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.2dlolyb
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.sqyw64
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.3cqmetx
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.1rvwp1q
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.1664s55
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.25b2l0r
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.kgcv8k
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.43ky6rz
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.2iq8gzs
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.xvir7l
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.3hv69ve
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.1x0gk37
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.4h042r0
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.2w5ecyt
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.1baon6m
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.2afmg28
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.pkwqa1
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.39kk8xu
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.1opuj5n
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.48pi1tg
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.2nusc19
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.1302m92
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.2250f4o
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.haapch
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.319y80a
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.1gf8i83
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.40ew0vw
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.2fk6b3p
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.upglbi
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.3ep43zb
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.1tuee74
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.4du1wux
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.2szc72q
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.184mhaj
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.3s49zyc
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.279ka65
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.meukdy
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.36ei31r
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.1ljsd9k
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.2koq656
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.zu0gcz
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.3jtnz0s
https://docs.google.com/document/d/1EccyPmExqk9Xk0pN3xshNaTOXwvBVjWM/edit#heading=h.1yyy98l

 Chapter 1. Introduction

 Nowadays, computer science is the fastest growing industry and one of the highest paid.
 Analysts, frontend & backend developers, database administrators - these and dozens of
 other specialities in the field of IT technologies are at the peak of demand. It is
 applicable in almost all areas of life, such as Medicine, Engineering, Business, Military,
 Government and others. Therefore, every year it expands and gains popularity in
 society. With this quite high demand, the number of new tools, libraries, programming
 languages and cutting-edge solutions are also growing, making the development and
 creation of new products easier and more accessible for everyone. As a result, the field
 continues to expand, gaining popularity and shaping the future. The tech industry is
 constantly evolving, introducing new technologies that streamline the development
 process and make it more accessible to a wider range of individuals.

 Cloud solutions have played a significant role in this democratization process. With the
 advent of cloud computing, developers now have access to scalable and cost-effective
 infrastructure without the need for significant upfront investments in hardware and data
 centers. In recent years, serverless techniques [1] have emerged as a game-changer in
 the world of cloud computing. Serverless architectures abstract away the underlying
 infrastructure, allowing developers to focus solely on writing code. In a serverless
 environment, applications are broken down into smaller functions that are executed in
 response to specific events. This event-driven paradigm not only simplifies
 development but also enhances scalability and cost efficiency.

 First of all, let’s give a definition of Microservices and Serverless computing [2].
 Microservices is an approach in which a system is built as a set of independent and
 loosely coupled services that can be created using various programming languages and
 data storage technologies. Serverless computing is a way to provide server services
 without renting/purchasing physical equipment. Servers in this case, of course, are used,
 but on the side of the service provider. The user does not interact with the infrastructure
 in any way and does not serve it, but at the same time he can write and deploy code
 using ready-made computing resources. To do this, it will focus on the fundamental
 characteristics of microservices-based application architectures and will determine those
 strategies, techniques, and tools that can be applied in the context of the AWS Lambda
 service [3], an example of a serverless service.

 Serverless architectures are event-driven and highly scalable. Developers can focus on
 writing code in the form of functions or microservices, which are executed in response
 to specific events or triggers. These events can include HTTP requests, database
 changes, file uploads, or scheduled tasks. With serverless, the infrastructure is
 abstracted away, and developers can concentrate on writing business logic rather than
 managing servers.

 5

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 One of the key benefits of serverless architectures is their ability to scale automatically
 based on demand. Cloud providers, such as AWS Lambda, dynamically allocate
 resources to handle incoming requests. This auto-scaling feature ensures optimal
 performance and cost efficiency, as resources are provisioned only when needed.
 Organizations can handle high traffic loads without worrying about infrastructure
 provisioning or capacity planning. Serverless architectures also offer built-in fault
 tolerance and high availability. Cloud providers handle underlying infrastructure
 failures, ensuring that functions or services are automatically re-executed in case of any
 issues. This inherent resilience improves application reliability and reduces the impact
 of potential failures.

 1. Motivation
 Serverless architectures and microservices offer several benefits, including reduced
 operational overhead, improved scalability and cost-effectiveness, and faster
 time-to-market for new applications and features. However, managing the life cycle of
 serverless microservices can be complex and challenging, particularly in large and
 dynamic environments. This is where Amazon Web Services (AWS) comes into play,
 providing a range of tools and services to help manage the life cycle of serverless
 microservices, including AWS Lambda, AWS IAM [4], AWS SAM [5] and others.

 The purpose of this final degree project is to explore some of the various tools and
 services offered by AWS for life cycle management of serverless microservices. The
 project aims to identify the key challenges and best practices for managing the life cycle
 of serverless microservices in AWS, and to demonstrate how these tools and services
 can be used to build, deploy, and manage scalable and highly available microservices.
 The project also explores topics such as continuous integration and continuous delivery
 (CI/CD), monitoring and logging, security and compliance. The project involves a
 hands-on approach, using real-world examples and scenarios to demonstrate the
 concepts and techniques learned. In conclusion, the motivation for this final degree
 project is to explore the challenges and best practices for life cycle management of
 serverless microservices in AWS, and to demonstrate how the tools and services offered
 by AWS can be used to build, deploy, and manage scalable and highly available
 microservices.

 In addition to creating a new product, service, website, or a simple application, it needs
 to be published, the data should be stored, secured and have full access to it. One of the
 popular solutions are web hosting, server rental or creating your own server room. If
 this is a small application or a medium-sized service with a database, then maintaining
 your server can be quite expensive due to the purchase of the necessary hardware,
 maintenance cost and hiring staff for its correct operation 24/7. It is necessary to
 calculate and predict the load correctly so as not to overpay for downtime in standby
 mode, or vice versa. If the load is not estimated well, then it is possible to lose potential
 customers, clients, sales, and this will certainly have a bad effect on the company /
 product / service. Therefore, every day, the topic of cloud storage is gaining great

 6

 demand among small and medium-sized businesses. Even tech giants such as Netflix,
 Adobe, Airbnb, Slack, Twitch, Spotify, etc. are using cloud solutions. For example:

 ● Netflix as one of the largest video streaming platforms utilizes AWS services
 including Amazon EC2 for computing, Amazon S3 for storage, Amazon RDS
 for databases, and Amazon CloudFront for content delivery

 ● Adobe utilizes AWS to power its cloud-based services. Adobe Creative Cloud
 and Adobe Experience Cloud are hosted on AWS, providing users with access to
 their creative tools and marketing solutions.

 ● Airbnb utilizes AWS for its scalability and reliability. AWS services like
 Amazon EC2, Amazon S3, and Amazon RDS are key components of Airbnb's
 infrastructure, allowing them to handle millions of bookings and user
 interactions.

 ● Slack relies on AWS to power its messaging platform. Amazon EC2, Amazon
 S3, Amazon RDS, and Amazon CloudFront provide the scalability and
 performance required to handle millions of concurrent users.

 ● Twitch is built on AWS infrastructure. Twitch uses AWS services like Amazon
 EC2, Amazon S3, Amazon DynamoDB, and Amazon CloudFront to support live
 video streaming, chat functionality, and community

 ● Spotify uses services like Amazon EC2, Amazon S3, and Amazon CloudFront
 helps Spotify handle the storage, delivery, and scalability requirements of its
 vast music catalog.

 Thanks to such a service you do not have to worry about buying and maintaining your
 own servers, and flexible configuration will allow customizing it to the needs of the
 client, depending on the required power, traffic volume, data volume, cost. As a result
 you can get a stable working product (cloud services guarantee from 99% uninterrupted
 operation and compensation in case of a non-working service on their part), flexible
 pricing policy (pay for what is used) and different settings for different scenarios, such
 as:

 - increase/decrease requests to the server

 - data recovery

 - global access to the data

 - cyberattacks

 To demonstrate the power of microservices and serverless architecture Amazon Web
 Services will be used as the cloud computing platform and the Airline booking
 Application that is provided by AWS as an example. For deployment, storing data,
 updates, and maintenance AWS’s products would be used, such as: AppSync, Amazon
 API Gateway, Lambda, Amplify [6], X-RAY [7], DynamoDB and Cognito [8] (all the
 product’s definitions would be described below). This platform had been chosen
 because it has a free tier account for testing all of their products with certain limits.

 7

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 AWS appeared on the market in 2006 and today occupies one of the leading places in
 terms of the provided capacities. Its services are used in various industries, such as:
 Advertisement & Marketing, Financial Services, Healthcare, Retail, Education, Energy,
 Government, etc.

 2. Objectives
 The main goal of this project is to explain what microservices are, how they work, how
 this cloud solution can be implemented to the typical application and show how a real
 project could be adapted to this approach, and showcase an example of an existing
 application.

 This work will address the process of creating microservices using serverless computing
 techniques exemplified on AWS Lambda to manage the computation, and API Gateway
 to offer the REST API after which the service is exposed. Among others, the strategies,
 and tools necessary for the following characteristics of microservices will be analyzed:

 1) Deployment, covering tools like AWS Amplify and the Serverless framework
 [1].

 2) Scaling, using provisioned concurrency techniques, and performance impact of
 using it.

 3) Updating, using canary release [9] and blue-green deployment [10] techniques
 for changing between software versions.

 4) Visibility and traceability, using telemetry tools such as AWS X-Ray to analyze
 and debug distributed applications.

 5) Securing, through the integration of services such as Amazon Cognito.

 3. Structure of Document
 This document is composed of five sections:

 1. Introduction. The motivation and objectives of the project are presented. This
 section describes the purpose and the goals of this project

 2. State of the art. This section describes the products and techniques that would be
 used or represented in this work. The main goal is to have a global vision of the
 project and how each part is working.

 3. Analysis. This section explains each technology, service or platform that is used
 in this project.

 4. Implementation. This section shows how all these techniques and products work
 together as a whole. It describes deeply the way how these tools and products
 are implemented and customized.

 5. Conclusions. This section is about the achievement of objectives that are defined
 in the introduction section and future work.

 8

 Chapter 2. Related Technologies
 and Tools

 This part briefly describes all the sections that are implemented in this project, which
 instruments/technologies/frameworks were used, their advantages and description. It
 gives a short theoretical explanation and understanding that it is needed for the practical
 part.

 1. Deployment. AWS SAM & Serverless framework
 The Serverless framework is one of the most well-known and popular frameworks for
 building serverless applications. Due to its compatibility with several backend options,
 it is widely used in conjunction with other frameworks. Users may choose their
 preferred platform among Microsoft Azure Functions, Google Cloud, and AWS thanks
 to the Serverless Framework.

 Advantages:

 ● Open-source framework;
 ● Supports functions written in different languages, including Python, C#, F#, Go,

 Node.js, and Ruby;
 ● Extensible with plugins;
 ● Supports different backends, including Kubernetes;
 ● Has a flexible variable system;
 ● Supports many cloud platforms simultaneously;
 ● It updates AWS lambda functions and associated triggers using a straightforward

 YAML abstract syntax.

 AWS SAM , also referred to as the AWS Serverless Application Model, serves as a
 powerful open source platform that empowers users to effortlessly construct serverless
 applications within the AWS ecosystem. This cutting-edge platform offers a
 comprehensive template specification, enabling users to precisely define their serverless
 applications, while the command line interface (CLI) tool provides a seamless and
 efficient development experience. Additionally, AWS SAM expands the functionality of
 Amazon Web Services CloudFormation by presenting a streamlined approach for
 identifying the essential AWS Lambda, Amazon DynamoDB, and Amazon API
 Gateway APIs that are crucial for the optimal performance of your serverless
 application.

 Here are several notable benefits associated with leveraging AWS SAM for serverless
 application development:

 9

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 ● Streamlined deployment: AWS SAM simplifies the deployment process through
 its template-based syntax, enabling developers to define and deploy serverless
 applications effortlessly. This facilitates a smooth onboarding experience and
 instills confidence in application deployment.

 ● Enhanced resource management: With AWS SAM, developers can utilize a
 concise and intuitive syntax to define AWS resources, including AWS Lambda
 functions, Amazon API Gateway APIs, and Amazon DynamoDB tables. This
 streamlined approach empowers developers to efficiently manage their resources
 and optimize application performance.

 ● Improved resource organization: AWS SAM introduces a hierarchical structure
 for organizing AWS resources, providing developers with a clear framework to
 manage application components and establish meaningful relationships between
 various resources. This organizational paradigm enhances overall development
 efficiency and resource management.

 ● Robust testing and debugging: AWS SAM equips developers with a local testing
 environment, enabling them to rigorously test applications locally before
 deploying them to the cloud. This facilitates comprehensive debugging and issue
 resolution, minimizing the impact on production environments.

 ● Strengthened security: AWS SAM incorporates security best practices and
 guidelines specifically tailored for deploying secure serverless applications. This
 empowers developers to build and deploy applications that meet the stringent
 security requirements of their organizations, fostering robust and reliable
 security measures.

 ● Cost optimization: By leveraging serverless architectures facilitated by AWS
 SAM, developers can take advantage of a pay-as-you-go model, where costs are
 incurred only for actual compute resource usage, rather than continuously
 paying for idle resources. This can lead to substantial cost savings compared to
 traditional, always-on compute architectures.

 In summary, AWS SAM offers a range of advantages including simplified deployment,
 improved resource management, enhanced resource organization, efficient testing and
 debugging, strengthened security measures, and potential cost savings. These benefits
 collectively contribute to a streamlined and efficient serverless application development
 process.

 Apart from AWS SAM, the Amplify service is also required to deploy the application
 into the cloud. This is a powerful development framework provided by Amazon Web
 Services that simplifies the process of building scalable and secure web and mobile
 applications. Here are the features that this service has:

 ● AWS Amplify streamlines the application development process by offering a
 simplified workflow and pre-configured backend services. Developers can easily
 set up authentication, data storage, APIs, and other essential services through a
 command-line or the AWS Amplify Console.

 10

 ● It seamlessly integrates with popular frontend frameworks such as React, React
 Native, Angular, and Vue.js. It provides libraries and UI components that
 facilitate seamless connectivity between frontend applications and backend
 services like AWS AppSync for real-time data synchronization or AWS Lambda
 for serverless computing. This integration simplifies development and ensures a
 cohesive end-to-end experience.

 ● This service offers a range of scalable backend services to cater to the demands
 of applications. Services like AWS AppSync for real-time and offline data
 synchronization, AWS Lambda for serverless computing, Amazon DynamoDB
 for NoSQL database storage, and Amazon S3 for file storage are readily
 available.

 ● Amplify offers a complete CI/CD pipeline for seamless application deployment
 and hosting. By connecting code repositories to Amplify, it gets a possibility to
 automate deployments, enabling continuous delivery of updates. Amplify
 supports various hosting options, including static website hosting with Amazon
 S3, serverless backends with AWS Lambda, and server-side rendering with
 AWS AppSync and Amazon CloudFront.

 2. Scaling. AWS Lambda
 AWS Lambda is a dedicated tool that helps you activate any code for any application
 without having to manage it. Any code will be executed based on events that will occur
 in AWS services. In simple words: you add your script, which should be executed in
 AWS Lambda, and set a trigger or event that will run this code. There is no need to do
 anything else, because - administration, code monitoring, security, logs, etc. - will be
 taken care of by AWS Lambda service (Figure 1).

 Advantages of leveraging AWS Lambda:

 ● Cost optimization: By utilizing AWS Lambda, you benefit from a cost-efficient
 approach where you pay solely for the compute time you consume. There are no
 upfront expenses or long-term commitments, and you can effortlessly scale your
 application to accommodate varying levels of traffic.

 ● Enhanced scalability: AWS Lambda automatically scales your applications
 based on incoming request traffic, enabling seamless handling of sudden spikes
 without requiring manual intervention. This ensures your application remains
 responsive and accessible even during high-demand periods.

 ● Language versatility: AWS Lambda supports multiple programming languages,
 including Java, Python, Node.js, and more. This flexibility empowers you to
 develop your application using the language of your preference, facilitating a
 smoother development experience.

 ● Reduced operational burden: With AWS Lambda, you are relieved of concerns
 regarding server maintenance, infrastructure provisioning, and capacity
 planning. This enables you to focus on core application development and
 delivery while AWS manages the underlying infrastructure.

 11

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 ● Improved reliability: AWS Lambda executes your code in a highly available and
 redundant environment, ensuring continuous application availability. Automatic
 scaling and failover capabilities minimize downtime and guarantee high levels
 of reliability.

 ● Seamless integration with AWS services: AWS Lambda seamlessly integrates
 with numerous other AWS services, such as Amazon S3, Amazon DynamoDB,
 Amazon SNS, and more. This simplifies the building, deployment, and
 management of applications that leverage these services.

 ● Event-driven computing: AWS Lambda empowers you to create event-driven
 applications that respond to specific events, such as modifications to data in an
 Amazon S3 bucket or the insertion of a new record in a DynamoDB table. This
 event-driven approach enhances application functionality and responsiveness.

 ● In summary, AWS Lambda offers a flexible, scalable, and cost-effective solution
 for running applications while minimizing operational overhead and maximizing
 reliability. Its seamless integration with other AWS services and event-driven
 computing capabilities makes it an ideal platform for building, deploying, and
 managing serverless applications.

 Figure 1 AWS Lambda Diagram [24]

 AWS Lambda only invokes code when needed and automatically scales resources to
 match the volume of incoming requests without any additional action from the client.
 The number of processed requests is not limited. AWS Lambda typically runs code
 within a few milliseconds of an event, and because scaling is automatic, function
 performance remains consistently high as event frequency increases. Because the code
 runs stateless, Lambda can create as many instances as needed (up to 3000 concurrent
 invocations) without lengthy deployments or setup delays.

 3. Updating. Canary release and blue-green deployment

 12

 Canary release is a strategic deployment method that empowers you to implement
 changes to your applications gradually and systematically, ensuring a controlled and
 measurable rollout. By adopting this approach, you significantly mitigate the potential
 risks associated with introducing new features or updates that may adversely affect the
 stability and performance of your application.

 Within the AWS ecosystem, there are multiple AWS services available to facilitate
 canary releases, including Amazon Route 53, Amazon CloudFront, and Amazon API
 Gateway. These services enable you to intelligently direct traffic between different
 versions of your application as shown in figure 2, ensuring a smooth transition and
 thorough evaluation of the changes.

 The canary release process typically encompasses the following essential steps,
 ensuring a meticulous approach [11]:

 1. Preparation: Careful planning is conducted to define the scope and objectives of
 the canary release. This involves identifying the specific features or updates to
 be introduced and determining the metrics and criteria for evaluating the success
 of the deployment.

 2. Multiple versions of the application are created to facilitate a controlled rollout.
 The canary version, representing the updated changes, is created alongside the
 existing stable version.

 3. Traffic routing is intelligently directed between the canary version and the stable
 version of the application. This allows for a gradual increase in traffic to the
 canary version while still serving the majority of users with the stable version.

 4. During the canary release, various monitoring tools and techniques are
 employed to assess the performance, stability, and user experience of the canary
 version. Metrics and logs are analyzed to detect any anomalies or issues that
 may arise.

 5. Based on the monitoring and evaluation results, the traffic to the canary version
 is incrementally increased if the performance and stability remain satisfactory.
 This gradual expansion ensures that any potential issues can be identified early
 and addressed before a full rollout.

 6. Depending on the evaluation results, a decision is made to either rollback the
 canary version if issues are detected, or to promote it as the stable version if it
 proves to be successful.

 By following this systematic approach, canary releases enable organizations to
 minimize risks, gather valuable insights, and ensure a smooth transition when
 introducing changes to their applications.

 AWS offers a variety of resources to assist you in putting into practice a canary release,
 including Amazon CloudWatch for monitoring, AWS X-Ray to analyze and debug
 distributed applications deployed with canary releases and AWS Lambda for automating
 deployment and rollback procedures. With the aid of these services, you may create a

 13

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 solid and dependable canary release procedure that guarantees the dependability and
 efficiency of your applications.

 To sum up, a canary release is an effective deployment approach that enables you to
 progressively roll out changes to your applications in a controlled and regulated manner.
 By utilizing AWS services, you may create a solid and dependable canary release
 procedure that lowers the danger of implementing new features or upgrades that can
 have an influence on the stability and performance of your application.

 Figure 2 Canary release [25]

 Blue-green deployment is a deployment technique that enables you to roll out changes
 to your application with minimal downtime and risk. This approach allows to test and
 validate changes in a production-like environment before making them available to the
 users (Figure 3).

 14

 Figure 3 Blue-green deployment [26]

 In AWS, a blue-green deployment can be implemented using various AWS services,
 such as Amazon EC2, Amazon ELB, and Amazon Route 53. The blue-green
 deployment process typically involves the following steps [12]:

 1. Create a new version of your application and deploy it to a separate
 environment, known as the "green" environment.

 2. Verify the new version of your application in the green environment and test it
 thoroughly to ensure that it is working as expected.

 3. Once the new version of your application is validated, switch the production
 traffic from the existing "blue" environment to the green environment.

 4. If the new version experiences any issues, you can quickly switch the production
 traffic back to the blue environment.

 5. After verifying that the new version is stable, you can decommission the blue
 environment.

 AWS provides a range of tools and services that can help you to implement a blue-green
 deployment, such as Amazon ELB for load balancing, Amazon Route 53 for routing
 traffic, and AWS CloudFormation for automating deployment and rollback processes.
 By using these services, you can build a robust and reliable blue-green deployment
 process that ensures the stability and performance of applications.

 15

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 In conclusion, blue-green deployment is a powerful deployment technique that enables
 you to roll out changes to your application with minimal downtime and risk. By using
 AWS services, you can build a robust and reliable blue-green deployment process that
 ensures the stability and performance of your applications and reduces the risk of
 introducing new features or updates that may impact their performance.

 The advantages of blue-green deployment in AWS include:

 1. Minimal Downtime: Blue-green deployment minimizes downtime during the
 deployment process, as traffic is only redirected from one environment to
 another once the new version of the application has been thoroughly tested and
 validated.

 2. Improved Testability: Blue-green deployment allows you to test and validate
 changes in a production-like environment, reducing the risk of introducing bugs
 or performance issues into your application.

 3. Increased Availability: Blue-green deployment ensures that your application is
 available and responsive even during a deployment, as traffic is redirected to the
 backup environment in case of any issues with the new version.

 4. Easier Rollback: If the new version of your application experiences any issues,
 you can quickly roll back to the previous version by redirecting traffic back to
 the original environment.

 5. Improved Scalability: Blue-green deployment allows you to scale your
 application in a controlled and measurable manner, ensuring that the new
 version is able to handle the traffic it receives.

 6. Better Resource Utilization: Blue-green deployment allows you to use resources
 more effectively, as you can decommission the original environment once the
 new version has been deployed and validated.

 For our deployments and releases we need to use CodeDeploy [13] service from AWS.
 This service makes it easier to automate deployment workflows, enforce consistency,
 and achieve seamless application updates.

 It serves as an agile and scalable deployment solution that streamlines the deployment
 process for diverse applications. It empowers you to define customized deployment
 configurations, precisely specify the target environment, and automate the entire
 deployment workflow, thereby simplifying the release of new features and updates.

 One of the advantages of CodeDeploy is its support for multiple deployment strategies,
 encompassing rolling deployments, blue/green deployments, and canary deployments.
 This remarkable flexibility enables you to select the most suitable strategy based on
 your application's unique requirements, while simultaneously minimizing downtime
 during the deployment process.

 Furthermore, it offers robust rollback capabilities in the event of deployment failures or
 undesired impacts on your application's performance. You can quickly roll back to an
 earlier version, minimizing disturbance and guaranteeing your application's availability

 16

 and reliability even in complex deployment settings. This service provides
 comprehensive monitoring and visibility features, empowering you to closely track the
 progress of deployments, monitor the health of instances, and gain valuable insights into
 the deployment process through detailed logs. This high level of visibility allows you to
 proactively troubleshoot issues, identify performance bottlenecks, and continuously
 enhance your deployment workflows.

 4. Visibility and Traceability. AWS X-Ray
 Visibility and traceability are crucial aspects of cloud computing and are essential for
 ensuring the performance and security of applications running on the AWS platform.
 AWS provides several tools and services to help organizations achieve visibility and
 traceability in their cloud environments. One of the key tools for visibility and
 traceability in AWS is CloudTrail. It provides a detailed log of all AWS API calls,
 including the identity of the caller, the time of the call, and the response. This data can
 be used to monitor activity within the AWS environment, detect security threats, and
 perform auditing and compliance tasks. Another important tool for visibility and
 traceability in AWS is Amazon CloudWatch [14]. It provides a centralized view of the
 performance and health of an application, including the ability to monitor and visualize
 metrics, logs, and events.

 AWS X-Ray is another tool that can help with visibility and traceability, it is a powerful
 tool for analyzing, debugging and visualizing the performance of distributed
 applications. It provides a detailed view of the requests and responses flowing through
 an application, making it easier to identify and resolve issues. One of the key benefits of
 using X-Ray is that it can be integrated with other AWS services, such as Amazon S3,
 Amazon DynamoDB, and Amazon Elasticsearch, to provide a complete view of the
 application. This allows developers to see how their application interacts with other
 services and how changes to those services may impact performance. X-Ray also
 provides a rich set of features for visualizing the performance of an application. The
 X-Ray service map shows a graphical representation of the request flow, making it easy
 to see which parts of the application are taking the most time. This can be helpful in
 identifying bottlenecks and performance issues. In addition to performance analysis,
 X-Ray also provides a tracing feature that allows developers to see the flow of requests
 through their application in real time. This can be especially useful for troubleshooting
 issues with production applications.

 Another important feature of X-Ray is its integration with AWS Lambda. With X-Ray,
 developers can easily analyze the performance of their serverless functions, including
 the time spent in different parts of the application and the number of invocations.

 Overall, AWS X-Ray is a valuable tool for any developer working with distributed
 applications on the AWS platform. Its ability to provide a comprehensive view of an
 application's performance, along with its integration with other AWS services, makes it
 a must-have for anyone looking to improve the performance and reliability of their
 applications.

 17

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 In addition to performance analysis and troubleshooting, X-Ray also provides security
 features to help ensure the security of applications running on the AWS platform. X-Ray
 integrates with AWS WAF, a web application firewall, to provide protection against
 common web attacks such as SQL injection, cross-site scripting, and others. Another
 security feature is the ability to encrypt X-Ray data in transit and at rest. This helps to
 ensure that sensitive information remains confidential and secure, even when it is
 transmitted over public networks.

 X-Ray also provides the ability to customize sampling rules. Sampling is the process of
 selecting a subset of requests to analyze, and X-Ray provides the ability to configure
 sampling rules based on custom attributes such as the request URL or the user's IP
 address. This allows developers to focus their analysis on the requests that are most
 important to them, and to avoid analyzing requests that are not relevant to their
 performance goals.

 Finally, X-Ray provides a rich API for accessing and analyzing performance data. This
 API can be used to extract performance data from X-Ray and integrate it with other
 tools and services. For example, developers can use the API to extract performance data
 from X-Ray and import it into a time-series database for further analysis and
 visualization (figure 4).

 Figure 4 X-RAY [27]

 For the X-RAY implementation we will need to use CloudWatch. It is a popular service
 provided by AWS that offers a wide range of monitoring, logging, and analysis
 capabilities to gain insights into the performance, health, and resource utilization of
 your applications and infrastructure.

 As the central hub for monitoring and managing your AWS environment, CloudWatch
 enables you to effortlessly collect, track, and analyze metrics, monitor log files, set up
 alarms, and even automate responses to changes in your AWS resources. With
 CloudWatch, you gain real-time visibility into the operational health and performance of
 your applications and infrastructure.

 18

 One of the standout features of CloudWatch is its ability to collect and store metric data
 from various AWS services and custom sources. These metrics encompass critical
 performance indicators like CPU usage, network traffic, disk I/O, and an array of other
 valuable insights. Leveraging these metrics, you can discern patterns, identify trends,
 and troubleshoot issues within your environment with precision.

 Moreover, CloudWatch Logs empowers you to effortlessly collect, monitor, and analyze
 log files originating from your applications and systems. By centralizing log data,
 leveraging the power of CloudWatch Logs Insights to search and filter logs, and setting
 up alarms based on log events, you gain an invaluable edge in identifying and resolving
 issues, tracking application behavior, and complying with security and auditing
 requirements. It offers a powerful feature that allows you to create customized
 dashboards, delivering a unified view of the health and performance of your AWS
 resources. These interactive dashboards provide real-time data and metrics tailored to
 your specific use cases, simplifying the monitoring and comprehension of your
 applications and infrastructure.

 CloudWatch seamlessly integrates with other AWS services, empowering you to harness
 its data and insights for automated actions or advanced analytics. For example,
 CloudWatch Events can trigger AWS Lambda functions, enabling you to automate
 actions through the robust capabilities of AWS Systems Manager.

 5. Securing. Amazon Cognito
 Amazon Cognito [15] is a cloud-based service offered by Amazon Web Services (AWS)
 that provides authentication and authorization for web and mobile applications. It helps
 developers build secure applications by providing user sign-up and sign-in functionality,
 as well as access control for their resources. Cognito enables developers to focus on
 building their applications, rather than writing custom authentication and authorization
 code. One of the key benefits of Amazon Cognito is its scalability. Cognito can handle
 millions of users, and the service automatically adjusts its capacity to meet the demands
 of your application. This eliminates the need for developers to worry about the
 underlying infrastructure required to support their authentication and authorization
 needs.

 Another benefit of Amazon Cognito is its ease of use. The service integrates with other
 AWS services, such as AWS Lambda and Amazon S3, making it easy for developers to
 add authentication and authorization to their applications. Cognito also supports the
 SAML and OIDC protocols, enabling integration with existing identity providers such
 as Okta, Auth0, and Microsoft ADFS.

 Cognito also provides a robust set of security features, including encryption of data at
 rest and in transit, and support for multi-factor authentication. The service is SOC, ISO,
 and PCI DSS compliant, making it a secure choice for storing and managing user
 identities.

 19

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 To sum-up, Amazon Cognito is a powerful and flexible solution for adding
 authentication and authorization to your web and mobile applications. The service
 provides scalability, ease of use, and a robust set of security features, making it a great
 choice for developers looking to build secure and scalable applications. Whether you
 are building a new application or adding authentication and authorization to an existing
 one, Amazon Cognito can help you get there faster and with less hassle.

 Figure 5 Amazon Cognito [28]

 Cognito contains two main components:

 ● User pools - a user directory in Cognito where you can store user profile
 information, such as name and email address. User pools make it easy for
 developers to add user sign-up and sign-in functionality to their applications,
 without having to worry about the underlying infrastructure and security. One of the
 key advantages of using user pools in Cognito is that they provide a scalable
 solution for managing user identities. User pools can support millions of users, and
 the service automatically adjusts its capacity to meet the demands of your
 application. This eliminates the need for developers to worry about the
 infrastructure required to support their authentication and authorization needs. User
 pools in Cognito also provide a user-friendly sign-up and sign-in experience for
 your users. Cognito integrates with other AWS services, such as AWS Lambda and
 Amazon S3, making it easy for developers to add authentication and authorization to
 their applications. User pools also support the SAML and OIDC protocols, enabling
 integration with existing identity providers such as Okta, Auth0, and Microsoft
 ADFS. Another advantage of user pools in Cognito is the security features it
 provides. Cognito uses encryption to protect user data at rest and in transit, and
 provides support for multi-factor authentication. The service is SOC, ISO, and PCI
 DSS compliant, making it a secure choice for storing and managing user identities.
 In conclusion, user pools in AWS Cognito provide a secure and scalable solution for
 managing user identities for your web and mobile applications. Whether you are
 building a new application or adding authentication and authorization to an existing

 20

 one, user pools in Cognito can help you get there faster and with less hassle. With its
 scalability, ease of use, and robust security features, user pools in Cognito are a
 great choice for developers looking to build secure and scalable applications. One of
 the cases of how Cognito works is shown in figure 5.

 Identity pools serve as a dedicated repository of user identity information that is
 tailored to an application's specific requirements and enables users to access AWS
 resources. Utilizing identity pools in AWS Cognito offers distinct advantages,
 notably granting users access to AWS services without necessitating the creation of
 an AWS account. This streamlined approach facilitates users' initial engagement
 with the application, effectively reducing barriers to entry. Furthermore, identity
 pools provide a mechanism for users to assume an AWS Identity and Access
 Management (IAM) role, enabling them to access AWS resources on behalf of the
 application. Cognito's identity pools also offer support for user authentication
 through diverse identity providers, such as social media platforms and enterprise
 directories. This simplifies the sign-up and sign-in processes for users, enhancing
 convenience and alleviating the burden on the application's management of user
 identities.

 Another significant benefit of utilizing identity pools in AWS Cognito is the
 inherent scalability they provide. Designed to accommodate millions of users,
 identity pools seamlessly adjust their capacity to meet the demands of the
 application. Consequently, concerns regarding the infrastructure required to support
 user identities are effectively mitigated.

 In summary, identity pools in AWS Cognito present a secure and scalable solution
 for facilitating users' access to AWS services. Whether embarking on the
 development of a new application or enhancing an existing one with robust
 authentication and authorization capabilities, leveraging identity pools in Cognito
 offers an expedited and streamlined approach. With their inherent scalability,
 user-friendly nature, and robust security features, identity pools in Cognito emerge
 as an excellent choice for developers aiming to construct secure and scalable
 applications.

 6. Tools
 For this project we need an AWS account. Amazon gives a free tier account for 12
 months, where Tier allows new customers to try out AWS services and become familiar
 with them before committing to a paid account, as we can see on the Figure 6.

 21

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 Figure 6 Free tier account

 The AWS Free Tier offers users access to a diverse selection of services, encompassing
 computing, storage, databases, and analytics. For instance, customers can leverage a
 t2.micro instance in Amazon Elastic Compute Cloud (EC2) for up to 750 hours per
 month at no cost. They can also utilize Amazon Simple Storage Service (S3) to store
 data up to 5 GB and make use of Amazon DynamoDB for up to 25 GB of data storage
 without incurring charges.

 To take advantage of the AWS Free Tier, users simply need to create an AWS account.
 Once the account is set up, they can immediately begin utilizing the available free
 services. If the usage surpasses the limits defined by the free tier, any additional usage
 will be subject to charges. However, customers are provided with a 12-month grace
 period to transition to a paid account if they require more services than what the free tier
 offers.

 The AWS Free Tier serves as an excellent starting point for new customers to explore
 and gain hands-on experience with AWS services. Whether they are building new
 applications, testing existing ones, or simply exploring the capabilities of AWS, the free
 tier provides a valuable resource to get started. With its extensive array of services,
 generous usage limits, and flexible pricing options, the AWS Free Tier offers an
 accessible opportunity to familiarize oneself with AWS and its benefits.

 Additionally, it is necessary to have a git account on any platform like GitHub, GitLab,
 BitBucket, etc. In this case, GitHub has been selected due to its popularity, prior
 experience, stability, student-friendly features, and availability at no cost. This account
 is going to be used for forking an example application into our repository for future
 work.

 22

 Figure 7 GitHub page

 GitHub is a web-based platform that offers software development hosting and version
 control using Git. It was established in 2008 and later acquired by Microsoft in 2018. As
 the largest host of source code globally, GitHub boasts a user base exceeding 40 million
 and hosts over 100 million repositories. By creating branches within a repository, users
 can work on separate features and subsequently merge their changes back into the main
 branch. Additionally, pull requests allow for proposed code modifications, which can be
 reviewed and approved by other team members.

 Another noteworthy aspect of GitHub is its extensive collection of open-source projects,
 enabling developers to easily utilize and customize existing codebases. This streamlines
 the process of building new applications, fostering efficiency and agility. Furthermore,
 GitHub provides an array of project management tools such as issues, milestones, and
 project boards, aiding teams in organizing and tracking their progress effectively.

 In addition to its collaborative nature, GitHub incorporates tools for ensuring code
 quality and security. GitHub Actions enables the automation of software development
 workflows, while GitHub Security Alerts notifies users of potential security
 vulnerabilities in their code.

 To sum up, GitHub stands as a robust platform for software development and
 collaboration, widely embraced by millions of developers worldwide. Its collaborative
 features, vast repository of open-source projects, and tools for code quality and security
 make it an indispensable tool for software development teams aiming to enhance
 productivity and efficiency.

 23

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 The next important thing is IDE. Nowadays, there are a lot of development
 environments, and it is not a big problem to find such a good product depending on
 different needs. For this project, Visual Studio Code has been selected because it is
 completely free and meets all the requirements.

 Figure 8 Visual studio code

 Visual Studio Code (VSCode) is a free and open-source code editor, created by
 Microsoft. One of the main advantages of VSCode is cross-platform compatibility,
 supporting Windows, macOS and Linux.

 VSCode has a lot of plugins and extensions, and it is also updating with new features
 and functionalities, such as debugging, code completion, and code analysis. This
 customizable aspect gives a possibility to configure VSCode to specific requirements.
 With its extensive functionality and wide-ranging features, Visual Studio Code offers a
 compelling solution for developers. Its user interface is not only versatile but also
 user-friendly, making it accessible even to beginners in coding (figure 8).

 All the front-end part is using JavaScript as the main language. JavaScript is a highly
 popular high-level programming language [16], empowers web developers to bring
 interactive and dynamic functionalities to websites. Its versatility and expressive syntax
 provide a seamless experience for crafting responsive user interfaces, manipulating data,
 and interacting with web APIs. Supported by contemporary web browsers, JavaScript
 stands as a foundational language in the realm of web development. Its adaptability and
 vast library ecosystem extend its utility to both front-end and back-end scenarios.

 For the application, it is necessary to install:

 ● Python
 ● Node.js
 ● Vue.js
 ● Quasar framework
 ● SAM CLI
 ● Docker

 24

 Nowadays, Python is one of the most popular, high-level programming languages
 known for its simplicity, readability, and versatility. It has clean, concise syntax and
 promotes code readability. Apart from the standard library and a vast ecosystem of
 third-party modules and frameworks, Python enables developers to build a wide range
 of applications, from web development and scientific computing to data analysis and
 artificial intelligence. Additionally, Python's cross-platform compatibility ensures that
 applications written in Python can run seamlessly on various operating systems.

 JavaScript code may now be executed outside a web browser thanks to the robust,
 adaptable and open-source runtime environment Node.js . It is the perfect option for
 developing scalable and high-performance server-side applications because of its
 event-driven and non-blocking I/O style, which ensures effective handling of numerous
 concurrent requests. Developers have access to a wide number of tools and functions
 through its robust ecosystem of modules and libraries, enabling them to produce
 original and ground-breaking solutions.

 Vue.js is a lightweight and powerful JavaScript framework designed for building
 dynamic and interactive user interfaces. It offers a modular and component-based
 architecture, making it easy to develop and maintain complex UIs. With its reactivity
 system and efficient rendering, this framework enables seamless data binding and
 real-time updates. It boasts a thriving ecosystem and strong community support,
 solidifying its position as a popular choice for modern web development.

 The Quasar Framework is an open-source framework that expands the capabilities of
 Vue.js. This framework is quite popular among developers to construct web and mobile
 applications that are both highly efficient and responsive, all while utilizing a single
 codebase. By offering an extensive array of pre-built components, themes, and plugins,
 Quasar simplifies the development process and facilitates swift prototyping.
 Furthermore, its adaptable design system guarantees seamless compatibility across a
 wide range of platforms and screen sizes, resulting in a consistent and optimal user
 experience. Through its wide range of customization options, developers can
 personalize their applications to meet specific requirements and construct interfaces that
 are truly distinct. The Quasar Framework is efficient, scalable, and cross-platform,
 making this tool so popular for creating cutting-edge applications fast and simple.

 AWS SAM CLI , or the AWS Serverless Application Model Command Line Interface,
 is a tool that allows developers to manage their serverless applications on the Amazon
 Web Services (AWS) cloud platform [17]. It provides a local development environment
 for building, testing, and debugging serverless applications and functions built using the
 AWS Serverless Application Model (SAM) framework.

 One of the key advantages of the AWS SAM CLI is its ease of use. It provides a simple,
 intuitive command line interface that makes it easy to manage serverless applications
 and functions. This helps to streamline the development process and reduce the time
 and effort required to build, test, and deploy serverless applications.

 25

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 Another advantage of the AWS SAM CLI is its integration with AWS services. The CLI
 integrates seamlessly with other AWS services, such as AWS Lambda, Amazon S3, and
 Amazon API Gateway, making it easy to manage serverless applications and functions
 built using these services. This integration allows developers to quickly and easily
 manage their serverless applications, without having to use multiple tools or navigate
 complex AWS console interfaces.

 Another noteworthy strength of the AWS SAM CLI is its integration with various AWS
 services. Integrating seamlessly with services like AWS Lambda, Amazon S3, and
 Amazon API Gateway, the CLI facilitates the management of serverless applications
 and functions developed using these services.

 Docker is an open-source platform that provides containerization technology for
 developing, deploying, and running applications. It allows developers to package their
 applications along with their dependencies into lightweight and portable containers.
 These containers can then be easily deployed on any system that has Docker installed,
 ensuring consistent and reliable application execution across different environments.
 Docker simplifies the software development and deployment process by abstracting
 away the underlying infrastructure, enabling efficient resource utilization and
 scalability.

 Moreover, when working with JavaScript modules, it is recommended to utilize a
 package manager called NPM. NPM offers a lot of advantages, including its free and
 user-friendly, extensive documentation, and the ability to swiftly install all the required
 libraries with a single command. Leveraging the power of NPM streamlines the
 management of JavaScript modules, enabling developers to easily integrate and utilize
 the necessary libraries in their projects.

 Figure 9 NodeJs & npm [29]

 NPM (Node Package Manager), a package manager for the JavaScript programming
 language, offers a comprehensive solution for managing and distributing code packages,
 including libraries and tools, specifically designed for Node.js applications. NPM
 streamlines the process of integrating, updating, and sharing packages, significantly
 simplifying the development and maintenance of applications.

 26

 Chapter 3. Exemplary
 Microservices-based

 Application

 This chapter describes the use of all the technologies and tools that are needed for the
 application and its architecture.

 1. Application architecture
 The application that is used for this project is open source from Amazon Web Services
 and could be found on their GitHub account “aws-samples”. It was created for the
 testing needs and has the next structure (figure 10):

 1) Front-end

 The front-end of the application is built using Vue.js as the core framework,
 providing a robust and scalable foundation. Quasar is utilized for the UI,
 offering a comprehensive set of components and tools for creating a visually
 appealing user interface. Amplify is incorporated to streamline the
 authentication process and enable seamless integration with AWS services,
 ensuring a secure and efficient user experience.

 2) Data

 All data within the application is structured according to GraphQL types,
 promoting efficient and flexible data management. DynamoDB serves as the
 primary data storage solution, leveraging its scalability and high-performance
 capabilities. Python is the core language utilized for all services. JavaScript is
 employed for the front-end development, ensuring a cohesive and unified coding
 environment.

 3) API

 The application's API layer is managed by AppSync, which acts as a centralized
 hub for GraphQL interactions with other services. AppSync provides a seamless
 integration between different components, facilitating efficient data retrieval and
 manipulation.

 4) Auth

 Cognito, a robust authentication and user management service, is utilized to
 provide JSON Web Tokens (JWT) for secure authentication. Together with
 AppSync, it enables fine-grained authorization control, allowing administrators

 27

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 to define access privileges for different user roles. This ensures that users can
 only access the data types and resources that are authorized for their specific
 roles.

 5) Messaging

 Step Functions handle the process for bookings, while SNS handles
 service-to-service messaging between Booking and Loyalty.

 Figure 10 NodeJs & npm [30]

 2. Project structure
 As it was mentioned before, this project will analyze different strategies, tools
 and services such as AWS X-RAY, Amplify, Lambda functions, etc. It has five
 parts: Deployment, Scaling, Updating, Visibility and Securing. As shown in
 Figure 11, it has the following structure:

 28

 Figure 11 Project structure

 The first step is to deploy the application example in AWS. Thanks to Amplify and
 serverless framework this process will not take too much time and will do most of the
 deployment automatically. The deployment part will be discussed in detail in chapter 4
 of this project.

 The next step is to configure the authentication service with Cognito. It sets up the
 registration, authentication, creates users, identity pools and setup required security
 layers. Thanks to this service it is possible to configure the sign in and sign up processes
 with the specific requirements and needs.

 After that, it is essential to create lambda functions for different scenarios for the scaling
 part of the application as shown in figure 12.

 29

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 Figure 12 Lambda functions

 For the update part, Canary Release and Blue/Green deployment would be implemented
 using CodeDeploy, CloudWatch, IAM and other AWS services.

 The last step is to use the X-RAY SDK in the project and then connect AWS X-RAY to
 analyze and find errors in the application. All the required steps and code are described
 in the next chapter.

 30

 Chapter 4. Deployment

 This section describes the whole process of configuration of the application in AWS.

 1. Deploy
 We deploy our frontend section of the project with Amplify Hosting; it will do it
 automatically [18]. AWS (Amazon Web Services) offers a hosting platform called
 Amplify Hosting that makes it easy and affordable to host static websites and web apps.
 It offers a range of features that make it simple to create and scale applications, such as
 content delivery, secure authentication, and continuous deployment.

 The simplicity of usage of Amplify Hosting is one of its main benefits. Without having
 to worry about underlying infrastructure or scalability difficulties, Amplify enables you
 to rapidly design and launch a web application or static website. So that you can
 concentrate on creating and enhancing your application, it automatically handles the
 deployment and administration of your application.

 The affordability of Amplify Hosting is another benefit. Because of Amplify's flexible
 pricing structure, you only pay for the resources you really utilize. Because they do not
 have the funds for more expensive hosting options, startups and small enterprises find it
 to be an appealing choice.

 Moreover, Amplify Hosting offers a high level of security. Amplify protects your
 application and its data using Amazon security features including encryption, access
 restrictions, and logging. This gives you peace of mind while assisting in the protection
 of your application and its users from security risks.

 To offer a comprehensive solution for developing, deploying, and maintaining web
 apps, Amplify also connects with other Amazon services like Lambda and AppSync.
 This connection offers developers a smooth experience while making it simple to add
 features and functionality to your application.

 Last but not least, Amplify Hosting is a reliable and cost-effective hosting service
 offered by Amazon. Because of its ease of use, affordability, security, and integration
 with other Amazon services, it is the best option for developers and businesses wishing
 to create and extend static websites and online apps. Whether you are a newbie or
 skilled developer, Amplify Hosting is assured to satisfy your requirements and help you
 achieve your goals.

 To get started, it is necessary to link a personal GitHub account, after which it will
 create a fork of this project under this account, the next step is to enter the name of the
 application and select an Amplify role.

 31

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 Figure 13 Amplify hosting

 If there are no roles created yet, it could be created as it is shown on Figure 14.

 Figure 14 Permissions policies

 On the last step of deploying, it shows a page of executed actions and the link on the
 deployed application (Figures 15 and 16).

 Figure 15 Deployed application

 32

 Figure 16 Deployed application on AWS

 The next step is to deploy the backend part, so in the terminal, where the Amplify CLI
 is already installed, it is necessary to type amplify configure . Thanks to this command,
 all the required data for the amplify account can be indicated and it makes a deployment
 via terminal:

 1) Sign into your personal AWS administrator account → it will open an
 authentication form in the browser.

 2) The specific region where the application deployed has been indicated. The
 Central Europe zone - Frankfurt with code “ eu-central-1” has been chosen.

 3) Username → After the name has been placed, it opens an IAM form to create a
 user with permissions and policies that are needed to deploy.

 4) Introduce an Access key ID of the user.
 5) Introduce a Secret access key of the user.
 6) Profile Name: This would update/create the AWS Profile in the local machine.

 As a result, a new user in the IAM service was created (figure 17), setted it locally and
 configured Amplify on the local machine (figure 18).

 33

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 Figure 17 IAM user

 Figure 18 Amplify initialization

 The next step is to initialize a project with Amplify command amplify init :

 1) Enter a name for the environment.
 2) Select the authentication method → it has options to choose between AWS

 access keys, AWS profile and Amplify Studio. In this case AWS Profile has
 been selected.

 3) Indicate a profile to use (this profile has been created in the step before).

 It shows a message that the project has been successfully initialized and connected to
 the cloud (Figure 19).

 34

 Figure 19 Amplify result

 Figure 20 Backend environment

 On Figure 20 the final part of the application’s deployment is shown.

 2. Scaling. Lambda functions
 As it was described before, Lambda functions give us a possibility to execute our code
 without any server. These functions provide automatic scalability, dynamically adjusting
 the provisioned infrastructure based on incoming request rates. This eliminates the need
 for manual capacity planning and allows applications to quickly respond to changing
 workloads. The functions scale horizontally by adding more instances to distribute the
 workload during high request volumes and scaling down during low periods to optimize
 resource utilization. AWS Lambda supports an event-driven architecture, seamlessly
 integrating with other AWS services to trigger functions based on specific events.
 Scaling behavior could be customized through configurable settings, ensuring optimal
 performance and resource allocation. With automatic scalability, Lambda functions
 enable applications to handle traffic spikes, accommodate varying workloads, and
 deliver a seamless user experience without manual intervention.

 35

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 Provisioned Concurrency in AWS Lambda functions is a robust capability that
 guarantees consistent performance and minimized cold start durations. By leveraging
 provisioned concurrency, it is possible to pre-warm Lambda function instances to
 sustain a predetermined level of capacity, thereby enabling prompt response to incoming
 requests.

 Through the configuration of provisioned concurrency, a fixed number of function
 instances are allocated and kept in a warmed state, readily available to process requests.
 This eradicates the necessity for cold starts, which transpire when a function instance is
 initiated from scratch to handle a request. The presence of pre-warmed instances
 significantly diminishes latency, ensuring anticipated response times for applications.

 The advantages of provisioned concurrency are particularly pronounced in applications
 that necessitate stringent latency requirements or confront sudden surges in traffic. By
 ensuring the availability of warm instances at all times, it upholds responsiveness even
 in high-demand scenarios.

 This feature is adjustable and can be tailored to suit the specific needs of an application
 by defining the desired number of provisioned concurrency instances. Furthermore, the
 allocation can be dynamically modified to scale up or down in response to changing
 traffic patterns.

 Provisioned concurrency empowers developers to optimize the performance of Lambda
 functions and furnish users with a consistent and seamless experience. By eliminating
 cold starts and reducing latency, it facilitates swifter response times, ensuring that the
 application is always primed to handle incoming requests. For example, for the
 scenarios with 10,000 requests (figure 21), the function is configured with a Provisioned
 Concurrency of 7,000 [23]:

 Figure 21 Provisioned Concurrency [31]

 In case #1, 7,000 requests are handled by the provisioned environments with no cold

 start. The remaining 3,000 requests are handled by new, on-demand execution

 environments.

 36

 In cases #2-4, all requests are handled by provisioned environments in the minute when

 they arrive.

 Serverless autoscaling of Lambda functions is a dynamic and efficient mechanism that
 automatically adjusts function capacity based on workload. With this capability, it is
 possible to ensure optimal resource allocation and responsiveness without manual
 scaling.

 By leveraging serverless autoscaling, Lambda functions seamlessly adapt to changes in
 demand, scaling up or down to handle workloads. Additional instances are provisioned
 during high demand to process requests promptly. During low demand, the
 infrastructure scales down to optimize resource utilization and minimize costs.

 This autoscaling capability is inherent in the serverless architecture. AWS Lambda,
 along with services like Amazon CloudWatch, monitors the workload and adjusts
 scaling automatically.

 Scaling policies could be defined based on metrics such as request count, latency, or
 error rates. These policies align the number of instances with the workload, ensuring
 optimal performance and cost efficiency.

 Serverless autoscaling is particularly advantageous for applications with unpredictable
 workloads. It enables scalability and elasticity, allowing applications to handle spikes in
 traffic and optimize resource utilization.

 Quite often there are applications that have one part of the services serverless and
 another one that uses EC2 instances. That happens with the services whose
 requirements exceed the capabilities of Lambda. This kind of application is called
 “Hybrid application” on which the scaling part of this project was focused. Lambda
 functions were created for scale control of EC2 instances.

 For the application scaling [19] it is essential to control some cases such as:
 scale-up/scale-down of traffic and monitor resource usage. For these scenarios three
 Lambda functions are implemented.

 To create a new function, we must complete the next requirements:

 ● Enter a function name, it is better to put a name that best describes the
 functionality.

 ● Choose the language to use to write our function, it supports
 .NET/Java/Python/Ruby/Node.js/Go.

 ● Choose an architecture between x86_64 and arm64. Arm64 – 64-bit ARM
 architecture, for the AWS Graviton2 processor and x86_64 – 64-bit x86
 architecture, for x86-based processors.

 ● Set an execution role. By default, it could create an execution role with basic
 permissions, and later it could be modified according to your needs. Another

 37

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 option is to use an existing one (it could be created before using IAM Service
 with the required policies).

 Also, it has Advanced Settings where we could:

 ➔ Enable Code signing
 ➔ Enable function URL
 ➔ Enable tags
 ➔ Enable VPC

 After creating a function, it opens a Code editor where we could put our function code.
 Besides, we could create a JSON file that would be used as input data for our tests. In
 this case we are using JavaScript. After completing the code part, it could be tested
 without any server. We could put a trigger on how this event would be executed (API
 Gateway, AWS IoT, DynamoDB, CloudWatch, etc.), destination, it gives us a possibility
 to monitor the execution, how much memory was used, process time, logs, errors, etc.

 First Function : Scale-Up Task

 The purpose of this function is to automatically scale up the infrastructure based on a
 predefined threshold, such as increased traffic or workload demand.

 The function code:

 exports.handler = async (event) => {

 const AWS = require('aws-sdk');
 const autoscaling = new AWS.AutoScaling();

 const params = {
 AutoScalingGroupName: ' js-app-auto-scaling-group' ,
 DesiredCapacity: 2

 };

 try {
 await autoscaling.setDesiredCapacity(params).promise();
 console.log('Scaling up the infrastructure...');
 return {
 statusCode: 200 ,
 body: 'Infrastructure scaled up successfully'

 };
 } catch (error) {

 console.error('Error scaling up the infrastructure:' ,
 error);

 return {
 statusCode: 500 ,
 body: 'Error scaling up the infrastructure'

 };
 }

 };

 The purpose of the "Scale Up" feature is to enhance the capacity or resources of the
 infrastructure in response to increasing demand or workload. This functionality is

 38

 commonly employed in scenarios where automatic scaling is configured, such as an
 Auto Scaling Group within the AWS environment.

 The "Scale Up" function operates by adjusting the desired capacity of the Auto Scaling
 Group, effectively introducing additional instances to the infrastructure. Utilizing the
 AWS SDK, this function interacts with the Auto Scaling service and sets the desired
 capacity to a higher value.

 By invoking this function, a scaling process is triggered, which prompts the
 infrastructure to provision supplementary resources to effectively manage the increased
 workload. This function plays a crucial role in ensuring that the application can
 effectively handle elevated traffic and sustain optimal performance levels during peak
 periods.

 First Lambda function for Scale-up (figure 22):

 Figure 22 Scale-up code for Lambda

 Figure 23 Succeeded test Scale-up function

 Second Function : Scale-Down Task

 39

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 The purpose of this function is to automatically scale down the infrastructure based on a
 predefined threshold, such as decreased traffic or workload demand.

 The function code (figure 23):

 exports.handler = async (event) => {

 const AWS = require('aws-sdk');
 const autoscaling = new AWS.AutoScaling();

 const params = {
 AutoScalingGroupName: ' js-app-auto-scaling-group' ,
 DesiredCapacity: - 2

 };

 try {
 await autoscaling.setDesiredCapacity(params).promise();
 console.log('Scaling down the infrastructure...');
 return {
 statusCode: 200 ,
 body: 'Infrastructure scaled down successfully'

 };
 } catch (error) {

 console.error('Error scaling down the infrastructure:' ,
 error);

 return {
 statusCode: 500 ,
 body: 'Error scaling down the infrastructure'

 };
 }

 };

 Figure 24 Scale-down code for Lambda

 40

 Figure 25 Succeeded test Scale-down function

 The objective of the "Scale-Down" feature is to automate the process of downsizing the
 infrastructure, thereby minimizing resource consumption and reducing costs. This
 functionality is typically employed in situations where there is a decrease in demand or
 workload, necessitating the release of surplus resources to optimize operational
 efficiency.

 The precise operations carried out by the "Scale-Down" function can vary depending on
 the specific implementation, but generally, it encompasses the following tasks:

 1. Acquiring the current state and metrics of the infrastructure components, such as
 auto-scaling groups, EC2 instances, or other relevant resources.

 2. Analyzing workload or demand patterns to assess the need for scaling down.

 3. Calculating the optimal number of resources or capacity to be reduced based on
 predefined rules or thresholds.

 4. Triggering the necessary actions to downscale the infrastructure, such as
 terminating EC2 instances, removing resources from load balancers, or adjusting
 auto-scaling group configurations.

 5. Monitoring and verifying the successful completion of the scaling down process.

 6. Providing appropriate feedback or a response indicating the outcome, whether it
 is a success or failure, of the scaling down operation.

 By employing the "Scale Down" function, organizations can effectively optimize their
 resource allocation, mitigate unnecessary costs, and ensure that their infrastructure
 aligns with the actual demand or workload at any given time.

 Third Function: Monitor Resource Usage

 The Purpose of this function is Monitors the resource usage of the infrastructure and
 provides insights for better scaling decisions.

 The function code (figure 26):

 41

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 exports.handler = async (event) => {

 const AWS = require('aws-sdk');
 const cloudwatch = new AWS.CloudWatch();

 const params = {
 Namespace: 'AWS/EC2' ,
 MetricName: 'CPUUtilization' ,
 Dimensions: [
 {
 Name: 'InstanceId' ,
 Value: ' i-07446e304954ed261 '

 }
],
 Statistics: ['Average'],
 Period: 300 ,
 StartTime: new Date (Date .now() - 300000), // Start time 5

 minutes ago
 EndTime: new Date ()

 };

 try {
 const data = await

 cloudwatch.getMetricStatistics(params).promise();
 const averageCPUUtilization = data.Datapoints[0].Average;
 const threshold = 70 ; // Set your desired CPU threshold for

 scaling

 if (averageCPUUtilization > threshold) {
 console.log('CPU utilization exceeds the threshold.

 Scaling up the infrastructure...');
 // Trigger the Scale Up function or perform scaling

 actions here
 } else {

 console.log('CPU utilization is below the threshold. No
 scaling required.');

 }

 return {
 statusCode: 200 ,
 body: 'Resource usage monitored successfully'

 };

 42

 Figure 26 Monitor resource usage code for Lambda

 Figure 27 Succeeded test Monitor resource usage function

 The primary objective of the "Resource Usage Monitoring" function is to systematically
 gather and track data on resource utilization for specific metrics within your
 infrastructure. This function enables the continuous monitoring of resource usage,
 empowering informed decision-making based on the comprehensive data collected.

 Here are some distinctive characteristics of the "Monitor Resource Usage" function:

 ● Leveraging the AWS SDK, this function interacts with AWS services, primarily
 the CloudWatch service, to facilitate the collection and monitoring of resource
 usage data.

 ● It defines crucial parameters for the CloudWatch getMetricStatistics API call,
 including the namespace, metric name, dimensions, statistics, and time range.

 ● By employing the defined parameters, the function initiates an asynchronous
 API call to CloudWatch, retrieving the resource usage data.

 43

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 ● Extracting the pertinent information from the response, such as the metric value
 or aggregated statistics, is an essential step performed by the function.

 ● Depending on specific requirements, the function can execute diverse operations
 on the collected data. Examples include logging the data, storing it in a database,
 generating reports, or triggering actions based on predetermined conditions.

 ● Furthermore, the function can be scheduled to run at regular intervals using
 AWS CloudWatch Events or a similar scheduling mechanism. This feature
 ensures continuous monitoring of resource usage, allowing for insights into
 trends and patterns over time.

 By implementing the "Monitor Resource Usage" function, organizations can proactively
 track and manage their resource utilization, enabling effective resource allocation, cost
 optimization, and the ability to respond promptly to changes in demand or workload.

 To sum up, we could create more Lambda functions to make our application more
 serverless, elastic and easy to manage in case of errors or overloads.

 3. Cognito

 One of the most important steps in developing any application where we have a user
 Database with their personal data, is the security part. We have to implement the way
 they create accounts, authentication part, user management and synchronization. Thanks
 to Amazon Cognito it resolves all these needs and could cover most of the requirements.
 As it was described before, it has two main components: user and identity pools.

 Figure 28 Access AWS services with a user pool and an identity pool [32]

 44

 As shown in figure 28, once a user pool authentication process is successfully
 completed, Amazon Cognito will provide tokens for the user pool associated with the
 application. These tokens serve as credentials and can be utilized to exchange for
 temporary access to a diverse range of AWS services through an identity pool. This
 robust mechanism enables applications to securely interact with AWS resources and
 leverage the extensive functionality offered by various services. By effectively utilizing
 these tokens, developers can ensure the secure and efficient utilization of AWS
 resources within their applications [22].

 Firstly, we need to create the user pool:

 1) Enter a name
 2) In the attributes tab we configure how the users will sign in. It has 2 variants:

 a) Use a username (Optionally, we could allow signing in with verified
 email, phone and preferred username, every option could be selected)

 b) Use an email/phone (We could select to signing in with email or phone
 only, or both)

 Also, we could choose which field in the sign-up form is required, for example:
 address, name, surname, birthday, gender, etc.

 3) The next part is policies. Here we set a password length, if the special
 characters/numbers/uppercase letter/lowercase letter are required. We could
 allow users to create accounts themselves, or only administrators could do that.
 The last thing to set is the number of days when the temporary password expires.

 4) The possibility to enable MFA (Multi-Factor Authentication) and make it
 optional or required. Configure the way how users will be able to recover their
 accounts: by email, phone or only by contacting the administrator. For
 verification or resetting an old password, we could choose where the code would
 be sent (email, phone (additional costs would be charged) or no verification).

 5) In the next part, we could customize our email/phone message
 6) We could put tags
 7) Remember user’s devices
 8) App clients
 9) Triggers

 After the whole configuration, we will see a summary tab with all settings that we set,
 and we could modify any of them or just create it.

 45

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 Figure 29 New user pool

 To create an Identity pool, we need to complete 2 steps:

 1) Enter a pool name, we could enable the access to the pool for unauthorized
 identities, choose authentication flow settings between enhanced or basic and
 authentication providers

 2) Set permissions

 Finally, we will get the next pool:

 Figure 30 Identity pool

 4. Updating

 After the deployment of the application on AWS with Amplify, we could create our
 first canary using CloudWatch to monitor, analyze, and fine-tune the application
 during the release process (figure 31).

 46

 Figure 31 Canary creation

 Monitoring plays a pivotal role in the success of a Canary release strategy, ensuring
 that the new version meets expectations while safeguarding the user experience.
 Below are unique monitoring practices to consider:

 • Comprehensive Performance Metrics: Continuously monitor essential performance
 metrics during the canary stage, including response times, error rates, CPU and
 memory utilization, network latency, and any other relevant indicators specific to
 your application. These metrics provide insights into the overall health and
 efficiency of the new version.

 • In-Depth Analysis of Logs and Traces: Dive into the logs and traces generated by
 the canary stage, leveraging powerful tools like AWS X-Ray, to uncover any errors,

 47

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 exceptions, or performance bottlenecks. This detailed analysis sheds light on the
 root causes of issues and helps optimize the system's performance.

 • Intelligent Alerting and Proactive Notifications: Establish robust alerting
 mechanisms that promptly notify you of any unusual behavior or breaches of
 predefined thresholds. This allows for immediate action and facilitates swift
 rollbacks if necessary, minimizing the impact on users. Proactive notifications
 ensure that you stay informed and can respond swiftly to any potential issues.

 • User-Centric Feedback Collection: Solicit feedback from a select group of users
 directed to the canary stage, employing various methods such as surveys, feedback
 forms, or direct communication channels. This user-centric approach helps identify
 any usability issues or bugs that may have eluded automated monitoring, providing
 invaluable insights for improvement.

 By implementing these monitoring practices, you can confidently navigate the
 intricacies of the Canary release strategy, ensuring the successful introduction of
 new features while maintaining an impeccable user experience.

 In our case, we can monitor the app through an AWS service called CloudWatch as
 shown below in figure 32 and 33:

 Figure 32 Canary monitoring

 48

 Figure 33 Canary runs

 To deploy the JavaScript application using a Blue/green deployment strategy [20]
 the following AWS services were used:

 • AWS EC2
 • AWS CodeDeploy
 • AWS IAM
 • Github

 1) Make a clone of the application repository on the local machine
 2) Create an IAM role from AWS console and give it the

 “AmazonEC2RoleforAWSCodeDeployLimited” policy (figure 34):

 Figure 34 IAM role for Blue/Green deployment

 3) Elastic load balancing attached to the previous group (figure 35):

 49

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 Figure 35 ELS

 4) Create a launch configuration for Autoscaling (figure 36):

 Figure 36 Launch configuration

 5) Create an Auto Scaling group with the previous launch configuration (figure
 37):

 Figure 37 Auto Scaling group

 6) Create an application on CodeDeploy (figure 38):

 Figure 38 CodeDeploy creation

 50

 7) Create a deployment group on the code to deploy the application and choose
 Blue/green Deployment (figure 39):

 Figure 39 Deployment group creation

 8) Create a Deployment on CodeDeploy -> Deployments (figure 40):

 Figure 40 New deploy on CodeDeploy

 After Deployment is created 2 instances are automatically launched by the autoscaling
 group that is configured with CodeDeploy as shown in figure 41:

 Figure 41 Active instances in CodeDeploy

 Now the app is hosted with Blue/Green Deployment.

 51

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 The Blue environment after deployment started (figure 42):

 Figure 42 Blue environment

 In figure 43 shows the Green Environment Before testing (inactive):

 Figure 43 Green environment before deployment

 After the green environment has been tested and verified, the traffic switched to this
 environment and now it is active (figure 44):

 Figure 44 Green environment after

 52

 Blue/Green deployment in AWS is a robust approach that ensures smooth and risk-free
 updates to applications. It involves maintaining two identical environments, Blue and
 Green, where the Blue environment represents the existing stable version while the
 Green environment hosts the updated version. By directing traffic to the Green
 environment after a successful update, any potential issues can be detected without
 impacting end users. If issues arise, traffic can be immediately redirected back to the
 stable Blue environment. This deployment strategy provides increased reliability,
 minimizes downtime, and allows for easy rollbacks in case of unexpected problems.
 With Blue/Green deployment in AWS, developers can confidently deliver updates while
 maintaining a seamless user experience.

 5. AWS X-RAY
 During the deployment of a JavaScript application with Amplify by Canary release
 strategy it has an option named X-Ray trace on AWS CloudWatch that integrates
 directly with the app deployed as shown in figure 45.

 Figure 45 X-RAY traces option

 The presence of X-Ray traces on the CloudWatch dashboard signifies that the trace data
 produced by the application's integration with AWS X-Ray is being gathered and
 exhibited within the CloudWatch service.

 When X-Ray traces are visible on the CloudWatch dashboard, it indicates that the trace
 data, which is generated through the application's seamless integration with AWS
 X-Ray, is actively collected and presented within the CloudWatch service. This
 integration allows for a comprehensive view of the application's tracing information,
 providing valuable insights into its performance and behavior. By leveraging this
 combined functionality, developers and operators can gain a holistic understanding of

 53

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 their application's execution and diagnose any potential issues or bottlenecks efficiently
 [21].

 When it comes to integrating AWS X-Ray into an application, the process typically
 involves the following steps:

 1. Application Instrumentation: Begin by incorporating the X-Ray SDK or library
 into your application code. This entails adding the necessary dependencies and
 initializing the X-Ray client to enable tracing capabilities.

 2. Sampling Rules Configuration: X-Ray provides the flexibility to define
 sampling rules, allowing you to control the amount of data collected. You can
 specify the percentage of requests to sample or establish specific conditions for
 capturing traces based on your requirements.

 3. Tracing Activation: Activate X-Ray tracing for your application. This can be
 achieved through configuration settings or by utilizing environment variables
 that trigger the tracing functionality.

 4. Traces Collection and Analysis: Deploy the instrumented application and start
 generating traces. Utilize the AWS X-Ray console or APIs to collect, view, and
 analyze the generated traces. This enables you to identify potential issues, gain
 valuable insights into your application's performance, and make informed
 optimizations.

 By following these steps, you can seamlessly integrate AWS X-Ray into your
 application, enabling comprehensive tracing capabilities and empowering you to
 monitor and improve your application's performance and reliability.

 Installing AWS X-Ray SDK locally on computer (figures 46 and 47):

 Figure 46 X-RAY SDK installation

 54

 Figure 47 X-RAY implementation

 Then it is necessary to check if everything is working, go to CloudWatch Console ->
 AWS X-RAY -> Traces.

 As we can see on Figure 48 for the “HTTP. Method == GET” we have 9 traces.

 Figure 48 X-RAY traces

 Here's an overview of the capabilities and key features at our disposal:

 ● Request Tracing and Monitoring: AWS X-Ray empowers us to trace and
 monitor the flow of requests within our application. By capturing data about
 these requests, it offers valuable insights into latency, performance, and behavior
 of individual components.

 ● Application Instrumentation: To utilize AWS X-Ray, the application code needs
 to be instrumented by integrating the AWS X-Ray SDK. This SDK provides
 libraries tailored for different programming languages, facilitating the capture
 and transmission of trace data to AWS X-Ray.

 55

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 ● Trace Visualization: AWS X-Ray furnishes a visual representation of the
 captured traces, allowing us to comprehend the path and timing of requests
 across various services and components. This visualization aids in identifying
 bottlenecks, performance issues, and dependencies within our application.

 ● Service Maps: AWS X-Ray generates service maps that depict the relationships
 and dependencies between different services within our application. These
 service maps facilitate a comprehensive understanding of the application's
 architecture and component interactions.

 ● Error Analysis: AWS X-Ray captures errors and exceptions occurring within our
 application and associates them with the corresponding traces. This seamless
 linkage enables easier identification and debugging of issues by providing
 detailed error information.

 ● Performance Insights: Leveraging AWS X-Ray, we can analyze the performance
 of our application and identify areas for optimization. It offers metrics and
 visualizations that shed light on the impact of different components on overall
 performance.

 ● Integration with AWS Services: AWS X-Ray seamlessly integrates with various
 AWS services, including AWS Lambda, Amazon EC2, and Amazon API
 Gateway. This integration enables tracing requests across different services,
 providing end-to-end insights into our application's behavior.

 ● Debugging and Troubleshooting: AWS X-Ray simplifies the debugging and
 troubleshooting process by offering detailed information about request flow and
 individual component performance. This feature expedites issue identification
 and resolution. Overall, AWS X-Ray equips developers with invaluable insights
 into their application's behavior and performance within distributed
 environments. It facilitates performance optimization, efficient troubleshooting,
 and enhanced user experience.

 56

 Chapter 5. Conclusions and
 Future Work

 The main objective of this project was to show how any application/product could use

 the power of cloud solutions, techniques, tools and Amazon Web Services. It

 demonstrates how flexible the AWS could be and how adaptable for specific project

 requirements, no matter how big it is. It gives an opportunity to have a scalable

 infrastructure, efficient resource management and seamless integration of various

 services.

 By utilizing cloud solutions and AWS services, this project showcases the ability to

 dynamically scale resources based on demand. This scalability ensures that the

 application can handle fluctuations in user traffic, optimize operations and workload

 without compromising performance or reduce costs and deliver stable high-quality

 service.

 1. Achievement of Objectives

 At the beginning of the project there were mentioned the goals to achieve during this
 work. The first part was to deploy the application into the cloud using serverless
 framework and AWS services. In this step the first difficulties and errors began to
 appear, which required further deeper study of this field and also search for information
 about the services that were used. Due to the fact that cloud solutions and serverless
 techniques have only recently become so popular, it was time-consuming and had an
 effect on problem-solving and information search because of the small amount of
 information.

 The next part was to discover how to scale the application for the different scenarios.
 The most common problem with any product/application is the user traffic and it is
 impossible to predict all situations that could happen and when but special functions for
 different cases could be prepared. That is why scalable Lambda functions were
 implemented for the cases when the traffic suddenly increased or decreased. Thanks to
 these functions it is possible to automate server resources and increase or decrease them
 in different situations, and this could reduce costs, increase availability of the
 application and its reliability. Also, a monitor resource usage function was added for
 better scaling decisions and correct operation of the application in real time.

 Moreover, it was important to connect a service that could monitor in real time the
 correct operation of the entire application, logs, errors, server load, etc. For these needs

 57

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 AWS X-RAY service has been chosen but the lack of information, guides and low
 popularity caused a fairly large number of problems and errors during the
 implementation. This part showed a flexible monitoring system that could help to
 maintain the system up, future updates, searching the bottlenecks and bug detecting.

 An important part of any application or product is its security. The security part of this
 project describes the Cognito service from AWS. It shows how easily and flexibly the
 part of authentication, registration and user pool management could be configured.
 There were several steps, rules and requirements for sign-in and sign-up that represent
 how powerful it is.

 Last but not least, the step for the system updates was introduced using Canary release
 and Blue/Green deployment. It showed how these techniques were implemented in
 AWS using different services such as CodeDeploy, CloudWatch, etc. That gives a
 possibility to maintain the working copy of the application during the testing of an
 updated one.

 2. Future work

 This project has a lot of potential for future work and there are a lot of things that can be
 added, configured and implemented. Amazon Web Services offers more than 200 fully
 featured services in different domains, including compute, storage, databases,
 networking, analytics, machine learning, AI, security, and more.

 Based on already implemented services in this work, more Lambda functions could be
 created for the application for more cases and situations. Thanks to them it is possible to
 automate resolving the most common problems and issues, reduce costs and increase
 scalability and availability.

 For the X-RAY configuration, service maps could be created for a better visualization,
 integrating it with the other services such as AWS Lambda, AWS Elastic Beanstalk,
 Amazon EC2 or third-party frameworks and tracing libraries. Spend more time on
 analyzing captured data by X-RAY to identify bottlenecks, bugs and anomalies.

 For the deployment part, other strategies could be implemented, such as Hybrid
 Deployment, Rolling Deployment, All-at-Once Deployment, depending on special
 requirements or factors.

 Regarding the security layer for the application, AWS offers other services that could be
 used with Cognito that increase the level of security. For example Amazon Macie uses
 machine learning to automatically discover, classify, and protect sensitive data or AWS
 Shield that protects from DDoS (Distributed Denial of Service) attacks.

 58

 Bibliography

 [1] “What is serverless?,” 11 May 2022. [Online]. Available:

 https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless.

 [2] T. F. Richard and R. T. Freeman, Building Serverless Microservices in Python:

 A Complete Guide to Building, Testing, and Deploying Microservices Using Serverless

 Computing on AWS, Packt Publishing, 2019.

 [3] S. Maarek, AWS Lambda and the Serverless Framework: Hands-on Learning!,

 Packt Publishing, 2018.

 [4] A. W. Services. [Online]. Available:

 https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html.

 [5] A. W. Services. [Online].Available: https://docs.aws.amazon.com/serverless-

 application-model/latest/developerguide/what- is-sam.html.

 [6] M. Mamdouh, 04 2023. [Online]. Available: https://dev.to/aws-builders/aws-

 amplify-the-one-stop-shop-for-mobile-and-full-stack- development-4l2o.

 [7] A. Y. Ogun, 05 2022. [Online]. Available: https://awstip.com/aws-x-ray-how-

 does-it-work-a3c9a8f189a6.

 [8] V. ATHITHAN, 03 2020. [Online]. Available:

 https://cloudacademy.com/blog/what-is-cognito-in-aws/.

 [9] A. W. Services. [Online]. Available:

 https://docs.aws.amazon.com/apigateway/latest/developerguide/canary-release.html.

 [10] CodeFresh. [Online]. Available: https://codefresh.io/learn/software-

 deployment/what-is-blue-green-deployment/.

 [11] T. Fernandez, 07 2022. [Online]. Available: https://semaphoreci.com/blog/what-

 is-canary-deployment.

 59

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/what-
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/what-
https://dev.to/aws-builders/aws-amplify-the-one-stop-shop-for-mobile-and-full-stack-
https://dev.to/aws-builders/aws-amplify-the-one-stop-shop-for-mobile-and-full-stack-
https://awstip.com/aws-x-ray-how-
https://codefresh.io/learn/software-
https://semaphoreci.com/blog/what-

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 [12] A. W. Services. [Online]. Available:

 https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-blue -

 green.html.

 [13] C. ACHINGA, 09 2022. [Online]. Available:

 https://cloudacademy.com/blog/aws-codedeploy-what-it-is-how-it-works/.

 [14] “Intellipaat,” 05 2023. [Online]. Available: https://intellipaat.com/blog/what-is-

 cloudwatch-in-aws/?US.

 [15] A. Anthony, Mastering AWS Security: Create and maintain a secure cloud

 ecosystem, Packt, 2017.

 [16] K. Parmar, 2022. [Online]. Available: https://www.elitechsystems.com/why-

 javascript-is-so-popular-programming-language/.

 [17] A. W. Services. [Online]. Available: https://aws.amazon.com/serverless/aws-

 sam/.

 [18] Aws-samples, “GitHub,” [Online]. Available: https://github.com/aws-

 samples/aws-serverless-airline-booking/blob/archive/docs/ getting_started.md.

 [19] A. W. Services. [Online]. Available:

 https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html.

 [20] A. W. Services, 09 2021. [Online]. Available:

 https://d1.awsstatic.com/whitepapers/AWS_Blue_Green_Deployments.pdf.

 [21] OpsRamp. [Online]. Available: https://www.opsramp.com/guides/aws-

 monitoring-tool/aws-x-ray/.

 [22] A. W. Services. [Online]. Available:

 https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-scenarios.html

 [23] A. W. Services. [Online]. Available:

 https://docs.aws.amazon.com/lambda/latest/operatorguide/provisioned-scaling.html

 60

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-blue
https://intellipaat.com/blog/what-is-
https://www.elitechsystems.com/why-
https://aws.amazon.com/serverless/aws-
https://github.com/aws-samples/aws-serverless-airline-booking/blob/archive/docs/
https://github.com/aws-samples/aws-serverless-airline-booking/blob/archive/docs/
https://www.opsramp.com/guides/aws-
https://docs.aws.amazon.com/lambda/latest/operatorguide/provisioned-scaling.html

 [24] C.Le, 03 2021. [Online]. Available: https://vticloud.io/en/gioi-thieu-dich-vu-

 aws-lambda-va-cach-cau-hinh-cho-nguoi-moi-bat-dau/

 [25] D.Sato, 06 2014. [Online]. Available:

 https://martinfowler.com/bliki/CanaryRelease.html

 [26] A. W. Services. [Online]. Available:

 https://aws.amazon.com/blogs/startups/how-to-use-blue-green-deployement-on-aws/

 [27] A. W. Services. [Online]. Available:

 https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html

 [28] M. Ozkaya, 09 2022. [Online]. Available: https://medium.com/aws-lambda-

 serverless-developer-guide-with-hands/amazon-cognito-main-features-user-pools-and-i

 dentity-pools-uses-cases-and-how-it-works-20fbe94b1905

 [29] “coolestguidesontheplanet.”, 07 2014. [Online]. Available:

 https://coolestguidesontheplanet.com/ installing-nodejs-command-line-linux-osx/

 [30] “aws-samples”. [Online]. Available:

 https://github.com/aws-samples/aws-serverless-airline-booking/tree/archive

 [31] A. W. Services. [Online]. Available:

 https://docs.aws.amazon.com/lambda/latest/operatorguide/provisioned-scaling.html

 [32] A. W. Services. [Online]. Available:

 https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-scenarios.html

 61

https://vticloud.io/en/gioi-thieu-dich-vu-
https://medium.com/aws-lambda-
https://coolestguidesontheplanet.com/

 Life Cycle Management of Serverless Microservices using Amazon Web Services

 Appendix. SDG

 Relevance of the work to the Sustainable Development Goals (SDGs).

 Consideration of the relationship of the TFG/TFM with the SDGs and with the most
 relevant SDG(s). This Final Degree Project has an impact on 5 of the 17 sustainable
 development objectives as shown in the table.

 AWS plays a significant role in supporting the Sustainable Development Goal (SDG) of
 Quality Education through its diverse set of cloud services and educational initiatives.
 By leveraging AWS technologies, educational institutions and organizations can
 enhance the accessibility, affordability, and effectiveness of education, driving positive
 impact worldwide. One of the key contributions of AWS in achieving Quality Education
 is through its cloud infrastructure. AWS provides a reliable and scalable platform that
 enables educational institutions to deliver online learning experiences, virtual
 classrooms, and collaborative tools. This accessibility to technology fosters inclusive
 education, reaching learners from diverse backgrounds and geographical locations.

 Apart from quality education it contributes significantly to Decent Work and Economic
 Growth by empowering businesses, entrepreneurs, and workers with the tools and
 technologies needed to drive innovation, productivity, and economic development.
 Through its cloud services and infrastructure, AWS enables businesses of all sizes to
 scale their operations, enhance efficiency, and reduce costs. This scalability promotes

 62

 business growth, job creation, and economic opportunities, particularly for small and
 medium-sized enterprises (SMEs) and startups. By providing on-demand computing
 resources, AWS empowers organizations to focus on their core competencies and
 innovation, creating a conducive environment for job creation and economic expansion.

 For Industry, Innovation, and Infrastructure it has a high impact by providing the
 technological foundation and tools necessary for businesses and organizations to drive
 innovation, enhance infrastructure, and foster economic growth. Thanks to cloud
 services and technologies, AWS empowers businesses of all sizes to innovate and
 develop cutting-edge solutions. The scalability, flexibility, and cost-effectiveness of
 AWS services enable organizations to experiment, iterate, and bring new products and
 services to market faster. This culture of innovation promotes entrepreneurship,
 stimulates economic growth, and encourages the development of sustainable industries.

 Apart from that, it supports the development of digital infrastructure by providing
 reliable, secure, and scalable cloud computing services. By leveraging AWS's
 infrastructure, businesses and organizations can build robust and resilient systems that
 support their operations and enable them to scale seamlessly. This infrastructure
 enhances the reliability and availability of critical services, contributing to the
 development of resilient and sustainable infrastructure.

 AWS contributes to the achievement of the Sustainable Development Goal (SDG) of
 Responsible Production and Consumption by promoting sustainable practices, reducing
 waste, and enabling responsible consumption through its cloud services and initiatives.
 Helping businesses optimize their resource usage and reduce waste is one of examples
 how AWS supports responsible production. By leveraging AWS's cloud infrastructure,
 organizations can scale their computing resources according to demand, ensuring that
 they only consume the necessary amount of energy and computing power. This
 elasticity not only improves operational efficiency but also reduces the environmental
 impact associated with excessive resource consumption.

 Climate Action is the last sustainable development objective that AWS has impacted on.
 By leveraging its cloud infrastructure and implementing various initiatives to drive
 environmental sustainability and combat climate change. AWS, one of the most widely
 used cloud computing platforms, is essential in assisting companies minimize their
 environmental effect and reduce their carbon footprint. Organizations could
 significantly decrease their energy use and related greenhouse gas emissions by moving
 to the AWS cloud. The energy efficiency of its data centers is enhanced using
 cutting-edge cooling and power management technology. They are also dedicated to
 using only renewable energy for their entire global infrastructure. AWS is actively
 converting its data centers to use clean and sustainable energy sources, such as wind and
 solar, through long-term power purchase agreements and investments in renewable
 energy initiatives. This dedication to renewable energy helps to reduce carbon
 emissions.

 63

