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Abstract

The classical Lipschitz real function extension theorems, due to McShane and Whitney,
have found numerous applications in many fields, such as economics, mathematical analysis,
and recently, in the field of artificial intelligence. These theorems can be generalized in various
directions, extending the class of functions to which they can be applied, or weakening the
metric conditions. In all cases, it allows to extend functions defined on metric subspaces to the
whole space, preserving the Lipschitz constant.

In this work an increasing, positive, subadditive function ϕ is introduced which, when
composed with the metric, gives another function with properties similar to the original metric.
In the resulting space, Katetov-type functions can be defined from the same metric function,
which are Lipschitz and which can also satisfy certain additional conditions. Recently, and
with the intention of providing a functional basis for the definition of numerical indices in
different disciplines (economics, foresight, demography, etc.), the notion of index space has
been introduced. The indices are real Lipschitz functions, the referred Katetov functions being
canonical examples.

The results of this work generalise the already known results on Lipschitz indices for the
case of the ϕ-Lipschitz, besides the study of the compactness of the set of the corresponding
standard indices. The properties of the approximation that make it possible to work with this
functional basis for the design of artificial intelligence algorithms on ϕ-metric models will also
be presented.
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Resumen

Los teoremas clásicos de extensión de funciones reales de Lipschitz, debidos a McShane y
Whitney, presentan numerosas aplicaciones en varias áreas, tales como la economía, el análisis
matemático y, más recientemente, en el campo de la inteligencia artificial. Estos teoremas
se pueden generalizar en varias direcciones, extendiendo la clase de funciones en las cuales
pueden ser aplicados, o debilitando las condiciones métricas. En todos estos casos, esto permite
extender funciones definidas en subespacios métricos al espacio entero, preservando la constante
de Lipschitz.

En este trabajo se introduce una función ϕ creciente, positiva y subaditiva que, al compon-
erla con una métrica, se obtiene otra función con similares propiedades a la métrica original.
En el espacio métrico resultante, funciones del tipo Katetov pueden ser definidas a partir de
esta misma función distancia, que serán Lipschitz y que pueden satisfacer además condiciones
adicionales. Recientemente, y con la intención de proveer una base funcional para la definición
de índices numéricos en diferentes disciplinas (economía, prospectiva, demografía, etc.), la no-
ción de espacio de índices es introducida. Estos índices son funciones reales de Lipschitz, siendo
las mencionadas funciones de Katetov ejemplos canónicos.

Los resultados de este trabajo generalizan los ya conocidos sobre índices de Lipschitz para
el caso de los ϕ-Lipschitz, además del estudio de la compacidad del conjunto de los correspondi-
entes índices estándard. También se presentarán las propiedades de la aproximación que hacen
posible trabajar con esta base funcional para el diseño de algoritmos de inteligencia artificial
en modelos ϕ-métricos.
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Introduction

Lipschitz’s functions were defined for the first time to study the existence of solutions of
differential equations, more specifically for Cauchy problems, the Picard-Lindelöf theorem [1,
p.184-185] being the best known in this respect. Since then, these kinds of functions have been
considered in other areas such as optimisation [2], machine learning [3] or manifolds [4]. This
type of functions refers to the concept of distance, as it relates the distance of the images to
the distance of the points in the domain, so they are defined in metric spaces.

In this work, we are interested in a classical result about how Lipschitz functions can
be defined beyond their domain while preserving their condition. This question has many
practical applications, as we can estimate unknown values of the function while preserving the
original relation. An example of this can be found in index theory. We can understand an
index as the evaluation of certain elements through the compilation of several indicators and
evaluation of meaningfull factors, providing a single value that is significant and that allows
comparisons or rankings. Canonical examples of indices are stock market indices, developed to
represent the state of the financial markets or economy [5] such as the American S&P 500 or
the Spanish IBEX35, or also in the social sciences, where university indices and rankings have
gained notoriety [6]. However, the task of analysing all elements of interest may be difficult or
impossible to implement in practice. This is where the extension of indices from known values
comes into consideration.

The purpose of our work is to introduce a new type of Lipschitz-based functions to generalise
this concept and to obtain better properties from the extension point of view. We will study
the properties and examples of this function space related to the objective of our interest, we
will present both its theoretical framework and the area on which we want to apply it (index
theory) and we will analyse the performance and compare it to already existing procedures. For
this purpose, we have structured this work as follows. In Chapter 1 we will present a detailed
introduction to the Lipschitz condition and metric spaces, which are the basis of the models
we will consider. After that, we will focus on motivating and developing the generalisation
proposal we have introduced, analysing the behaviour of this new condition with respect to the
main points of interest of the original one, such as extension results. Chapter 2 will focus on the
mathematical framework on which the indices and the corresponding rankings are based. We
will study index spaces based on the new class of functions introduced, and we will present two
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techniques that allow us to extrapolate the information provided by the indices for elements
in which it is not defined. Thus, we will provide possible approximations for these elements,
which will be the main point of interest. Then, in Chapter 3, we will see how to apply the
results seen so far in algorithms that numerically implement the extension processes described.
We will detail the examples in which we study their operation, thus providing the context in
which they can be found, and special emphasis will be placed on the differences in performance
with respect to the original alternative and to other procedures that can also be considered.
Finally, in the Conclusions section, we will summarise the main aspects dealt with throughout
this work and indicate possible lines of development that can be pursued in the future.

All the algorithms and visualizations of this Master’s Thesis can be found in the link of
GitHub https://github.com/Algoncor/TFM.
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Chapter 1

Lipschitz maps and ϕ functions

We will begin this chapter by recalling results and basic concepts related to Lipschitz maps,
previously establishing the theoretical framework in which they are found: metric spaces. The
work of Deza et al. [7] and Cobzaş et al. [8] have been followed for this part. We will then
focus on the main objective of this chapter: to generalise the concept of Lipschitz maps by
constructing a larger family of maps while keeping their most interesting properties. For this
purpose, a certain class of functions will also be introduced and studied, with special emphasis
on their relation to metric spaces.

1.1 First definitions and examples

The following definition formalises the intuitive concept we may have of distance. We can
interpret a distance d as a measure of how close two elements of a set are to each other, being
0 if they are the same element and larger values of the distance correspond to more distant
elements.

Definition 1.1. Let D a nonempty set and d : D×D → R+, where R+ is de set of non-negative
real numbers. It is said that d is a distance or metric if it satisfies the following conditions:

(i) d(a, b) = 0 if and only if a = b (identity of indiscernibles),

(ii) d(a, b) = d(b, a) for all a, b ∈ D (symmetry),

(iii) d(a, b) ≤ d(a, c) + d(c, b) for all a, b, c ∈ D (triangle innequality).

It follows from these three conditions that d(a, b) ≥ 0 for all a, b ∈ D, and therefore d
is well-defined. The pair (D, d) is called metric space, and for any subset D0 ⊆ D with the
distance restricted to it, d ↾D0 , is called metric subspace. Moreover, it is said that D0 is bounded
if there exists M > 0 such that d(x, y) ≤ M for all x, y ∈ D0. From now on we will assume
that (D, d) denotes a metric space and (D0, d ↾D0) a metric subspace of it.
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Example 1.2. Some examples of metrics will be presented now for illustrative purposes.

• Given a set D, the map defined by d(x, y) = 1 if x ̸= y and d(x, x) = 0 is a metric, know
as discrete metric.

• Every normed space (X, ∥·∥) is a metric space considering d(x, y) = ∥x− y∥, which verifies
the requirements to be a metric. Some examples are the canonical distance in R, which is
d(x, y) = |x− y| for x, y ∈ R, and the integral metric in C[a,b], the set of real (or complex)
continuous functions defined in the segment [a, b]. The canonical norm in this vector
space is

∥f∥ =

∫ b

a

|f(x)| dx,

so we can define a metric as d(f, g) =
∫ b

a

|f(x)− g(x)| dx.

• Let A a nonempty set, n ∈ N and D = An. The Hamming distance in D is defined for
a = (a1, . . . , an), b = (b1, . . . , bn) ∈ D as the number of k ∈ {1, . . . , n} such that ak ̸= bk.
For instance, if A is the set of letters of the Latin alphabet and n = 5, taking a = fight
and b = night, d(a, b) = 1 because only the first letter does not match, but if c = write
then d(a, c) = 5 because no one match.

• Given a set V and E ⊆ V×V a set of unordered pairs of elements of V , the pairG = (E, V )
is a graph. If u, v ∈ V , a (u− v) path is a sequence (w0, w1), (w1, w2), . . . , (wn−1, wn) ∈ E
such that w0 = u, wn = v and wi ̸= wj if i ̸= j. The length of a path is the number
of elements in the sequence, and a graph is called connected if for every u, v ∈ V there
exists a (u − v) path with finite length. In this context, in a connected graph G we can
define a metric in V for all u, v ∈ V as the shortest leght of all (u− v) paths.

More examples can be found in [7].

Each metric space (D, d) is also a topological space if we consider the topology induced by
the distance, in which the basis neighbourhoods of x ∈ D are the open balls Bε(x) = {y ∈ D :
d(x, y) < ε}, being ε > 0.

A property studied in topological spaces is compactness, that seeks to generalize the notion
of a closed and bounded subset of Euclidean space. The definition of a compact topological
space can be found in [7], but here we present a characterization of this property in the case of
metric spaces, since we will be interested in this property later on.

Proposition 1.3. (D, d) is a compact metric space if, and only if, for each sequence {an}n ⊆ D
there exists {ank

}k a subsequence of {an}n that converge to some a ∈ D. That is, there exists
a ∈ D such that lim

k
d(ank

, a) = 0.
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Let us introduce the main concept of this section, which will be fundamental to the rest
of the work: the Lipschitz maps. In these maps we find a relationship between the distance
of the images of two points and the distance between the points themselves. Intuitively, a
map is Lipschitz if the "slope" between any two points can be bounded by the same constant.
Formally, the definition is as follows.

Definition 1.4. Let (D, d) and (R, r) metric spaces. A map f : D → R is called Lipschitz if
there exists a constant L ∈ R such that

r(f(x), f(y)) ≤ Ld(x, y), for all x, y ∈ D.

It is said that L is the Lipschitz constant of f and we say f is L-Lipschitz to emphasize
this constant. The infimum of all constants satisfying last inequality is the Lipschitz norm of
f , denoted by Lip(f). This can be written as

Lip(f) = sup
x,y∈D

r(f(x), f(y))

d(x, y)
.

Example 1.5. Let us present some examples of Lipschitz maps:

• Consider the metric subspace R+ of R with their canonical distance. The function
f : R+ → R+ defined by f(x) = log(x + 1) is 1-Lipschitz. Indeed, let x, y ∈ R+ and
suppose, without loss of generality, that y ≥ x. Since log(x+ 1) ≤ x for x ≥ 0 we get

f(y)− f(x) = log(y + 1)− log(x+ 1)

= log

(
y + 1

x+ 1

)
= log

(
y − x

x+ 1
+ 1

)
≤ y − x

x+ 1
≤ y − x,

where last inequality holds because x+1 ≥ 1. From this we have that f is Lipschitz with
Lip(f) ≥ 1. Moreover, we have also that

f(y)− f(x)

y − x
≤ 1,

so Lip(f) ≤ 1 and f is 1-Lipschitz.

• Let D = R2 and d(x, y) = ∥x− y∥2, being ∥(x1, x2)∥22 = x21+x
2
2. If S1 = {x ∈ D : ∥x∥2 =

1}, the map f : S1 → S1 defined by f(x1, x2) = (x2, x1) is 1-Lipschitz.

• Consider l∞(C) the space of bounded sequences in C, that is, C ⊃ {xn}n ∈ l∞(C) if
supn |xn| < ∞. In this space we consider the metric induced by their canonical norm
∥x∥∞ = sup

n
|xn|. The map B : l∞(C) → l∞(C) defined by B(x1, x2, . . . , xn, . . .) =

(x2, x3, . . . , xn . . .), know as backward shift operator, is 1-Lipschitz.
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Let us suppose now that f : S ⊆ X → R is a function defined on a subset S of X. Several
classical problems consist of defining f in X \ S while maintaining some initial property of the
map f . This type of problems, known as extension problems, are present in several situations,
although in some of them the explicit expression cannot be obtained. The property we start
from in our work is the Lipschitz condition, due to the useful extensions formulas that can be
obtained, and the following theorem guarantees it.

Theorem 1.6. If f : D0 ⊆ D → R is an L-Lipschitz function, then there exists an L-Lipschitz
function F : D → R such that F ↾D0= f .

This function F is not unique, and two possible formulas are

FM(x) := sup
y∈D0

{f(y)− Ld(x, y)} and FW (x) := inf
y∈D0

{f(y) + Ld(x, y)},

which are known as the McShane and Whitney extensions respectively.

Remark 1.7. We notice that any extension F of a Lipschitz function f verifies that FM ≤
F ≤ FW . Moreover, for any t ∈ (0, 1), F := tFW + (1− t)FM is also a Lipschitz extension of
f with the same constant.

The proof of these results can be found in [8].

1.2 ϕ-Lipschitz maps

Our attention will now turn to whether we can generalise the Lipschitz condition, so that
we can still have extension theorems for a new class of functions satisfying a new, more relaxed
condition. In this work we will give an affirmative answer by introducing the ϕ-Lipschitz
functions. For this purpose, we will first introduce the class of functions Φ.

Definition 1.8. We will say that ϕ ∈ Φ, being ϕ : R+ → R+, if for each x, y ∈ R+ it holds that

(i) ϕ(x+ y) ≤ ϕ(x) + ϕ(y) (subadditivity),

(ii) ϕ(x) < ϕ(y) if x < y (strictly monotonically increasing),

(iii) ϕ(0) = 0,

(iv) ϕ is continuous in R+.

Let us remark that conditions (ii) and (iii) guarantee that ϕ(x) ≥ 0 for all x ∈ R+, so these
functions are well defined.
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Remark 1.9. Condition (iv) can in fact be reduced to the requirement that ϕ is right-
continuous at 0, since from this property and the other ones can be deduced the global conti-
nuity. Let us see this. Take x > 0 and note that, by (i) and (ii), holds

lim
h→0−

ϕ(x+ h) ≤ lim
h→0+

ϕ(x+ h) ≤ lim
h→0+

ϕ(x) + ϕ(h) ≤ ϕ(x), (1.1)

being last inequality consequence of (iii) and the right-continuity at 0. On the other hand,
ϕ(x) ≤ ϕ(x− h) + ϕ(h) for h > 0 by (iii), so

ϕ(x) ≤ lim
h→0+

ϕ(x− h) + ϕ(h) = lim
h→0−

ϕ(x+ h). (1.2)

Putting (1.1) and (1.2) together we conclude that ϕ(x) = lim
h→0−

ϕ(x + h), that is, ϕ is left-
continous at x. By similar arguments it can be shown that ϕ is also right-continuous at x, so
ϕ is globally continuous.

Having made this presentation, we can now give the definition of ϕ-Lipschitz maps.

Definition 1.10. Let (D, d) and (R, r) be metric spaces and f : D → R a map. For ϕ ∈ Φ we
will say that f is a ϕ-Lipschitz map if there exists K > 0 such that

r(f(x), f(y)) ≤ Kϕ(d(x, y)), for all x, y ∈ D.

From now on, when we will compose the function ϕ ∈ Φ with the metric d we will write
dϕ. That is, dϕ = ϕ ◦ d.

We notice that any L-Lipschitz map is a ϕ-Lipschitz map for ϕ(x) = x andK = L. Moreover,
the function f : R+ → R+ defined by f(x) =

√
x is not Lipschitz but it is ϕ-Lipschitz for

ϕ = f ∈ Φ and K = 1. So effectively this new class of maps generalise the original L-Lipschitz
class of maps.

In addition, the boundary of the distance between the images of two points provided by
the Lipschitz condition can be improved if it is considered as ϕ-Lipschitz. This case, which as
we will see in Chapter 3 is fundamental in practical matters, is presented for example by the
function f(x) = log(x + 1). We know that f is 1-Lipschitz and so d(f(x), f(y)) ≤ d(x, y), but
f is also ϕ-Lipschitz for ϕ = f and K = 1, and therefore d(f(x), f(y)) ≤ log(d(x, y)+1), which
is a better bound because log(d(x, y) + 1) ≤ d(x, y).

Actually, our proposal consists in redefining the distance in question so that new maps that
meet the proposed condition (in addition to the Lipschitz maps) appear in the resulting metric
space. In this way, by varying the ϕ one has direct control over how to change the original
metric so that the resulting better suits the problem at hand. Next we will see that dϕ does
indeed define a distance.
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Proposition 1.11. Let (D, d) a metric space and ϕ ∈ Φ. Then dϕ is a metric.

Proof. Since ϕ is an injective function (because it is strictly monotonic) and ϕ(0) = 0, it is
clear that dϕ(x, y) = 0 if, and only if, d(x, y) = 0. And since d is a metric this happens if, and
only if, x = y, and we have just proved the identity of the indiscernibles for dϕ.

From the symmetry of d as metric we deduce the symmetry of dϕ.
Finally, for all x, y, z ∈ D, the triangle inequality for d implies d(x, z) ≤ d(x, y) + d(y, z).

Take into account the monotonicity and subadditivity of ϕ we get

dϕ(x, z) ≤ ϕ(d(x, y) + d(y, x)) ≤ dϕ(x, y) + dϕ(y, z),

so dϕ verifies the triangle inequality too.

The reciprocal of this result is false in general. For example, if D = R and we let ϕ ∈ Φ
as ϕ(x) =

√
x for x ≥ 0, and d(x, y) = |x− y|2, we know that dϕ = |x− y| is a metric on

D but d is not. To see this it is enough to take x = 0, y = 1 and z = 3 and check that
d(x, z) > d(x, y) + d(y, z), and therefore d does not satisfy the triangular inequality.

On the other hand, from the assumption that for each (D, d) metric space dϕ is a metric, we
can deduce some conditions that ϕ must satisfy. For example, it is easy to check that ϕ(0) = 0,
and we will see next that ϕ must be subadditive. Let x, y ∈ R+ and define a metric space
D = {a, b, c} such that d(a, b) = x, d(b, c) = y and d(a, c) = x + y. As dϕ is a metric, by the
triangle inequality we obtain ϕ(x + y) = dϕ(a, c) ≤ dϕ(a, b) + dϕ(b, c) = ϕ(x) + ϕ(y), and so
ϕ is subadditive. However, the condition of monotonicity and continuity that ϕ must satisfy
may not be met, that is, dϕ can be a metric for all metric space (D, d) without ϕ being strictly
monotone increasing neither continuous. For example, consider ϕ defined as ϕ(x) = 0 if x = 0
and ϕ(x) = 1 if x > 0. For each (D, d) metric space we note that:

(I) For a, b ∈ D, condition dϕ(a, b) = 0 holds if, and only if, d(a, b) = 0 because ϕ is only
null at 0. Since d is a metric we have that it holds if, and only if, a = b, so dϕ satisfy the
identity of indiscernibles.

(II) Since d(a, b) = d(b, a) for all a, b ∈ D it is clear that dϕ(a, b) = dϕ(b, a), that is, dϕ is
symmetric.

(III) Take a, b, c ∈ D and write x = d(a, b), y = d(b, c) and z = d(a, c). If a, b, c are different
from each other then x, y, z > 0 since d is a metric, and so ϕ(x) = ϕ(y) = ϕ(z) = 1.
From this we conclude that dϕ satisfy the triangular innequality for a, b, c. In case some
of the elements of D that we have taken coincide, the triangular innequality of dϕ for
them is trivial.

We have just proved that dϕ is a metric for any metric space, and yet ϕ is not strictly
monotonic nor continuous.
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For a better understanding of how d and dϕ relate to each other, we present in Figures 1.1
and 1.2 a graphical representation of the behaviour of two concrete metrics: the usual distance
d in R and its composition with ϕ(x) = log(1 + x), that is, dϕ. In Figure 1.1 one can observe
that dϕ "smoothes" the distance between two real numbers respect d. More specifically, d and
dϕ have a similar behaviour for x and y that are "close" to each other, but for more distant
values dϕ attenuates growth with respect to d. In Figure 1.2 a comparison is provided between
the behaviour of triangular inequality of d and dϕ. As before, we can see how the logarithmic
growth of ϕ carries over to dϕ, and also over to their triangular innequality.

Example 1.12. More examples of ϕ-Lipschitz maps are presented below.

• A map f : Rn → R is called α-Hölder continuous if there exists C > 0 and α > 0 such
that

r(f(x), f(y)) ≤ Cd(x, y)α, for all x, y ∈ D.

These maps are ϕ-Lipschitz maps for K = C. Indeed, if α ∈ (0, 1] then ϕ defined as
ϕ(x) = xα belongs to Φ and f is ϕ-Lipschitz for K = C. If α > 1 it can be proven that f
is a constant map, so it is ϕ-Lipschitz for any α ≥ 0.

• Consider R equipped with its usual metric and let ϕ ∈ Φ. From the subadditivity it
follows that ϕ(x) − ϕ(y) ≤ ϕ(x − y) for x ≥ y, so d(ϕ(x), ϕ(y)) ≤ ϕ(d(x, y)). That is,
every ϕ ∈ Φ is a ϕ-Lipschitz function for K = 1. Examples of ϕ functions, apart from
those already presented, are ϕ(x) = arctan(x), ϕ(x) = x(x+1)−1 or ϕ(x) = x(x2+1)−1/2.

In the next result, we will see that the ϕ-Lipschitz functions can be extended similarly to
the ones seen in Theorem 1.6. We will see that this is due to the conditions that the Φ functions
must fulfil.

Theorem 1.13. Let (D, d) be a metric space. If f : D0 ⊆ D → R is a ϕ-Lipschitz function for
K > 0, then there exists a ϕ-Lipschitz function F : D → R for K such that F ↾D0= f .

This function F is not unique, and two possible formulas are

FM(x) := sup
y∈D0

{f(y)−Kdϕ(x, y)} and FW (x) := inf
y∈D0

{f(y) +Kdϕ(x, y)},

which we will call McShane and Whitney extensions respectively, as in the original theorem.

Proof. The techniques used in this proof are similar to those used in Theorem 1.6, but for the
sake of completeness we will bring them here. Furthermore, it is enough to show that one of
the two functions above satisfies the result. We will do the proof for FW , for FM is analogous.

Given x ∈ D0 let us see that FW (x) = f(x). On the one hand, f(x) ≤ f(y) +Kdϕ(x, y) for
all y ∈ D0 because f is ϕ-Lipschitz in D0, so

f(x) ≤ inf
y∈D0

{f(y) +Kdϕ(x, y)} = FW (x). (1.3)
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On the other hand, since x ∈ D0,

FW (x) = inf
y∈D0

{f(y) +Kdϕ(x, y)} ≤ f(x) +Kdϕ(x, x) = f(x), (1.4)

so, by puting together (1.3) and (1.4), we conclude FW (x) = f(x) for an arbitrary x ∈ D0, so
FW ↾D0= f .

In order to show that FW is ϕ-Lipschitz for K, let x, z ∈ D and suppose, without loss of
generality, that FW (x)− FW (z) ≥ 0. Given ε > 0 there exists yε ∈ D0 such that

ε− f(yε)−Kdϕ(z, yε) > sup
y∈D0

{−f(y)− dϕ(z, y)}. (1.5)

Moreover,
inf
y∈D0

{f(y) +Kdϕ(x, y)} ≤ f(yε) +Kdϕ(x, yε). (1.6)

Taking into account (1.5) and (1.6) we have

FW (x)− FW (z) = inf
y∈D0

{f(y) +Kdϕ(x, y)}+ sup
y∈D0

{−f(y)−Kdϕ(z, y)}

< ε− f(yε)−Kdϕ(z, yε) + f(yε) +Kdϕ(x, yε)

≤ ε+Kdϕ(x, z) +Kdϕ(z, yε)−Kdϕ(z, yε) = ε+Kdϕ(x, z).

Since ε > 0 is arbitrary, we conclude that FW (x)− FW (z) ≤ Kdϕ(x, z).

One of the aims of the next section will be to establish compactness results for subsets of
certain ϕ-Lipschitz functions. For this, we need to establish how the compactness of a metric
space is related to ϕ-functions. The following result will focus on this question.

Proposition 1.14. If (D, d) is compact, then (D, dϕ) is compact too.

Proof. Let {an}n be a sequence in D. As D is compact we know that there exists {ank
}k

subsequence of {an}n that converges to a ∈ D. That is, lim
k
d(ank

, a) = 0. Since ϕ is a
continuous function we get

0 = ϕ(0) = ϕ
(
lim
k
d(ank

, a)
)
= lim

k
dϕ(ank

, a),

so {ank
}k converges to a ∈ D, and by Proposition 1.3 we conclude that (D, dϕ) is a compact

metric space.

Remark 1.15. We note that to prove 1.13 we have made use of conditions (i)-(iii) of Φ, being
condition (iv) only necessary to prove the latter result. These conditions that ϕ ∈ Φ must
satisfy are known in the literature as modules of continuity. These are increasing functions
ω : [0,+∞) → [0,+∞) that cancels at 0 and are continuous at 0, but depending on the context
they may satisfy more conditions.
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Figure 1.1: Comparative between d(x, y), in pink, and dϕ(x, y), in blue.

(a) Comparison between d(x, y), in pink, and
d(x, 0) + d(0, y), in blue.

(b) Comparison between dϕ(x, y), in pink, and
dϕ(x, 0) + dϕ(0, y), in blue.

Figure 1.2: Representation of the triangular inequality of d and dϕ
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Chapter 2

Index spaces

This chapter will focus first on introducing the concept of index space and presenting
definitions and related concepts necessary for the rest of the chapter. Later on, we will look
at the index extension, which will be the main focus of this chapter. For this purpose, we
will present two different techniques: one of them is based on two classical function extension
formulas and the other on approximations of what we will call standard indices. For this chapter
we have followed the work of Erdoğan et al. [9].

2.1 Introduction to index spaces

The models we are interested in studying start from a metric space (D, d) in which an
index I is defined. This index is a ϕ-Lipschitz function I : D → R that provides a meaningful
value on the elements of D, depending on the model in question. For this we assume that
the index I is controlled by the distance d, that is, I represents a quantity whose properties
are implicitly represented by d. That is why we assume that I is a ϕ-Lipschitz function, and
with it, for example, a ranking of the elements of D can be constructed according to the
value of its index. In addition, we will impose other conditions on the index related to d, in
order to achieve a better structure to work with. In this context we will say that the triplet
(D, d, I) is an index space, and from now on we will suppose that the metric is bounded, that
is, diam(D) = supa,b∈D d(a, b) < ∞. In the following we will look at all these definitions that
will be needed in the work.

Definition 2.1. Let (D, d) be a metric space. An index I : D → R is C-bounded, for C > 0,
if supa∈D |I(a)| ≤ C. The infimum of all constants C satisfying the last inequality is known as
boundedness constant of I, and is denoted by B(I). That is, B(I) = sup

a∈D
|I(a)|.

The following normalisation property for a constant Q will be useful for further comparison
between several indexes. This condition, which relates I to d, will be complementary to the
ϕ-Lipschitz condition.

13



Definition 2.2. Let (D, d) be a metric space. An index I : D → R is Q-normalized, for Q > 0,
if

dϕ(a, b) ≤ Q(|I(a)|+ |I(b)|), for all a, b ∈ D.

The functions that satisfy this condition are kwow in literature as Katetov functions. The
infimum of all constants Q satisfying last inequality is know as normalization constant of I,
and is denoted by N(I). Moreover, we note that if I is bounded and Q-normalized then
d(D,D) ≤ 2QB(I).

Remark 2.3. The condition that I is Q-normalised, that is, N(I) < ∞, implies that I can
only nullify at one point. Indeed, given a, b ∈ D such that I(a) = I(b) = 0, then d(a, b) ≤
Q(I(a) + I(b)) = 0, and so a = b. As we will see later, this will mean that there can only be
one "optimal" element in the space, in the sense that I can only be 0 at a single point.

Definition 2.4. Let (D, d) be a metric space. An index I : D → R is ϕ-coherent, for ϕ ∈ Φ
and K > 0, if

|I(a)− I(b)| ≤ Kdϕ(a, b), for all a, b ∈ D.

That is, I is ϕ-Lipschitz for K. The infimum of all constants K satisfying last inequality is the
coherence constant of I, and we will write it C(I).

Note that, if R := inf
a∈D

I(a) ∈ R+, we have

B(I)−R = sup
a∈D

I(a)−R ≤ sup
a,b∈D

|I(a)− I(b)| ≤ C(I)ϕ(d(D,D)).

Thus, B(I) ≤ C(I)ϕ(d(D,D))+R, which means that every ϕ-Lipschitz map in an index space
is bounded. Furthermore, if N(I) <∞ we get

ϕ(d(D,D)) ≤ ϕ(2N(I)B(I)) ≤ 2ϕ(N(I)B(I)),

so we can give an estimate of the boundedness constant only from properties of the index
(coherence and normalization constants and their infimum).

2.2 Extensions of general indices

When dealing with practical issues in index spaces, the index value will not always be
available for all elements of the metric space. This may be the case, for example, when it is
costly or impossible to obtain all the data in the model. It is in this context that it is useful to
have tools that allow us to approximate the index for unindexed elements. In this section, we
propose two ways of doing this: the first way is to identify/approximate the index of interest
using what we will call standard indices, while the second way is to approach the issue as a
Lipschitz regression problem.
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2.2.1 Approximation through standard indices

The structure of a metric space (D, d) provides a behaviour between the elements of D
that will somehow also be transferred to the index I. For example, if two elements a, b ∈ D are
"close" to each other (that is, d(a, b) is a value close to 0), the value of the index at those points
must be similar. This is why the metric space provides standard indices related to individual
points a ∈ D, which we denote by Ia. This index can be defined, after choosing a reference
point a ∈ D, as Ia(b) = d(a, b) for each b ∈ D. Typically, the criterion for choosing a is based
on finding the element that minimises a given property, although any other element can also
be chosen. Moreover, we can also consider a function ϕ ∈ Φ to improve the properties of the
metric by taking Ia(b) = dϕ(a, b). In the following proposition we will see why an index defined
in this way can be considered standard.

Proposition 2.5. An index defined by Ia(·) = dϕ(a, ·) for some a ∈ D is 1-normalized and
ϕ-coherent for K = 1.

Proof. Given b, c ∈ D note that dϕ(b, c) ≤ dϕ(b, a) + dϕ(a, c) = Ia(b) + Ia(c), and so N(I) ≤ 1.
Moreover, dϕ(a, b) = Ia(b)+Ia(a) and then N(I) = 1, so Ia is 1-normalized. On the other hand,
by the triangle inequality of dϕ it is clear that |Ia(b)− Ia(c)| = |dϕ(a, b)− dϕ(a, c)| ≤ dϕ(b, c).
In addition, note that |Ia(a)− Ia(b)| = Ia(b) = dϕ(a, b), and therefore Ia is ϕ-Lipschitz for
K = 1.

From this result it follows that from any metric space and for any point a in it, we can
construct a standard index centred on it. These indices satisfy the properties of normalisation
and coherence that we have seen, and they also nullify at a and I(b) > 0 for all a ̸= b ∈ D. In
the following result we will see that these properties in fact characterise the standard indices.

Proposition 2.6. Let I : D → R be a 1-normalized and ϕ-coherent index for K = 1. If there
exists a ∈ D such that I(a) = 0, then I = Ia.

Proof. For each b ∈ D, as I is ϕ-coherent for K = 1 we have that I(b) = I(b) − I(a) ≤
|I(b)− I(a)| ≤ dϕ(a, b). Moreover, note that dϕ(a, b) ≤ I(a) + I(b) = I(b) since I is 1-
normalized. It follows from the above two inequalities that I(b) = dϕ(a, b) and so I = Ia.

Our aim from now on will be to study how we can approximate any given index by means of
standard indices. The idea is to show that general indices can be approximated by limits and
translations of standard indices. Thus, the natural extension of the class of standard indices
is given by considering its closure. So, in the rest of the section we will study the structure
and results of compactness in index spaces in order to have the necessary theoretical tools, and
then we will focus on the main issue of the approximation.

For C > 0 consider the space FC := {I : D → R : B(I) ≤ C}. In it we can define two
natural topologies: the uniform topology with normB(·) and the pointwise convergence topology.
In the first one the basic neighbourhoods are Vε(I0) = {I ∈ FC : B(I − I0) < ε}, for ε > 0 and
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I0 ∈ FC . In the second one they are Vε,a1,...,an(I0) = {I ∈ FC : |I(ai)− I0(ai)| < ε, i = 1, . . . , n}
for ε > 0, I0 ∈ FC and a1 . . . , an ∈ D. To implement the approximation tool we will propose,
we need to establish compactness results for certain subspaces of FC . To do so, we will refer to
Tychonoff’s theorem, a basic topological result on the compactness of the quotient topology.

Proposition 2.7. The following subespaces of FC are compact with respect to the topology
of pointwise convergence:

(i) F0
C := {I ∈ FC : I ≥ 0},

(ii) F1
C := {I ∈ F0

C : |I(a)− I(b)| ≤ Kdϕ(a, b), a, b ∈ D}, for K > 0,

(iii) F2
C := {I ∈ F1

C : R + d(a, b) ≤ Q(I(a) + I(b)), a, b ∈ D}, for Q > 0 and R ≥ 0.

Proof. If {Iη}η∈Λ is a net on FC that converges pointwise, then limη Iη(a) ∈ [−C,C] for all
a ∈ D, so the limit is a function in FC too. In particular it also holds for F0

C since Iη(a) ∈ [0, C].
In addition, we can identify each function of {Iη}η∈Λ with an element of Πa∈D[−C,C] (or
Πa∈D[0, C] in case of F0

C), which are product of compact spaces in the product topology. By
Tychonoff’s theorem we conclude the result of (i).

To prove (ii) let a, b ∈ D and {Iη}η∈Λ a net that converges pointwise. Note that

|limη Iη(a)− limη Iη(b)| ≤ Kdϕ(a, b)

since Iη ∈ F1
C for each η ∈ Λ. So Iη ∈ F1

C is closed, because limits of nets in this set is again a
function in this set, and together with (i) we conclude (ii).

Note that d(a, b) ≤ Q(lim
η
Iη(a) + lim

η
Iη(b)) for a, b ∈ D. The result of (iii) follows in the

same way as the previous ones.

At this point we will explain in more detail our proposal for a standardised index approach.
Given an index I ∈ F2

C , which is the class of indices discussed in this work, we are interested
in finding a sequence of points in D whose associated standard indices "converge" to I. More
precisely, the main result we will present in this section will establish a boundary between the
index I and its infimum and a sequence of standard indices, associated to certain points of D.
That is why we will actually work with the topology of pointwise convergence. However, in
case of standard indices, we actually can get a more general result.

Proposition 2.8. Let (D, d) a compact metric space and consider the space of standard indices
S := {dϕ(a, ·) : a ∈ D} ⊂ F2

C . Then S is compact respect to the topology of uniform
convergence.

Proof. Let {dϕ(an, ·)}n ⊂ S. As (D, d) is compact, by Proposition 1.14 we know that (D, dϕ) is
also compact, so the sequence {an} admits a subsequence {ank

}k convergent to a0 ∈ D respect
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dϕ. So, for every ε > 0 there exists k0 ∈ N such that dϕ(ank
, a0) < ε for all k ≥ k0. Then, by

the triangular inequality we get

sup
b∈D

|dϕ(ank
, b)− dϕ(a0.b)| ≤ sup

b∈D
dϕ(ank

, a0) = dϕ(ank
, a0) < ε

for k ≥ k0. That is, {dϕ(ank
, ·)} converges uniformly to dϕ(a0, ·), so by Proposition 1.3 we

conclude the desired result.

We also need to name a type of sequence that will appear in the result we are looking for.
The definition is as follows.

Definition 2.9. A sequence {an}n ⊂ D is pointwise Cauchy if for each b ∈ D there exists
lim
n
d(an, b).

From our study of dϕ it is clear that this definition is equivalent to the next one: a sequence
{an}n ⊂ D is pointwise Cauchy if for each b ∈ D there exists lim

n
dϕ(an, b) for a given ϕ ∈ Φ.

On the other hand, it is obvious that every convergent sequence is pointwise Cauchy, but the
reciprocal is false. The sequence an = 1/n in D = (0, 1] equipped with their usual metric is a
classic example of nonconvergent pointwise Cauchy sequence.

Theorem 2.10. For every I ∈ RC,K,Q, with

RC,K,Q := {I ≥ 0 : |I(a)− I(b)| ≤ Kdϕ(a, b),
1+KQ

K
inf(I)+dϕ(a, b) ≤ Q(I(a)+I(b)), B(I) ≤ C},

there exists a pointwise Cauchy sequence {an}n such that I(b) ≤ inf(I) + lim
n
Kdϕ(an, b) ≤

KQI(b) for each b ∈ D.

Proof. Let b ∈ D and fix n ∈ N. We know that there exists an ∈ D such that I(an)− 1
n
≤ inf(I).

Then

inf(I) +Kdϕ(an, b) ≤ KQI(an) +KQI(b)−KQ inf(I)

≤ KQI(b) +KQI(an)−KQ
(
I(an)− 1

n

)
= KQI(b) + KQ

n
.

In addition,
I(b)− I(an) ≤ |I(b)− I(an)| ≤ Kdϕ(an, b),

and therefore

I(b) ≤ Kdϕ(an, b) + I(an) ≤ Kdϕ(an, b) + inf(I) + 1
n
≤ KQI(b) + 1+KQ

n
(2.1)

for all n ∈ N and b ∈ D. Now note that dϕ(an, ·) = Ian(·) ∈ S, thus, from the compactness of S
seen in Proposition 2.8 follows that there exists a subsequence {ank

}k such that lim
k
dϕ(ank

, b) =

dϕ(a0, b) for each b ∈ D and certain a0 ∈ D. Therefore {ank
}k is a pointwise Cauchy sequence

and from (2.1) we conclude that

I(b) ≤ inf(I) +K lim
k
dϕ(ank

, b) ≤ KQI(b)

for every b ∈ D.
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This result leads us to identify Ĩ := inf(I) + K lim
k
dϕ(ank

, ·) as an approximation of I ∈
RC,K,Q. In this case the maximum error committed would be

sup
b∈D

∣∣∣Ĩ(b)− I(b)
∣∣∣ ≤ sup

b∈D
|KQI(b)− I(b)| = |KQ− 1|C.

So if KQ ≈ 1 the comparison between Ĩ and I is reasonable, but as these constants increase
the approximation may deteriorate. In the particular case that KQ = 1 we would in fact have
Ĩ = I. This situation holds for example if K = Q = 1, so that I would be a standard index as
we saw in Proposition 2.6. If a ∈ D is such that I = Ia, then inf(I) = Ia(a) = 0 and ak = a, so
effectively Ĩ = I.

Moreover, taking b = a0 in the result of Theorem 2.10 we have

I(a0) ≤ inf(I) +K lim
k
dϕ(ank

, a0) = inf(I) + dϕ(a0, a0) = inf(I),

and so I(a0) = inf(I). Consequently we can write Ĩ(·) = I(a0)+ dϕ(a0, ·), being a0 ∈ D a point
in which I attains their minimum. In addition, we can assume for the indices we work with
that inf(I) = 0, so we can make this approximation for any Q-normalised and ϕ-coherent index
for K. In this case Ĩ(·) = dϕ(a0, ·). This issue will be explored further in Remark 2.12.

2.2.2 Extension theorems: McShane and Whitney formulas

The other approach to the problem in question that we will work on is based on using
the known values of the index to construct an approximation to the unknown values, using the
extension formulas that we saw in Chapter 1. Although other extension techniques are currently
available that may be better for their purpose (see for example [10]), for the aim of this study it
is more convenient to work with the classical McShane and Whitney methods. This is because
these formulas make it easier to work with the normalisation constant and the ϕ-coherence
condition of the indices they extend, as well as offering the possibility to directly compare the
result of the extension with the approximations using standard indices, as we will see in the
next chapter. Therefore, we will now look at the relationship between the normalisation and
the ϕ-coherence condition of an index and its extension.

Proposition 2.11. Let (D0, d, I) an index metric subspace of (D, d, I), and suppose that
I : D0 → R+ is Q-normalized and ϕ-coherent for K. Then, if QK ≥ 1, the Whitney extension
IW : D → R+ is also Q-normalized and ϕ-coherent for K.

Proof. We note that Theorem 1.13 guarantees that the Whitney extension IW is ϕ-coherent
for K, so it is enough to show that IW is Q-normalized. Take c, d ∈ D (not necessarily in D0).
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Then, for all a, b ∈ D0 we get

dϕ(c, d) ≤ dϕ(c, a) + dϕ(a, b) + dϕ(b, d)

≤ dϕ(c, a) +QI(a) +QI(b) + dϕ(b, d)

≤ QKdϕ(c, a) +QI(a) +QI(b) +QKdϕ(b, d)

= Q(I(a) +Kdϕ(c, a)) +Q(I(b) +Kdϕ(b, d)),

being latter inequality a consequence of the assumption QK ≥ 1. Therefore,

dϕ(c, d) ≤ Q inf
a∈D0

{I(a) +Kdϕ(a, c)}+Q inf
b∈D0

{I(b) +Kdϕ(b, d)}

= Q(IW (c) + IW (d)),

so IW is Q-normalized.

Remark 2.12. In case that condition QK ≥ 1 does not hold, we can also estimate the nor-
malization constant following the same procedure as in the previous proof. For example, if we
have 0 < α ≤ QK, we can ensure that the extension is (Q/α)-normalized. Nevertheless, the
assumption QK ≥ 1 is in a sense universal in index spaces. Indeed, since I represents an index,
we can suppose that I(a) ≥ 0 for all a ∈ D. Moreover, if I attains the minimum in b ∈ D
(something that happens if, for example, D is finite or compact) and this minimum is 0, then

I(a) = I(a)− I(b) = |I(a)− I(b)| ≤ Kdϕ(a, b)

≤ KQ(I(a) + I(b)) = KQI(a).

Hence, if there exists b ∈ D such that I(b) = 0 we can ensure that KQ ≥ 1 as in Proposition
2.11. Moreover, even if this situation does not arise, for an index defined in a compact metric
space we will have that inf(I) = I(b) for some b ∈ D, and then I0(a) := I(a)− I(b) is another
positive index that preserves the same order properties as I and I0(b) = 0.

For the McShane extension we can only guarantee that it preserves the coherence condition
of the original index, as the normalisation constant may not be maintained. However, we can
find in some cases an estimate of this constant, as we propose as follows.

Proposition 2.13. Let (D0, d, I) an index metric subspace of (D, d, I), and suppose that
I : D0 → R+ is Q-normalized and ϕ-coherent index for K such that QK ≥ 1. If

E(D,D0) := sup
c∈D

inf
a∈D0

∣∣∣∣I(a) +Kdϕ(c, a)

I(a)−Kdϕ(c, a)

∣∣∣∣
is finite, then the McShane extension IM : D → R is Q′ normalized for Q′ = QE(D0, D) and
ϕ-coherent for K.
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Proof. As in the case of Whitney’s extension, Proposition 1.13 guarantees that the McShane
extension IM is ϕ-coherent for K, so it is enough to show that IM is Q′-normalized. Bearing
in mind that QK ≥ 1, and taking c, d ∈ D, we get for all a, b ∈ D0 that

dϕ(c, d) ≤ dϕ(c, a) + dϕ(a, b) + dϕ(b, d)

≤ dϕ(c, a) +QI(a) +QI(b) + dϕ(b, d)

≤ Q
(

1
Q
dϕ(c, a) + I(a) + 1

Q
dϕ(b, d) + I(b)

)
≤ Q

(∣∣∣∣I(a) +Kdϕ(c, a)

I(a)−Kdϕ(c, a)

∣∣∣∣ |I(a)−Kdϕ(c, a)|

+

∣∣∣∣I(b) +Kdϕ(d, b)

I(b)−Kdϕ(d, b)

∣∣∣∣ |I(b)−Kdϕ(d, b)|
)

≤ Q

(∣∣∣∣I(a) +Kdϕ(c, a)

I(a)−Kdϕ(c, a)

∣∣∣∣ ∣∣IM(c)
∣∣+ ∣∣∣∣I(b) +Kdϕ(d, b)

I(b)−Kdϕ(d, b)

∣∣∣∣ ∣∣IM(d)
∣∣) .

Since a, b ∈ D0 are arbitrary, we can write

dϕ(c, d) ≤ Q

(
inf
a∈D0

{∣∣∣∣I(a) +Kdϕ(c, a)

I(a)−Kdϕ(c, a)

∣∣∣∣} ∣∣IM(c)
∣∣+ inf

b∈D0

{∣∣∣∣I(b) +Kdϕ(d, b)

I(b)−Kdϕ(d, b)

∣∣∣∣} ∣∣IM(d)
∣∣) ,

so we conclude d(c, d) ≤ QE(D,D0)
(
IM(c) + IM(d)

)
.

Since the McShane and Whitney extensions are minimal and maximal, respectively, and for
each α ∈ (0, 1) one has that IE := (1−α)IW +αIM is another extension, it will often be more
convenient to use an intermediate extension like IE. Therefore, we now ask ourselves whether
we can obtain similar results to those we have just studied for these other extensions. If we
are under the same hypothesis as in the previous propositions, we will again have that IE is a
ϕ-coherent index for K, which can be deduced in much the same way as in Theorem 1.13 for
the Whitney case. With regard to the normalization constant, we note that

IE(a) + IE(b) = (1− α)(IW (a) + IW (b)) + α(IM(a) + IM(b))

≥ (1− α)

Q
dϕ(a, b) +

α

QE(D,D0)
dϕ(a, b)

=
(1− α)E(D,D0) + α

QE(D,D0)
dϕ(a, b),

so IE is Q̃-normalized for Q̃ =
QE(D,D0)

(1− α)E(D,D0) + α
.
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Chapter 3

Applications

The purpose of this chapter will be to implement the theoretical tools seen in the last
chapters in algorithms capable of extending a given index. More specifically, given a metric
space (D, d) and an index I : D0 ⊂ D → R, we will be interested in how to approximate I on
D \ D0 as well as the error and computational time of the process. We will study this from
the point of view of the index extension theory developed in previous chapters by studying
the difference and drawing comparisons between the classical Lipschitz index procedure and
the introduced ϕ-Lipschitz concept. In addition, we will also compare these methods with
another one that is common in the literature for solving this type of problems (see Chapter
6 of [11]) : neural networks. To carry out this study, we will first develop an algorithm that
will gather the ϕ-Lipschitz index extension results and then analyse its performance with two
concrete examples. In the first of these, we will present and contextualise a real case of practical
application where indexes appear, and we will see the importance of the extension process. It
is framed within the need for indicators that allow urban planners to guide their work with the
aim of improving the liveability of urban space. Finally, in order to have a better comparison
between the existing alternatives, we will propose concrete examples that will allow us to
adequately assess the features of all of them.

3.1 Implementation
In this section we will make a methodological proposal on how to implement the theoretical

content of this work to extend a given index. We start from a finite set of elements, characterised
by some real variables, for which we are interested in knowing the value of a certain index I. For
some of these elements the value of the index of interest is known, so we seek to extrapolate this
information to estimate its value for those elements for which it is not defined. In mathematical
terms, this set is a metric space D in which there is an appropriate distance defined according
to the nature of the data or the problem, and there is an index defined in D0 ⊂ D that one
wants to extend to D. To this end, we propose the following methodology.
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(I) First question we need to address is whether the different nature of the variables can
perturb the metric we are working with, due to the heterogeneity of their scales. We
propose, to avoid this situation, to bring them all to the same scale by subtracting the
minimum and dividing by the range. More precisely, suppose that D = {yj}nj=1 and
yj = (xj1, · · · , xjm). Let ak := max

j
xjk and bk := min

j
xjk for each k = 1, . . . ,m. We then

transform xjk to
xjk − bk
ak − bk

for all j and k, so we will have the new variables restricted to [0,1], in the same scale.

(II) To assess the accuracy of the approximation we will make, we need a measure of the
error made, which in our case will be the Root Mean Square Error (RMSE). This yields
the expected absolute error and is defined as

RMSE =

√√√√ 1

n

n∑
j=1

(
Ĩ(aj)− I(aj)

)2

,

where a1, . . . , an are the observations where we want to estimate the error, and Ĩ is the
approximation to I. However, since we do not have information on the index for the
values we want to approximate, we need a strategy that allows us to estimate this error.
In our case we will divide D0, the subset of the observations with known index, into
two subsets that we will call training and test. We will use the observations from the
training set, consisting of seventy percent of the total observations selected randomly,
to carry out the extension, while the remaining observations from the test set will be
used to calculate the RMSE. Nevertheless, the randomness of this process influences the
resulting error, so it may not be representative. To address this situation, we will carry
out a process known as cross-validation, which consists of repeating this process several
times (in our case twenty times) to compile the resulting errors and to be able to draw a
more robust conclusion on accuracy. Moreover, among all the training sets that we have
generated, we will take as a reference for the extension the one with the lowest resulting
RMSE.

(III) To choose the best ϕ function to fit the model we will carry out an optimisation process, in
which we will extract the function that minimises the error made in the test set. Ideally,
we would partition our data set into three subsets, the aforementioned training and test
subsets plus a validation subset, from which we would make the adjustment. However,
as we do not have numerous observations, the resulting sets would not be significant for
this study, so we will take the values obtained from the test set as a reference. To do
so, we will consider that the linear combination of functions in Φ with positive scalars
is another function in Φ. We will first choose a set of elementary functions {ϕj}nj=1 ⊂ Φ
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and we will discuss for which values λ1, . . . , λn ≥ 0 the funcion ϕ := λ1ϕ1 + . . . + λnϕn

ensures that the metric dϕ is optimal in terms of the RMSE. To do so, we will consider
the particle swarm optimisation algorithm of the R library "pso". This type of algorithm,
in contrast to those based on the gradient of the function, explores the entire possible
set of parameters and thus avoids convergence to local minimums.

(IV) If we consider the extension using the Whitney and McShane formulas, which are maxi-
mal and minimal extensions respectively, we can ask ourselves whether we can consider
an intermediate extension that minimizes the error. That is to say, for which α ∈ [0, 1]
the extension I := (1 − α)IW + αIM minimizes the error. As in the previous item, the
preferred way to obtain this parameter would be from a validation set, but for the reasons
already explained, we will take the test set as a reference. To do so, we will choose the
value of α according to the following result.

Proposition 3.1. Let (D, d) be a finite metric space and I : D0 ⊂ D → R a ϕ-coherent
index for K > 0. Let S1, S2 ⊂ D0 such that S1 ∪ S2 = D0 and S1 ∩ S2 = ∅. Consider

IW (b) := inf
a∈S1

{I(a) +Kdϕ(a, b)}, IM(b) := sup
a∈S1

{I(a)−Kdϕ(a, b)}.

Naming IEα := (1 − α)IW + αIM , then min
0≤α≤1

∑
b∈S2

(
I(b)− IEα (b)

)2
=

∑
b∈S2

(
I(b)− IEα0

(b)
)2

for

α0 =

∑
b∈S2

(
IW (b)− I(b)

) (
IW (b)− IM(b)

)∑
b∈S2

(IW (b)− IM(b))2
.

Proof. Let F (α) :=
∑
b∈S2

(
I(b)− IEα (b)

)2 and note that

F (α) =
∑
b∈S2

(
I(b)− IW (b) + α

(
IW (b)− IM(b)

))2
,

so

F ′(α) = 2
∑
b∈S2

(
I(b)− IW (b) + α

(
IW (b)− IM(b)

)) (
IW (b)− IM(b)

)
= 2

∑
b∈S2

(
I(b)− IW (b)

) (
IW (b)− IM(b)

)
+ 2α

∑
b∈S2

(
IW (b)− IM(b)

)2
.

Solving the equation F ′(α) = 0 we obtain the α0 we are looking for, since

F ′′(α) = 2
∑
b∈S2

(
IW (b)− IM(b)

)2 ≥ 0.
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The reason why we have considered the RMSE to measure the error as opposed to
other alternatives is because it ensures the derivability of the function F that we have
considered, which allows us to easily study its minimum as in the previous proposition.
If we had considered other types of error measures defined from the absolute value, such
as the mean absolute error (MAE) or the symmetric mean absolute percentage error
(SMAPE), it would have led to a less direct and more complex study to determine the
optimal α due to the non-derivative nature of such definitions.

(V) In case we consider the extension by identifying the index with a standard one, we will
proceed to find the element a0 ∈ D that minimises the index. In this case we will take
Ĩ(b) := Kdϕ(a0, b) as an approximation of I(b) because min(I) = 0 after scaling.

3.2 Testing the algorithm
Having presented and studied the main issues in putting our theory into practice, we have

implemented in the programming language R the algorithm that follows the points outlined
above. The objective of this section is to analyse the numerical results obtained from it and
to compare its performance with other existing alternatives. Specifically, we will apply these
techniques in two cases: a first example that highlights the importance of index theory and
the advantages of having its extension, and another that will help us to make a more detailed
study of its results and comparisons. All the codes that have been used can be found in the
Appendix 3.2.2.

3.2.1 AARP livability index

In 2018, 55 percent of the world’s population lived in urban areas, and by 2050 this ratio
is expected to rise to 68 percent, according to [12]. This context of rapid urbanisation explains
the growing interest in studying and measuring concepts such as the quality of life or liveability
of cities, as can be seen, for example, in the different indices summarized in [13]. The purpose
of these indicators is twofold: firstly, to define what is meant by liveability and to identify the
parameters that describe it, and secondly, to have information on which cities or neighbourhoods
have better living conditions. With this information, urban planners can better understand the
areas in which to act, or public administrations can identify places with poorer living conditions
to develop and in which to invest. However, this task can be difficult to accomplish due to the
numerous and hard-to-estimate factors involved. For example, one of the best-known liveability
indices, the Global Liveability Index compiled by The Economist, lists thirty indicators in five
different categories, some of which are in turn built upon others. Moreover, some of them are
subjective and difficult to estimate, such as the discomfort of climate for travellers or level of
corruption. In this section, we propose to use the index extension theory developed in the
previous chapter to approximate liveability using only alternative mobility indicators to the
private car. The idea behind this is to dispense with subjective or complex to estimate social
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indicators, and to focus on these easily estimable ones based on existing infrastructure, and the
connectivity of the urban pattern beyond car dependency and its associated problems.

Let us explain the databases we will consider. Walk Score®1 is a website that scores, from
0 to 100, the walkability performance of 123 cities in the United States and Canada according
to a series of parameters, such as intersection density, block length, access to amenities in less
than a 5-minute walk, etc. Also, it provides scores on cities’ transport and cycling performance
in the same way. Our objective will be to use these three indicators to approximate the AARP
liveability index 2. This index assesses 61 different indicators in seven categories (housing,
neighbourhood, transport, environment, health, engagement and opportunity) to evaluate the
liveability of US cities, such as housing costs, crime rate, air quality or income inequality.
The final score is a number between 0 and 100, 50 being and average score and higher values
corresponding to above-average performance, and vice versa. In mathematical terms our metric
space is D ⊂ [0, 100]3, where each element (x, y, z) ∈ D represents a city with walk, transport
and bike scores x, y and z respectively, equipped with the canonical metric d of R3. For 101
US cities we have defined the index of interest, which we will call I, and our goal is to be able
to define it for 22 Canadian cities as well. Table 3.1 shows an example of our data.

We have implemented in Algorithm 1 the extension of our index, following the considerations
set out in the previous section. In particular, to determine the ϕ function, we consider two
linear combination of funcions of Φ as follows:

ϕ(x) = p1x+ p2 log(1 + x) + p3 arctan(x) + p4
x

1 + x
, p1, . . . , p4 ≥ 0,

and

ψ(x) = p1
√
x+ p2 log

(
1 +

√
x
)
+ p3 arctan

(√
x
)
+ p4

√
x

1 +
√
x
, p1, . . . , p4 ≥ 0.

Table 3.2 shows the comparative performance of the two methods (identification with a
standard index and McShane-Whitney extensions) and their differences with of our technique
(introduction of a function of Φ). As we can see, the identification of our index with a standard
one gives a bad performance due to a significantly high estimated mean error, so we cannot
consider it. As for the extension formulas, our technique maintains the standard deviation
of the error while reducing the expected RMSE, although not significantly. Furthermore, the
computation time is higher, mainly due to the optimisation process carried out. On the other
hand, Table 3.3 shows the results of considering in this case a linear combination as ψ, together
with the same results of the classical technique and the neural net. In this case, there is a
more significant improvement in performance compared to the original technique. However,
the neural network has been shown to be the most efficient in terms of prediction. Finally, in

1https://www.walkscore.com
2https://livabilityindex.aarp.org/scoring
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Table 3.4 we present the predictions resulting from each method, providing a ranking according
to them. Since we do not have benchmark values for our studied index when assessing the
resulting rankings, we will compare it with other existing indices. The Mercer quality of
living city ranking3 classifies Canadian cities in order as follows: Vancouver, Toronto, Ottawa,
Montreal and Calgary. As can be seen, this ranking is reasonably consistent with the ones we
have offered, with the city of Calgary being the only one that differs. Finally, we note that the
positive results obtained confirm that the model we have proposed is consistent, that is, it is
possible to characterise liveability based on parameters related to the mobility of pedestrians,
cyclists and public transport.

3.2.2 Further analysis

In order to check that the conclusions we have reached above are generally valid, and to
provide further examples to validate the standard index identification method, we will now
present some datasets to study this. We will first explain how we have generated our datasets.

We start with four random variables with a normal distribution, mean 0 and standard
deviation 1, from which we have obtained 100 random values and which we have multiplied
by 10 and rounded. We have called them x, y, z and t. Our metric space is formed by each
of the vectors of the form (x, y, z, t), equipped with the usual metric of R4. The index that
we have made corresponding to each of these elements is obtained by rounding the distance
between them and a preset element, plus the sine of this distance. In table 3.5 we have provided
examples of the observations we have generated and their indices. The purpose of doing so is
to obtain an index similar to a standard one (the coherence constant obtained after scaling is
K = 1.378 and the normalization constant Q = 0.994, approximately) and in this case to be
able to obtain a better comparison. We will also do the same but with 200 observations, so
that we can study the performance of the different alternatives as we increase the size of our
problem. Tables 3.6 and 3.7 show the results obtained.

Note that the introduction of a function ϕ ∈ Φ reduces the expected error of the extensions,
this fact being more significant in the standard index method, where the standard deviation
is also considerably reduced. As a counterpart, we see how the computation time increases
again in order of 3. Moreover, unlike the previous case, we can see now how the neural network
no longer has the best performance, the most significant fact being the considerable standard
deviation of the results it obtains. Finally, we note that doubling the number of observations
also approximately doubles the execution time of the classical Lipschitz methods, while for
the new proposed methods it is multiplied by a factor of 3. Moreover, we can see that the
introduction of one more variable compared to the previous problem has hardly changed the
computational times.

3https://mobilityexchange.mercer.com/Insights/quality-of-living-rankings
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City Walk Score Transit Score Bike Score I

New York 88 88.6 69.3 63
Los Angeles 68.6 52.9 58.7 49

Chicago 77.2 65 72.2 57
Toronto 61 78.2 61 ?
Houston 47.5 36.2 48.6 48
Montreal 65.4 67 72.6 ?

Table 3.1: Examples of scores and index for some cities.

Function ϕ Standard McShane-Whitney
Lipschitz ϕ-Lipschitz Lipschitz ϕ-Lipschitz

Mean RMSE 138.03 84.59 6.621 6.547
Median RMSE 142.06 85.28 6.704 6.660

Standard deviation 27.909 12.720 0.653 0.614
Seconds per iteration 1.548×10−4 2.396×10−1 5.875×10−4 4.579×10−1

Table 3.2: Comparison of method performance for function ϕ.

Function ψ Standard McShane-Whitney Neural net
Lipschitz ψ-Lipschitz Lipschitz ψ-Lipschitz

Mean RMSE 138.03 20.17 6.621 5.777 3.943
Median RMSE 142.06 19.65 6.704 5.750 3.919

Standard deviation 27.909 3.001 0.653 0.683 0.512
Seconds per iteration 1.548×10−4 2.421×10−1 5.875×10−4 4.245×10−1 1.230×10−1

Table 3.3: Comparison of method performance for function ψ.
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Ranking Classic Lipschitz ϕ-Lipschitz Neural net
City Index City Index City Index

1 Vancouver 65 Vancouver 62 Toronto 62
2 Toronto 65 Longueuil 62 Vancouver 62
3 Longueuil 62 Montreal 60 Burnaby 60
4 Ottawa 61 Winnipeg 58 Montreal 60
5 Montreal 61 Toronto 58 Ottawa 58
6 Winnipeg 61 Saskatoon 56 Winnipeg 58
7 Hamilton 58 Ottawa 56 Longueuil 57
8 Saskatoon 57 Hamilton 55 Mississauga 57
9 Surrey 56 Kitchener 54 Brampton 57
10 Laval 56 Surrey 54 Laval 57
11 Brampton 56 London 54 Markham 56
12 Quebec 55 Brampton 54 Calgary 56
13 Kitchener 55 Mississauga 53 Surrey 56
14 London 54 Laval 53 Kitchener 56
15 Calgary 54 Edmonton 53 Hamilton 55
16 Mississauga 53 Quebec 53 Vaughan 55
17 Gatineau 52 Windsor 53 Windsor 55
18 Windsor 51 Gatineau 52 Quebec 53
19 Edmonton 50 Calgary 52 London 52
20 Burnaby 50 Vaughan 51 Edmonton 52
21 Vaughan 50 Burnaby 50 Gatineau 52
22 Markham 49 Markham 50 Saskatoon 50

Table 3.4: Ranking of Canadian cities by predicted AARP liveability index.

x y z t Index
6 -7 22 -7 35
-2 3 13 -8 27
16 -2 -3 -9 28
1 -3 5 -11 25
1 -10 -4 -4 22
17 0 -5 3 26

Table 3.5: Example of some values of our dataset and its indices.
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n = 100
Standard McShane-Whitney Neural net

Lipschitz ϕ-Lipschitz Lipschitz ϕ-Lipschitz
Mean RMSE 5.462 3.344 8.332 8.266 7.6779

Median RMSE 5.470 3.335 8.382 8.322 8.1556
Standard deviation 0.433 0.242 1.189 1.174 3.631

Seconds per iteration 1.261×10−4 2.217×10−1 4.599×10−4 4.338×10−1 5.757×10−2

Table 3.6: Comparison of method performance for n = 100.

n = 200
Standard McShane-Whitney Neural net

Lipschitz ϕ-Lipschitz Lipschitz ϕ-Lipschitz
Mean RMSE 5.106 2.957 8.506 8.494 4.5950

Median RMSE 5.071 2.975 8.4340 8.415 3.9713
Standard deviation 0.201 0.115 0.663 0.668 3.835

Seconds per iteration 3.247×10−4 7.901×10−1 8.740×10−4 1.411×100 7.151×10−2

Table 3.7: Comparison of method performance for n = 200.
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Conclusions

We will conclude this work by outlining the main points that have been made, as well as
the conclusions of the results we have presented. In addition, we will indicate what we believe
are the most interesting directions that can be taken in order to extend this work and search
for new results.

In our work we have started from the Lipschitz condition, and we have made a proposal for
generalisation ensuring that this new class of functions still admits extension formulas like the
classical ones. As a result, we have found a way to redefine the distance in the metric space
that allows us to improve the extension results. We have taken this study to the field of index
spaces, presenting this theoretical framework and also contextualising possible applications and
the need for index extension. The results we have seen allow us to conclude that the introduction
of the ϕ-Lipschitz concept allows for a general improvement of the extensions. However, the
degree to which they do so will largely depend on the nature of the index and the ϕ-function
under consideration.

On the other hand, we consider that in the future it would be interesting to study possible
relations between ϕ and the metric space, in order to get a convenient metric dϕ to make the
extension. We have done this by considering linear combinations of some of the functions of Φ,
optimising the value of the scalars. Although this can be improved by considering larger sets
of elementary functions, for example compositions of them, we consider a problem of interest
to analyse whether a description of ϕ can be obtained a priori. Furthermore, although in our
basic metric spaces we have always considered the Euclidean metric, in some problems other
type of distances are used, which may include weights in their components depending on the
importance of the variables. It remains an open problem to study the behaviour of our method
with other metrics, especially how the weights are affected when composing with a ϕ function.
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Algorithms

Algorithm 1: Extension of the AARP livability index.
################### READING DATA ####################

#Libraries
library(dplyr)
library(Rfast)
library(neuralnet)
library(pso)

#Work directory
setwd("C:/Users/gonza/OneDrive/Documentos/lipschitz")

#Data frame
df <- read.csv("~/ lipschitz/ciudades.csv", dec=",")
n <- nrow(df)

################### DATA PROCESSING ####################

#Scaling
maxs <- as.vector(apply(df[2:5], 2, max))
mins <- as.vector(apply(df[2:5], 2, min))
scaled <- data.frame(scale(df[,2:5], mins , maxs -mins))
colnames(scaled) <- c("walk","transit","bike","liveability")

#Matrix of distances
D <- Dist(scaled[,1:3])

#Index distances
Dind <- Dist(scaled[,4])

#Optim parameters
p0 <- c(1,0,0,0)
low <- c(1e-16,1e-16,1e-16,1e-16)
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up <- c(1,1,1,1)

################### EXTENSION ####################

N <- 20
e.standard <- NULL
e.phistandard <- NULL
e.mw <- NULL
e.phimw <- NULL
e.nn <- NULL
t.standard <- 0
t.phistandard <- 0
t.mw <- 0
t.phimw <- 0
t.nn <- 0

for (iter in 1:N) {

#Training and test
train <- sort(sample(1:n,round(0.7*n)))
test <- setdiff(1:n,train)

#Standard Lipschitz
t0 <- Sys.time()
L <- max(Dind[train ,]/D[train ,], na.rm=TRUE)
a0 <- which.min(scaled[train ,4])
standard <- L*D[a0,test]
standard <- standard *(maxs[4]-mins[4])+ mins[4]
e.standard[iter] <- sqrt(sum((standard -df$liveability[test ])^2)/ length(test))
t1 <- Sys.time()
t.standard <- t.standard + t1-t0

#Standard phi -Lipschitz
t0 <- Sys.time()
a0 <- which.min(scaled[train ,4])
J <- function(p) {

phi <- function(x) {
x <- sqrt(x)
func <- p[1]*x + p[2]*log(1+x) + p[3]*atan(x) + p[4]*x/(1+x)
return(func)

}

K <- max(Dind[train ,]/phi(D[train ,]), na.rm = TRUE)
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standard <- K*phi(D[a0,test])
standard <- standard *(maxs[4]-mins[4])+ mins[4]
error <- sqrt(sum((standard -df$liveability[test ])^2)/ length(test))
return(error)

}
optimum <- psoptim(p0, J, lower=low , upper=up,

control = list(maxit = 100, maxf = 200))
e.phistandard[iter] <- optimum$value
t1 <- Sys.time()
t.phistandard <- t.phistandard + t1-t0

#McShane -Whitney Lipschitz
t0 <- Sys.time()
L <- max(Dind[train ,]/D[train ,], na.rm = TRUE)
index <- scaled$liveability[train]
Whitney <- apply(index + L*D[test ,train], 1, min)
McShane <- apply(index - L*D[test ,train], 1, max)
dif <- Whitney - McShane
alpha <- sum(dif*(Whitney -scaled$liveability[test ]))/ sum(dif^2)
I <- (1-alpha)* Whitney + alpha*McShane
I <- I*(maxs[4]-mins[4])+ mins[4]
e.mw[iter] <- sqrt(sum((I-df$liveability[test ])^2)/ length(test))
t1 <- Sys.time()
t.mw <- t.mw + t1-t0

if (e.mw[iter] == min(e.mw)) {
Lip <- L
Alpha <- alpha

}

#McShane -Whitney phi -Lipschitz
t0 <- Sys.time()
J <- function(p) {

phi <- function(x) {
x <- sqrt(x)
func <- p[1]*x + p[2]*log(1+x) + p[3]*atan(x) + p[4]*x/(1+x)
return(func)

}

K <- max(Dind[train ,]/phi(D[train ,]), na.rm = TRUE)
index <- scaled$liveability[train]
Whitney <- apply(index + K*phi(D[test ,train]), 1, min)
McShane <- apply(index - K*phi(D[test ,train]), 1, max)
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dif <- Whitney - McShane
alpha <- sum(dif*(Whitney -scaled$liveability[test ]))/ sum(dif^2)
I <- (1-alpha)* Whitney + alpha*McShane
I <- I*(maxs[4]-mins[4])+ mins[4]
error <- sqrt(sum((I-df$liveability[test ])^2)/ length(test))
return(error)

}
optimum <- psoptim(p0, J, lower=low , upper=up,

control = list(maxit = 100, maxf = 200))
e.phimw[iter] <- optimum$value
t1 <- Sys.time()
t.phimw <- t.phimw + t1-t0

if (e.phimw[iter] == min(e.phimw)) {
Train <- train
Test <- test
par <- optimum$par

}

#Neural Net
t0 <- Sys.time()
nn <- neuralnet(liveability ~ walk + transit + bike , scaled[train ,])
pr.nn <- compute(nn, scaled[test ,1:3])
pr.nn <- pr.nn$net.result *(maxs[4]-mins[4])+ mins[4]
e.nn[iter] <- sqrt(sum((pr.nn-df$liveability[test ])^2)/ length(test))
t1 <- Sys.time()
t.nn <- t.nn + t1-t0

if (e.nn[iter] == min(e.nn)) {
NN <- nn

}

}

#Summary
summary(e.standard)
summary(e.phistandard)
summary(e.mw)
summary(e.phimw)
summary(e.nn)

#Times
t.standard/N
t.phistandard/N
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t.mw/N
t.phimw/N
t.nn/N

################### CANADA RANKING ####################

#Canada data frame
df.can <- read.csv("~/ lipschitz/ciudadescan.csv", dec=",")
m <- nrow(df.can)

#Predictions
index <- scaled$liveability[Train]

#McShane -Whitney Lipschitz
MW <- function(city) {

city <- (city -mins[1:3])/( maxs[1:3]-mins[1:3])
distance <- sqrt(apply(( scaled[Train ,1:3]-city)^2,1,sum))
Whitney <- min(index + Lip*distance)
McShane <- max(index - Lip*distance)
index = (1-Alpha)* Whitney + Alpha*McShane
index <- index*(maxs[4]-mins[4])+ mins[4]

return(index)
}

#McShane -Whitney phi -Lipschitz
phi <- function(x) {

func <- par[1]*x + par[2]*log(1+x) + par[3]*atan(x) + par[4]*x/(1+x)
}

K <- max(Dind[Train ,]/phi(D[Train ,]), na.rm = TRUE)
Whitney <- apply(index + K*phi(D[Test ,Train]), 1, min)
McShane <- apply(index - K*phi(D[Test ,Train]), 1, max)
dif <- Whitney - McShane
Alpha.phi <- sum(dif*(Whitney -scaled$liveability[Test ]))/ sum(dif^2)

phiMW <- function(city) {
city <- (city -mins[1:3])/( maxs[1:3]-mins[1:3])
distance <- sqrt(apply(( scaled[Train ,1:3]-city)^2,1,sum))
Whitney <- min(index + K*phi(distance ))
McShane <- max(index - K*phi(distance ))
index = (1-Alpha.phi)* Whitney + Alpha.phi*McShane
index <- index*(maxs[4]-mins[4])+ mins[4]
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return(index)
}

#Rankings
ranking <- data.frame(df.can$city)
for (i in 1:m){

ranking[i,2] <- MW(as.numeric(df.can[i,2:4]))
}

ranking[,3] <- df.can$city
for (i in 1:m){

ranking[i,4] <- phiMW(as.numeric(df.can[i,2:4]))
}

ranking[,5] <- df.can$city
pred <- compute(NN ,(df.can[,2:4]-mins[1:3])/( maxs[1:3]-mins[1:3]))
pred <- pred$net.result
ranking[,6] <- pred*(maxs[4]-mins[4])+ mins[4]
colnames(ranking) <- c("City","Index","City","Index","City","Index")
write.csv(ranking , "C:/Users/gonza/OneDrive/Documentos/lipschitz/ranking.csv",

row.names=FALSE)
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Algorithm 2: Extension of our custom index.

################### READING DATA ####################

#Libraries
library(dplyr)
library(Rfast)
library(neuralnet)
library(pso)

#Work directory
setwd("C:/Users/gonza/OneDrive/Documentos/lipschitz")

#Data frame
df <- read.csv("~/ lipschitz/datos100.csv", dec=",")
n <- nrow(df)

################### DATA PROCESSIN ####################

#Scaling
maxs <- apply(df, 2, max)
mins <- apply(df, 2, min)
scaled <- as.data.frame(scale(df, center = mins , scale = maxs - mins))

#Minimum element
a0 <- which.min(scaled$Index)

#Matrix of distances
D <- Dist(scaled[,1:4])

#Index distances
Dind <- Dist(scaled[,5])

#Optim parameters
p0 <- c(1,0,0,0)
low <- c(1e-16,1e-16,1e-16,1e-16)
up <- c(1,1,1,1)

#################### COMPARATIONS ####################

N <- 20

RMSE_stand <- NULL
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RMSE_stand_phi <- NULL
RMSE_MW <- NULL
RMSE_MW_phi <- NULL
RMSE_neuralnet <- NULL

stand_time <- 0
MW_time <- 0
stand_phi_time <- 0
MW_phi_time <- 0
neuralnet_time <- 0

for (iter in 1:N) {

#Train and test
train <- sort(sample(1:n,round(0.7*n)))
test <- setdiff(1:n,train)

### Standard Lipschitz
t0 <- Sys.time()
K <- max(Dind[train ,]/D[train ,], na.rm = TRUE)
standard <- K*D[a0,test]
standard <- standard *(maxs[5]-mins[5])+ mins[5]
RMSE_stand[iter] <- sqrt(sum((standard -df$Index[test ])^2)/ length(test))
t1<- Sys.time()
stand_time <- stand_time + t1-t0

###McShane -Whitney Lipschitz
t0 <- Sys.time()
index <- scaled$Index[train]
Whitney <- apply(index + K*D[test ,train], 1, min)
McShane <- apply(index - K*D[test ,train], 1, max)
dif <- Whitney - McShane
alpha <- sum(dif*(Whitney -scaled$Index[test ]))/ sum(dif^2)
I <- (1-alpha)* Whitney + alpha*McShane
I <- I*(maxs[5]-mins[5])+ mins[5]
RMSE_MW[iter] <- sqrt(sum((I-df$Index[test ])^2)/ length(test))
t1<- Sys.time()
MW_time <- MW_time + t1-t0

### Standard phi -Lipschitz
t0 <- Sys.time()
J <- function(p) {

phi <- function(x) {
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u <-p[1]*x + p[2]*log(1+x) + p[3]*atan(x) + p[4]*x/(1+x)
return(u)

}

K <- max(Dind[train ,]/phi(D[train ,]), na.rm = TRUE)

standard <- K*phi(D[a0,test])
standard <- standard *(maxs[5]-mins[5])+ mins[5]

rmse <- sqrt(sum((standard -df$Index[test ])^2)/ length(test))

return(rmse)
}

optimum <-psoptim(p0, J, lower = low , upper = up,
control = list(maxit = 100, maxf = 200))

RMSE_stand_phi[iter] <- optimum$value
t1<- Sys.time()
stand_phi_time <- stand_phi_time + t1-t0

###McShane -Whitney phi -Lipschitz
t0 <- Sys.time()
J <- function(p) {

phi <- function(x) {
u <-p[1]*x + p[2]*log(1+x) + p[3]*atan(x) + p[4]*x/(1+x)
return(u)

}

K <- max(Dind[train ,]/phi(D[train ,]), na.rm = TRUE)
index <- scaled$Index[train]
Whitney <- apply(index + K*phi(D[test ,train]), 1, min)
McShane <- apply(index - K*phi(D[test ,train]), 1, max)
dif <- Whitney - McShane
alpha <- sum(dif*(Whitney -scaled$Index[test ]))/ sum(dif^2)
I <- (1-alpha)* Whitney + alpha*McShane
I <- I*(maxs[5]-mins[5])+ mins[5]
rmse <- sqrt(sum((I-df$Index[test ])^2)/ length(test))

return(rmse)
}

optimum <-psoptim(p0, J, lower = low , upper = up,
control = list(maxit = 100, maxf = 200))
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RMSE_MW_phi[iter] <- optimum$value
t1<- Sys.time()
MW_phi_time <- MW_phi_time + t1-t0

### Neural Net
t0 <- Sys.time()
nn <- neuralnet(Index ~ x + y + z + t, data = scaled[train ,])
pr.nn <- compute(nn, scaled[test ,1:4])
pr.nn <- pr.nn$net.result *(maxs[5]-mins[5])+ mins[5]
RMSE_neuralnet[iter] <- sqrt((sum(pr.nn-df$Index[test ])^2)/ length(test))
t1<- Sys.time()
neuralnet_time <- neuralnet_time + t1-t0

}

#Summary
summary(RMSE_stand)
summary(RMSE_MW)
summary(RMSE_stand_phi)
summary(RMSE_MW_phi)
summary(RMSE_neuralnet)

#Times
stand_time/N
MW_time/N
stand_phi_time/N
MW_phi_time/N
neuralnet_time/N
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