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J. Jaime Gómez-Hernández



“myThesis” — 2007/12/27 — 13:30 — page ii — #2

Copyright c©2007 by
Jianlin Fu

All rights reserved



“myThesis” — 2007/12/27 — 13:30 — page i — #3

A Markov Chain Monte Carlo Method
for Inverse Stochastic Modeling and

Uncertainty Assessment

PhD Thesis submitted by
Jianlin Fu

Advisor:
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Life is like a box of chocolates.
You never know what you gonna get.

〈〈Forest Gump〉〉
Life is like a Markov chain.

You never know where you gonna go.
(?)
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Abstract

Unlike the traditional two-stage methods, a conditional and inverse-conditional
simulation approach may directly generate independent, identically distributed
(i.i.d) realizations to honor both static data and state data in one step. The
Markov chain Monte Carlo (McMC) method was proved a powerful tool to per-
form such type of stochastic simulation. One of the main advantages of the
McMC over the traditional sensitivity-based optimization methods to inverse
problems is its power, flexibility and well-posedness in incorporating obser-
vation data from different sources. In this work, an improved version of the
McMC method is presented to perform the stochastic simulation of reservoirs
and aquifers in the framework of multi-Gaussian geostatistics.

First, a blocking scheme is proposed to overcome the limitations of the
classic single-component Metropolis-Hastings-type McMC. One of the main
characteristics of the blocking McMC (BMcMC) scheme is that, depending on
the inconsistence between the prior model and the reality, it can preserve the
prior spatial structure and statistics as users specified. At the same time, it
improves the mixing of the Markov chain and hence enhances the computa-
tional efficiency of the McMC. Furthermore, the exploration ability and the
mixing speed of McMC are efficiently improved by coupling the multiscale
proposals, i.e., the coupled multiscale McMC method. In order to make the
BMcMC method capable of dealing with the high-dimensional cases, a multi-
scale scheme is introduced to accelerate the computation of the likelihood
which greatly improves the computational efficiency of the McMC due to the
fact that most of the computational efforts are spent on the forward simula-
tions. To this end, a flexible-grid full-tensor finite-difference simulator, which
is widely compatible with the outputs from various upscaling subroutines, is
developed to solve the flow equations and a constant-displacement random-
walk particle-tracking method, which enhances the computational efficiency
at different scales, is employed to solve the transport problems.

Second, the usefulness and efficiency of the proposed method are validated
by a synthetic example. The uncertainty reduction due to conditioning on
various types of data from different sources is assessed with the aid of the
synthetic example. One of the novel achievements in this work is that the
physical models are constrained to the temporal moments of BTCs that are
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more easily accessible than the concentration data which are only sparsely
distributed in space. The worth on uncertainty reduction is evaluated by
comparing to other data sources.

Third, by comparing the BMcMC to the ensemble Kalman filtering (EnKF),
the importance of honoring the prior information for inverse stochastic model-
ing is ascertained in two synthetic examples. Numerical simulations show that,
even though the EnKF method may efficiently provide a better reproduction
of observed dynamic data than the BMcMC method, the preservation of spa-
tial statistics and model structure makes the BMcMC simulations competitive
for some cases in predicting accurately and reliably the future performance of
reservoirs particularly at new well locations. This is because the spatial struc-
ture and statistics of models may be one of the most important error sources
to the prediction of the future performance of reservoirs and aquifers, it should
be consistent with the given information just as conditioning to linear data
and inverse-conditioning to nonlinear data. In other words, the realizations
generated should preserve the given spatial structure and statistics during the
procedure of conditioning and inverse-conditioning.
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Resumen

La recopilación de observaciones de la altura piezométrica y las medidas de
la conductividad hidráulica local (o transmisividad) proporcionan una ines-
timable información para identificar el patrón espacial de los parámetros en
acúıferos, incluso los caminos de flujo o barreras de flujo, y para reducir la
incertidumbre de los modelos de acúıferos. Para obtener dicha información
de conectividad a partir de las medidas y cuantificar la incertidumbre con
exactitud, el método Monte Carlo es normalmente utilizado para generar un
gran número de realizaciones de los parámetros de acúıferos condicionados a
datos duros (conductividad) e inversamente condicionados a los datos de es-
tado (altura piezométrica). No obstante, la simulación inversa condicionada
de los parámetros de acúıferos es computacionalmente muy pesada, ya que
implica una optimización no lineal del problema para generar cada una de las
realizaciones inversas condicionadas. En contraste con algunos de los opti-
mizadores no lineales clásicos y buscadores de algoritmos, en este estudio se
presenta un esquema de cadena Markov Monte Carlo (McMC) para generar
realizaciones condicionadas multi-Gaussianas, muestreando directamente de
una distribución posterior que incorpora información a priori y observaciones
a posteriori en un esquema Bayesiano. Lo que hace de este método bastante
eficiente en la exploración del espacio de los parámetros del modelo es que el
núcleo propuesto es una aproximación apropiada a la distribución del objetivo
posterior y que la generación de realizaciones de candidatos es muy rápida
debido a la descomposición LU de la matriz de covarianza. Las realizaciones
generadas de esta forma no están únicamente condicionadas por los datos duros
sino que también tienen la estructura espacial esperada. El funcionamiento
del esquema McMC propuesto es ampliamente evaluado mediante un ejemplo
sintético que simula el caso de flujo por gradiente natural. La propagación
de incertidumbre debida al mapeado condicionado e inverso condicionado de
los modelos para acúıferos es entonces cuantificada en términos estad́ısticos
de tiempos de llegada, resolviendo los estados estacionarios de flujo asumidos
y los problemas de transporte conservativo ideal. La reducción en la incer-
tidumbre de la predicción, implica no sólo el valor de la altura piezométrica,
sino también el significado de los momentos temporales y las estad́ısticas de
conectividad en el mapeado de parámetros de acúıferos.
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Una representación adecuada de la variación espacial detallada de los
parámetros superficiales requiere modelos de acúıferos de alta resolución. La
caracterización precisa de estos modelos a gran escala en un método Monte
Carlo recurre t́ıpicamente a una simulación estocástica capaz de condicionar
los datos duros (ej. conductividad) y los datos de estado dependientes (ej.
altura piezométrica, concentración, etc.), conocida como modelación condi-
cionada e inversa condicionada respectivamente. Se ha comprobado que un
esquema de cadena Markov Monte Carlo (McMC) resulta efectivo y eficiente
para llevar a cabo este tipo de simulaciones condicionada e inversa condi-
cionada, muestreando directamente en una distribución posterior que incor-
pora la información previa y las observaciones posteriores en un marco de
trabajo Bayesiano. A pesar de esto, la utilidad de los métodos McMC pre-
viamente mencionados, se debe a la limitada capacidad de la descomposición
LU de la matriz de covarianza en desacuerdo con los casos de alta resolución.
En este estudio se presenta un nuevo esquema McMC para generar realiza-
ciones condicionadas multi-Gaussianas de alta resolución. Lo que hace de este
método muy eficiente en la exploración de los parámetros espaciales de mod-
elos de elevadas dimensiones, es que el núcleo propuesto es una aproximación
apropiada para la distribución posterior del objetivo seleccionado y que la
generación de realizaciones de candidatos está basada en la descomposición
espectral de la matriz covarianza con el fin de aumentar la velocidad de la
transformada de Fourier. Las realizaciones generadas de esta forma, no sólo
están condicionadas por el registro de conductividad, la altura piezométrica
y los momentos temporales de la concentración de soluto, sino que también
tienen la estructura espacial esperada. La propagación de incertidumbre de-
bida al mapeado condicionado e inverso condicionado de los modelos para
acúıferos también es cuantificada.
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Resum

La recopilació d’observacions de la càrrega piezomètrica i les mesures de la
conductivitat hidràulica local (o transmissivitat) proporcionen una inestimable
informació per a identificar el patró espacial dels paràmetres en aqǘıfers, inclús
els camins de fluix o barreres de fluix, i per a reduir la incertesa dels mod-
els d’aqǘıfers. Per a obtindre la dita informació de conectivitat a partir de
les mesures i quantificar la incertesa amb exactitud, el mètode Monte Carlo
és normalment utilitzat per a generar un gran nombre de realitzacions dels
paràmetres d’aqǘıfers condicionats a dades durs (conductivitat) i inversament
condicionats a les dades d’estat (càrrega piezomètrica). No obstant això, la
simulació inversa condicionada dels paràmetres d’aqǘıfers és computacional-
ment molt pesada, ja que implica una optimació no lineal del problema per a
generar cada una de les realitzacions inverses condicionades. En contrast amb
alguns dels optimadors no lineals clàssics i buscadors d’algoritmes, en este es-
tudi es presenta un esquema de cadena Markov Monte Carlo (McMC) per a
generar realitzacions condicionades multi-gaussianes, mostrejant directament
d’una distribució posterior que incorpora informació a priori i observacions a
posteriori en un esquema Bayesiano. El que fa d’este mètode prou eficient
en l’exploració de l’espai dels paràmetres del model és que el nucli proposat
és una aproximació apropiada a la distribució de l’objectiu posterior i que
la generació de realitzacions de candidats és molt ràpida a causa de la de-
scomposició LU de la matriu de covarianza. Les realitzacions generades d’esta
forma no estan únicament condicionades per les dades durs sinó que també
tenen l’estructura espacial esperada. El funcionament de l’esquema McMC
proposat és àmpliament avaluat per mitjà d’un exemple sintètic que simula el
cas de fluix per gradient natural. La propagació d’incertesa deguda al mapeado
condicionat i invers condicionat dels models per a aqǘıfers és llavors quantifi-
cada en termes estad́ıstics de temps d’arribada, resolent els estats estacionaris
de fluix assumits i els problemes de transport conservatiu ideal. La reducció en
la incertesa de la predicció, implica no sols el valor de la càrrega piezomètrica,
sinó també el significat dels moments temporals i les estad́ıstiques de conec-
tivitat en el mapeado de paràmetres d’aqǘıfers.

Una representació adequada de la variació espacial detallada dels paràmetres
superficials requerix models d’aqǘıfers d’alta resolució. La caracterització pre-
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cisa d’estos models a gran escala en un mètode Monte Carlo recorre t́ıpicament
a una simulació estocàstica capaç de condicionar les dades durs (ex. con-
ductivitat) i les dades d’estat dependents (ex. càrrega piezomètrica, concen-
tració, etc.), coneguda com modelació condicionada i inversa condicionada
respectivament. S’ha comprovat que un esquema de cadena Markov Monte
Carlo (McMC) resulta efectiu i eficient per a portar a terme este tipus de
simulacions condicionada i inversa condicionada, mostrejant directament en
una distribució posterior que incorpora la informació prèvia i les observa-
cions posteriors en un marc de treball Bayesiano. A pesar d’açò, la utilitat
dels mètodes McMC prèviament mencionats, es deu a la limitada capacitat
de la descomposició LU de la matriu de covarianza en desacord amb els ca-
sos d’alta resolució. En este estudi es presenta un nou esquema McMC per a
generar realitzacions condicionades multi-gaussianes d’alta resolució. El que fa
d’este mètode molt eficient en l’exploració dels paràmetres espacials de models
d’elevades dimensions, és que el nucli proposat és una aproximació apropiada
per a la distribució posterior de l’objectiu seleccionat i que la generació de
realitzacions de candidats està basada en la descomposició espectral de la ma-
triu covarianza a fi d’augmentar la velocitat de la transformada de Fourier.
Les realitzacions generades d’esta forma, no sols estan condicionades pel reg-
istro de conductivitat, la càrrega piezomètrica i els moments temporals de la
concentració de soluto, sinó que també tenen l’estructura espacial esperada.
La propagació d’incertesa deguda al mapeado condicionat i invers condicionat
dels models per a aqǘıfers també és quantificada.
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1
Introduction

1.1 Motivation and Objectives

Since the physical parameters in subsurface vary in a highly non-deterministic
and unpredictable manner in space, a stochastic simulation approach is often
adopted to quantify this kind of uncertainty. As for a complicated system,
such uncertainty analysis will have to resort to a numerical simulation which is
typically costly in computation. The Monte Carlo method is an indispensable
tool for solving this type of difficult computational problem. Suppose there
is a process generating a random vector x and we wish to compute E[f(x)]
and V ar[f(x)] given a function f(x). Suppose further the random vector is
associated with a probability density function p(x). In this study, the terms
“density” and “distribution” are interchangeably used when referring to the
mechanism for generating a random process. The expectation and the variance
may be written as,

E[f(x)] =
∫

f(x)p(x)dx, (1.1)

V ar[f(x)] = E[(f(x)− E[f(x)])2], (1.2)

respectively.
In the communities of petroleum engineering and groundwater, the main

objective of stochastic simulation is to build up a large number of independent,
identically distributed (i.i.d) reservoir models x = (x0, x1, ...,xnr−1)T from a

1
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target distribution π(x) as input to assessment systems of the uncertainty of
reservoir behavior, e.g., f(x) = (f(x0), f(x1), ..., f(xnr−1))T , where nr is the
number of reservoir models or realizations. The average estimate of reservoir
behavior can be approximated by,

µ̂f =
1
nr

nr−1∑

i=0

f(xi), (1.3)

which represents the maximum probable estimate and the corresponding vari-
ance is,

σ̂2
f =

1
nr

nr−1∑

i=0

(f(xi)− µ̂f )2, (1.4)

which measures the error scope of the maximum probable estimate.
However, this set of i.i.d realizations should be constrained by all infor-

mation available, even though incomplete, to exhaust the resources that ex-
periments provide and reduce the uncertainty to the greatest extent so that
they can better reflect the underground reality of reservoir and aquifer. These
information may include some prior concepts about models (e.g., those from
the experts’ subjective imagination on the basis of outcrops, sedimentary pet-
rography and other geological and geophysical information) and all posterior
objective observations (e.g., those from measurements in the field). It is also
possible that the measurement data are available at different scales with dif-
ferent precisions.

Basically in mathematics, there are two kinds of measurements being used
to constrain the stochastic models: one is linear and the other is nonlinear. The
linear data may include hard data x1 on the measurement scale typically with
a higher precision, such as permeability measured at the core scale or derived
from well-logging or well-test data, and soft data x at a larger scale with a lower
precision, such as seismic data which is beyond the scope of this work. There
also is another type of special data available, i.e., the hyperparameters θ, which
is a combination of the prior and posterior information, such as, variogram (in-
cluding sill, hole effect, correlation length, anisotropy and principal direction,
variogram type...), histogram and/or multi-point statistics, since they depend
on both the actual observations and expertise’s imagination. These data can
be directly incorporated into the models by geostatistical tools currently avail-
able. The widely used non-conditioning and linear conditioning algorithms for
sampling x ∼ π(x|x1,θ) include: the LU-decomposition algorithm (Davis,
1987; Alabert, 1987), the sequential Gaussian simulation (Gomez-Hernandez
and Journel, 1993), the sequential indicator simulation (Gomez-Hernandez
and Srivastava, 1990), the p-field simulation, the simulated annealing algo-
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rithm (Deutsch and Journel, 1998), the FFT-based spectral method (Pardo-
Iguzquiza and Chica-Olmo, 1993; Robin et al., 1993; Gutjahr et al., 1997; Ruan
and McLaughlin, 1998), etc.

The other type is the nonlinear data y which are typically time-dependent
known as dynamic data, such as the pressure measurements and water cut
history. In order to integrate nonlinear data into the models, an ill-posed
inverse problem arises and typically has to be solved by some complicated
optimization methods. In the groundwater community this procedure is called
model calibration while in petroleum engineering it is called automatic history
matching. In geostatistics it can be named as inverse-conditioning problem
since an inverse procedure is involved.

The practical meaningfulness of such inverse-conditioning simulation is ob-
vious. For example, in petroleum engineering, one of the main goals of the
numerical modeling is to predict reservoir performance at the spatiotemporal
scale in more details and with higher accuracy than is possible with simple
techniques such as extrapolation. The heterogeneities of subsurface reservoirs
and aquifers are so complex that there are no enough data to predict a future
performance with complete confidence and accuracy. However, the validity of
a physical model can be evaluated by calculating the past performance and
comparing the calculated results to the actual field observations. If the misfit
between the model and the observations is unacceptable, then the input model
parameters must be adjusted until a satisfied consistence is obtained, which is
known as history matching. History matching can be time-consuming, expen-
sive, and frustrating, primarily because reservoir performance can be complex,
responding to numerous interactions that, as a whole, may be difficult to com-
prehend. In general, the parameters to be constructed include permeability,
porosity, geologic facies, fault, and boundary conditions. The dynamic obser-
vation data to be matched consist of pressure, WOR, GOR, gas/water ratio,
fluid contact movement, water and gas arrival times, and fluid saturations
measured in cores, well-logs, and chemical tracer tests.

Similarly, this topic is also found in the groundwater community. For ex-
ample, groundwater flow and contaminant transport modeling has been used
at many hazardous waste sites. Models may be used throughout all phases
of the site investigation and remediation processes. The ability to reliably
predict groundwater flow and contaminant transport is critical in planning,
implementing and managing groundwater remediations. Those models should
not violate specified constraints imposed on them. One type of important con-
straint is the collection of model responses in the real field. One can compare
the observed model responses in the real system with those predicted by the
models. The sought values of model parameters are those that will make the
two sets of values of state variables identical. However, because the models
are only an approximation of the real system, one should never expect these
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two sets of values to be identical. Instead, the “best fit” or “optimal” (i.e.,
those values that make the predicted values and the measured ones sufficiently
close to each other) between them must be sought according to some crite-
rion. Several important model parameters to be identified include hydraulic
conductivity, storage coefficients, dispersivity, retardation factor, mass trans-
fer rate, aquifer boundary conditions, etc. The model responses that could be
collected in the field are piezometric heads, concentrations of contaminants,
travel times of tracers, etc.

The commonly used inverse-conditioning algorithms for sampling x ∼
π(x|y) include: the cokriging method (Kitanidis and Vomvoris, 1983), the
maximum likelihood method (Carrera and Neuman, 1986), the randomized
maximum likelihood method (Oliver et al., 1996), the pilot point method (Ra-
maRao et al., 1995), the sequential self-calibration method (Gomez-Hernandez
et al., 1997), the simulated annealing method (Datta-Gupta et al., 1995),
the gradual deformation method (Hu, 2000), the ensemble Kalman filtering
method (Evensen, 1994, 2003), etc. A detailed review on these algorithms is
outside the scope of this work. Readers can refer to Yeh (1986), McLaugh-
lin and Townley (1996) and Zimmerman et al. (1998) for more details. In
general, these classical two-stage methods start from generation of a series of
independent seed fields and then calibrate those fields to honor nonlinearly
dependent state data from different sources.

The objective of this thesis is to develop a stochastic simulation algorithm
to generating i.i.d realizations which not only honor the static hard and soft
data and the dynamic state data but also have the specified spatial structure
and statistics for models, i.e., x ∼ π(x|x1, y, θ). Instead of the two-stage
method, an alternative choice is to generate realizations in one step which are
both conditioned on the linear data and inverse-conditioned on the nonlin-
ear data. With the aid of the Bayesian theorem, a conditional and inverse-
conditional simulation method can draw samples directly from the posterior
distribution that incorporates both the prior information and the posterior
observations. It should be pointed out that, although some of the two-stage
methods are also based on the Bayesian theorem, the ways to use it are essen-
tially different. The classic two-stage methods, e.g., the maximum a posteriori
(MAP) method, try to build up parameter models by maximizing the posterior
probability while the method presented in this thesis only weights the candi-
date realizations by their posterior densities and just samples those models
with the maximum posterior probabilities.

Thanking to the pioneering works by Omre and Tjelmeland (1996) and
Oliver et al. (1997), the Markov chain Monte Carlo (McMC) method has al-
ready been introduced into the petroleum engineering community to perform
such conditional and inverse-conditional stochastic simulation and uncertainty
assessment. The McMC outstands itself from other inverse-conditioning ap-
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proaches because it completely circumvents the numerical instability or the ill-
posedness problem due to the fact that the inverse-conditioning is a sampling
procedure rather than an optimization step. But its efficiency deserves more
improving since the McMC is extremely computationally demanding especially
for the high-dimensional case. In this study, we propose an improved McMC
method, called the blocking McMC (BMcMC), to enhance the computational
efficiency. To enable the BMcMC capable of handling the high-resolution case,
a multi-scale scheme is introduced to form an extended BMcMC version, the
MsBMcMC. Beside the improvement in computational aspects, a more striking
characteristic of the proposed MsBMcMC method is that the prior specifica-
tion on models can be preserved owing to the introduction of the BMcMC
scheme.

1.2 Thesis Organization

The thesis is organized as follows. This chapter gives some simple introduction
on the motivation and objectives of this dissertation.

Chapter 2 provides a detailed description on the numerical implementa-
tion of the forward simulations which form the basis of the following inverse
problems. A special emphasis is put on the scale problem which is a key factor
to accelerate the forward computation. To this end, a flexible-grid full-tensor
finite-difference simulator, which is widely compatible with the outputs from
various upscaling subroutines, is developed to solve the flow equation and a
constant-displacement random-walk particle-tracking method, which enhances
the computational efficiency at different scales, is employed to solve the trans-
port problems.

The following three chapters consist in three separate, self-contained pa-
pers which may have some contents in common for the sake of completeness.
Chapter 3 introduces a blocking scheme into the classic Metropolis-Hastings-
type McMC method in order to overcome the slow mixing of the Markov chain
and better preserve the spatial structure of physical models. Aiming at en-
abling the BMcMC method to deal with the high-resolution cases, a multi-scale
BMcMC (MsBMcMC) method is developed to efficiently perform the condi-
tional and inverse-conditional stochastic simulation. The multi-scale scheme
greatly accelerates the computation of the likelihood especially for the cases
with small measurement errors of state variables. The generation of the pro-
posal kernel is simply based on the FFT-based conditional and unconditional
spectral sampler which makes the proposal of candidate realizations also fast
even for the high-dimensional case.

Chapter 4 presents a complete assessment on uncertainty reduction owing
to conditioning and inverse-conditioning on various types of data from differ-
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ent sources by means of the proposed MsBMcMC method. One of the novel
achievements is that the physical models are constraint to the temporal mo-
ments of chemical tracers. Their worth on uncertainty reduction is evaluated
by comparing to other data sources.

In Chapter 5, the BMcMC method has been compared with the ensemble
Kalman filtering method (EnKF). Two synthetic examples show that, even
though the EnKF method may efficiently provide a better reproduction of
observed dynamic data than the BMcMC method, the preservation of spatial
statistics and model structure makes the BMcMC simulations competitive for
some cases in predicting accurately and reliably the future performance of
reservoirs particularly at new well locations. Therefore, including the prior
information in the inverse stochastic simulation is of significance for accurate
assessment of model uncertainties and response uncertainties if the prior pa-
rameter information effectively reflects the underground reality.

Finally, in Chapter 6, several important contributions and conclusions are
summarized and some interesting topics are outlined for further investigations.
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2
Forward Simulators

Abstract

Since reservoir forward simulations are extremely computationally intensive,
an effective scheme is to reduce the dimension of reservoir (e.g., by upscal-
ing) and run the simulations at a coarsen scale, which calls for the forward
simulators capable of dealing with the flow and transport problems at var-
ious scales. For this purpose, a flexible-grid full-tensor finite-difference flow
simulator, which is widely compatible with the outputs from various upscal-
ing subroutines (Wen and Gomez-Hernandez, 1996b), is developed for the
fast computation of the forward flow problem. This flow simulator has am-
ple abilities to accept the input of aquifer models within irregular grids and
the input lnK field could be a full tensor. A constant-displacement random-
walk particle-tracking approach is employed to solve the transport equations
quickly and accurately. In contrast to the scale-dependent constant-time-step
scheme, the scale-independent constant-displacement scheme is implemented
to calculate the travel time of particles aiming at the different scale’s transport
problems. With this scheme, the computation of travel times of particles is
only done in specified steps within one cell, by which numerous computation
times are saved in solving transport problems at the coarse scale and, more-
over, the results are proved to be quite accurate compared to the constant
time scheme (Wen and Gomez-Hernandez, 1996a). In summary, these two
forward simulators developed in this work, i.e., the multi-scale-oriented flow
and transport solvers, pay much attention on the scale problem and hence are
especially suitable for the multi-scale McMC computation.

7
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2.1 Flow and Transport Problems

The flow of an incompressible or slightly compressible fluid in saturated porous
media is described by,

∇ · (K∇h) + q = ss
∂h

∂t
, (2.1)

where K = K(x) is the 3× 3 hydraulic conductivity tensor, [LT−1], i.e.,

K =




Kxx Kxy 0
Kyx Kyy 0
0 0 Kzz


 ;

h = h(x, t) is the piezometric head, [L]; q = q(x, t) is the source or sink term
(positive if fluid is extracted from the reservoir), [T−1]; ss = ss(x) is the
specific storage coefficient, [L−1]; t is the time, [T ]; ∇· = ( ∂

∂x + ∂
∂y + ∂

∂z ) is the
divergence operator of a vector field; and ∇ = ( ∂

∂x , ∂
∂y , ∂

∂z )T is the gradient
operator of a scalar field. For a single-phase flow involving both rock and fluid
properties, the partial derivative equation can be rewritten as,

∇ ·
(

ρg

µ
k∇h

)
+ q = ρgφct

∂h

∂t
, (2.2)

where k = k(x) is the 3× 3 intrinsic permeability tensor, [L2]; h = h(x, t) =
p
ρg + z is the piezometric head, [L]; z is the elevation, increasing upward, [L];
ct = cb + φcf is the total compressibility of the system, [M−1LT 2]; cb is the
compressibility of the bulk porous medium, [M−1LT 2]; cf is the compress-
ibility of the single-phase fluid, [M−1LT 2]; ρ is the density of single-phase
fluid, [ML−3]; µ is the viscosity of single-phase fluid, [ML−1T−1]; φ(x) is the
porosity, [dimensionless]; and g is the acceleration of gravity, [LT−2]. Several
important relations between those parameters are listed as follows,

K =
ρg

µ
k,

h =
p

ρg
+ z,

ss = ρgφct.

Following the Darcy’s law, the interblock velocity field is calculated by,

q = φv = −K∇h, (2.3)

where q = q(x, t) = (qxx(x, t), qyy(x, t), qzz(x, t))T is the 3 × 1 Darcian flux
vector, [LT−1]; φ(x) is the porosity of the porous medium, [dimensionless];
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and v = v(x, t) = (vxx(x, t), vyy(x, t), vzz(x, t))T is the 3×1 pore fluid velocity
vector, [LT−1].

The governing equation for three-dimensional advective-dispersive contam-
inant transport in ground water may be written as follows,

rφ
∂c

∂t
+∇ · (qc)−∇ · (φD∇c) + λrc = 0, (2.4)

where r = r(x) is the retardation factor, [dimensionless]; c = c(x, t) is the
solute concentration, [ML−1] or [ML−3]; D = D(x, t) is the 3×3 local hydro-
dynamic dispersion coefficient tensor, [L2T−1]; and λ is the first-order decay
constant, [T−1].

The main workflow for forward problems is that, for a given aquifer with
physical parameters, e.g., K(x), ss(x), φ(x), and r(x), the flow problem with
a set of assumed boundary conditions is firstly solved to obtain the piezo-
metric head field h(x, t), then the corresponding velocity field q(x, t) (so are
v(x, t) and D(x, t)) is established by applying the Darcy’s law, and finally the
concentration field c(x, t) is obtained by solving the transport problem.

2.2 Multi-scale-oriented Flow Simulator

2.2.1 Flow difference equation

Consider an unconstructed confined aquifer with a full conductivity tensor,
the flow equation can be rewritten as,

∂

∂x

(
Kxx

∂h

∂x
+ Kxy

∂h

∂y

)
+

∂

∂y

(
Kyx

∂h

∂x
+ Kyy

∂h

∂y

)
+

∂

∂z

(
Kzz

∂h

∂z

)
+q = ss

∂h

∂t
.

(2.5)
If the eleven-point block-centered finite-difference full-tensor scheme is used to
solve the flow problem, the flow equation then can be discretized as follows,

[(
Kxx

∆h

∆x
+ Kxy

∆h

∆y

)
s|i− 1

2
,j,k −

(
Kxx

∆h

∆x
+ Kxy

∆h

∆y

)
s|i+ 1

2
,j,k

]
+

[(
Kyx

∆h

∆x
+ Kyy

∆h

∆y

)
s|i,j− 1

2
,k −

(
Kyx

∆h

∆x
+ Kyy

∆h

∆y

)
s|i,j+ 1

2
,k

]
+

[
Kzz

∆h

∆z
s|i,j,k− 1

2
−Kzz

∆h

∆z
s|i,j,k+ 1

2

]
+ qi,j,k =

ss,i,j,k
∆ht

∆tt
∆xi,j,k∆yi,j,k∆zi,j,k, (2.6)

where i ∈ [0, nx), j ∈ [0, ny), k ∈ [0, nz), and,
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(
Kxx

∆h

∆x
s

)
|i− 1

2
,j,k = (Kxxs)|i− 1

2
,j,k

hi−1,j,k − hi,j,k

∆x|i− 1
2

,

(
Kxy

∆h

∆y
s

)
|i− 1

2
,j,k = (Kxys)|i− 1

2
,j,k·

(
∆xi−1

2∆x|i− 1
2

hi,j−1,k − hi,j+1,k

∆y|j− 1
2
+ 1

2

+
∆xi

2∆x|i− 1
2

hi−1,j−1,k − hi−1,j+1,k

∆y|j− 1
2
+ 1

2

)
,

(
Kxx

∆h

∆x
s

)
|i+ 1

2
,j,k = (Kxxs)|i+ 1

2
,j,k

hi,j,k − hi+1,j,k

∆x|i+ 1
2

,

(
Kxy

∆h

∆y
s

)
|i+ 1

2
,j,k = (Kxys)|i+ 1

2
,j,k·

(
∆xi

2∆x|i+ 1
2

hi+1,j−1,k − hi+1,j+1,k

∆y|j− 1
2
+ 1

2

+
∆xi+1

2∆x|i+ 1
2

hi,j−1,k − hi,j+1,k

∆y|j− 1
2
+ 1

2

)
,

(
Kyx

∆h

∆x
s

)
|i,j− 1

2
,k = (Kyxs)|i,j− 1

2
,k·

(
∆yj−1

2∆y|j− 1
2

hi−1,j,k − hi+1,j,k

∆x|i− 1
2
+ 1

2

+
∆yj

2∆y|j− 1
2

hi−1,j−1,k − hi+1,j−1,k

∆x|i− 1
2
+ 1

2

)
,

(
Kyy

∆h

∆y
s

)
|i,j− 1

2
,k = (Kyys)|i,j− 1

2
,k

hi,j−1,k − hi,j,k

∆y|j− 1
2

,

(
Kyx

∆h

∆x
s

)
|i,j+ 1

2
,k = (Kyxs)|i,j+ 1

2
,k·

(
∆yj

2∆y|j+ 1
2

hi−1,j+1,k − hi+1,j+1,k

∆x|i− 1
2
+ 1

2

+
∆yj+1

2∆y|j+ 1
2

hi−1,j,k − hi+1,j,k

∆x|i− 1
2
+ 1

2

)
,

(
Kyy

∆h

∆y
s

)
|i,j+ 1

2
,k = (Kyys)|i,j+ 1

2
,k

hi,j,k − hi,j+1,k

∆y|j+ 1
2

,

(
Kzz

∆h

∆z
s

)
|i,j,k− 1

2
= (Kzzs)|i,j,k− 1

2

hi,j,k−1 − hi,j,k

∆z|k− 1
2

,

(
Kzz

∆h

∆z
s

)
|i,j,k+ 1

2
= (Kzzs)|i,j,k+ 1

2

hi,j,k − hi,j,k+1

∆z|k+ 1
2

,
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where s is the interface area between two adjacent cells. Note that for one
cell, the six area sizes are possibly different in the case of a flexible grid.
Conductance items K(x) as input data are defined at the interfaces between
cells, Kxx(x), Kxy(x), Kyx(x), Kyy(x), and Kzz(x), which can be obtained
from the upscaling subroutines, the random field generators, or simply by
harmonically averaging the permeability values at node centers. In the case
that a scalar hydraulic conductivity field is given, the computation of the
interblock conductance widely employs the weighted harmonic mean,

K 1
2

=
K1K2(∆x1 + ∆x2)
K1∆x2 + K2∆x1

, (2.7)

where ∆x1 and ∆x2 are the sizes of two adjacent blocks, and K1 and K2 are
the block-centered conductance. Other parameters, such as ss(x), φ(x), q(x),
∆x(x), ∆y(x), and ∆z(x), are totally defined at the center of grid-blocks.

Although the simulation time ti ∈ [t0, te], i ∈ [0, nt], for one history event
may be discretized in any way as given by the user in a file format, two
common alternatives are also implemented in the code: one is the equal interval
discretization and the other is the so-called time-step multiplier scheme. The
first scheme just assigns an identical time increment to all time-steps,

∆ti = ∆t =
1
nt

(te − t0); i ∈ [0, nt).

The latter assumes the time increment is multiplied by a constant time-step
coefficient α, i.e.,

∆ti = α∆ti−1; i ∈ (0, nt),

and, given the starting and the ending simulation times for one history event,
t0 and te, the first time-step is calculated by,

∆t0 =
α− 1

αnt − 1
(te − t0).

Therefore, the simulation time is discretized as,

ti+1 = ti + ∆ti; i ∈ [0, nt). (2.8)

The advantage of the second scheme is that it allows for an adequate time
discretization at the early stage of simulation if α > 1 such that the simulated
transient head distribution is to the smallest degree influenced by the time
discretization. Note that the simulation time steps are assumed to be identical
for all history events in implementing these two schemes.

Employing an implicit time scheme which less suffers from the numerical
instability caused by the error propagation during the successive simulation
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times, the difference equation for an active cell (i, j, k) at the time tt ∈ (t0, te]
can be rearranged as,

ZmYcXc · ht
i,j,k−1+

ZcYmXm · ht
i−1,j−1,k + ZcYmXc · ht

i,j−1,k + ZcYmXp · ht
i+1,j−1,k+

ZcYcXm · ht
i−1,j,k + ZcYcXc · ht

i,j,k + ZcYcXp · ht
i+1,j,k+

ZcYpXm · ht
i−1,j+1,k + ZcYpXc · ht

i,j+1,k + ZcYpXp · ht
i+1,j+1,k+

ZpYcXc · ht
i,j,k+1 = −qi,j,k − ss,i,j,k

ht−1
i,j,k

tt − tt−1
∆xi,j,k∆yi,j,k∆zi,j,k,

where,

ZmYcXc =
(Kzzs)|i,j,k− 1

2

∆z|k− 1
2

,

ZcYmXm =
∆xi,j,k

2∆x|i− 1
2

(Kxys)|i− 1
2
,j,k

∆y|i−1,j− 1
2
+ 1

2
,k

+
∆yi,j,k

2∆y|j− 1
2

(Kyxs)|i,j− 1
2
,k

∆x|i− 1
2
+ 1

2
,j−1,k

,

ZcYmXc =
∆xi−1,j,k

2∆x|i− 1
2

(Kxys)|i− 1
2
,j,k

∆y|i,j− 1
2
+ 1

2
,k

− ∆xi+1,j,k

2∆x|i+ 1
2

(Kxys)|i+ 1
2
,j,k

∆y|i,j− 1
2
+ 1

2
,k

+
(Kyys)|i,j− 1

2
,k

∆y|j− 1
2

,

ZcYmXp = − ∆xi,j,k

2∆x|i+ 1
2

(Kxys)|i+ 1
2
,j,k

∆y|i+1,j− 1
2
+ 1

2
,k

− ∆yi,j,k

2∆y|j− 1
2

(Kyxs)|i,j− 1
2
,k

∆x|i− 1
2
+ 1

2
,j−1,k

,

ZcYcXm =
(Kxxs)|i− 1

2
,j,k

∆x|i− 1
2

+
∆yi,j−1,k

2∆y|j− 1
2

(Kyxs)|i,j− 1
2
,k

∆x|i+ 1
2
+ 1

2
,j,k

−∆yi,j+1,k

2∆y|j+ 1
2

(Kyxs)|i,j+ 1
2
,k

∆y|i− 1
2
+ 1

2
,j,k

,

ZcYcXc =−
(Kxxs)|i− 1

2
,j,k

∆x|i− 1
2

−
(Kxxs)|i+ 1

2
,j,k

∆x|i+ 1
2

−
(Kyys)|i,j− 1

2
,k

∆y|j− 1
2

−
(Kyys)|i,j+ 1

2
,k

∆y|j+ 1
2

−
(Kzzs)|i,j,k− 1

2

∆z|k− 1
2

−
(Kzzs)|i,j,k+ 1

2

∆z|k+ 1
2

− ss,i,j,k
∆xi,j,k∆yi,j,k∆zi,j,k

tt − tt−1
,

ZcYcXp =
(Kxxs)|i+ 1

2
,j,k

∆x|i+ 1
2

− ∆yi,j−1,k

2∆y|j− 1
2

(Kyxs)|i,j− 1
2
,k

∆x|i+ 1
2
+ 1

2
,j,k

+
∆yi,j+1,k

2∆y|j+ 1
2

(Kyxs)|i,j+ 1
2
,k

∆y|i− 1
2
+ 1

2
,j,k

,
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ZcYpXm = − ∆xi,j,k

2∆x|i− 1
2

(Kxys)|i− 1
2
,j,k

∆y|i−1,j− 1
2
+ 1

2
,k

− ∆yi,j,k

2∆y|j+ 1
2

(Kyxs)|i,j+ 1
2
,k

∆x|i− 1
2
+ 1

2
,j+1,k

,

ZcYpXc = −∆xi−1,j,k

2∆x|i− 1
2

(Kxys)|i− 1
2
,j,k

∆y|i,j− 1
2
+ 1

2
,k

+
∆xi+1,j,k

2∆x|i+ 1
2

(Kxys)|i+ 1
2
,j,k

∆y|i,j− 1
2
+ 1

2
,k

+
(Kyys)|i,j+ 1

2
,k

∆y|j+ 1
2

,

ZcYpXp =
∆xi,j,k

2∆x|i+ 1
2

(Kxys)|i+ 1
2
,j,k

∆y|i+1,j+ 1
2
+ 1

2
,k

+
∆yi,j,k

2∆y|j+ 1
2

(Kyxs)|i,j+ 1
2
,k

∆x|i− 1
2
+ 1

2
,j+1,k

,

ZpYcXc =
(Kzzs)|i,j,k+ 1

2

∆z|k+ 1
2

,

in which the interface areas can be obtained by,

s|i− 1
2
,j,k =

∆yi,j,k + ∆yi−1,j,k

2
∆zi,j,k + ∆zi−1,j,k

2
,

s|i+ 1
2
,j,k =

∆yi,j,k + ∆yi+1,j,k

2
∆zi,j,k + ∆zi+1,j,k

2
,

s|i,j− 1
2
,k =

∆xi,j,k + ∆xi,j−1,k

2
∆zi,j,k + ∆zi,j−1,k

2
,

s|i,j+ 1
2
,k =

∆xi,j,k + ∆xi,j+1,k

2
∆zi,j,k + ∆zi,j+1,k

2
,

s|i,j,k− 1
2

=
∆xi,j,k + ∆xi,j,k−1

2
∆yi,j,k + ∆yi,j,k−1

2
,

s|i,j,k+ 1
2

=
∆xi,j,k + ∆xi,j,k+1

2
∆yi,j,k + ∆yi,j,k+1

2
.

Two types of boundary conditions are considered to build the system of
linear equations: (1) non-flow boundary (Neumann’s condition), i.e., no flow-
connection through the external face of a boundary cell nor through the face
shared with a dead cell, and (2) prescribed head (Dirichlet’s condition), which
is located at the center of any active grid-block (not a dead cell).

Three types of well conditions are considered: (1) prescribed head at the
grid-block intersected by a well, (2) constant flow-rate wells (q > 0 if fluid
extracted and q < 0 if fluid injected), and (3) observation wells (q = 0). Both
vertical and non-vertical wells are considered in the code implementation as
long as the trajectory of the well is given. The trick is that all cells that the
well passes are assumed to be connected by a “high permeability path” which
has a super-K value specified by the user, say, K = 99999. If the well has a
constant flow-rate q, then q is fully assigned to the bottom-hole cell (i.e., the
first well cell). If the well has a constant head h, then h is simply assigned to



“myThesis” — 2007/12/27 — 13:30 — page 14 — #36

14 CHAPTER 2. FORWARD SIMULATORS

all of the cells that the well penetrates. These three operations are applied to
all of the well cells along the trajectory starting from the bottom-hole cell.

Given the initial head distribution h(x) and boundary and/or (well) stress
conditions, the system of difference equations can then be built up for all ac-
tive cells. If there are dead cells in the reservoir, however, the corresponding
difference equations are never built as above. For the purpose of easy identifi-
cation, a special constant head value specified by the user, say, h = −99999, is
simply assigned to those dead cells. Note that the interface permeability val-
ues around dead cells are also required to be set to zero, i.e., no-permeability,
in making difference equations for other active cells. Once the system of lin-
ear equations is built up, a preconditioned bi-conjugated gradient method is
employed to solve the equations sequentially along the given time-steps.

2.2.2 Well flow-rate

The well flow-rate can be easily computed by integrating the flux from various
directions across the well (either production or injection), i.e.,

qi,j,k = qi+ 1
2
,j,k +qi− 1

2
,j,k +qi,j+ 1

2
,k +qi,j− 1

2
,k +qi,j,k+ 1

2
+qi,j,k− 1

2
−∆qi,j,k, (2.9)

where (i, j, k) is the well position in the mesh and the seven components are
listed as follows,

qi+ 1
2
,j,k =Kipxx(hi,j,k − hi+1,j,k)+

Kixyp(hi+1,j−1,k − hi+1,j+1,k) + Kipxy(hi,j−1,k − hi,j+1,k),
qi− 1

2
,j,k =Kimxx(hi−1,j,k − hi,j,k)+

Kixym(hi−1,j−1,k − hi−1,j+1,k) + Kimxy(hi,j−1,k − hi,j+1,k),
qi,j+ 1

2
,k =Kjpyy(hi,j,k − hi,j+1,k)+

Kjyxp(hi−1,j+1,k − hi+1,j+1,k) + Kjpyx(hi−1,j,k − hi+1,j,k),
qi,j− 1

2
,k =Kjmyy(hi,j−1,k − hi,j,k)+

Kjyxm(hi−1,j−1,k − hi+1,j−1,k) + Kjmyx(hi−1,j,k − hi+1,j,k),
qi,j,k+ 1

2
=Kkpzz(hi,j,k − hi,j,k+1),

qi,j,k− 1
2

=Kkmzz(hi,j,k−1 − hi,j,k),

∆qi,j,k =ss,i,j,k

ht
i,j,k − ht−1

i,j,k

tt − tt−1
∆xi,j,k∆yi,j,k∆zi,j,k.

The interface conductances are computed as follows,
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Kkmzz =
(Kzzs)|i,j,k− 1

2

∆z|k− 1
2

,

Kjmyy =
(Kyys)|i,j− 1

2
,k

∆y|j− 1
2

,

Kimxx =
(Kxxs)|i− 1

2
,j,k

∆x|i− 1
2

,

Kipxx =
(Kxxs)|i+ 1

2
,j,k

∆x|i+ 1
2

,

Kjpyy =
(Kyys)|i,j+ 1

2
,k

∆y|j+ 1
2

,

Kkpzz =
(Kzzs)|i,j,k+ 1

2

∆z|k+ 1
2

,

Kixym =
∆xi,j,k

2∆x|i− 1
2

(Kxys)|i− 1
2
,j,k

∆y|i−1,j− 1
2
+ 1

2
,k

,

Kjyxm =
∆yi,j,k

2∆y|j− 1
2

(Kyxs)|i,j− 1
2
,k

∆x|i− 1
2
+ 1

2
,j−1,k

,

Kimxy =
∆xi−1,j,k

2∆x|i− 1
2

(Kxys)|i− 1
2
,j,k

∆y|i,j− 1
2
+ 1

2
,k

,

Kjmyx =
∆yi,j−1,k

2∆y|j− 1
2

(Kyxs)|i,j− 1
2
,k

∆x|i− 1
2
+ 1

2

,

Kjpyx =
∆yi,j+1,k

2∆y|j+ 1
2

(Kyxs)|i,j+ 1
2
,k

∆x|i− 1
2
+ 1

2

,

Kipxy =
∆xi+1,j,k

2∆x|i+ 1
2

(Kxys)|i+ 1
2
,j,k

∆y|i,j− 1
2
+ 1

2
,k

,
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Kjyxp =
∆yi,j,k

2∆y|j+ 1
2

(Kyxs)|i,j+ 1
2
,k

∆x|i− 1
2
+ 1

2
,j+1,k

,

Kixyp =
∆xi,j,k

2∆x|i+ 1
2

(Kxys)|i+ 1
2
,j,k

∆y|i+1,j− 1
2
+ 1

2
,k

.

2.2.3 Velocity fields

Once the block-centered head field h(x, t) is obtained, the internodal Darcian
velocity field q(x, t) can be easily computed according to the Darcy’s law, i.e.,

q = −K∇h. (2.10)

The corresponding pore fluid velocity field v(x, t) is,

v =
q
φi

, (2.11)

where φi is the internodal porosity, which can be approximated by the simple
linear interpolation, i.e.,

φx =
x0 − x

x0
φx1 +

x

x0
φx2 ,

φy =
y0 − y

y0
φy1 +

y

y0
φy2 ,

φz =
z0 − z

z0
φz1 +

z

z0
φz2 ,

in which (φx, φy, φz) is the interface porosity to be calculated, (x, y, z) is the
dimension of the block interface, (x0, y0, z0) is the dimension of the block
center, and (φx1 , φx2), (φy1 , φy2), and (φz1 , φz2) are the internodal porosity of
two adjacent blocks.

If a spatially variable retardation factor r = r(x, t) is considered to depict
the flow and transport of reactive solutes, the internodal pore fluid velocity
field v(x, t) of absorbed solutes is modified by,

v =
q

φiri
, (2.12)

where ri is the internodal retardation factor, which can be approximated by
the simple linear interpolation, i.e.,
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rx =
x0 − x

x0
rx1 +

x

x0
rx2 ,

ry =
y0 − y

y0
ry1 +

y

y0
ry2 ,

rz =
z0 − z

z0
rz1 +

z

z0
rz2 ,

where (rx, ry, rz) is the interface retardation factor to be calculated, (x, y, z) is
the dimension of the block interface, (x0, y0, z0) is the dimension of the block
center, and (rx1 , rx2), (ry1 , ry2), and (rz1 , rz2) are the retardation factor of two
adjacent blocks.

2.3 Multi-scale-oriented Transport Simulator

The random-walk particle-tracking method (RWPT) has been widely used to
simulate the conservative and reactive transport in porous media since it is
free from numerical dispersion and computationally efficient. Aiming at the
temporal and spatial distribution of the solute concentration, this approach
simulates the behavior of solute transport by a discrete collection of parti-
cles subject to a deterministic displacement, which depends only on the local
velocity field, and a random Brownian motion. If the number of particles
is sufficiently large, the stochastic differential equation (SDE) of particles in
a Lagrangian framework is equivalent to the advection-dispersion equation
(ADE) of solutes in an Eulerian framework.

A particle in the flow domain Ω is displaced according to the stochastic
differential equation, i.e., the Langevin equation (Lichtner et al., 2002),

xt+∆t = xt + a∆t + Bξ
√

∆t, (2.13)

where xt = (xt, yt, zt)T is the spatial position of the particle at time t and ∆t
is the discrete time step. The vector a = a(x, t), [LT−1], is responsible for the
deterministic particle displacement along the flow streamlines, i.e.,

a = v +
1
φ
∇ · (φD) = v +∇ ·D + D · ∇(lnφ), (2.14)

where the local dispersion tensor D = D(x, t) is defined by,

D =




Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


 .
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The dispersion tensor B = B(x, t), [LT−
1
2 ], of the random displacement part

is,

B =




vx
v

√
2αLv − vxvz

v
√

v2
x+v2

y

√
2αV

T v − vy√
v2

x+v2
y

√
2αH

T (v2
x+v2

y)+αV
T v2

z

v

vy

v

√
2αLv − vyvz

v
√

v2
x+v2

y

√
2αV

T v vx√
v2

x+v2
y

√
2αH

T (v2
x+v2

y)+αV
T v2

z

v

vz
v

√
2αLv

√
v2

x+v2
y

v

√
2αV

T v 0




,

(2.15)
where v = (vx, vy, vz)T ∈ Ω and αL, αH

T and αV
T are the longitudinal dis-

persivity coefficient, the transverse dispersivity coefficient in the horizontal
direction, and the transverse dispersivity coefficient in the vertical direction,
respectively, [dimensionless]. And,

ξ = (ξ1, ξ2, ξ3)T ∼ N(0, 1), (2.16)

is a vector of independent Gaussian random numbers with a zero mean and a
unit variance, [dimensionless].

The three-dimensional expressions for the one-step displacement of a par-
ticle are,

xt+∆t = xt + ax∆t + bx

√
∆t, (2.17a)

yt+∆t = yt + ay∆t + by

√
∆t, (2.17b)

zt+∆t = zt + az∆t + bz

√
∆t. (2.17c)

The expressions for the deterministic displacement coefficient vector a of
a particle are,

ax = vx +
∂Dxx

∂x
+

∂Dxy

∂y
+

∂Dxz

∂z
+ Dxx

∂ ln φ

∂x
+ Dxy

∂ lnφ

∂y
+ Dxz

∂ ln φ

∂z
,

(2.18a)

ay = vy +
∂Dyx

∂x
+

∂Dyy

∂y
+

∂Dyz

∂z
+ Dyx

∂ lnφ

∂x
+ Dyy

∂ ln φ

∂y
+ Dyz

∂ ln φ

∂z
,

(2.18b)

az = vz +
∂Dzx

∂x
+

∂Dzy

∂y
+

∂Dzz

∂z
+ Dzx

∂ ln φ

∂x
+ Dzy

∂ ln φ

∂y
+ Dzz

∂ ln φ

∂z
.

(2.18c)

Since the particle tracking scheme requires the evaluation of velocity vector
at an arbitrary position in the flow domain, i.e., v = (vx, vy, vz)T ∈ Ω, for
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the computation of a and B, the velocity components within a block can be
computed by the simple linear interpolation (LaBolle et al., 1996), e.g.,

vx =
x0 − x

x0
vx1 +

x

x0
vx2 ,

vy =
y0 − y

y0
vy1 +

y

y0
vy2 ,

vz =
z0 − z

z0
vz1 +

z

z0
vz2 ,

where (x, y, z) is the position where the velocity components are to be cal-
culated, (x0, y0, z0) is the block size, and (vx1 , vy1 , vz1) and (vx2 , vy2 , vz2) are
the interface center velocity of the given block. This scheme assumes that the
velocity component varies linearly within a finite-difference cell with respect
to the direction of that component. The continuous velocity field generated
as such is consistent with the block-centered finite-difference formulation and
conserves locally mass within each block.

The components of the local dispersion tensor D = D(x, t) are defined by
(Lichtner et al., 2002),

Dxx =
1
v

[
αLv2

x + αH
T v2

y + αV
T v2

z

v2
x

v2
x + v2

y

]
,

Dyy =
1
v

[
αLv2

y + αH
T v2

x + αV
T v2

z

v2
y

v2
x + v2

y

]
,

Dzz =
1
v

[
αLv2

z + αV
T (v2

x + v2
y)

]
,

Dxy = Dyx =
vxvy

v

[
αL − αH

T

v2

(v2
x + v2

y)
+ αV

T

v2
z

(v2
x + v2

y)

]
,

Dxz = Dzx =
vxvz

v

[
αL − αV

T

]
,

Dyz = Dzy =
vyvz

v

[
αL − αV

T

]
.

There are two sets of dispersion tensors: (i) Dxx, Dyy, Dzz, Dxy, Dyx, Dxz,
Dzx, Dyz, and Dzy are located at the interface center of blocks, so are vx,
vy, and vz, and (ii) Dxx, Dyy, Dzz, Dxy, Dyx, Dxz, Dzx, Dyz, and Dzy are
located at the block centers, so are vx, vy, and vz. Both of velocity fields are
approximated by the bilinear interpolation of internodal velocity values before
the local dispersion tensor is calculated (LaBolle et al., 1996). The first set is
for the computation of the divergence of the local dispersion tensor and the
second one is for the terms associated with the gradient of the porosity.



“myThesis” — 2007/12/27 — 13:30 — page 20 — #42

20 CHAPTER 2. FORWARD SIMULATORS

The divergence of the local dispersion tensor is calculated by the difference
formulae using the second set of dispersion formulae, i.e., of the block center.
The resulted divergence of the local dispersion tensor is interpolated into an
arbitrary position by the linear interpolation rule. The gradient of the porosity
is calculated by the difference formulae. Then it multiplies the local dispersion
tensor of the interface center using the second set of dispersion formulae. The
evaluation of those two set of values, i.e., the second and third terms in the
vector a, at an arbitrary position in the flow domain is propagated by the
simple linear interpolation as well.

The expressions for the random displacement coefficient Bξ of a particle
are,

bx = ξ1
vx

v

√
2αLv − ξ2

vxvz

v
√

v2
x + v2

y

√
2αV

T v − ξ3
vy√

v2
x + v2

y

√
2
αH

T (v2
x + v2

y) + αV
T v2

z

v
,

(2.19a)

by = ξ1
vy

v

√
2αLv − ξ2

vyvz

v
√

v2
x + v2

y

√
2αV

T v + ξ3
vx√

v2
x + v2

y

√
2
αH

T (v2
x + v2

y) + αV
T v2

z

v
,

(2.19b)

bz = ξ1
vz

v

√
2αLv + ξ2

√
v2
x + v2

y

v

√
2αV

T v. (2.19c)

The computation of these three expressions is straightforward since the ve-
locity field has been interpolated into an arbitrary position within the flow
domain.

In contrast to the constant time scheme, a constant displacement scheme
is considered in the code implementation to improve the efficiency of particle
transport (Wen and Gomez-Hernandez, 1996a). Assuming the particles move
along the x direction, the time step for a constant-displacement scheme in one
grid-block with the size equal to ∆x is,

∆t =
1
n

∆x

vx
. (2.20)
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3
A Multi-scale Blocking

McMC Method: 1.
Methodology

Abstract

An adequate representation of the detailed spatial variation of parameters
calls for high-resolution modeling of subsurface reservoirs or aquifers. A
Monte Carlo method for such refined characterization of large-scale models
typically invokes a stochastic simulation method to generate i.i.d realizations
that honor both hard data (e.g., conductivity) and dependent state data (e.g.,
piezometric head, concentration, etc.), known as conditioning and inverse-
conditioning modeling, respectively. The blocking Markov chain Monte Carlo
(BMcMC) method is an effective scheme to carry out such conditional and
inverse-conditional simulation by sampling directly from a posterior distribu-
tion that incorporates the prior information and the posterior observations
in a Bayesian framework. However, the usefulness of the BMcMC method
suffers from the its efficiency in dealing with the high-resolution cases. In
this study, a multi-scale blocking McMC (MsBMcMC) scheme is presented to
generate high-resolution, multi-Gaussian, conditional and inverse-conditional
realizations. What make this method more efficient in exploring the parameter
space of high-dimensional models are that the blocking proposal kernel is an
appropriate approximation to the target posterior distribution, that the fast

21
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generation of the proposal blocking kernel is based on the LU-decomposition of
the covariance matrix or the spectral decomposition of the covariance matrix
with the aid of the fast Fourier transform, and that a multi-scale procedure is
used to calculate the likelihood quickly. The adoption of the blocking scheme
is based on three considerations: (1) it helps preserve the spatial statistics and
model structure, (2) it helps improve the mixing of a Markov chain, and (3) it
is more suitable for the introduction of upscaling procedures to accelerate the
computation of the likelihood. The introduction of the multi-scale scheme in
calculating their likelihood efficiently speeds up the construction of the Markov
chain because those low probable candidates are rejected without consuming
too many CPU resources. Moreover, the proposal kernel is multi-scale, which
forms a coupled McMC, and the convergence velocity and the mixing speed
of the Markov chain are improved simply because the information from the
large scale proposal and that from the small scale proposal are shared in con-
structing the Markov chain such that the modes can be found quickly by the
fastest scheme and the realizations are output by the most optimal scheme.
The independent goestatistical realizations generated in this way are not only
conditioned to the conductivity, the piezometric head, the temporal moments
of solute concentration, and other measurements available, but also have the
expected spatial statistics and structure.

3.1 Introduction

Collections of direct and indirect measurements provide limited but indispens-
able knowledge on the subsurface reservoirs or aquifers which generally calls
for a stochastic method to generate conditional realizations and to charac-
terize the inherent uncertainties. To this purpose, two steps are typically
involved: model structure identification and stochastic conditional simulation.
Correspondingly, model uncertainties are classified into two types: structure
uncertainty that arises from uncertain hypotheses or unmodeled processes and
parameter uncertainty that comes from measurement errors, inherent hetero-
geneity or scaling problem. There are a number of methods for assessing
the impact of parameter uncertainty on performance prediction (Dagan, 1989;
Gelhar, 1993). The majority of them are based on the underlying assumption
of a correct model structure and hence the output uncertainty is evaluated by
propagating the input uncertainty. Traditionally, however, structure uncer-
tainty and parameter uncertainty are seldom isolated from each other which
results in a problem that prediction uncertainty is generally a combined effect
of both. The worth of measurements on one type of model property with re-
spect to predicted performance is therefore hardly evaluated in a deterministic
manner since prediction uncertainty may come from either model structure or
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model parameters or both. The data worth evaluation based on inconsistent
model structures may produce a misleading result.

A special difficulty occurs in assessing the worth of dependent state data
because the problem is complicated by an ill-posed inverse problem. Classical
optimization-based inverse methods for stochastic simulation generally work as
follows (Carrera and Neuman, 1986; RamaRao et al., 1995; McLaughlin and
Townley, 1996; Gomez-Hernandez et al., 1997). Assuming an initial model
structure, an ensemble of equal-likely realizations constraint to hard data are
obtained by geostatistically-based conditional simulation subroutines. Then
each of realizations is calibrated to honor dependent state data by applying
an inverse procedure. With these two stages, those generated models are con-
sidered as the independent conditional and inverse-conditional realizations.
Most often, however, the parameter statistics and spatial structure have to be
perturbed, either passively or actively, during the procedure of parameter cali-
bration in order to match the dependent state data. It matters because a large
number of efforts have been spent on building the model structure through
model identification, e.g., collections of hard data for variogram analysis (e.g.,
Deutsch and Journel, 1998), collections of state data for model structure iden-
tification (e.g., Sun and Yeh, 1985; Kitanidis, 1996), outcrop’s analogue, ge-
ological mapping (e.g., Koltermann and Gorelick, 1996), geophysical imaging
(e.g., Rubin et al., 1992), etc. But after model calibration or history matching,
the identified model structure has been destroyed in an unpredicted manner
in order to honor the state data. Therefore, a Monte Carlo method for uncer-
tainty assessment entails a stochastic simulation method capable of generating
independent, identically distributed (i.i.d) conditional realizations that share
a specified a priori model structure, i.e., identical structure parameters.

The Markov chain Monte Carlo (McMC) method (Oliver et al., 1997;
Robert and Casella, 1999) outstands itself from other inverse approaches be-
cause it completely circumvents the numerical instability due to the fact that
the inverse-conditioning is simply a sampling procedure rather than an op-
timization step. Moreover, the adoption of the blocking scheme is not only
helpful for the mixing of the chain (Liu, 1996; Roberts and Sahu, 1997) but also
useful for the preserving of spatial statistics and structure. Several challenges
that the current McMC methods often face include that they fail to treat the
high-resolution models due to the limitation of the LU-decomposition-based
sampler and that the computation of the likelihood is extremely CPU expen-
sive. To attack these problems, a multi-scale blocking McMC (MsBMcMC)
method is presented in this sequence of papers to generate high-resolution,
conditional and inverse-conditional realizations that strictly honor the speci-
fication of parameter statistics and spatial structures for physical models.

In essence, this approach just thins down, with the aid of the McMC the-
orem, the ensemble of candidates merely conditional to hard data by means
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of judiciously selecting those models inverse-conditional to the nonlinear state
data, measured by the posterior probability. It differs itself from other ap-
proaches to inverse problems in several respects: (1) the inverse problem is
coined as inverse-conditioning problems in the framework of geostatistically-
based conditional simulation and the inverse-conditioning problem is cast as
a sampling procedure which fully circumvents the ill-posedness that the clas-
sical inverse methods often encounter, (2) the generated realizations strictly
follow the prior configuration of the spatial statistics and structure for model
parameters, and (3) the efficiency of the proposed method for the generation
of independent high-resolution models is improved due to the incorporation of
the multi-scale blocking scheme into the classical McMC method.

The purpose of this chapter is to develop and implement the MsBMcMC
algorithm to generate i.i.d high-dimensional models that not only honor static
hard data and dynamic state data but also preserve specified spatial statis-
tics and structure. A synthetic example will be presented in Chapter 4 to
demonstrate the efficiency of the proposed method.

3.2 Blocking McMC Methods

Consider a stochastic simulation at n grid nodes conditional to m hard data
and k nonlinear state data where the term “nonlinear” simply means that the
dependent state data are nonlinearly related to the model parameters gov-
erned by the flow and transport partial differential equations. Specifically,
let x = (x0, x1, ..., xn−1)T ⊂ Rn denote a realization conditional to m hard
data x1 = xobs = (x′0, x

′
1, ..., x

′
m−1)

T ⊂ Rm and k state data y = yobs =
(y0, y1, ..., yk−1)T ⊂ Rk. Assuming a multi-Gaussian process, the spatial dis-
tribution of x follows, x ∼ N(µ,Cx), where µ ⊂ Rn is the prior mean of
the Gaussian process and Cx ⊂ Rn×n describes the structure dependence of
spatial points from each other. The observation errors of xobs are assumed
to be assimilated into the prior statistical model. Assuming a multi-normal
error, the simulated observation ysim for a given sample x can be expressed as,
ysim|x ∼ N(g(x), Cy), where Cy ⊂ Rk×k describes the degree of discrepancy
between the transfer function g(x) and the true but error-prone observation y.
The transfer function g(x) is error-prone since most often an analytical expres-
sion is not available. One generally has to resort to some complex computer
models to simulate the physical process. In such case, its accuracy depends on
the spatial discretization of the physical model. As the dimension of parame-
terization grows, the transfer function becomes more accurate at the expense
of the computational efforts. Also, there may exist some observation errors of
y that can be included in this statistical model. In this sense, Cy measures
both the modeling errors and the measurement errors.
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In summary, the objective of the stochastic simulation is to infer x from x1,
y, and some hyperparameters θ that describe spatial statistics and structure of
models. The most challenging part of the conditional simulation is basically an
inverse problem since an inverse operator g−1(y) is applied to the conditioning
procedure.

3.2.1 Bayesian formulation

The joint prior probability density function (pdf) of a multi-Gaussian random
field x is,

π(x|x1,θ) = (2π)−
n
2 ‖Cx‖−

1
2 exp

{
−1

2
(x− µ)T C−1

x (x− µ)
}

. (3.1)

This pdf represents some prior knowledge about the parameterization of a
physical model x through the configuration of µ and Cx which, together with
other parameters, boil down to a hyperparameter set θ. It should allow for
the greatest uncertainty while obeying the constraints imposed by the prior
information. The hyperparameters θ are inferred from both the a posteriori
measurements and the a priori subjective imagination.

Assuming that the observation and modeling errors are normally distributed,
the conditional probability for observing y given the attribute x, π(y|x), or
equivalently, the likelihood model, L(x|y), is,

L(x|y) = (2π)−
k
2 ‖Cy‖−

1
2 exp

{
−1

2
(g(x)− y)T C−1

y (g(x)− y)
}

. (3.2)

This likelihood function is defined by the misfit between the observed data y
and the predicted data g(x) from a candidate parameter model x and mea-
sures the probability of observing the data y for the model x. Obviously,
the probability of observing the given data y becomes smaller as the misfit
becomes larger.

Using the Bayes’ theorem, the posterior distribution of x given π(x|x1, y,θ) =
L(x|y) × π(x|x1,θ)/c, with c = ∫ L(x|y)π(x|x1,θ)dx being a normalization
factor. Dropping the constant c, we can write the posterior pdf,

π(x|x1, y,θ) ∝ exp
{
−1

2
(x− µ)T C−1

x (x− µ)− 1
2
(g(x)− y)T C−1

y (g(x)− y)
}

.

(3.3)
This posterior pdf measures how well a parameter model x agrees with the
prior information and the observed data y. The objective of the stochas-
tic conditional and inverse-conditional simulation is then to draw i.i.d sam-
ples for x from this posterior distribution π(x|x1, y,θ). For the simplicity
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of presentation, x1 and θ are dropped out such that π(x) ≡ π(x|x1,θ) and
π(x|y) ≡ π(x|x1, y,θ). A multi-scale blocking McMC scheme is developed as
below to explore the posterior distribution.

3.2.2 Markov chain Monte Carlo method

Due to the highly nonlinearity of the likelihood model, it is impossible to
sample directly from this posterior distribution π(x|y). The Markov chain
Monte Carlo method (Metropolis et al., 1953; Hastings, 1970; Geman and
Geman, 1984), however, is especially suitable for exploring the parameter
space with such type of complicated posterior distribution. A typical McMC
algorithm employing the Metropolis-Hastings rule to explore the posterior
distribution π(x|y) goes as follows,

(1) Initialize the parameters x;

(2) Update x according to the Metropolis-Hastings rule:

• propose x∗ ∼ q(x∗|x);

• accept x∗ with probability min{1, α}, where α = π(x∗|y)q(x|x∗)
π(x|y)q(x∗|x) ;

(3) Go to (2) for the next step of the chain.

After the chain converges, it will give the realizations of x with the sta-
tionary posterior distribution π(x|y).

One of the most interesting problems in this algorithm is the configuration
of the proposal transition kernel q(x∗|x), which plays a crucial role in the
computational efficiency of a Metropolis-Hastings-type McMC method.

3.2.3 Single-component McMC method

For a classical single-component McMC method, the proposal kernel x∗ ∼
N(µ, σ2

x) (Oliver et al., 1997). The acceptance rate α is computed by,

α =
π(x∗|y)
π(x|y)

q(x|x∗)
q(x∗|x)

=
π(x∗)
π(x)

L(x∗|y)
L(x|y)

q(x|x∗)
q(x∗|x)

. (3.4)

Take its logarithm,

lnα = ln π(x∗)−ln π(x)+ln q(x|x∗)−ln q(x∗|x)+lnL(x∗|y)−lnL(x|y). (3.5)

Dropping the constants, the computations of six items are listed as follows,
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ln π(x∗) ∝ −1
2
(x∗ − µ)T C−1

x (x∗ − µ), (3.6)

ln π(x) ∝ −1
2
(x− µ)T C−1

x (x− µ), (3.7)

ln q(x∗|x) ∝ −1
2
z2; z ∼ N(0, 1), (3.8)

ln q(x|x∗) ∝ −(x− µ)2

2σ2
x

, (3.9)

ln L(x∗|y) ∝ −1
2
(g(x∗)− y)T C−1

y (g(x∗)− y), (3.10)

lnL(x|y) ∝ −1
2
(g(x)− y)T C−1

y (g(x)− y). (3.11)

For a small-dimensional case when the LU-decomposition of Cx = LU is
available, the above formulae can be computed straightforwardly. Formulae
(6) and (7), which are often referred as the model density evaluation, can be
computed from,

−1
2
(x− µ)T C−1

x (x− µ) = −1
2
(Lu)T C−1

x (Lu) = −1
2
uT u, (3.12)

where u is the solution of Lu = x − µ. Note that Cx has already been
LU-decomposed and the system of linear equations about u can be solved
by a simple back-substitution. The computations of Formulae (10) and (11)
are straightforward since Cy is generally a diagonal matrix and the forward
simulator g(x) is called in a black-box way. Section 3.2.6 will further present a
multi-scale scheme to accelerate the evaluation of these log-likelihood models.

For a large-dimensional case, however, the LU-decomposition of Cx is often
unavailable which makes the single-component proposal easy to fail. There are
two main challenges: the convergence problem and the evaluation of the model
density.

3.2.4 Blocking McMC methods

To the convergence problem, the block scheme is well known for helping im-
prove the mixing of a Markov chain (Liu, 1996; Roberts and Sahu, 1997).
Moreover, a blocking proposal kernel that follows the correlation structure
as specified a priori makes the candidate closer to the posterior distribution
which also speeds up the convergence of the chain. Based on these two facts,
a blocking scheme is employed in this study to construct the transition kernel
q(x∗|x). The meaningfulness of “blocking” is twofold: (1) the updating unit is
in a block as opposed to the single component and (2) the updating transition
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kernel is correlated such that it has the prior spatial statistics and structure,
i.e., q(x∗|x) = π(x∗|x).

Scheme #1

Specifically, for the blocking McMC method, the proposal kernel x̂∗|x̌ ∼
N(µ̂, Ĉx) which has the identical spatial distribution as the prior model x∗|x ∼
N(µ,Cx) except that their dimensions are different, where x̂∗ ⊆ x∗ denotes
the proposed parameters for the updating block and x̌ ⊂ x represents the cur-
rent parameters at a limited neighbor around the updating block (see Figure
3.1). The superblock that consists of the updating block and its neighbor can
be defined as a template over which the proposal scheme generally works, i.e.,
ẍ = (x̂∗, x̌)T ⊆ x. The acceptance rate α reads as,

α =
π(x∗)
π(x)

L(x∗|y)
L(x|y)

π(x̂|x̌)
π(x̂∗|x̌)

. (3.13)

Take its logarithm,

ln α = lnπ(x∗)− ln π(x) + lnπ(x̂|x̌)− lnπ(x̂∗|x̌) + lnL(x∗|y)− lnL(x|y).
(3.14)

The computations of lnπ(x∗), lnπ(x), lnL(x∗|y) and lnL(x|y) are in the
same manner as for the single-component case. The other two items are listed
as follows,

lnπ(x̂∗|x̌) ∝ −1
2
(ẍ∗ − µ̈x̌)T C̈−1

x (ẍ∗ − µ̈x̌), (3.15)

ln π(x̂|x̌) ∝ −1
2
(ẍ− µ̈x̌)T C̈−1

x (ẍ− µ̈x̌), (3.16)

where the superblock ẍ∗ = (x̂∗, x̌)T ⊆ x∗; ẍ = (x̂, x̌)T ⊆ x; µ̈x̌ is the kriging
estimate for the superblock from the neighbor x̌; and C̈ is the covariance
matrix of the superblock.

For the blocking McMC method, the proposal kernel x̂∗|x̌ ∼ N(µ̂, Ĉx)
which entails that the kriging estimates and the kriging covariances are needed
to compute firstly in that they fully depend on the current state of the chain.
This is quite computationally demanding. An economical alternative can be
found to compute lnπ(x̂∗|x̌), i.e.,

ln π(x̂∗|x̌) ∝ −1
2
zT

x̂∗zx̂∗ , (3.17)

where zx̂∗ ∼ N(0,1) that yields the random realization for the updating block,
since,
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x

x̂ x

x

x

Figure 3.1: A superblock template ẍ (⊆ ẋ ⊆ x) consists of the updating block x̂
and its neighbor x̌. Note that ẋ, which is a subset of x, is used to approximate
the prior density for a high-dimensional case, i.e., π(ẋ) .= π(x).

−1
2
(x̂∗− µ̂x̌)T C−1

x̂∗ (x̂∗− µ̂x̌) = −1
2
(Lx̂∗x̂∗zx̂∗)T C−1

x̂∗ (Lx̂∗x̂∗zx̂∗) = −1
2
zT

x̂∗zx̂∗ .

(3.18)
where µ̂x̌ is the kriging estimate for the updating block from its neighbor x̌.
And,

ln π(x̂|x̌) ∝ −1
2
uT

x̂ux̂, (3.19)

where ux̂ satisfies Lx̂x̂ux̂ = x̂ − µ̂x̌. Note that the computation of Lx̂x̂ is
quite expensive. But the computational burden can be reduced by narrowing
down the neighbor size of the updating block, i.e., reducing the number of
conditioning data for the kriging estimate.

Scheme #2

For a high-dimensional case, however, it still remains a challenge because the
LU-decomposition of the covariance matrix is not easy (see Formulae (6) and
(7)). A numerically efficient method in computing the prior density π(x) is
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using a subset of the field ẋ to approximate the entire field x, i.e., ẍ ⊆ ẋ ⊆ x
(see Figure 3.1). Therefore, the acceptance rate α is simply approximated by,

α =
π(ẋ∗)
π(ẋ)

L(x∗|y)
L(x|y)

π(x̂|x̌)
π(x̂∗|x̌)

. (3.20)

From our experience, a subset with the size equal to one or two correlation
lengths is sufficient to approximate the entire field.

Scheme #3

For a large-dimensional case with a large updating block, furthermore, con-
sidering the numerical approximation of a kriging estimate, two ways to gen-
erating the proposal kernel are treated equivalently, i.e., x̂∗|x̌ ∼ N(µ̂, Ĉx) .=
x∗|x ∼ N(µ, Cx). Therefore, the acceptance rate α can be simply set as,

α =
L(x∗|y)
L(x|y)

, (3.21)

which holds because q(x∗|x) = π(x∗|x) .= π(x∗) and q(x|x∗) = π(x|x∗) .=
π(x). In such case, the computation of α avoids the complicated evaluation
of the model density as done in Formulae (6) and (7).

3.2.5 Generation of the proposal kernel

The previous part presents a blocking proposal scheme to construct the Markov
chain for exploring the posterior distribution π(x|y). This part presents two
numerical methods for generating geostatistical realizations of the proposal
blocking kernel x̂∗|x̌ ∼ N(µ̂, Ĉx) and for evaluating their density if necessary.

Although many random field generators may produce conditional realiza-
tions for the blocking proposal (Deutsch and Journel, 1998), a main challenge
lies in the generation velocity. A fast generator is strongly recommended be-
cause a huge amount of i.i.d models are required for forward evaluations. The
algorithm based on the LU-decomposition of the covariance matrix is preferred
since it is quite efficient in generating a large number of conditional realiza-
tions (Davis, 1987; Alabert, 1987). If the LU-decomposition of the covariance
matrix C̈x = LU is available, the updated model parameters can be easily
obtained by,

x̂∗|x̌ = µx̂∗ + Lx̂∗x̌L−1
x̌x̌(x̌− µx̌) + Lx̂∗x̂∗zx̂∗ , (3.22)

where µx̂∗ and µx̌ are the prior mean for the updating block and its neighbor,
respectively. If Formula (13) is used to compute the acceptance rate, the
model densities of x̂∗|x̌ and x̂|x̌ can be efficiently evaluated by Formulae (17)
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and (19), respectively. More details on the derivation of Formula (22) and its
numerical implementation are given in Appendix A.

However, the LU-decomposition method tends to fail in dealing with the
high-dimensional case with a large superblock due to the difficulty of the LU-
decomposition of the covariance matrix. In this regard, the FFT-based spec-
tral simulator has a computational ability more powerful than the LU-based
generator. Just like the LU-decomposition method, the FFT-based spectral
method is also based on the matrix decomposition technique. First the sym-
metric covariance matrix Cx is extended to form a symmetric circulant matrix
S such that its square root can be efficiently computed by the fast Fourier
transform,

S = (V Λ
1
2 )(V Λ

1
2 )T . (3.23)

Then the stochastic realizations in the Fourier space can be generated by
x̃ = V Λ

1
2 z, where z = z1 + iz2 and z1, z2 ∼ N(0,1). The corresponding

random fields in the spatial domain x can be obtained by applying an inverse
FFT operation to x̃. Appendix B gives an outline on the derivation and
numerical implementation of the FFT-based spectral sampler; more details are
referred to relevant literatures elsewhere (Pardo-Iguzquiza and Chica-Olmo,
1993; Robin et al., 1993; Dietrich and Newsam, 1993, 1996; Gutjahr et al.,
1997; Ruan and McLaughlin, 1998).

In addition, an important step to generating conditional realizations is the
configuration of model structure for candidates, i.e., the specification of θ.
If the two-point geostatistics are adopted, an ad hoc method is to carry out
experimental variogram analysis of parameters if some direct measurements
are available. On the other hand, the structural parameters of candidates may
benefit from fitting to the observations of state variables (e.g., Sun and Yeh,
1985; Kitanidis, 1996). The geological mapping (e.g., Koltermann and Gore-
lick, 1996), geophysical imaging (e.g., Rubin et al., 1997), outcrop’s analogue
and other soft information are also helpful for model structure identification.

3.2.6 Multi-scale computation of the likelihood

The need of a prohibited CPU cost for running forward simulations with a
complete candidate model is an obvious shortcoming in calculating the log-
likelihood as expressed in Formulae (10) and (11) since numerous candidates
should be tested and forward simulator g(x) is generally expensive. It is es-
pecially true for an McMC scheme dealing with a high-resolution case, e.g., a
refined description of aquifer with a small variance of state variable (Wen et
al., 1998). In such case, the model is highly discretized (i.e., a large n) and
the state variable is considered to be highly confident (i.e., a small Cy). The
acceptance rate for a candidate may be rather low and, consequently, a large
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number of candidates must be proposed for the construction of the Markov
chain. A way out of this dilemma is to find an alternative to calculate the
likelihood fast but accurately as possible. One possible implementation is to
use a fast proxy of forward simulators. Another one is to use a coarsen version
of candidates with the aid of upscaling to speedup the forward evaluation.
For the latter, only those candidates potentially with higher acceptance prob-
ability are subject to complete forward simulations. For both cases, however,
some candidates may be discarded unreasonably for the loss of the informa-
tion in calculating the real likelihood. Superior to a single-component version
of McMC, the BMcMC is especially suitable for incorporation of widely used
upscaling schemes to speedup the forward computation. This is because the
upscaling procedures tend to average out the effect of a single component up-
date such that the updated model is almost the same as the old one. Hence,
all the updated models tend to be accepted which makes the McMC quite
inefficient. It happens more often for a high-resolution case where small prior
variances are specified for state variables. In such case a very low acceptance
rate, say, much less than 5%, is often observed so that a large number of can-
didate models have been tested but then discarded due to the small possibility
of being accepted. The introduction of coarsen models helps speedup the BM-
cMC computation simply because a large number of computational time is
saved in performing the forward simulations.

In this work, the second option is adopted for fast computation of the
likelihood. If the average acceptance rate is less than a specified threshold,
say 5%, then the multiscale scheme is invoked. First, a proper (economical)
upscaling scheme, e.g., the geometric mean, is selected to yield less biased
models. In addition, a large number of alternatives have been developed for
upscaling hydraulic conductivity (Wen and Gomez-Hernandez, 1996b; Renard
and de Marsily, 1997). Second, the forward simulators should be able to cope
with the flow and transport problems at various scales. For this purpose, a
flexible-grid full-tensor finite-difference flow simulator, which is widely com-
patible with the outputs from various upscaling subroutines, is developed for
the fast computation of the likelihood. This flow simulator has ample abilities
to accept the input of aquifer models within irregular grids and the input lnK
field could be a full tensor. A constant-displacement random-walk particle-
tracking approach is employed to solve the transport equations quickly and
accurately. In contrast to the scale-dependent constant-time-step scheme, the
scale-independent constant-displacement scheme is implemented to calculate
the travel time of particles aiming at the different scale’s transport problems.
With this scheme, the computation of travel times of particles is only done in
specified steps within one cell, by which numerous computational times are
saved in solving transport problems at the coarse scale and, moreover, the
results are proved quite accurate compared to the constant time scheme (Wen
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and Gomez-Hernandez, 1996a). In summary, these two forward simulators de-
veloped in this work, i.e., the multi-scale-oriented flow and transport solvers,
pay much attention to the scale problem and hence are especially suitable for
the MsBMcMC sampler. More implementation details are beyond this paper.
Third, if the coarse model is accepted, then the fine model is run and the
acceptance rate at the fine scale is evaluated to determine whether or not the
proposal is accepted. If the coarse model is rejected, then a new proposal must
be generated. Note that if, after the chain is convergent, the acceptance rate
is above a threshold, say 25%, the multi-scale scheme ceases to play, i.e., only
the operation at the fine scale is applied.

Up to now, a workflow for implementing the MsBMcMC scheme may be
summarized in Figure 3.2.

3.3 Sensitivity Analysis

3.3.1 A synthetic example

Consider a 2D transient single-phase flow test on a confined aquifer with 32×32
grid-blocks as designed in Figure 3.3 under the forced-gradient flow condition.
The reference lnK field is generated by the LUSIM subroutine from the GSLIB
(Deutsch and Journel, 1998) with a prior distribution lnK ∼ N(0, 1) and an
exponential variogram type, i.e.,

γx(r) = σ2
x

{
1− exp

[
− r

λx

]}
, (3.24)

where r is the two-point separation distance, σ2
x is the variance, and λx is the

correlation length. The prior correlation length is set as λx = 16 [cells], which
is much longer than the well spacing (lw

.= 11 [cells]) such that the spatial
variability of lnK is well captured by the well configuration.

The four boundaries are set to be non-flow. The initial head field is as-
sumed to be zero everywhere in the aquifer. The time discretization for flow
simulations employs the so-called time multiplier scheme which assumes that
the time increment for each step is multiplied by a constant time-step coeffi-
cient α, i.e., ∆ti = α∆ti−1, i ∈ (0, nt). The simulation time of total 500 days
(t0 = 0 and te = 500) is discretized into 100 steps, i.e., nt = 100, with α equal
to 1.05. The advantage of this scheme is that it allows for an adequate time
discretization at the early stage of simulation such that the simulated transient
head distribution is to the least degree influenced by the time discretization.

Nine wells are drilled throughout this confined aquifer (Figure 3.3): four of
them are the injection wells with a constant flow-rate (q = 20.5 per day) and
the other five are production wells with a constant pressure (the piezometric
head is maintained at h = −3.0 for all five wells). The flow-rate data at
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Figure 3.2: Flowchart of the multi-scale blocking McMC scheme
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Figure 3.3: Reference lnK field: five constant pressure production wells (in
bullet) and four constant flow-rate injection wells (in circle)

the four injection wells and the bottom-hole-pressure (BHP) data at the five
extraction wells are continuously collected at the first 40.1 days which consist
of the first 50 time steps.

The inverse stochastic modeling problem, therefore, is to infer the perme-
ability field (in lnK) according to the observed 40.1-day’s flow-rate and BHP
data at the well-bores. The stochastic lnK fields are also required to be con-
straint to the given prior information, e.g., lnK ∼ N(0, 1) and λx = 16. Other
flow parameters are assumed to be constant and known perfectly.

3.3.2 Convergence velocity

Because the forward simulation g(x) is usually very computationally demand-
ing, a way fast convergent to the mode that the posterior distribution π(x|y)
has is strongly recommended.

Effect of block size

It is well known that the block updating scheme helps improve the McMC
convergence. Several numerical experiments are carried out to uncover the
relationship between the block size and the convergence velocity. From Figure
3.4 (A), one can easily find that the block with a size equal to 8 × 8, which
is one half of the correlation length (λx = 16), only needs several thousand
iterations to reach the convergence, while the 1× 1 (i.e., the correlated single-
component case) and 2× 2 block schemes almost require 105 iterations. Since
each iteration calls for a forward evaluation, a larger updating block extremely
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saves the computational resource. On the other hand, the updating block can
not be large to any size. Figure 3.4 (B) shows that a block with a size over
8×8 does not improve the efficiency by too much and even becomes worse. In
summary, a larger updating block with a dimension up to λx/2 very efficiently
enhances the convergence velocity of the Markov chain.
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Figure 3.4: Effect of the block size on convergence velocity of McMC: Note that
the proposal of each of chain member requires a run of the forward simulator.

Effect of McMC scheme

Figure 3.5 compares the influence of three schemes for constructing the Markov
chain and computing the acceptance rate α on the convergence velocity of
McMC. The case with a block size equal to 4×4 is used to evaluate such effect.
First, the scheme #2 uses a subdomain only equal to one correlation length
to approximate the prior density and well reproduces the result of the scheme
#1. Even a slightly faster convergence velocity is observed in this case study.
It shows that such approximation is reasonable even in McMC convergence
efficiency. Second, the scheme #3 yields the fastest convergence result. Indeed,
the scheme #3 represents the “steepest descent” path to searching and locating
the region(s) of mode(s) that the posterior distribution has. As long as a model
has a larger likelihood, it will be accepted into the Markov chain.

3.3.3 McMC estimation performance

After the chain converges to the target distribution, two types of problems are
also deserved paying attention to: one is the estimation performance of the
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Figure 3.5: Effect of the computation schemes for acceptance rate α on con-
vergence velocity of McMC

generated realizations and the other is the mixing speed of the Markov chain,
i.e., its exploration efficiency.

Convergence performance measures

A natural empirical approach to convergence control is to draw pictures of
the output of a chain in order to detect deviant or nonstationary behaviors
(Robert and Casella, 1999). The key output of this method is a sequential
plot, η(x) = (η(x0), η(x1), ..., η(xnr−1))T , given a set of output realizations
x = (x0, x1, ...,xnr−1)T and an evaluation function η(·).

Based solely on a single replication, the CUSUM (cumulative sums) plot
is a graphical evaluation of convergence of the McMC, which was proposed by
Yu and Mykland (1998) and was extended by Brooks (1998). It gives both
qualitative and quantitative evaluation of the mixing speed of the chain, i.e.,
how quickly the sample is moving around in the sample space. Given a set
of output realizations (after convergence), x = (x0, x1, ..., xnr−1)T , and an
evaluation function, η(x) = (η(x0), η(x1), ..., η(xnr−1))T , one can construct
CUSUM path plots of scalar summary statistic as follows,

(1) Calculate the mean of the evaluation function,



“myThesis” — 2007/12/27 — 13:30 — page 38 — #60

38 CHAPTER 3. A MULTI-SCALE BLOCKING MCMC . . .

η̄ =
1
nr

nr−1∑

i=0

η(xi),

(2) Calculate the CUSUM,

σt =
t∑

i=0

(η(xi)− η̄), (3.25)

for t = 0, 1, ..., nr − 1, and σnr = 0;
(3) Define a delta function as,

δi =

{
1 if (σi−1 − σi)(σi − σi+1) < 0
0 else

for i = 1, 2, ..., nr − 1;
(4) Calculate the hairiness indices,

Σt =
1

t− 1

t−1∑

i=1

δi, (3.26)

for t = 2, 3, ..., nr.
The key outputs are two sequential plots: σ = (σ0, σ1, ..., σnr)T and Σ =

(Σ2, Σ3, ...,Σnr)T . The CUSUM, σt, gives a subjective evaluation of conver-
gence performance of the chain since the mixing rate is reflected by the vari-
ance CUSUMs over blocks of the sequence (Lin, 1992; Brooks, 1998). A slowly
mixing sequence will lead to a high variance for σt and a relatively large ex-
cursion size before returning to 0 at nr. When the mixing of the chain is high,
the graph of σ is highly irregular (oscillatory or “fractal”) and concentrates
around 0. When the mixing is slow, the CUSUM path is smooth and has a
bigger excursion size. The hairiness index, Σt, presents a quantitative measure
of smoothness to evaluate the convergence performance of a chain. An ideal
convergence sequence will be centered at around 0.5.

Effect of block size

This part presents a numerical experiment to compare the efficiency of three
block sizes to explore the posterior distribution π(x|y). Figure 3.6 plots the
mismatch between the observations and simulations, which is of main interest,
after the chain is convergent. Figure 3.6 (A), (B) and (C) seemingly tell us
that a smaller block produces a smaller mismatch. Note that the average
mismatch of 2× 2 is 0.08 which is slightly less than those of 4× 4 (µ = 0.09)
and 8× 8 (µ = 0.10). On the other hand, the 4× 4 block has a faster mixing
speed than both the 2× 2 block and the 8× 8 block (see Figure 3.6 (D)).



“myThesis” — 2007/12/27 — 13:30 — page 39 — #61

CHAPTER 3. A MULTI-SCALE BLOCKING MCMC . . . 39

McMC realizations

m
is

m
at

ch

0 1000 2000 3000
0

0.1

0.2

0.3

0.4 (A) Sequential plot of mismatch (2x2)

µ = 0.08
σ = 0.04
c.v. = 0.45
max = 0.25
min = 0.01

McMC realizations

m
is

m
at

ch

0 1000 2000 3000
0

0.1

0.2

0.3

0.4 (B) Sequential plot of mismatch (4x4)

µ = 0.09
σ = 0.04
c.v. = 0.46
max = 0.26
min = 0.01

McMC realizations

m
is

m
at

ch

0 1000 2000 3000
0

0.1

0.2

0.3

0.4 (C) Sequential plot of mismatch (8x8)

µ = 0.10
σ = 0.05
c.v. = 0.51
max = 0.36
min = 0.01

McMC realizations

Σ t

0 1000 2000 3000
0

0.1

0.2

0.3

2x2
4x4
8x8

(D) Sequential Plot of Hairiness Σt

Figure 3.6: Effect of the block size on the McMC performance
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Effect of McMC scheme

Figure 3.7 compares the influence of three blocking schemes on the McMC
exploration performance and the mixing speed of the chain. One can easily
find that the scheme #2 almost produces the same stable results as the scheme
#1. Their basic statistics are almost the same (Figure 3.7 (A) and (B)). But
the original version (i.e., scheme #1) does have a faster mixing speed than
its improved version (i.e., scheme #2). However, the scheme #3 yields worse
results. The simulated average mismatch (µ = 0.14) is obviously larger than
those of the other two schemes (µ = 0.09). Moreover, its mixing speed is much
less than the other two schemes (see Figure 3.7 (D)).

McMC realizations

m
is

m
at

ch

0 1000 2000 3000
0

0.1

0.2

0.3

0.4 (A) Sequential plot of mismatch (scheme #1)

µ = 0.09
σ = 0.04
c.v. = 0.46
max = 0.26
min = 0.01

McMC realizations

m
is

m
at

ch

0 1000 2000 3000
0

0.1

0.2

0.3

0.4 (B) Sequential plot of mismatch (scheme #2)

µ = 0.09
σ = 0.04
c.v. = 0.42
max = 0.28
min = 0.01

McMC realizations

m
is

m
at

ch

0 1000 2000 3000
0

0.1

0.2

0.3

0.4 (C) Sequential plot of mismatch (scheme #3)

µ = 0.14
σ = 0.06
c.v. = 0.40
max = 0.35
min = 0.01

McMC realizations

Σ t

0 1000 2000 3000
0

0.1

0.2

0.3

scheme #1: 4x4
scheme #2: 4x4
scheme #3: 4x4

(D) Sequential Plot of Hairiness Σt

Figure 3.7: Effect of three schemes for computing the acceptance rate on the
McMC performance
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3.3.4 Sampling efficiency

It is also interesting to determine the velocity of generating i.i.d realizations
after the chain is convergent since the forward simulation is expensive. One
typical way to generating the independent realizations is to output one up-
dated model once the updating block sweep off the whole modeling domain.
Since the scanning path is random, an effective operation is to output one
every nxyz/bxyz updates, where nxyz and bxyz are the dimensions of the model
and the updating block, respectively. Figure 3.8 compares the relationship
between the block size and the McMC iterations. The average iterations is
computed on the basis of 3000 independent realizations. Each iteration calls
for a forward simulation. Obviously, the 4 × 4 block (bx = λx/4) requires
the least forward evaluations while the correlated single-component proposal
needs the most forward evaluations.
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Figure 3.8: Effect of the block size on the velocity of McMC in generating
independent realizations

In addition, from Figure 3.5 one may also find that to generating 1000
independent realizations the scheme #3 needs 8.0×104 iterations; the scheme
#2 requires 3.0 × 105 iterations; and the scheme #1 almost needs 6.0 × 105

iterations.
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3.4 Coupled Multi-scale BMcMC Methods

3.4.1 Scheme #4

Extensive numerical experiments show that a larger updating block up to
λx/2 very efficiently improves the convergence velocity of the Markov chain.
Compared to the original BMcMC scheme (scheme #1) and its improved ver-
sion (scheme #2), the scheme #3 extremely speedups the convergence of the
Markov chain. On the other hand, the scheme #1 (or #2) and a relatively
smaller updating block (bx = λx/4) give a better result in the mixing of chain
and a faster velocity in generating independent realizations. Therefore, a
mixed scheme may be proposed to combine the strong points. That is, use
a larger updating block (e.g., λx/2) and the scheme #3 at the early stage
in order to drive the chain to rapidly move to the region of the mode. Af-
ter a “burn-in” period of trial runs and the chain is convergent, the proposal
scheme switches to a smaller block (e.g., λx/4) and the scheme #1 or #2 to
compute the acceptance rate. The advantage of such mixing multi-scale pro-
posal scheme is that it can rapidly find the mode of the target distribution and
the chain remains a fast mixing speed and a fast generation of independent
realizations.

The synthetic example in Figure 3.3 is used to illustrate the efficiency of
the proposed new scheme. The “burn-in” 50 iterations (almost 3000 forward
simulations) are run by the scheme #3 with a 8 × 8 block which is a half of
the correlation length. Then the blocking proposal scheme is switched to the
scheme #2 with a 4× 4 block which is one quarter of the correlation length.
Figure 3.9 compared the combined multi-scale proposal scheme to the original
single proposal schemes with various updating block sizes in generating 1000
independent realizations.

Three observations can be drawn from the picture. First, the new scheme
(scheme #4) has the same convergence velocity as the scheme #3, which is
much faster than the small updating block scheme (scheme #2). The scheme
#3 and #4 only need 1.0 × 103 forward runs but the scheme #2 requires
almost up to 1.0× 105 forward runs. Second, the new scheme takes 1.5× 105

forward runs to generate 1000 independent realizations, which is much faster
than the scheme #2 (up to 3.2 × 105 forward runs). Third, the new scheme
yields simulation results the same accurate as the scheme #2 and much better
than the scheme #3. Note that the scheme #3 has a larger fluctuation than
both the scheme #2 and the scheme #3 after the chains are convergent. This
point may be see more clearly from Figure 3.10.

After the chains get convergent, each 3000 independent realizations are
output from the scheme #2, #3, and #4 for measuring the estimate perfor-
mance and the mixing speed of these three chains. The results are plotted in
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Figure 3.9: An improvement in convergence velocity by the scheme #4

Figure 3.10. The proposal new scheme (Figure 3.10(C)) produces the statistics
of mismatch very similar to the scheme #2 (Figure 3.10(B)) but much better
than the scheme #3 (Figure 3.10(A)). The index of convergence performance
supports the same conclusion: the models from the scheme #4 are identical
to those of the scheme #2 (see Figure 3.10(D)).

3.4.2 Scheme #5

The scheme #4 can be further extended to form a coupled BMcMC scheme:
the scheme #5, that is, the information between the scheme #3 and the scheme
#1 or #2 can be exchanged to improve the mixing of both.

Suppose that there are two separate chains that evolve independently: one
is constructed by a large updating block with scheme #3, and the other has a
small updating block with scheme #1 or #2 (see Figure 3.11). Every certain it-
erations, the two chains exchange information to form coupled Markov chains.
Without considering the parallel implementation, the chain constructed by the
scheme #3 is first run until it reaches the stable state, i.e., convergent; then
the proposal scheme is switched to a smaller scale and the scheme #1 or #2
is used to output the independent realizations. After a period, the chain is
switched to a larger scale proposal that uses the scheme #3 to locate a new
mode and is switched back to the small scale proposal to output the realiza-
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Figure 3.10: An improvement in McMC performance by the scheme #4
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Figure 3.11: Two coupled Markov chains
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tions. Repeating this progress that couples the large scale and the small scale
proposals, a faster mixing speed is expected to attain.

Figure 3.12(A) displays the sequential plot of the mismatch produced by
the scheme #5. The output realizations well match the best results as in the
scheme #2 (Figure 3.12(B)). Figure 3.12(B) compares the mixing speed of the
scheme #5 to that of the others. The exploration efficiency of McMC has been
evidently enhanced by the coupled scheme.
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Figure 3.12: An improvement in McMC performance by the scheme #5

3.5 Conclusions and Discussions

A multi-scale blocking McMC method is presented to generate independent
realizations that honor both the static measurements and the dependent dy-
namic observations. The blocking proposal kernel for the Monte Carlo inte-
gration is an appropriate approximation to the target posterior distribution
due to the adoption of the blocking scheme, which efficiently improves the
mixing of chain and hence saves a large number of computational times. The
generation of candidate realizations is fast because the generation of the pro-
posal kernel is based on the LU-decomposition of the covariance matrix for
a small scale case and the spectral decomposition for a large scale case. The
computation of the acceptance rate is economical since an upscaling procedure
is integrated into the algorithm such that the coarse-scale model can be used
to quickly evaluate the likelihood by the multi-scale-oriented flow and trans-
port simulator developed in this study. The exploration ability and the mixing
speed of McMC are improved owing to the coupling between the multiscale
proposals.
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In addition, the proposed method has several other advantages over clas-
sical inverse methods: (1) Unlike those conventional approaches, the MsBM-
cMC method is remarkably stable and well-behaved. It fully circumvents
the difficulties of ill-posedness and identifiability as faced by the conventional
optimization-based approaches. (2) It is easy to implement although a lot of
cares should be taken in coding. (3) It has an ability to incorporate all linear
and nonlinear data into the parameter models without invoking the failure-
prone, usually highly nonlinear, optimization procedure as done as other com-
monly used inversion procedures. (4) It is not restricted to the assumption of
a multi-Gaussian process for model parameters and can be easily extended to
other stochastic process, such as, Markovian.

However, the disadvantages of the proposed method are also obvious. First,
the presented MsBMcMC scheme is extremely computationally intensive. A
large number of candidate realizations have to be provided to construct the
Markov chain. Just like all the Monte Carlo methods, the number of realiza-
tions to be generated can not be efficiently determined in order to obtain a
reliable result. Second, the efficiency of the proposed MsBMcMC method in
exploring parameter space is desired to improve.
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4
A Multi-scale Blocking

McMC Method: 2.
Uncertainty Assessment

Abstract

A multi-scale blocking McMC (MsBMcMC) method has been presented in
Chapter 3 to perform conditional and inverse-conditional simulations honor-
ing both the static data and the dynamic data. However, the purpose of the
stochastic simulations to generating physical models is not only to reproduce
the observations as precisely as possible but also to characterize model pa-
rameters between the observations in space and to predict model responses
that have not yet been observed in space and time. Inevitably, an inherent
uncertainty occurs in predicting the spatiotemporal distribution of model pa-
rameters and their responses. This study presents a synthetic example to
validate the efficiency and robustness of the proposed MsBMcMC method for
performing conditional and inverse-conditional simulations. Specifically, the
models are configured a priori, either correctly or wrongly. Then the MsBM-
cMC approach is invoked to generate independent realizations conditioning
on hard data and inverse-conditioning on state data, e.g., the head observa-
tions and the temporal moments of tracer data. Finally the estimated models
and the predicted responses are compared with the real case. Results show
that the hydraulic conductivity only contains local information on the spatial

47
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distribution of model parameters while piezometric head and tracer data in
conjugation with sampling network may convey regional or global informa-
tion on the spatial trend of model parameters. The uncertainty propagation
due to conditional and inverse-conditional mapping of aquifers is quantified
in terms of the scale-dependent macrodispersion by means of solving assumed
steady-state flow and ideal, conservative transport problems under a natural-
gradient flow condition. It is found that inverse-conditioning to the temporal
moments of BTCs, or equivalently, the spatial moments of concentration data,
substantially improves the estimation on the solute spreading. The reduction
of uncertainties proves not only the worth of hydraulic conductivity and piezo-
metric head but also the significance of the temporal moments of tracer data
in mapping model parameters and predicting model responses.

4.1 Introduction

In general, there are three methods for uncertainty assessment in inverse
stochastic modeling: the linear (first-order second-moment) method, the non-
linear method, and the Monte Carlo method (Carrera et al., 2005). Amongst
them, the Monte Carlo method is probably the most widely used though com-
putationally burdensome. The MsBMcMC is by nature a Monte Carlo method
for uncertainty assessment but it also has the ability to constrain the models
on both the static data and the dynamic data.

The groundwater flow inverse problem is to estimate parameters of physical
model from head observations. The groundwater transport inverse problem
consists of estimating parameters of physical model on the basis of concen-
tration measurements. The concentration data for inverse stochastic model-
ing is attractive due to their abundance in aquifer measurements. However,
it is a challenging task since the highly nonlinear relationship between the
heterogeneity of hydraulic conductivity and the spatial variability of solute
concentration, which are governed by the flow and transport equations.

The concentration data have been directly used to the parameter inference,
e.g., characterization on the spatial correlation structure and the point esti-
mation on local parameters, in several literatures (Graham and McLaughlin,
1989a, 1989b; Sun and Yeh, 1990a, 1990b; Woodbury and Sudicky, 1992; Deng
et al., 1993; Anderman and Hill, 1999; Nowak and Cirpka, 2006; etc.). For
instance, Ezzedine and Rubin (1996) derived, in a geostatistical approach, the
cross covariance between the tracer concentration data and the hydrogeologi-
cal variables such as conductivity and head, which allows for the utilization of
tracer data for estimating the spatial distribution of conductivity. Franssen et
al. (2003) used the sequential self-calibration method to generate realizations
conditional to the spatially distributed concentration data with the aid of the
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adjoint-state method to calculate the sensitivity matrix. A synthetic study
was presented to show the worth of concentration data.

However, the direct use of concentration data for inverse-conditional mod-
eling generally requires a large of concentration samples extensively distributed
over the entire flow domain over space and frequently sampled over time in
order to obtain an exact description of spatial and temporal distribution of
tracers, which is quite expensive and even impractical. An example is the Cape
Cod tracer experiment where 9840 sampling points in the 656 monitoring wells
were used to measure the concentration of tracers (LeBlanc et al., 1991). By
contrast, the travel time is a cheaper alternative for parameter inference to
condition on the concentration data due to the low cost in the data acquisi-
tion. Indeed, collecting travel time of tracers only invokes couples of wells for
forced-gradient flow or a series of wells distributed along a plane perpendicu-
lar to the mean flow direction for natural-gradient flow (Rubin and Ezzedine,
1997). Fernandez-Garcia et al. (2005) found that, even under a uniform,
natural-gradient flow condition, only several full-penetrated wells are required
to accurately estimate the first two moments of BTCs obtained from total
mass fluxes passing through the control planes. Additionally, there are also
some merits in the computational aspects (Harvey and Gorelick, 1995). For
example, the travel times are scale-independent and thus avoid the disparity
problem between the model resolution and the measurement scale since the
travel times are typically computed in a Lagrangian framework rather than
the grid-based Eulerian method when solving the forward transport problem.

Several literatures have been found for conditioning aquifer parameters on
the travel time. Vasco and Datta-Gupta (1999) developed an asymptotic so-
lution to the solute transport, in a single forward simulation, to calculate the
sensitivities for the inversion of the tracer data. Then an iterative linearized
inversion algorithm is used to infer the parameter distribution. Wen et al.
(2002) derived sensitivity coefficients of tracer travel time with respect to the
permeability by tracking streamlines between the well pairs. The sequential
self-calibration method is then employed to construct geostatistical realiza-
tions conditional to concentration data. Results from a synthetic aquifer show
that tracer concentration data carry important information on the spatial
variation of permeability in the inter-well areas while the pressure data only
provide information near the well-bore.

In contrast to the entire BTCs, a variety of statistical measures computed
from the BTCs, e.g., the peak concentration arrival times, the percentiles of
travel times, and the temporal moments of tracer data, can also be used for
the inverse-conditional simulation and mitigate the computational effort. Sev-
eral methods based on the temporal moments and statistics of the BTCs have
been used for parameter inference. Cirpka and Kitanidis (2001) developed
a sensitivity matrix of the temporal moments of tracer data with respect to
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the conductivity using the adjoint-state method. On the basis of such sen-
sitivity matrix (of the first moment), the quasi-linear geostatistical inversion
or iterative cokriging method is employed to conditioning the conductivity on
the tracer data. A synthetic example demonstrates a minor improvement of
the integration of tracer data (in terms of the first temporal moment) into
the estimate of conductivity compared to the result of head data. Rubin and
Ezzedine (1997), Woodbury and Rubin (2000), and Bellin and Rubin (2004)
proposed to use the peak concentration arrival times to infer the geostatis-
tical models of conductivity. Actually, public officials assessing health risks
associated with contaminant exposure in a drinking water supply system may
be most concerned with peak concentration or the corresponding arrival time
(Lemke et al., 2004). Moreover, one appealing point in data acquisition is
that the peak concentration arrival time is less affected by the truncated BTC
records, e.g., the missing early or late arrivals due to the infrequent sampling
and the insensitivity of measurements. Wilson and Rubin (2002) used the
indicator variable of solute arrivals for the inference of parameters controlling
the heterogeneous structure of conductivity and the mean flow velocity.

The meaningfulness of conditioning on the various percentiles of the BTCs
is apparent in physics. The early arrivals in the BTCs follow the fastest path-
ways between the release source and the control plane, which are dominated
by preferential flow, i.e., flow conduits. On the other hand, the late travel
times reflect a more integral behavior, or even flow barriers. Therefore, differ-
ent inversion results provide distinct knowledge about the flow and transport
properties. High connectivity generally results in earlier breakthrough, i.e.,
an earlier front part of BTC. Failing to account for such case will have too
conservative conclusion in risk analysis in that the real arrival time may be too
much faster than that estimated (Gomez-Hernandez and Wen, 1998). On the
other hand, low connectivity results in later breakthrough. An aquifer reme-
diation design without considering such feature may fail because the resident
contaminants will be removed more slowly than expected (Wagner and Gore-
lick, 1989). Harvey and Gorelick (1995) presented a method for estimating
the spatial pattern of conductivity from the quartiles of solute arrive times.
In a hypothetical aquifer example, they found that adding the median quar-
tile of the BTCs to the cokriging procedure does improve the accuracy of the
estimate of conductivity. But the tails of the BTCs (0.1 and 0.9 percentiles in
their case) do not convey much more information about the conductivity field
than the median quartile on the basis of the first-order approximation of the
flow and transport equations.

The transformations of the raw measurement data of dependent state vari-
ables as the input to the inversion procedure have their own advantages. First,
such preprocess decreases the inconsistency or reduces the discrepancy between
the raw data, which helps to improve the stability of the inversion procedure,
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but not of the methodology itself, and the identification of the subsurface re-
ality. This is straightforward since the acquisition of raw data contain a huge
number of errors. One advantage of using temporal moments as conditioning
data, for example, is that the derivation of travel time moments from the raw
BTC can efficiently average out the measurement errors. An alternative is to
assign a pdf to define measurements instead of individual raw values. Second,
it may increase the sensitivity of state data to the model parameters. Third,
it may convey a more useful information for engineering design. For instance,
a surfactant flooding scheme requiring delivery of surfactant at concentrations
exceeding a specified threshold for a minimum time period might be more
concerned with second temporal moment, i.e., dispersion. The first purpose
of this study, therefore, is to constrain the stochastic models on the moments
of BTCs by the MsBMcMC.

The construction of the physical models honoring the prior information,
the linear data and the nonlinear data is only one aspect of the geostatistically-
based conditional and inverse-conditional simulation. Chapter 3 has already
presented a detailed description on the MsBMcMC approach to this problem.
Of equal importance, on the other hand, is to carry out uncertainty analysis,
e.g., to quantify the reliability of those models, to identify key uncertainty
resources, and to assess the resolutions and confidence regions of the condi-
tional realizations (Vasco et al., 1997; Deutch and Journel, 1998), so as to
measure how much the property parameters can depart from the conditional
realizations. Note that the purpose of quantitative uncertainty analysis is not
to reduce uncertainties which can only be achieved by collecting additional ef-
fective information. However, not all conditioning algorithms are sensitive to,
and thus are capable of detecting such uncertainty reduction introduced by,
additional effective information. In this regard, quantification of uncertainty
can adversely check the efficiency of a conditioning algorithm.

The second purpose of this work, therefore, is to investigate the worth of
various types of data and to assess the uncertainty reduction caused by the
conditional and inverse-conditional simulations in a synthetic example under a
natural-gradient flow condition. First, the worth of local conductivities, piezo-
metric head and travel time data is evaluated by the errors of the generated
realizations deviated from the real model in terms of the spatial distribution
of the hydraulic conductivity following the line of Franssen et al. (2003).
Then, the predicted uncertainties of head distribution due to the conditioning
to various types of data are assessed. Finally, the uncertainty propagation
of conditional simulations is quantified in terms of the longitudinal macrodis-
persion to further validate the worth of various measurements. It is worth
pointing out that since the model structure of realizations generated by the
MsBMcMC are identical, the worth of conditioning data from diverse sources
are evaluated exclusively without structure uncertainty involved.
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4.2 A Synthetic Example

The first purpose of this exercise is to examine the efficiency of the proposed
MsBMcMC algorithm to generating independent conditional realizations. It
should be mentioned that although the initial and boundary conditions are
subject to the uncertainty as well, we assume they are known or estimated
reasonably in order to ease the computational burden. In addition, although
the head and concentration data may provide information for identifying the
spatial distribution of other parameters, such as porosity and retardation fac-
tor, this study only considers the inverse-conditional problem of hydraulic con-
ductivity since the spatial variability of conductivity predominantly controls
the flow of fluid and transport of solutes. In other words, porosity, retardation
factor and other parameters are treated as the constants or known.

4.2.1 Reference model and conditioning data set

A synthetic 2D highly-correlated multi-Gaussian confined aquifer under a uni-
form, natural-gradient flow condition, as shown in Figure 4.1 (A), serves as
the reference field to illustrate the effectiveness of the proposed method for
inverse-conditional simulation.

The multi-Gaussian field for reference is chosen because of its simplicity
and traceability in performing input and output analysis. Its spatial structure
can be described completely by its first two moments. This reference lnK
field is generated by the program SGSIM from GSLIB (Deutsch and Journel,
1998). The grid size of the entire computational domain is 100 × 100, i.e.,
nx = ny = 100. The size of each square cell is one by one unit-free, i.e.,
∆x = ∆y = 1. The flow domain thus is l = lx = ly = 100. The mean
value is set to zero and its variance is set to one, that is, x ∼ N(0, 1). An
exponential correlation structure without nugget effect is specified. The lnK
field is isotropic and the correlation length of both x and y direction is 50, i.e.,
λx = λy = 50, which is half of the domain size and hence highly correlated.

The high correlation of the aquifer model is preferred in this study for two
reasons: (1) it provides more straightforward visual comparison between the
simulations and the reference due to the block property of images and (2) only
a few observations are required to capture the critical features of aquifer for
easing the computational burden although the proposed method has potential
to deal with a large number of data. In this paper, the high correlation means
a high ratio of the correlation length to the size of the computational domain
while the grid resolution refers to the cell number per correlation length. For
the lnK field in this study this ratio is l : λx = 100 : 50. The grid resolution
is 50 by 50 per correlation length, i.e., Rλ = 50 × 50, which is enough to
characterize the spatial variability in details. However, the high correlation
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Figure 4.1: The conditioning data set and the reference ln K and head fields
(µ = 0, λx = 50, σ2

x = 1.0)
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tightens the dependence of parameters and decreases the degree of freedom of
aquifer models, which makes more limited the admissible parameter space and
hence increases difficulty for the MsBMcMC algorithm to search for acceptable
models.

Another factor to be considered is the ratio of the correlation length to
the sampling spacing because the sampling density may be an important fac-
tor for model identification. Generally speaking, compared to the sampling
spacing, a smaller prior correlation length yields an inverse estimate closer to
the prior mean except in the immediate vicinity of measurements (McLaugh-
lin and Townley, 1996). In principle, parameter variability with a correlation
length smaller than the sampling spacing cannot be determined. Conversely, a
larger prior correlation length yields a smooth estimate which varies gradually
over the region of interest. Besides, it was recognized that the uncertainties
of models and their responses remain significant even with a large number
of hard conditioning data (Harter and Yeh, 1996; van Leeuwen et al., 2000;
Scheibe and Chien, 2003). Eggleston et al. (1996) found that for the Cape
Code aquifer the estimation error is relatively insensitive to the number of
hard data above a threshold of three measurements per integral volume. For
the lnK field in this study, this ratio is λx : ∆s = 50 : 25 which keeps two
sampling points per correlation length so that the main characteristics of the
real aquifer are captured by these measurements.

A single-phase flow experiment is set up as follows. The upper and lower
boundaries are set as impermeable, i.e., non-flow boundaries. The left and
right sides are set as constant heads equal to ten and zero, respectively, i.e.,
h−x = 10 and h+x = 0. The confined steady-state flow problem is solved
by a multiscale-oriented block-center finite-difference simulator developed in
this study. The reference head field is shown in Figure 4.1 (C). Nine points
uniformly distributed in the flow domain are selected as the conditioning po-
sitions. The sampling interval thus is ∆s = ∆sx = ∆sy = 25. Nine lnK
values are shown in Figure 4.1 (B) as hard data to be conditioned. Nine head
values at the same locations are shown in Figure 4.1 (D) as state data to be
inverse-conditioned.

Therefore, the problem of interest is to infer the spatial distribution of lnK
from nine head observations under the same flow and transport conditions by
the MsBMcMC method. Moreover, the spatial structure specified for models
should be preserved for all inverse-conditional realizations.

4.2.2 An inverse-conditional estimate

This part presents a preliminary result by inverse-conditioning to nine head
observations just to show the effectiveness of the proposed MsBMcMC scheme.
A critical pattern of the reference model, as shown in Figure 4.1 (A), is that
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the low lnK values, mostly locating at the left-lower corner, spread along
the north-west direction while the high lnK values locate mainly at the right-
lower corner and some of them at the left-right corner. The main feature of the
head distribution, as shown in Figure 4.1 (C), is that the flow breakthrough
of the lower part is much faster than that of the upper part. Nine head
observations uniformly scattered over the field, as shown in Figure 4.1 (D),
basically captures the main flow pattern. Therefore, the identified lnK field by
inverse-conditioning on the head data is expected to be capable of reproducing
the critical patterns of the reference models.

The main input parameters to the MsBMcMC program for inverse-conditioning
are configured as follows. Except for the nine head data, the lnK is assumed as
the unknown. Therefore, the output realizations are only inverse-conditioned
to head observations. The expected value is set to zero and the variance is set
to one, x ∼ N(0, 1). The model structure of lnK is assumed to be estimated
unbiasedly, i.e., an isotropic field is assumed and the covariance is simulated
by an exponential function with a correlation length equal to 50, i.e., λx = 50,
whence all parameters keep consistent with the reference model. The param-
eter configuration for flow simulations is also assumed to be known perfectly,
that is, a steady-state single-phase flow is simulated with boundary conditions
consistent with the reference model.

Three thousand independent realizations are generated by the MsBMcMC
program. Figure 4.2 well displays the Gaussian distribution of lnK values, i.e.,
lnK∼ N(0, 1). Figure 4.3 shows the variograms in two orthogonal directions.
Obviously the generated realizations have an identical variogram as specified
a priori. Note that the inverse conditional simulations perfectly match the
prior model at a small separate distance. Over a large separate distance, the
generated realizations tend to slightly adjust their variograms to match the
real case (reference).

The ensemble mean lnK field over these 3000 realizations may represent
the most probable estimate by the MsBMcMC method. As shown in Figure
4.4 (A), the main distribution pattern of the reference lnK field (see Figure
4.1 (A)) has been well identified in visual though the amplitude of the mean
estimate is weaker than that of the reference field. The most probable estimate
is obviously over-smoothed and underestimated since local details tend to be
smoothed out during the procedure of inverse-conditioning with only several
sparse data, which is just as done as kriging.

The norm of the posterior covariance matrix represents the actual error of
parameters in uncertainty quantification. Figure 4.4 (B) plots the variance of
the most probable estimate over an ensemble of three thousand realizations
from the MsBMcMC output. It just shows the reliability distribution of the
lnK estimate since a smaller variance demonstrates a narrower region that lnK
is allowed to fluctuate over. In turn, it also displays the degree of reliability of
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Figure 4.4: An MsBMcMC estimate by inverse-conditioning to head observa-
tions
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the most probable estimate of lnK. The posterior variance obviously decreases
compared to the prior one due to inverse-conditioning. Such decrease is not
uniform in space, however, because of the non-uniform sensitivity of head
observations to model parameters.

One could easily find from Figure 4.4 (B) that the inter-well region has
a more reliable estimate than the well-bore region (observation locations for
state variables) and that the worst estimates have been obtained close to the
boundary regions. This is because in this case study both the well-bore region
and boundaries have specified heads that inverse-conditional models have to
honor. The sensitivity of heads to parameters is very low near the locations
with constant heads since there is no change of heads responding to the fluc-
tuation of parameters. Therefore, the uncertainties at those locations are not
significantly reduced by inverse-conditioning to their own head observations.
But the uncertainties can be reduced as benefiting from inverse-conditioning
to head observations at other positions.

The same flow experiments as done to the reference model are conducted
for the ensemble of 3000 realizations. The mean head field from the batch
flow experiments is plotted in Figure 4.4 (C), which is quite similar to the
reference head field, e.g., the lower part has earlier breakthrough than the
upper part yet the estimated distribution is more regular and smooth. The
variance of estimated head fields is plotted in Figure 4.4 (D), which displays
the fluctuation sizes of heads. Note that the values on the left and the right
boundaries, are not the real cases due to the boundary effect. The reasoning
is that because the head field is highly correlated, just as a natural result of
the highly correlated lnK field, and these two boundaries have specified val-
ues, i.e., ten for the left and zero for the right, the head values on the regions
close to these boundaries are more determined from the boundary specifica-
tion rather than the stochastic fluctuation identified by inverse-conditioning.
The constant head configuration prevents the simulated head from changing
significantly for different parameter values. In other words, the sensitivity of
heads to parameters is low near the boundaries with constant heads. The
regions of high head variance are those locations that new observations should
be placed on in the new network design for reducing the uncertainty.

In summary, head observations, albeit sparse in space, do contain impor-
tant flow information for identifying the large-scale trend of lnK, which can
be effectively extracted by the proposed MsBMcMC inverse-conditioning al-
gorithm.
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4.3 Uncertainty Assessment

Two types of uncertainties are considered in this section, model uncertainty
and prediction uncertainty. The model uncertainty is important at the spa-
tiotemporal scale not only because the generated models form the basis for
future performance prediction at the existing wells but also because they serve
as risk analysis of candidate wells. The prediction uncertainty directly mea-
sures the prediction ability of models at the spatiotemporal scale. In addition,
the purpose of the assessment on uncertainty propagation is straightforward,
that is, to determine which sources of uncertainty contribute mostly to the
uncertainties of the predicted responses and hence to further design experi-
ments to reduce the most critical components. Assuming that the uncertainty
from numerical simulations is negligible and considering that the uncertainty
of data acquisition is uncontrollable, the model uncertainty (e.g., from differ-
ent model structures, such as, Gaussian vs. Markovian, and from different
structure parameters, such as, mean, variance, correlation length, sill, and
anisotropy for the Gaussian case) is essentially responsible for the resulted
prediction uncertainty.

4.3.1 Model uncertainty

Although the reference model is well defined and observable in this study, we
generally do not know what it is ahead in practice. A practical way is to use
the ensemble average of simulated outputs instead of the real model. Two
parameters are computed as the metrics of performance measure to this end,
the ensemble average error (I(x)1) and the standard deviation of the ensemble
average error (I(x)2), which are defined as the L1-norm and L2-norm between
the simulated models and the mean models, i.e.,

I(x)1 = ‖xsim − x̄sim‖1 =
1

nxyz

nxyz−1∑

i=0

1
nr

nr−1∑

r=0

|xi,r − x̄i|, (4.1a)

I(x)22 = ‖xsim − x̄sim‖2
2 =

1
nxyz

nxyz−1∑

i=0

1
nr

nr−1∑

r=0

(xi,r − x̄i)2, (4.1b)

where nr is the number of realizations, nxyz is the number of grid cells, xsim

is the vector of simulated attribute values, and x̄sim is the ensemble average
vector of simulated attribute values.

In case of the synthetic example like this study, however, the model uncer-
tainty can be measured by the simulated errors to validate the efficiency of the
proposed method since the real model is available (Deng at al., 1993; Frassen
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et al., 2003). In such case, the L1-norm and L2-norm between the simulated
models and the real models are defined as,

I(x)3 = ‖xsim − xref‖1 =
1

nxyz

nxyz−1∑

i=0

1
nr

nr−1∑

r=0

|xsim
i,r − xref

i |, (4.2a)

I(x)24 = ‖xsim − xref‖2
2 =

1
nxyz

nxyz−1∑

i=0

1
nr

nr−1∑

r=0

(xsim
i,r − xref

i )2, (4.2b)

respectively. Note that xref is the vector of reference attribute values. Ob-
viously, the smaller I(x)3 and I(x)4 are, the closer to the real model the
generated realizations are.

4.3.2 Uncertainty of model responses

A method to examining the effect of conditioning to head data on the un-
certainty reduction of the spatial distribution of hydraulic conductivity is to
examine the decrease of the L1-norm and L2-norm of the predicted model
responses (Hoeksema and Kitanidis, 1984; Kitanidis, 1986). The four metrics
for the model responses, I(y)1, I(y)2, I(y)3, and I(y)4, are defined as follows,

I(y)1 = ‖ysim − ȳsim‖1 =
1
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1
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respectively.
In essence, I(x)1, I(x)2, I(y)1, and I(y)2 measure the degree of precision

that the McMC simulations could render, that is, how narrow the confidence
interval of McMC simulations is. I(x)3, I(x)4, I(y)3, and I(y)4 measure the
degree of accuracy that the McMC simulations may attain, that is, how they
are close to the true model and it response. From the standpoint of estimate
and uncertainty, I(x)1, I(x)3, I(y)1, and I(y)3 measure the reliability of the
estimated models and their responses while I(x)2, I(x)4, I(y)2, and I(y)4
measure the uncertainty of the estimates and their responses.
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4.3.3 Macrodispersion

In addition, the macrodispersion coefficient can be viewed as an important pa-
rameter to represent the spatial variability of hydraulic conductivity. Indeed,
experimental and theoretical results have suggested that macrodispersion of
solutes is essentially produced by the spatial variation of the fluid velocity re-
sulting from the heterogeneity of hydraulic conductivity. Because the physical
models inverse-conditional to the concentration data and the head data are
expected to identify the main flow and transport pattern, the objective of this
study is to validate the capability of the conditioning algorithm employing the
McMC scheme to capture such features by comparing the macrodispersion of
the conditional realizations with that of the unconditional realizations.

The scale- or time-dependent macrodispersion is defined as the change rate
of the second-order moment of a solute plume. Extensive studies on the effects
of hydraulic conductivity on macrodispersion of solutes have shown that, un-
der steady-state flow conditions with a uniform mean hydraulic gradient in the
statistically stationary media of finite correlation length of hydraulic conduc-
tivity, macrodispersion increases with time from the point at which the solute
body first enters the flow domain, until after the solute cloud has traveled a
few tens of correlation length of the hydraulic conductivity and then reaches
a constant asymptotic value (Dagan, 1984; Khaleel, 1994).

One possible way to estimating the macrodispersion of solutes is to carry
out a series of Monte Carlo numerical simulations to calculate the temporal
moments at various displacement distances using the statistics of the BTCs
and transverse drifts. The longitudinal and transverse macrodispersion can be
then computed from the particle arrival times and arrival transverse positions
to those distances, respectively. In this study, only the longitudinal macrodis-
persion is considered. Specifically, given an ensemble of aquifer realizations,
say, nr, one can get a set of BTCs at different control planes, say, nc, perpen-
dicular to the mean fluid velocity, i.e., {t(x0), t(x1), ..., t(xnc−1)}r, r ∈ [0, nr),
by solving the steady flow and transport problems. The longitudinal macrodis-
persion for a given control plane can be calculated from the temporal moments
of an ensemble of BTCs by (Fernandez-Garcia et al., 2005),

AL(x) =
x

2
〈σ2

t (x)〉+ 〈σ2
T (x)〉

〈T (x)〉2 , (4.4)

where x denotes the travel distance (i.e., the distance between the control
plane and the tracer source in the x direction) and 〈〉 denotes the ensemble
average operator. In the formula above, 〈σ2

t (x)〉 is the expected variance of
travel time, 〈σ2

T (x)〉 is the expected variance of mean travel time, and 〈T (x)〉2
is the expected average travel time. A detailed procedure for computing these
three values is given as follows.



“myThesis” — 2007/12/27 — 13:30 — page 62 — #84

62 CHAPTER 4. A MULTI-SCALE BLOCKING MCMC . . .

(1) Expected average travel time 〈T (x)〉

T (x) is the first-order moment of travel time for one single realization, i.e.,
the average arrival time of a given realization, which can be approximated by,

Tr(x) =
1

np,r

np,r−1∑

i=0

tr,i(x); r ∈ [0, nr),

where np,r is the total number of tracer particles that arrive at the control
plane and tr,i(x) is the travel time of the ith particle for the rth realization.
〈T (x)〉 is the ensemble mean of the average arrival time over all the realizations,
which can be approximated by,

〈T (x)〉 =
1
nr

nr−1∑

r=0

Tr(x).

(2) Expected variance of travel time 〈σ2
t (x)〉

σ2
t (x) is the second-order moment of travel time for one single realization,

i.e.,

σ2
t,r(x) =

1
np,r

np,r−1∑

i=0

t2r,i(x)− T 2
r (x); r ∈ [0, nr),

and, then, the ensemble mean 〈σ2
t (x)〉 is,

〈σ2
t (x)〉 =

1
nr

nr−1∑

r=0

σ2
t,r(x).

(3) Expected variance of average travel time 〈σ2
T (x)〉

σ2
T (x) is the variance of the first temporal moment, i.e., the squared devi-

ation of average arrival time of a single realization from the ensemble average
arrival time,

σ2
T,r(x) = (Tr(x)− 〈T (x)〉)2 ; r ∈ [0, nr),

and, then, the ensemble mean 〈σ2
T (x)〉 is,

〈σ2
T (x)〉 =

1
nr

nr−1∑

r=0

σ2
T,r(x).



“myThesis” — 2007/12/27 — 13:30 — page 63 — #85

CHAPTER 4. A MULTI-SCALE BLOCKING MCMC . . . 63

An alternative way to calculating the apparent longitudinal macrodisper-
sion is to use the coefficient of variation of the BTCs (Kreft and Zuber, 1978;
Desbarats and Srivastava, 1991; Wen and Gomez-Hernandez, 1998),

AL(x) =
x

2
σ2

t (x)
m2

t (x)
, (4.5)

where mt(x) and σ2
t (x) are the mean and variance of travel times at the dis-

placement distance x, respectively. To overcome the sensitivity of σ2
t (x) to

the presence of outlier travel times, the distribution of log travel time was
suggested to calculate the temporal moments,

mt(x) = exp
{

mln t(x) +
1
2
σ2

ln t(x)
}

,

σ2
t (x) = m2

t (x)
(
exp

(
σ2

ln t(x)
)− 1

)
,

following Khaleel (1994) and Wen and Gomez-Hernandez (1998). mln t(x)
and σ2

ln t(x) are the mean and variance of log travel times at the displacement
distance x, respectively.

4.4 A Synthetic Experiment

The stochastic conditional simulation to generating models is not only to re-
produce the observations as precisely as possible but, even more importantly
sometimes, to characterize parameters where we do not know such as at those
points between the observations and to make inference to the future perfor-
mance of wells, either old or virtual. Correspondingly, an inherent uncertainty
occurs in predicting the spatiotemporal distribution of parameters and their
responses, which are called model uncertainty and prediction uncertainty, re-
spectively. A classical method for inverse stochastic modeling includes two
stages, model identification and parameter estimation. Although the McMC
method may merge these two stages into one procedure by automatic model
selection, this study intentionally separates them for comparing and validat-
ing the efficiency and robustness of the proposed MsBMcMC in uncertainty
assessment. Specifically, the models are configured a priori, either correctly
or wrongly. Then the McMC approach is invoked to generate independent
realizations conditioning on the hard data and inverse conditioning on the
state data, e.g., the head observations and temporal moments of tracer data.
Finally the model uncertainty and the prediction uncertainty are quantified in
comparison with the assumed real case.
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4.4.1 Experimental configurations

Starting from the lnK field, once the head field is obtained by solving the
flow problem, the Darcian velocity field at cell’s interface can be established
by applying the Darcy’s law. The porosity field is assumed to be homogenous
with a constant, φ = 0.3. The conservative transport problem is then solved
by the constant-displacement random-walk particle-tracking algorithm in the
Lagrange framework as implemented in Chapter 2. The effect of pore-scale
dispersion is neglected, i.e., αL = αT = 0. In such case, the solute particles are
convected along the streamlines of the steady velocity field. Hence the solute
plume is confined transversally by the two no-flow boundaries. Molecular
diffusion is also neglected in this example problem. Two thousand particles,
randomly uniformly distributed on the left boundary, are tracked until they
arrive at the control plane located at the right boundary. The travel time
is recorded at the control plane and forms a pdf to describe the transport
property of conservative mass. The statistics of the BTC computed from
the reference travel time distribution are shown in Table 4.1 as state data
to be inverse-conditioned. The tracer test designed as such is based on two
considerations: (1) it allows to fully capture the globally spatial variability of
lnK and (2) the observation well system is rejected since the natural-gradient
flow pattern may cause a rather low particle capture rate at the well-bores.

Table 4.1: Statistics of reference travel time

Statistics Travel time
05 percentile of the BTC 912.39520
25 percentile of the BTC 1013.97559
50 percentile of the BTC 1081.44373
75 percentile of the BTC 1232.37927
95 percentile of the BTC 1823.62537

1st moment 1192.83350
2nd moment 98379.28125

Therefore, the aim of conditional and inverse-conditional problems is to
infer the spatial distribution of lnK from nine lnK measurements, nine head
observations and statistics of travel time under the identical flow and transport
conditions by the MsBMcMC method.

Totally six scenarios of stochastic simulations and numerical experiments
are carried out as listed in Table 4.2. To ease the computational burden, the
relative errors of head and travel time data are assumed to be rather large.
The relative resolution of head observations is set as σ2

h = 0.2 which means
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that the head field may fluctuate around the given head observations with
standard deviation equal to 0.45 times observations. In other words, the head
observations hi (i ≤ k) are corrupted with noises 0.45 × hi. The relative
resolution of travel time is set as σ2

t = 1.0 which means that travel times may
fluctuate around the given residual time observations with standard deviation
equal to 1.0 times observations. Owing to the multi-Gaussian property of the
lnK field, the moments of BTC may simply replace the entire BTC as the
conditioning data. This set of parameter configurations for MsBMcMC make
possible all of the simulations and computations to run with a cheap PC.

Table 4.2: Parameter configuration for stochastic simulations

Scenario Model McMC configuration
1 x|− µx = 0, σ2

x = 1, λx = 50
2 x|x1 µx = 0, σ2

x = 1, λx = 50, σ2
x1

= 0.0
3 x|h µx = 0, σ2

x = 1, λx = 50, σ2
h = 0.2

4 x|t µx = 0, σ2
x = 1, λx = 50, σ2

t = 1.0
5 x|h, t µx = 0, σ2

x = 1, λx = 50, σ2
h = 0.2, σ2

t = 1.0
6 x|x1,h, t µx = 0, σ2

x = 1, λx = 50, σ2
x1

= 0.0, σ2
h = 0.2, σ2

t = 1.0

For each scenario, the MsBMcMC is invoked to generate 100 i.i.d lnK re-
alizations by assuming that the other parameters are free from uncertain and
known perfectly. A batch of flow and transport simulations that are configured
in the same manner as the reference case are run to build the spatiotemporal
distribution of head fields and travel times. The model uncertainty metrics,
I(x)1, I(x)2, I(x)3, and I(x)4, the response uncertainty metrics, I(h)1, I(h)2,
I(h)3, and I(h)4, and the scale-dependent macrodispersion coefficient AL(x)
are computed by the Equation 1 through 5, respectively. The importance of
hydraulic conductivity, piezometric head, and travel time (moments) on reduc-
tion of model uncertainty and prediction uncertainty is analyzed as follows.

4.4.2 Model uncertainty

Figure 4.5 shows the spatial distributions of the mean lnK due to conditioning
data from various sources. In visual, inverse-conditioning to head data does
give rise to a correct large-scale trend about the lnK distribution, e.g., Scenario
3 and 5, although the amplitudes are much less than the reference case which
has been plotted in Figure 4.1(A). As predicted, the conditioning data of lnK
only convey some local information even though the field is highly correlated
(see Scenario 2). Inverse-conditioning on travel time moments should help
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identify the regionally spatial pattern of physical models, but Scenario 4 does
not give an ideal image as expected. One possible reason is due to the network
design of tracer experiment for recording the travel time. Since the tracer test
is designed to cover the entire flow region, fully from the left to the right
boundary, the travel time record only reflects an average transport property
of the physical model. No further information about spatial configuration of
model parameters could be extracted from one single BTC record. However,
it adversely proves the importance of sampling density and sampling network
design in model identification and uncertainty reduction.

Figure 4.6 shows the uncertainty of the estimate given in Figure 4.5. Con-
ditioning on lnK measurements only makes the uncertainty of the estimate
reduced at the local regions around the measurement points (Scenario 2). The
uncertainty reduction due to inverse-conditioning to head and/or travel time
observations is fully regional (Scenario 3-5). Jointly conditioning to conduc-
tivity and inverse-conditioning to head and/or travel times does reduce both
the local and global uncertainties (Scenario 6).

It is worth noting that Figure 4.5 and Figure 4.6 seemingly tell us that
both the head data and the tracer data may convey useful information on the
spatial trend of lnK distribution fully at the regional scale. However, Wen
et al. (2002) found that the tracer breakthrough data carry out important
information on the spatial variation of lnK in the inter-well areas while the
pressure data provide information at near well-bore areas. This discrepancy is
probably because (1) Wen et al.’s observations are based on the radial, forced-
gradient flow condition while the example presented in this study simulates
the uniform, natural-gradient flow condition, (2) the sampling network design
for recording the BTCs is in part responsible for such disagreement, and (3)
the lnK field is highly correlated such that the model responses at the obser-
vation points is also “kriged” or propagated to the neighborhood. Indeed, the
pressure (head) transmission and tracer transport are inherently diffusive pro-
cesses and hence are largely governed by the average conditions rather than by
the local heterogeneities. For a natural-gradient case, the sensitivity of h and t
to lnK is completely areally effective. For a forced-gradient case, however, the
effectively propagated region is apparently limited to a certain vicinity near
the wellbores because the local conditions prevail and the sensitivity of h and
t to lnK is relatively undetectable.

Besides, from the Scenario 4 and 5 in Figure 4.6, one can find that the
uncertainty reduction in the upstream is larger than that in the downstream
after inverse-conditioning to temporal moments, which agrees to the finding
presented by Franssen et al. (2003) whose observation is based on inverse-
conditioning to spatial concentration data using the sequential self-calibration
method. The reason why it happens is still not very clear to the authors but
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Figure 4.5: The mean lnK fields due to conditioning to various source data
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data



“myThesis” — 2007/12/27 — 13:30 — page 69 — #91

CHAPTER 4. A MULTI-SCALE BLOCKING MCMC . . . 69

Franssen et al. (2003) contributed this phenomenon to more sensitivity of
concentration to flow velocity in the upstream zone.

Table 4.3 summarizes four metrics for measuring the credibility and un-
certainty of conditional and inverse-conditional simulations. Although it is
unfair to compare the absolute worth of distinct source data since the mea-
surement errors are most often involved, it is important to know their essential
significance on model identification and uncertainty reduction. Basically, the
collection of direct measurements of lnK is extremely important for the con-
figuration of the prior model parameters which most effectively reduce model
uncertainty while the collection of state data helps identify the spatial trend
of physical models. From Table 4.3, it is hard to tell which data source is
more important than the other although hard data (Scenario 2), head data
(Scenario 3), and travel time moments (Scenario 4) do enhance the reliability
of estimates (I(x)1 and I(x)3) and decrease the uncertainty of models (I(x)2
and I(x)4) in comparison with the unconditional case (Scenario 1). Besides,
the sampling density may also play an important role in uncertainty reduc-
tion. In this example problem, head data (Scenario 3) seems to reduce the
model uncertainty slightly larger than hard data (Scenario 2) due to a rather
dense sampling spacing, i.e., two samples per correlation length. Inverse-
conditioning on travel time moments (Scenario 4) gives a rather unreliable
estimate, e.g., I(x)1 and I(x)2 are inconsistent with I(x)3 and I(x)4. But
just because the data from diverse sources contain distinct information on
physical models, joint integration of multi-source data can efficiently improve
the estimates to the greatest extent, e.g., Scenario 5 and 6.

Table 4.3: Mean absolute error and mean variance of lnK

Scenario Model I(x)1 I(x)22 I(x)3 I(x)24
1 x|− 0.8170 1.0210 1.1539 1.4484
2 x|x1 0.7262 0.9135 0.9836 1.2444
3 x|h 0.7122 0.8913 0.9749 1.2244
4 x|t 0.7032 0.8812 1.1364 1.4241
5 x|h, t 0.6800 0.8537 0.9450 1.1871
6 x|x1, h, t 0.6446 0.8127 0.8905 1.1297

In addition, correct prior configurations for spatial statistics and model
structure (especially the variance of parameter variables and the spatial corre-
lation length) also play important roles in reducing model uncertainty. From
the experience of the authors, the correct configurations for the variance of pa-
rameter variables and the spatial correlation length obviously render the bet-
ter reproduction of the reference models compared to the wrong specifications.
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Figure 4.7 and Figure 4.8 plot the histograms and variograms of lnK distribu-
tions before and after conditioning on diverse source data in this case study.
The lnK fields generated by MsBMcMC obviously follow the prior specifica-
tion, e.g., lnK ∼ N(0, 1), which significantly differ itself from the traditional
inverse methods. The theoretic variograms in two orthogonal directions also
have identical distribution as the prior model especially at smaller separate
distance. A slight deviation from the prior specification may be due to the
fact that the structure parameters of the reference model are not perfectly
identified by the prior model. Therefore the generated realizations slightly
adjusts their variogram parameters to match the reference model, which is
more obvious at the larger separate distance. But, in general, the reference
model, the generated realizations and the prior model share identical structure
parameters.

4.4.3 Response uncertainty

Once the physical models of lnK are generated by the MsBMcMC, the flow and
transport experiments may apply to these realizations to predict the model
responses at the spatiotemporal scale, e.g., the piezometric head distribution.
Figure 4.9 compares the predicted steady-state head distribution. Condition-
ing on hard data (Scenario 2) seems to reproduce the main points of the
reference head distribution, but it does not reflect the real worth of hard data
in model response prediction. The truth is that nine samples uniformly dis-
tributed over the field produce a kriging field that can sufficiently catch the
main pattern of the real field since the lnK field is highly correlated (λx =
50). Inverse-conditioning on travel time moments (Scenario 4) obviously fails
to reproduce the spatial pattern of head. It does not mean that the travel
times do not carry out much useful information for model response prediction.
The sampling density and network configuration is mostly responsible for such
failure since the travel time under the uniform flow condition is only an in-
tegrated response of lnK variability in space. One single BTC does not have
enough ability to recover the spatial configuration of model parameters. As
expected, joint integration of diverse source data does improve the prediction
of model responses to the greatest extent, e.g., Scenario 5 and 6.

Figure 4.10 plots prediction uncertainties of model responses. Conditioning
merely on hard data (Scenario 2) and inverse-conditioning only to travel time
moments produce responses that remain rather large uncertainties. Inverse-
conditioning to head observations, either solely or jointly, reduces the uncer-
tainty much more than other types of data do, which seems to say that the
head observations have the largest worth in reducing the uncertainty of head
prediction.
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Figure 4.8: The variograms of lnK distribution after conditioning to data from
various sources

Table 4.4 summarizes four metrics for measuring the reliability and un-
certainty of predicted head distributions. It seemingly shows that inverse-
conditioning on the head observations gives better reliability and less uncer-
tainty than conditioning on lnK and inverse-conditioning on travel time. If
both the head data and the others (lnK and travel time) are honored, the
uncertainty reduces to the largest extent.

Table 4.4: Mean absolute error and mean variance of predicted head

Scenario Model I(h)1 I(h)22 I(h)3 I(h)24
1 x|− 0.7499 0.9889 1.0021 1.3594
2 x|x1 0.5344 0.7292 0.6514 0.8837
3 x|h 0.3017 0.3961 0.4110 0.5504
4 x|t 0.5071 0.6532 0.8550 1.1164
5 x|h, t 0.3196 0.4130 0.4378 0.5749
6 x|x1, h, t 0.2703 0.3620 0.3429 0.4712

In addition, from Table 4.3 and Table 4.4, one can easily find that the
McMC simulations always underestimate the real uncertainties and give more
optimistic predictions than they are. Note that I(x)1 < I(x)3, I(x)2 < I(x)4,
I(h)1 < I(h)3, and I(h)2 < I(h)4.
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Figure 4.9: The mean head fields due to conditioning to data from various
sources
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Figure 4.10: The variances of head fields due to conditioning to data from
various sources
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4.4.4 Uncertainty propagation

Rubin (1991) had examined the uncertainty propagation due to conditioning
on the lnK and h measurements with respect to the prediction of tracer plume
migration. This study tries to include the temporal moments of BTCs into the
conditioning and inverse-conditioning procedure and to investigate its impact
on the prediction of solute plume spreading. Two underlying assumptions for
the Rubin’s or other traditional methods should be pointed out: one is the
linearization of the flow and transport equations and the other is that structure
uncertainty is often involved. Our method is free from these two assumptions
and hence some more general results are expected to be reached.

By setting various control planes in the mean flow direction, the un-
conditional and conditional macrodispersion coefficients may be computed
by Equation 4 or 5 from the temporal moments of the BTCs. Figure 4.11
compares the scale-dependent macrodispersion coefficients with the reference
curve. Due to the limitation of experimental design, only the early time,
small-scale macrodispersions have been computed and plotted, i.e., x/λx ≤ 2.
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Figure 4.11: A comparison of simulated macrodispersions due to conditioning
to data from various sources

Several observations may be drawn from the Figure 4.11. First, inverse-
conditioning to travel time moments substantially improves the estimate of
macrodispersion. Note the decrease in AL(x) by comparing Scenario 4-6 to
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Scenario 1-3. This finding based on inverse-conditioning to temporal moments
of BTCs is totally consistent with the result based on inverse-conditioning to
spatial distribution of tracer concentration which was provided by Woodbury
and Sudicky (1992). On the basis of the bromide and chloride tracer tests
performed at the Borden aquifer in Ontario, Canada, they found that inverse-
conditioning to spatial moments of concentration data considerably enhances
the estimation on the rates of plume spreading in the longitudinal direction
compared to the unconditional case (e.g., Figure 6 over 4 in their article).
Therefore one can conclude from this experiment that even though inverse-
conditioning to temporal moments of BTC may not reduce the uncertainties
of lnK and head by much, it may serve to identify other components such as
the spreading of solute plume, which is even more of interest for the water
resource management.

Second, the lnK measurements (Scenario 2) seemingly contain more infor-
mation for determining macrodispersion than the head observations (Scenario
3). Rubin (1991) also found that introduction of head data does not cause any
considerable improvement for estimation on the solute plume migration. The
travel time data (Scenario 4) may convey more information on macrodisper-
sion than both the lnK measurements and the head observations.

Third, jointly conditional and inverse-conditional simulations tend to ren-
der the most abundant information for macrodispersion determination after a
certain distance from the source, i.e., x > 1.5λx (Scenario 5 and 6). At the
early stage when the control plane is close to the source, however, the impact
of conditioning on determining the macrodispersion coefficient is complex. A
general conclusion is hardly to arrive at since the results are highly depen-
dent on the local conditions of lnK distribution (Rubin and Dagan, 1992).
Moreover, unlike the results from the linearization of flow and transport equa-
tions, our numerical results are fully the nonlinear responses to the lnK fields
which makes the distribution of macrodispersion coefficient less regular than
the linear method, e.g., Rubin’s (1991).

By comparing Table 4.3, Table 4.4, and Figure 4.11, one can find that
conditioning data of state variables may have not too much influence on the
uncertainty reduction of model parameters, but the uncertainties of model
responses may be reduced remarkably. For example, inverse-conditioning on
the moments of trave time t (Scenario 4) does not reduce the uncertainties
of lnK and h distributions by too much (e.g., the relative uncertainty to the
unconditional case is less than 14% and 32%, respectively), but the prediction
on the rate of solute plume spreading is significantly improved (Scenario 4 in
Figure 4.11). Similarly, collection of h only slightly enhances the estimation
of model, e.g., the model uncertainty decreases only 14% compared to the
unconditional case. It also has not too much influence on the estimation of
AL(x), e.g., very slightly better than the unconditional case by comparing
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Scenario 3 to 1 in Figure 4.11. But the prediction of heads has been highly
improved, almost 60%. That is because the method presented in this study
strictly preserves the model statistics and structure, the model uncertainty
may not be reduced to very high degree even though a large number of hard
data are available. But inverse-conditional simulations do remarkably decrease
the uncertainties of model responses. On the other hand, the uncertainty
reduction of predicted responses is aim-dependent, i.e, the collection of state
data improves the prediction of response of the same type to the greatest
extent which is consistent with the intuition.

In addition, the evolution of the plume front and tail is of interest for the
risky analysis on a radioactive waste repository. The ensemble mean of the 5
and 95 percentile of BTCs, denoted by t5% and t95%, represent the behavior of
contaminant plumes at the early time (plume front) and the late time (plume
tail), respectively. t5% reflects the earliest times when a location of interest
is polluted by the contaminant plume while t95% estimates the operational
time to remove most of contaminants from the aquifer. Figure 4.12 plots the
evolution history of contaminant plume’s front and tail along the mean plume
trajectories before and after conditioning to diverse data.
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(A) Evolution history of the early time (t 5%)
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(B) Evolution history of the late time (t 95%)

Figure 4.12: A comparison on evolution history of contaminant plume (A) at
the early time t5% and (B) at the late time t95% due to conditioning to data
from various sources

Two observations from Figure 4.12 (A) are that conditioning and non-
conditioning make no evident difference to the estimation on the plume’s front
(t5%) and that the stochastic simulations obviously underestimate the esti-
mation on the early arrival time. From Figure 4.12 (B), one may find that
inverse-conditioning to the temporal moments of BTCs underestimates the
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plume’s tail (t95%), non-conditioning to the temporal moments overestimates
the late time, and jointly conditioning to hard data, head data and temporal
moments yields the best estimate. But in general, hard data, head data and
temporal moments of BTCs seemingly do not contain too much information
on the estimation of the early and late time. This result may come from two
facts: (1) conditioning to the given data, especially the temporal moments of
BTCs, is only an integrated, average reflection of aquifer properties while t5%

represents the fastest flow track and t95% represents the slowest path, both of
which are the extreme responses of aquifer properties, and (2) the isotropic
multi-Gaussianity of the random fields is partly responsible for it since, unlike
a non-Gaussian, multi-modal field, the isotropic multi-Gaussian model tends
to give rise to an extremity-free response.

4.5 Conclusions and Discussions

The MsBMcMC method is an useful tool for stochastic conditional and inverse-
conditional simulation and quantitative uncertainty assessment. A synthetic
example under a uniform, natural-gradient flow condition is presented to show
its usefulness in uncertainty assessment and data worth evaluation. One of
the most appealing points is that this method is capable of generating i.i.d
conditional and inverse-conditional realizations that have an identical model
structure as specified a priori, which makes parameter uncertainty separated
from the model structure uncertainty such that uncertainty assessment on
parameter variability may be carried out exclusively without other factors
involved. As a result, it can give a more accurate measure on the data worth
from diverse sources in quantifying uncertainty reduction due to conditioning
and inverse-conditioning. In this study, three types of distinct data, hydraulic
conductivity lnK, piezometric head h, and travel time t (or concentration c),
have been compared to examine their worth on the uncertainty reduction. The
results are summarized as follows.

First, as for the effect of lnK, h and t upon the model uncertainty of lnK,
the lnK measurements play a major role in reducing such uncertainty com-
pared to h and t, especially for the prior configuration on model parameters.
Jointly inverse-conditioning on h and t does improve the model estimation on
lnK compared to conditioning on lnK solely. However, the information on
model extracted from various source data may be totally different. For exam-
ple, the measurements on h and t are informative on the large-scale trend of
lnK. The measurements on lnK do not carry too much information on the
spatial trend of lnK but can essentially reduce the local fluctuation.

Second, as for the effect of lnK, h and t upon the prediction uncertainty
of h, the measurement on h plays a major role in reducing such uncertainty
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compared to that of lnK and t. Although the prediction of h is quite insensitive
to local lnK values and temporal moments of t, jointly conditioning on lnK and
t does help improve the model prediction of h compared to inverse-conditioning
on h solely.

Third, as for the effect of lnK, h and t upon the uncertainty of the predicted
macrodispersion coefficient, inverse-conditioning to the temporal moments of
t substantially reduces such uncertainty. Both the measurements on lnK and
h may play positive roles in reducing such uncertainty, but it is hard to dis-
tinguish the majority from the other as for the example problem in this study.
Hard data, head data and the first two temporal moments of BTCs seemingly
do not contain too much information for the estimation on the early and late
time in an isotropic multi-Gaussian case.

In addition, the sampling density and network design for the collection of
conditioning data may have a certain influence on the uncertainty reduction.
The improvement is more considerable if the measurements are carried out at
sampling spacing smaller than the correlation length of lnK, which was also
observed by Dagan (1985) and Rubin and Dagan (1992). Relatively larger
sampling spacing on state data yields inverse estimates closer to the prior
mean while relatively larger correlation length of lnK yields inverse estimates
smoother (e.g., McLaughlin and Townley, 1996).

One of the main findings from this study is that the measurements on
aquifers mostly improve the estimation on model parameters and/or responses
of the same type. In other words, the main error source of aquifer parameters
and/or responses is the scarcity of measurements from parameter and/or re-
sponse themselves. For example, the data acquisition on lnK mostly improves
the estimation on spatial distribution of lnK. The observations of h extremely
improve the estimate of h itself. Along the same line, the measurements on c
are more beneficial to the depiction on c distribution. On the other hand, the
measurements on dependent state variables do provide invaluable, complemen-
tary information for estimating model parameters, that is, the coupled/joint
inversion is helpful in pattern recognition of aquifers. Actually, head observa-
tions and travel time moments are informative only about the large-scale vari-
ability of parameters while direct measurements of parameters are informative
only about their small-scale fluctuation. The variances of model parameters
may not necessarily be reduced significantly by inverse-conditioning to head
observations and travel time moments but the identified large-scale trend may
be the most important information for regional groundwater management.

This finding has some important applications, e.g., in the network design
for improving the reliability of groundwater modeling. Since the goal of an
optimal network design scheme is to minimize sampling costs of aquifer param-
eters while estimating aquifer responses to a specified precision (James and
Gorelick, 1994), the worth of installing a monitoring well (sampling cost) is
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linked to how much the information (on uncertainty reduction) that it provides
can be used to reduce the remediation cost (of aquifer responses). Apart from
the economical factor in the network design (James and Gorelick, 1994; Cri-
minisi et al., 1997), most of algorithms construct the objective function either
based on the error reduction of state variables or dependent on the decrease
of prediction error (e.g., McKinney and Loucks, 1992), but seldom both. Our
results from the evaluation on uncertainty propagation show that the condi-
tional and inverse-conditional simulation may not always meet all the ends,
that is, the uncertainty of some responses may be reduced more significantly
than the others and some of them even not at all. More reliable selection of
the “best” aquifer parameter measurement locations should comprehensively
account for various uncertainties if no individual aim is specified ahead.

Since the relative sensitivity of one type of state variable to the spatial
variability of lnK, the estimation performance may not improve dramatically
when more measurements on the same type of property are included. A smaller
number of measurements on other state variables such as the solute concentra-
tion may provide more valuable information, which is known as the coupled
inverse problem. Even more, the estimation on lnK may benefit more from
the economical measurements on other model parameters which is known as
the joint inverse problem. The geophysical measurements, e.g., the seismic,
the ground-penetrating radar, and the electrical resistivity, may also provide
indirect, supplementary determination of lnK. Any emphasis on decreasing
only a certain type of uncertainty and ignoring the other may not result in an
improvement of prediction accuracy (Gaganis and Smith, 2001). Actually, as
observed by Sun and Yeh (1992), additional head observations decrease the
model prediction errors, but only with a minor improvement in parameter es-
timation. Dagan (1985) also observed that the effect of conditioning to head
on x is much weaker than that of conditioning to x itself and moreover, head
measurements, no matter how dense, reduce σ2

x to no less than 30% for his
study in absence of neighboring lnK measurements.

Once the relative importance of the various error sources to the predic-
tion of aquifer responses has been established, one can rank the sources of
uncertainty, i.e., to rank the contributions to the uncertainty reduction of a
response from different sources, e.g., the model structure, the parameter esti-
mation, and the inherent variation of aquifers. Ranking of uncertainty sources
is extremely useful for experimental network design and uncertainty reduction
since a new optimal experiment design aiming at reducing the most critical
uncertainties depends on the identification of uncertainty sources giving rise to
the worst predictions. Inevitably, the relative significance of different sources
is problem specific and it is not expected that a general conclusion can be
drawn from one single case study.
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5
Does Model Structure

Preservation not Matter? A
Comparison on Two Methods

for Inverse Stochastic
Modeling

Abstract

Dynamic data provide invaluable information for identifying the spatial pat-
tern of reservoir or aquifer parameters (e.g., hydraulic conductivity) and for
reducing the uncertainties of models and their responses. To extract such
spatial information from the measurements, a Monte Carlo method typically
calls for generating a large number of realizations that are inverse-conditional
to dynamic data and honor the known prior information. In contrast to some
classical nonlinear optimizers, the blocking Markov chain Monte Carlo (BM-
cMC) method is capable of generating i.i.d realizations that are not only con-
straint dynamic observations but also preserve expected spatial statistics and
model structure as specified a priori. By comparing the ensemble Kalman
filtering (EnKF) and the BMcMC, this study presents two synthetic exam-
ples to demonstrate the importance of honoring the prior information for in-
verse stochastic modeling. Numerical simulations show that, even though the
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EnKF method may efficiently provide a better reproduction of observed dy-
namic data than the BMcMC method, the preservation of spatial statistics and
model structure makes the BMcMC simulations competitive for some cases in
predicting accurately and reliably the future performance of reservoirs par-
ticularly at new well locations. Therefore, including the prior information in
the inverse stochastic simulation is of significance for accurate assessment of
model uncertainties and response uncertainties if the prior parameter infor-
mation effectively reflects the underground reality.

5.1 Introduction

Collections of time-dependent dynamic data provide indispensable knowledge
on the subsurface reservoirs or aquifers which generally entails a stochas-
tic method capable of generating independent, identically distributed (i.i.d)
conditional realizations that honor the known dynamic measurements. A
large number of analytical and numerical inverse methods have been devel-
oped to address this problem, which typically consist of two stages, model
structure identification and stochastic conditional simulation (e.g., Kitanidis
and Vomvoris, 1983; Dagan, 1985; Sun, 1985; Yeh, 1986; Carrera and Neu-
man, 1986; RamaRao et al., 1995; McLaughlin and Townley, 1996; Gomez-
Hernandez et al., 1997; Evensen, 2003; Carrera et al., 2005). The model
structure identification is to build the main spatial features on model prop-
erties through, e.g., variogram analysis by collecting hard data (e.g., Deutsch
and Journel, 1998), model identification by measuring dependent state vari-
ables (e.g., Sun and Yeh, 1985; Kitanidis, 1996), outcrop’s analogue, geologi-
cal mapping (e.g., Koltermann and Gorelick, 1996), geophysical imaging (e.g.,
Rubin et al., 1992), etc. Stochastic conditional simulation is then simply to
assign parameter values to the models once their structure has been correctly
identified.

Amongst the typical inverse methods, the ensemble Kalman filtering (EnKF)
proposed by Evensen (1994, 2003) is an extremely computationally efficient,
purely statistically based Monte Carlo method for nonlinear dynamic data as-
similation, which gains popularity recently in the petroleum engineering for
history matching problems (e.g., Nævdal et al., 2003; Gu and Oliver, 2004; Liu
and Oliver, 2005a, 2005b; Wen and Chen, 2005; Zafari and Reynolds, 2005;
Gao et al., 2005; Skjervheim et al., 2005; Dong et al., 2006). It is essentially
a sequential Bayesian inverse method where an ensemble of reservoir mod-
els are used to construct the error statistics for both model parameters and
model responses. The ensemble of models evolves in a Markov chain fashion
over the parameter space with the ensemble mean as the best estimate and
the ensemble variance as the error spreading. The prediction of the estimate
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and uncertainty is performed by integrating the ensemble of reservoir mod-
els. The most important contributions of this method perhaps are (1) that
the data integration is designed in a Markov process in time which allows for
online, continuous model updating for assimilating a large number of dynamic
data and (2) that an ensemble of models are updated extremely efficiently in
computation simply because only the statistics of inputs and outputs for an
ensemble of forward simulations are needed.

Aiming at preserving the parameter statistics and spatial structure for
models, Chapter 3 proposes a blocking Markov chain Monte Carlo (BMcMC)
method to perform such stochastic conditional simulation. In essence, this
approach just thins down, with the aid of the McMC theorem, the ensemble
of proposed candidates by means of judiciously selecting those models that
honor the dynamic data under the scope of errors, measured by the posterior
probability. The adoption of the blocking scheme is based on three consid-
erations: (1) it helps preserve the prior spatial statistics and structure, (2)
it helps improve the mixing of Markov chain and enhance the computational
efficiency compared to the traditional single-component McMC methods, and
(3) it is more suitable for the introduction of upscaling procedures to accel-
erate the computation of the likelihood which is especially useful in handling
the high-dimensional cases.

This study presents two synthetic examples to demonstrate the importance
of preserving spatial structure for models in performing inverse stochastic sim-
ulations by comparing two distinct methods, the EnKF and the BMcMC. The
article is organized as follows. Section 2 gives some details on the imple-
mentation of the two methods used in this study. In Section 3 and Section 4,
two scenarios of stochastic simulations by these two methods are carried out to
generate realizations that are conditional on the observed pressure profiles and
well flow-rate histories under forced-gradient transient flow conditions. Then,
these generated realizations subject to identical flow and transport experi-
ments are used to evaluate the model uncertainty and response uncertainty.
The significance of preserving model’s spatial structure for history matching
are analyzed according to its effect on the reservoir performance prediction and
the importance for uncertainty assessment. Finally, several main conclusions
are summarized in Section 5.

5.2 Methodology

Consider a stochastic modeling at n grid nodes conditional to k nonlinear dy-
namic data. Specifically, let x = (x0, x1, ..., xn−1)T ⊂ Rn denote a realization
conditional to k dynamic data y = yobs = (y0, y1, ..., yk−1)T ⊂ Rk. Assuming
a multi-Gaussian process, the spatial distribution of x follows, x ∼ N(µ, Cx),
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where µ ⊂ Rn is the prior mean of the Gaussian process and Cx ⊂ Rn×n de-
scribes the structure dependence of spatial points. Assuming a multi-normal
error, the simulated observation ysim ⊂ Rk for a given sample x can be ex-
pressed as, ysim|x ∼ N(g(x), Cy), where Cy ⊂ Rk×k describes the degree of
discrepancy between the transfer function g(x) and the true but error-prone
observation y. The transfer function g(x) is error-prone since most often an
analytical expression is not available. One generally resorts to some complex
computer models to simulate the physical process. In such case, its accuracy
depends on the spatial discretization of the physical model. As the dimension
of parameterization grows, the transfer function becomes more accurate at the
expense of the computational efforts. Also, there may exist some observation
errors of y that can be included in this statistical model. In this sense, Cy

measures both the modeling errors and the measurement errors.
In summary, the objective of the stochastic inverse-conditional simulation

is to infer x from y by assuming some spatial statistical structures and other
hyperparameters θ, where y is nonlinearly related to x through a forward
operator g(x). The most challenging part of the conditional simulation is
basically an inverse problem since an inverse operator g−1(y) is applied to the
conditioning procedure.

5.2.1 Blocking McMC method

Assuming a multi-Gaussian distribution x ∼ N(µ, Cx), the joint prior density
of the random field is,

π(x|θ) = (2π)−
n
2 ‖Cx‖−

1
2 exp

{
−1

2
(x− µ)T C−1

x (x− µ)
}

. (5.1)

This pdf represents some prior knowledge about the parameterization of a
physical model x through the configuration of µ and Cx which, together
with other parameters, boil down to a hyperparameter set θ. It should allow
for the greatest uncertainty while obeying the constraints imposed by the
prior information. The hyperparameters θ may be inferred from both the a
posteriori measurements and the a priori subjective imagination.

Assuming that the observation and modeling errors are normally distributed,
the conditional probability for observing y given the attribute x, π(y|x), or
equivalently, the likelihood model, L(x|y), is,

L(x|y) = (2π)−
k
2 ‖Cy‖−

1
2 exp

{
−1

2
(g(x)− y)T C−1

y (g(x)− y)
}

. (5.2)

This likelihood function, which is defined by the misfit between the observed
data y and the predicted data g(x) from a candidate parameter model x,
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measures the probability of observing the data y for the model x. Obviously,
the probability of observing the given data y becomes smaller as the misfit
becomes larger.

A normalizing factor that makes the integral of the posterior pdf equal
to unity is called the marginal likelihood, i.e., ∫ L(x|y)π(x|θ)dx. Since the
marginal likelihood is not a function of x, it is typically ignored in the param-
eter estimation problem. Using the Bayes’ rule and dropping the normalizing
constant, the posterior distribution of x given y and θ may be written as
π(x|y, θ) ∝ L(x|y)× π(x|θ), i.e.,

π(x|y, θ) ∝ exp
{
−1

2
(x− µ)T C−1

x (x− µ)− 1
2
(g(x)− y)T C−1

y (g(x)− y)
}

.

(5.3)
This posterior pdf measures how well a parameter model x agrees with the
prior information and the observed data y. The objective of the stochastic
inverse-conditional simulation is then to draw i.i.d samples for x from this pos-
terior distribution π(x|y, θ). For the simplicity of presentation, θ is dropped
out such that π(x) ≡ π(x|θ) and π(x|y) ≡ π(x|y, θ).

Due to the highly nonlinearity of the likelihood model, it is impossible to
sample directly from this posterior distribution π(x|y). The Markov chain
Monte Carlo method (Metropolis et al., 1953; Hastings, 1970; Geman and
Geman, 1984), however, is especially suitable for exploring the parameter
space with such type of complicated posterior distribution. A typical McMC
algorithm employing the Metropolis-Hastings rule to explore the posterior
distribution π(x|y) goes as follows,

(1) Initialize the parameters x;

(2) Update x according to the Metropolis-Hastings rule:

• propose x∗ ∼ q(x∗|x);

• accept x∗ with probability min{1, α}, where α = π(x∗|y)q(x|x∗)
π(x|y)q(x∗|x) ;

(3) Go to (2) for the next step of the chain.

After the chain converges, it will give the independent realizations of x
with the stationary posterior distribution π(x|y).

One of the most interesting problems in this algorithm is the configuration
of the proposal transition kernel q(x∗|x), which plays a crucial role in the
computational efficiency of a Metropolis-Hastings-type McMC method. The
classical McMC method constructs the Markov chain by a single-component
proposal x∗ ∼ N(µ, σ2

x) (Oliver et al., 1997). It tends to fail in handling
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the high-dimensional case since the numerical evaluation of the posterior pdf
π(x∗|y) and π(x|y) is a tough task: the inverse of the covariance matrix Cx is
a big challenge on one hand, the single-component updating makes the forward
simulations g(x∗) and g(x) look alike on the other hand.

In these two regards, the blocking proposal scheme x̂∗|x ∼ N(µ, Cx),
x̂∗ ⊂ x∗, which has the identical spatial distribution as the prior model
x∗ ∼ N(µ,Cx), is obviously advantageous over the single-component scheme.
The meaningfulness of “blocking” is twofold: (1) the updating unit is in a
block as opposed to the single component and (2) the updating transition ker-
nel is correlated such that it has the prior spatial statistics and structure, i.e.,
q(x∗|x) = π(x∗|x). The advantages of the blocking proposal kernel q(x∗|x)
over the single-component proposal kernel q(x∗|x) can be summarized as fol-
lows. First, the block updating scheme is well known for improving the mix-
ing of a Markov chain which makes the McMC simulations more efficient (Liu,
1996; Roberts and Sahu, 1997). Second, it is more suitable for the introduction
of the upscaling subroutines to accelerate the computation of the likelihood as
in Formula (2). Moreover, L(x∗|y) will obviously differ from L(x|y), which is
advantageous over the single-component scheme. Third, maybe the most inter-
esting, it helps preserve the spatial statistics and model structure as specified
a priori since q(x∗|x) = π(x∗|x) holds always during the model updating.
Fourth, if q(x∗|x) = π(x∗|x) .= π(x∗) and q(x|x∗) = π(x|x∗) .= π(x), the
acceptance rate α can be simply computed by,

α =
L(x∗|y)
L(x|y)

. (5.4)

In such case, the complicated evaluation on the model density as in Formula
(1) is totally avoided for the high-dimensional case.

In addition, an important implementation detail is the fast generation of
the proposal transition kernel which fully depends on the LU-decomposition
of the covariance matrix (Davis, 1987; Alabert, 1987). Since the spatial struc-
ture of physical model is specified a priori and should be maintained for all
candidates, the covariance matrix remains unchanged which makes the LU-
decomposition method full of advantages for repetitive generation of candi-
dates because the decomposition operator is applied only once. However,
for a high-dimensional case, the FFT-based spectral simulator is preferred
since it has a computational ability more powerful than the LU-based gener-
ator (Pardo-Iguzquiza and Chica-Olmo, 1993; Robin et al., 1993; Dietrich and
Newsam, 1993, 1996; Gutjahr et al., 1997; Ruan and McLaughlin, 1998). To
save the computational time, furthermore, the evaluation of the likelihood can
be efficiently accelerated by running the forward simulations at a coarse scale
which invokes an economical but accurate upscaling method and a multi-scale-
oriented black-box-like forward simulator that is widely compatible with the
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output from upscaling subroutines. More details on the development of the
method have been presented in Chapter 3.

5.2.2 Ensemble Kalman filtering

Without considering hard data, the objective of the EnKF for dynamic data
assimilation is to draw samples x ∼ π(x|y). Define a joint vector ψt, t ∈ [0, nt],
whose components are given by,

ψt,r =
(

xt,r

yt,r

)
; r ∈ [0, nr), (5.5)

where xt = (xt,r ⊂ Rnxyz ; r ∈ [0, nr), nxyz = n)T is the vector of static model
parameters to be estimated; yt = (yt,r ⊂ Rnd,t ; r ∈ [0, nr))

T is the vector of
dynamic model responses at the given time t which either have been observed
in the actual field (yobs

t ) or have been predicted on the basis of the given models
(ysim

t ); the subscript r ∈ [0, nr) denotes the index of realizations; nr is the
total number of realizations; and the subscript t ∈ [0, nt] = [t0, te] indicates the
index of times (nt is the total time steps, and t0 and te are the initial and last
times for dynamic history observations, respectively.). The initial condition
ψ0 is given as follows,

ψ0,r =
(

x0,r

y0

)
; r ∈ [0, nr),

where x0 = (x0,r; r ∈ [0, nr))
T is an ensemble of initial realizations of static

model parameters which are generated by stochastic simulation subroutines;
y0 is the given initial conditions which may be the same for all realizations.
Then, the EnKF for joint updating of the models and their responses can be
viewed as a Markov chain in time,

ψ = (ψ0, ψ1, ...,ψt, ...)
T . (5.6)

Following this Markov process, therefore, the dynamic history observation data
yobs =

(
yobs

0 ,yobs
1 , ...,yobs

t , ...
)T can be sequentially assimilated into the models

x = (x0, x1, ...,xt, ...)
T which are of the most interest in reservoir engineering.

The performance prediction of reservoir is always based on the latest models.
There are two steps involving the implementation of the EnKF method:

(1) a forecast based on current model parameters and (2) the updating of
model parameters by assimilating nonlinear data. For example, for t = 1,
aiming at the first set of dynamic observations yobs

1 , the predicted dynamic
data after running the forward simulator are ysim

1,r = g(x0,r), r ∈ [0, nr), and
the joint vector thus becomes,
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ψsim
1,r =

(
x0,r

ysim
1,r

)
; r ∈ [0, nr).

However, a problem arises since there is a mismatch between the observed and
the computed responses,

∆y1,r = yobs
1 − ysim

1,r = yobs
1 − g(x0,r) 6= 0,

which holds almost for all realizations r ∈ [0, nr). The current models x0 have
to be updated to x1 in order to make the model responses ysim

1 = g(x1) agree
with the given observations yobs

1 .
In the EnKF, the models are updated by minimizing the error variance of

models and their responses. One of the crucial assumptions for the EnKF is
that the pdf of the joint vector ψt can be approximated by a multi-Gaussian
distribution whose basis is that the dynamic data yt,r are linearly related to the
model parameters xt,r. The details on development of the updating formula
are given by Evensen (1994, 2003). Starting from the time t = 1 when the
nonlinear dynamic observations are available, the joint vector is updated by,

ψt,r = ψsim
t,r + Gt

(
yobs

t + εt −Htψ
sim
t,r

)

= ψsim
t,r + Gt

(
yobs

t + εt − ysim
t,r

)
, (5.7)

where εt ∼ N(0,σ2
y) ⊂ Rnd,t is the random observation error vector and the

Kalman gain matrix Gt ⊂ R(nxyz+nd,t)×nd,t is computed by,

Gt = Csim
ψ,t HT

t

(
HtC

sim
ψ,t HT

t + Cy,t

)−1
, (5.8)

where Csim
ψ,t ⊂ R(nxyz+nd,t)×(nxyz+nd,t) is the covariance matrix of the joint

vector ψt,r at the time t = 1,

Csim
ψ,t = E

[(
ψsim

t −ψtrue
t

) (
ψsim

t −ψtrue
t

)T
]
,

which can be estimated by,

Ĉsim
ψ,t = E

[(
ψsim

t − ψ̄sim
t

) (
ψsim

t − ψ̄sim
t

)T
]

=
1

nr − 1

nr−1∑

r=0

(
ψsim

t,r − ψ̄sim
t

) (
ψsim

t,r − ψ̄sim
t

)T
, (5.9)

where ψsim
t ⊂ R(nxyz+nd,t)×nr is a vector which consists of an ensemble of simu-

lated joint vectors at the time t = 1 and ψ̄sim
t ⊂ Rnxyz+nd,t is a vector which is
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the ensemble mean of the simulated joint vectors ψsim
t ; Ht ⊂ Rnd,t×(nxyz+nd,t)

is a matrix operator that maps the joint vector ψt to the dynamic observation
vector yt, which has a form of,

Ht = [0,1] ,

where 0 ⊂ Rnd,t×nxyz and 1 ⊂ Rnd,t×nd,t ; Cy,t ⊂ Rnd,t×nd,t is the covariance
matrix of the dynamic observation yobs

t which is a diagonal matrix if the
observation errors of state variables are assumed to be independent from each
other. It should be pointed out that if different measurements are assimilated
simultaneously, the observed data need to be nondimensional or scaled to have
the similar variabilities (Evensen and van Leeuwen, 2000; Evensen, 2003). By
doing so, the eigenvalues of the matrix HtC

sim
ψ,t HT

t + Cy,t corresponding to
each of the measurement types have the same magnitude. Note that not all
of the elements of Csim

ψ,t are necessary to be calculated and stored since only
Csim

ψ,t HT
t is needed for the computation of the Kalman gain. Actually, one

can easily find that in the formula of the Kalman gain for the time t,

Csim
ψ,t HT

t = Csim
ψy,t,

HtC
sim
ψ,t HT

t = Csim
yy,t,

where ysim
t,r is the simulated dynamic response for the realization r; Csim

ψy,t

denotes the simulated covariance between the joint vector ψ and the response
y; and Csim

yy,t denotes the simulated covariance between the responses y. The
preceding procedure can be directly applied to the numerical implementation
if HtC

sim
ψ,t HT

t + Cy,t is positive-defined. However, the potential singularity
of the matrix HtC

sim
ψ,t HT

t + Cy,t entails the use of the pseudo-inverse of a
matrix, e.g., the singular value decomposition (SVD) method, which involves
the computation of the eigenvalues and eigenvectors from the matrix, i.e.,

HtC
sim
ψ,t HT

t + Cy,t = VtΛtV
T

t ,
(
HtC

sim
ψ,t HT

t + Cy,t

)−1
= VtΛ−1

t V T
t .

This two-step procedure for model updating is repeatedly advanced for t =
2, 3, ..., nt until all the observations are assimilated into the physical models.
One can easily find that the main computational challenge focuses on the
updating of the models and their responses by,

ψt,r = ψsim
t,r + Gt

(
yobs

t + εt − ysim
t,r

)
, (5.10)

Gt = Csim
ψy,t

(
Csim

yy,t + Cy,t

)−1
, (5.11)
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for r ∈ [0, nr) and t ∈ (0, nt]. The computational burden is therefore rather
small compared to other methods, which makes this method very competitive
for model calibration and history matching problems.

5.3 Case Study 1

5.3.1 Experimental configuration

Consider a 2D transient single-phase flow test on a confined aquifer with 32×32
grid-blocks as designed in Figure 5.1 under the forced-gradient flow condition.
The reference lnK field is generated by the LUSIM subroutine from the GSLIB
(Deutsch and Journel, 1998) with a prior distribution lnK ∼ N(0, 1) and an
exponential variogram type, i.e.,

γx(r) = σ2
x

{
1− exp

[
− r

λx

]}
, (5.12)

where r is the two-point separation distance, σ2
x is the variance, and λx is

the correlation length. The prior correlation length is set as λx = 16 [cells],
which is much longer than the well spacing (lw

.= 11 [cells]) such that the
spatial variability of lnK is well captured by the well configuration. The
experimental statistical parameters, however, show a certain deviation from
the prior configuration, e.g., lnK ∼ N(−0.33, 1.072) (see Figure 5.3 and Figure
5.4 for the histogram and variogram of the reference lnK field).

Reference lnK Field

East

N
or

th

0 32
0

32

h=-3.0 (#1) q=-20.5 (#2) h=-3.0 (#3)

q=-20.5 (#4) h=-3.0 (#5) q=-20.5 (#6)

h=-3.0 (#7) q=-20.5 (#8) h=-3.0 (#9)

-2.0

-1.0

0.0

1.0

2.0

Figure 5.1: Case study 1: Reference lnK field and the well configuration: five
constant pressure production wells (in bullet) and four constant flow-rate in-
jection wells (in circle)
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The four boundaries are set to be non-flow. The initial head field is as-
sumed to be zero everywhere in the aquifer. The time discretization for flow
simulations employs the so-called time multiplier scheme which assumes that
the time increment for each step is multiplied by a constant time-step coeffi-
cient α, i.e., ∆ti = α∆ti−1, i ∈ (0, nt). The simulation time of total 500 days
(t0 = 0 and te = 500) is discretized into 100 steps, i.e., nt = 100, with α equal
to 1.05. The advantage of this scheme is that it allows for an adequate time
discretization at the early stage of simulation such that the simulated transient
head distribution is to the least degree influenced by the time discretization.

Nine wells are drilled throughout this confined aquifer (Figure 5.1): four of
them are the injection wells with a constant flow-rate (q = 20.5 per day) and
the other five are production wells with a constant pressure (the piezometric
head is maintained at h = −3.0 for all five wells). The flow-rate data at
the four injection wells and the bottom-hole-pressure (BHP) data at the five
extraction wells are continuously collected at the first 40.1 days which consist
of the first 50 time steps.

The inverse stochastic modeling problem, therefore, is to infer the per-
meability field (in lnK) according to the observed 40.1-day’s flow-rate and
BHP data at the well-bores. The stochastic lnK fields are also required to be
constraint to the given prior information, e.g., lnK ∼ N(0, 1) and λx = 16,
even though they have rather large departure from the real case. Other flow
parameters are assumed to be constant and known perfectly.

5.3.2 Inverse-conditional modeling by EnKF

First, the LUSIM subroutine from the GSLIB (Deutsch and Journel, 1998) is
invoked to generate one hundred seed fields that obey all of the specified prior
information. Then, the history matching problem is performed by the EnKF
method to constrain on the 40.1-day’s dynamic observations which include
the flow-rate and the BHP data from all nine wells. Figure 5.2 compares
the the flow-rate and BHP curves at the two typical wells before and after
history matching. The history matching remarkably reduces the uncertainties
of predicted flow-rate and BHP. Moreover, the real case (the circle line) is
contained in one hundred stochastic estimates (the black lines). The accuracy
and precision of predicted BHP (up to 500 days) are highly improved after
matching the first 40.1 days’ data.

But what will happen to the updated models after history matching? One
of the facts is that the models generated as such are far from perfect as ex-
pected, e.g., the parameter statistics and model structures may severely de-
viate from the prior specification for models, even though the prediction on
model responses at the known well locations seems to attain to an ideal result
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Figure 5.2: Well performance reproduction by EnKF and BMcMC: The circle
line denotes the reference data.
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at the time scale and the updated models do look more similar to the reference
field than the initial seed fields.

Figure 5.3 displays the evolution of parameter histograms during data as-
similation. One can easily find that the spreading of lnK at the early stage
is obviously much wider than expected. At the day 0.2 and the day 2.4, for
example, some unreasonably large values and some extremely small values
frequently occur in the physical models which obviously do no more follow
the prior specification, lnK ∼ N(0, 1). Note that the permeability is shown
at the natural logarithm scale, i.e., lnK, which implies a small fluctuation in
lnK will cause a huge change in K. This phenomenon is not unique and is
also observed by other researches known as “overshooting” and “undershoot-
ing” problems (e.g., Gu and Oliver, 2006). The problem might come from a
fact that the prior formation is never used to constrain the models during the
history matching.

Figure 5.4 shows the evolution of theoretic variograms of models during
the data assimilation. The mean semivariogram of the initial 100 seed fields
(the dashed line) is very close to the prior specification (the square line). As
dynamic data are assimilated into the models, the mean semivariogram in an
unpredicted matter gradually departs from the prior model. The x direction
(A) displays an obvious random fluctuation but the y direction (B) seem-
ingly tells us that the more newly updated models (e.g., the solid line) are
closer to the reference field (the circle line). The EnKF method automatically
compensates for the unprecise specification for the prior model by adjusting
model parameters. Indeed, the reference field (Figure 5.1) along the y direc-
tion demonstrates a high-value distribution on the upper part and low values
on the lower part. The dynamic observations from the nine wells are capa-
ble of reflecting effectively such a main feature which makes the variogram
reproduction look quite well by the EnKF method.

The two observations from this experiment (Figure 5.3-5.4) indicate that
the EnKF method may be well applied to the case that a huge number of
dynamic data are required to assimilate for individual history events, otherwise
the generated models after history matching may severely deviate from the
real case. One explanation for it might be that the EnKF method is only
accurate in the sense of statistics which entails a statistically huge amount
of conditioning data to assimilate before producing a reasonable result. This
problem matters since it is hard to determine how much data are required to
assimilate before yielding reasonable results. Even worse, this method might
fail for the reservoir evaluation at the early stage when the dynamic data are
far from abundance.

In addition, the generated realizations may be far from i.i.d although they
are considered to be a posteriori i.i.d with respect to the 100 initial seed fields.
These realizations are extremely similar and the variance between the models
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Figure 5.3: Evolution of histograms of lnK during history matching up to
different times by the EnKF. The reference, the BMcMC simulation, and the
initial seed fields are also listed for comparison.
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Figure 5.4: Evolution of mean semivariograms of lnK over 100 realizations
during history matching up to different times by the EnKF.

is much smaller than expected. It may come from the fact that the EnKF
is essentially a variance minimization method, i.e., the variance between the
realizations decreases as more dynamic data are assimilated into the models.

5.3.3 Inverse-conditional modeling by BMcMC

Since the BMcMC is not designed in a Markov process to assimilate the dy-
namic data, the history matching problem is performed only one time to con-
strain on the 40.1-day’s dynamic observations which include the flow-rate and
BHP data from all nine wells. Figure 5.2 also plots the flow-rate and BHP
curves at two typical wells after history matching by BMcMC. The history
matching obviously reduces, though not much as EnKF in magnitude, the un-
certainties of predicted flow-rate and BHP. Moreover, the real case (the circle
line) is well contained in the 100 stochastic estimates (the solid lines). The
accuracy and precision of predicted BHP (up to 500 days) are improved after
matching the first 40.1-day’s data. Figure 5.3 and Figure 5.5 display the his-
togram and mean variogram of the 100 realizations, respectively. The BMcMC
method also demonstrates a certain but limited self-adjust in spatial statistics
and model structure in order to fit the real case if the prior information is
incorrectly specified.

5.3.4 Uncertainty assessment

Although the realizations from the EnKF seem to yield a better reproduction
on well histories than those of the BMcMC, the model structure and spatial
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Figure 5.5: A comparison on the mean semivariograms of lnK by the EnKF
and BMcMC. The prior model and the reference field are also plotted for com-
parison.

statistics from the EnKF turn out to be worse on the other hand. This part
will quantify this uncertainty of models and further point out its side-effect
on the future performance prediction at both time and space scale through
several new scenarios of reservoir operations.

Model uncertainty

Although the reference model is well defined and observable in this study, we
generally do not know what it is ahead in practice. A practical way is to
use the ensemble average of simulated outputs instead of the real model to
estimate the simulation errors. Two parameters are computed as the metrics
of performance measure to this end, the ensemble average error (I(x)1) and the
standard deviation of the ensemble average error (I(x)2), which are defined
as the L1-norm and L2-norm between the simulated models and the mean
models, i.e.,

I(x)1 = ‖xsim − x̄sim‖1 =
1

nxyz

nxyz−1∑

i=0

1
nr

nr−1∑

r=0

|xi,r − x̄i|, (5.13a)

I(x)22 = ‖xsim − x̄sim‖2
2 =

1
nxyz

nxyz−1∑

i=0

1
nr

nr−1∑

r=0

(xi,r − x̄i)2, (5.13b)
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where nr is the number of realizations, nxyz is the number of grid cells, xsim

is the vector of simulated attribute values, and x̄sim is the ensemble average
vector of simulated attribute values.

In case of the synthetic example like this study, however, the model uncer-
tainty can be measured by the simulated errors to validate the efficiency of the
inverse methods since the real model is available. In such case, the L1-norm
and L2-norm between the simulated models and the real models are defined
as,

I(x)3 = ‖xsim − xref‖1 =
1

nxyz

nxyz−1∑

i=0

1
nr

nr−1∑

r=0

|xsim
i,r − xref

i |, (5.14a)

I(x)24 = ‖xsim − xref‖2
2 =

1
nxyz

nxyz−1∑

i=0

1
nr

nr−1∑

r=0

(xsim
i,r − xref

i )2, (5.14b)

respectively. Note that xref is the vector of reference attribute values.
In essence, I(x)1 and I(x)2 measure the degree of precision that the

stochastic simulations could render, that is, how narrow the confidence in-
terval of stochastic simulations is. The smaller I(x)1 and I(x)2 mean the
more precise simulation results. I(x)3 and I(x)4 measure the degree of accu-
racy that the stochastic simulations may attain, that is, how they are close to
the true model. Obviously, the smaller I(x)3 and I(x)4 are, the closer to the
real model the generated realizations are. From the standpoint of estimate
and uncertainty, on the other hand, I(x)1 and I(x)3 measure the reliability
of the estimated models while I(x)2 and I(x)4 measure the uncertainty of the
estimates.

The evolution of the four metrics on model uncertainty from the EnKF
method has been compared to the model uncertainties estimated by the BM-
cMC method in Figure 5.6 from which two observations can be drawn. First,
the EnKF simulations at the early stage of data assimilation seriously de-
viate from the real case. After 30 time steps (i.e., at day 12.7), the esti-
mates from the stochastic simulations begin to settle down to a stable result.
Note that I(x)3 and I(x)24 arrive at the best estimated at 12.7 day after
which more data assimilation seemingly does not help improve the model
uncertainty even though the stochastic simulations from EnKF still show a
certain improvement. I(x)1 and I(x)22 are still dropping down after 12.7
days while I(x)3 and I(x)24 almost remain unchanged. Second, BMcMC
yields almost the same real stable estimate as EnKF but the EnKF simu-
lations seriously underestimate the model uncertainty compared to the BM-
cMC simulations. Note that at 40.1 day I(x)3(EnKF) = I(x)3(BMcMC) and
I(x)24(EnKF) = I(x)24(BMcMC) but I(x)1(EnKF)¿ I(x)1(BMcMC) < I(x)3
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and I(x)22(EnKF)¿ I(x)22(BMcMC) < I(x)24. One of the main reasons is that
the realizations from the EnKF simulations are extremely similar to each other
(i.e., not i.i.d) which makes the model uncertainty greatly underestimated.
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Figure 5.6: Evolution of model uncertainties predicted by the EnKF. The es-
timates by BMcMC are also plotted for comparison.

Uncertainty propagation: Transport performance prediction

Assume that a conservative tracer test operation under a steady-state, natural-
gradient, uniform flow is applied to the aquifer due to the alternation of ex-
perimental conditions. The prescribed heads are imposed on the left and
right sides of the aquifer and impermeable boundaries on the other two faces.
A five-point block-centered finite-difference method is employed to solve the
steady flow problem. A constant-displacement random-walk particle-tracking
algorithm, which proves more efficient than the constant-time-step scheme in
numerical computation (Wen and Gomez-Hernandez, 1996), is used to solve
the conservative solute transport problems. For each realization, continuous
4 000 particles released from the left boundary are tracked until they exit the
computational domain. The release source of particles covers the whole left
boundary and the particles almost distribute over the entire domain of the
field when they move along with the fluid flow such that the particles can
largely sample the entire lnK(x) field and their overall spatial variability has
been captured. The breakthrough curves observed at the right side of the
aquifer are recorded and the ensemble mean and its 95% confidence interval
are plotted in Figure 5.7. One can easily find that the prediction from the
BMcMC simulations are better than that of the EnKF simulations. Although
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the EnKF simulations provide a narrower confidence interval and the reference
BTC is effectively contained in the prediction region, the BMcMC simulations
yield a more accurate mean BTC reproduction.
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Figure 5.7: A comparison on the breakthrough curves predicted by the EnKF
and BMcMC

5.4 Case Study 2

Case study 1 presents an example that the prior model has a rather large devi-
ation from the real model. Results show that the EnKF provides a better well
performance reproduction but yields a worse transport property prediction.
This section will present another example with a more sparse well system but
almost perfectly identified prior model for inverse stochastic modeling.

5.4.1 Experimental configuration

Consider a 2D transient single-phase flow test over a confined aquifer with
32 × 32 grid-blocks under the forced-gradient flow condition as designed in
Figure 5.8. The four boundaries are set to be non-flow. The initial head
field is assumed to be zero everywhere in the aquifer. The simulation time
of total 500 days (t0 = 0 and te = 500) is discretized into 100 steps, i.e.,
nt = 100, with α equal to 1.05. Five wells are drilled throughout this confined
aquifer: one located at the center is the injection well with a constant flow-rate
(q = −50) and the other four are production wells with a constant pressure
(the piezometric head is maintained at h = −3.0 for all four wells). The flow-
rate data at the injection well and the BHP data at the four extraction wells
are continuously collected at 500 days.



“myThesis” — 2007/12/27 — 13:30 — page 100 — #122

100 CHAPTER 5. DOES MODEL STRUCTURE PRESERVATION . . .

Reference lnK Field

East

N
or

th

0 32
0

32

#1: h=-3.0 #2: h=-3.0

#3: q=-50.

#4: h=-3.0 #5: h=-3.0

-2.0

-1.0

0.0

1.0

2.0

Figure 5.8: Case study 2: Reference lnK field and the well configuration: four
constant pressure production wells (in bullet) and one constant flow-rate in-
jection wells (in circle)

The prior model specification for inverse stochastic simulation is almost
perfectly consistent with the real model, e.g., lnK ∼ N(0, 0.92) and λx = 10
[cells]. The correlation length is much shorter than the well spacing (lw

.= 18
[cells]) such that the five wells provide limited information for identifying
spatial pattern of model which leaves rather large free space for parameter
allocation. On the other hand, the 10-cell correlation length also ensures that
the spatial variability is captured by the random models.

The inverse stochastic modeling problem, therefore, is to infer the perme-
ability field (in lnK) according to the observed 500-day’s flow-rate and BHP
data at the five well-bores. The stochastic lnK fields are also required to con-
strain to the given prior information that is identical to the reference field.
Other flow parameters are assumed to be known without uncertainty. Two
scenarios of inverse stochastic simulations are carried out by the EnKF and the
BMcMC to infer the lnK distribution from the wells’ dynamic observations.

5.4.2 Inverse-conditional modeling by EnKF

First, the LUSIM subroutine from GSLIB (Deutsch and Journel, 1998) is
invoked to generate one hundred seed fields that honor all of the specified prior
information. Then, the history matching problem is performed by the EnKF
method to sequentially constrain on the 500-day’s dynamic observations which
include the flow-rate and the BHP data from all five wells. Figure 5.9 compares
the flow-rate histories and BHP curves at two typical wells before and after
history matching. The models after history matching to the 500-day’s dynamic
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data obviously reduce the uncertainties of the BHP and flow-rate histories at
the wellbores.

Figure 5.10 displays the evolution of parameter histograms during data
assimilation. One can easily find that the spreading of lnK by the EnKF is
obviously much wider than expected (σ2

x = 0.92) as more data are assimilated,
e.g., the models at 186.1 days (σ2

x = 1.362) and at 500 days (σ2
x = 1.442). The

models after 500 days have larger standard deviation than those of 186.1, 40.1,
12.7, 2.4-day’s and the initial models. These phenomena are also observed by
other researches known as “filter divergence” (e.g., Nævdal et al., 2003) and
“overshooting” and “undershooting” problems (e.g., Gu and Oliver, 2006).

Figure 5.11 shows the evolution of mean variograms of models during the
data assimilation by the EnKF. The mean semivariogram of the initial 100
seed fields (the dashed line) is very close to the prior specification (the square
line). As dynamic data are assimilated into the models, however, the mean
semivariogram in an unpredicted matter departs from the prior model. Note
that the mean variograms in both the x direction (A) and the y direction (B)
display an obvious random fluctuation.

5.4.3 Inverse-conditional modeling by BMcMC

The last row in Figure 5.9 plots the flow-rate and BHP curves at the two
typical wells after constraining to the 500-day’s dynamic observations by the
BMcMC. The history matching obviously reduces, though not much as the
EnKF in magnitude, the uncertainties of the BHP and flow-rate. Moreover,
the real case (the circle line) is well contained in the 100 stochastic estimates
(the solid lines). The accuracy and precision of the BHP and flow-rate history
reproduction are improved after matching the 500-day’s data compared to the
unconstraint case (the first column).

More importantly, the generated models follow the prior specification of
spatial statistics and model structure. Figure 5.10 and 5.11 also display the
histogram and mean semivariogram of the 100 BMcMC simulations, respec-
tively. The BMcMC simulation results perfectly match the prior specification
and the reference model, which is obviously closer to the real case and the
prior than the EnKF simulations.

5.4.4 Uncertainty assessment

Model uncertainty

The evolution of the four metrics on model uncertainty from the EnKF method
has been compared to the model uncertainties estimated by the BMcMC
method in Figure 5.12 from which several observations can be drawn. First,
as more dynamic data are assimilated into the models, the precision of the
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Figure 5.9: Well performance reproduction by EnKF and BMcMC: The circle
line denotes the reference data.
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Figure 5.10: Evolution of histograms of lnK during history matching up to
different times by the EnKF. The reference, the BMcMC simulation, and the
initial seed fields are also listed for comparison.
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Figure 5.11: Evolution of mean semivariograms of lnK over 100 realizations
during history matching up to different times by the EnKF. The prior model,
the reference field, the initial seed fields, and the BMcMC simulations are also
plotted for comparison.

EnKF simulations increases but their accuracy does not increase even wors-
ens in this case study. Note that although both I(x)3 and I(x)24 decrease,
which means the precision of simulations increases, I(x)1 and I(x)22 increase
at the same time which means the estimates more severely deviate from the
real case. Second, the EnKF simulations seriously underestimate the model
uncertainty compared to the BMcMC simulations. Note that I(x)1(EnKF)
¿ I(x)3(EnKF) and I(x)22(EnKF) ¿ I(x)24(EnKF). Furthermore, at the 500
day, I(x)1(EnKF) < I(x)1(BMcMC) and I(x)22(EnKF) < I(x)22(BMcMC)
but I(x)3(EnKF) > I(x)3(BMcMC) and I(x)24(EnKF) > I(x)24(BMcMC). In
summary, compared to the EnKF, the BMcMC provides a set of more reliable
models in terms of model uncertainty.

Uncertainty propagation: Flow performance prediction

Assume that several new wells are added in the reservoir operation system
as displayed in Figure 5.13. Three wells in the middle row are designed as
the injection wells (in circle) with constant flow rates equal to 30, 80, and 25.
Totally six wells in the upper and lower two rows are specified as the pumping
wells (in bullet) with constant piezometric heads equal to 4 or 5. Note that
well #2, #4, #6, and #8 are newly drilled. Old well conditions change but
the aquifer boundaries remain impermeable. The new flow performances of
one old well and one new well are plotted in Figure 5.14. For comparison, the
unconditional simulations by LUSIM are listed in the first row; and conditional
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Figure 5.12: Evolution of model uncertainties predicted by the EnKF. The
estimates by BMcMC are also plotted for comparison.

simulations by the EnKF and BMcMC are listed in the second and third row,
respectively. In general, the EnKF yields a better prediction on the flow
performance of old wells (e.g., well #3); but at the new well locations, the
BMcMC provides a more accurate prediction (e.g., well #6). This result
shows that the BMcMC has a more reliable ability in predicting new wells’
performance at the spatial scale.

Uncertainty propagation: Transport performance prediction

An identical conservative tracer test operation under a steady-state, natural-
gradient, uniform flow as in the case study 1 is applied to the aquifer. The
breakthrough curves observed at the right side of the aquifer are recorded and
the ensemble mean and its 95% confidence interval are plotted in Figure 5.15.
One can easily find that the prediction from the BMcMC simulations are better
than that of the EnKF simulations. Although the EnKF simulations provide
a narrower confidence interval and the reference BTC is effectively contained
in the prediction region, the BMcMC simulations yield a more accurate mean
BTC reproduction.

5.5 Discussions and Conclusions

Two stochastic inverse methods, the blocking Markov chain Monte Carlo (BM-
cMC) and the ensemble Kalman filtering (EnKF), are implemented and com-
pared to perform the model calibration and history matching. The synthetic
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Figure 5.13: New well system configuration for Case study 2: Six constant
pressure production wells (in bullet) and three constant flow-rate injection wells
(in circle)

examples show that both methods provide an improved flow and transport
performance prediction than the unconditional case. Detailed examination on
generated models, however, shows that the BMcMC can effectively preserve
the model structure and spatial statistics as specified a priori but the EnKF
seemingly fails to do so. If the spatial correlation is short and the well spac-
ing is large, the models after history matching by the EnKF might produce
severely biased model structure and spatial statistics even though they can
more effectively reproduce the known dynamic observations at the wellbores.
The side effect is that it might yield biased prediction on future performance
of reservoir and aquifer particularly at the spatial scale. The synthetic exam-
ple in the case study 2 shows that, as more new wells are added in, the flow
performance prediction of the EnKF is much worse than that of the BMcMC
although the BMcMC might not provide a better result than the EnKF in
predicting the old well performance. Such side effect is further magnified by
a conservative tracer test where the BMcMC obviously yields more reliable
estimate of the breakthrough curve than the EnKF. In summary, the compar-
ison shows that preserving model structure and spatial statistics for inverse
stochastic simulations is of importance for further predicting future reservoir
performance in some cases.

The BMcMC method developed in Chapter 3 is extended to an application
on a synthetic example under a forced-gradient transient flow condition. This
method is proved extremely computationally intensive not only because the
McMC itself is CPU demanding but also because the plausible solution set is
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Figure 5.14: Well performance prediction by EnKF and BMcMC: Note that
Well #3 is an old well while well #6 is a new well.
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Figure 5.15: A comparison on the breakthrough curves predicted by the EnKF
and BMcMC

very limited and should be constraint to two-fold factors, the dynamic data
and model structure specification. Especially, the model structure preserva-
tion essentially reduces the size of the plausible solution set, which often makes
unsuccessful the conventional algorithms that resort to the optimization-based
model updating. On the other hand, depending on the inconsistence between
the prior model and the reality, BMcMC is also capable of adjusting the sta-
tistical parameters of models to match to the reality.

Although highly computationally efficient for the history matching prob-
lem, the EnKF is insufficient to characterize the uncertainties after model cal-
ibration especially in accuracy. First, the updated models have unpredicted
spatial structures and parameter statistics, which does not meet the end for
refined reservoir characterization since the structure parameters are also a set
of data to be honored. The structure instability may make the predicted un-
certainties overestimated and deviated from the real case in accuracy. Second,
the generated realizations are far from i.i.d which results in the predicted
uncertainties severely underestimated. For these two reasons, the predicted
uncertainty by the EnKF may be biased. The key point of this problem is
that the prior information is never explicitly included in the model updating
during the model calibration.



“myThesis” — 2007/12/27 — 13:30 — page 109 — #131

6
Conclusions and Suggestions

6.1 Summary

A Markov chain Monte Carlo method for stochastic mappings of physical mod-
els is presented in this study to honor both static and dynamic observations on
the subsurface reservoir or aquifer properties and to quantitatively assess un-
certainties. Several main, novel contributions from this work are summarized
as follows.

Any forward solver to the flow and transport problems may be simply
integrated into the proposed algorithm as a black-box which makes it very
attractive since the computation of the sensitivity coefficient is no more nec-
essary which saves a lot of time in coding and computing. In dealing with a
high-dimensional case, however, the limitation of the present computer power
available entails a coarser model for forward simulations which calls for an
upscaling process that can generate a coarse-scale model from the fine scale.
In order to be widely compatible with various upscaling subroutines, a multi-
scale-oriented flow and transport simulator is developed to fast but accurately
perform the forward simulations at a lower computational cost. Chapter 2
presents a complete description on the implementation details of the flexible-
grid full-tensor finite-difference flow simulator and the constant-displacement
random-walk particle-tracking transport simulator.

Although some classic McMC methods have been applied into stochastic
simulations for honoring both the linear and nonlinear data, their efficiency
deserves more improvement in order to ease the intensively computational bur-
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den of inverse problems. A blocking McMC scheme is presented in this work
to improve the computational efficiency and to preserve the specified spatial
statistics and model structure at the same time. This scheme is implemented
in an example problem under the framework of multi-Gaussian process. The
proposal kernel for the McMC integration are generated very fast on the ba-
sis of the LU-decomposition of the covariance matrix owing to its Gaussian
property. In addition, an FFT-based spectral conditional simulator, which is
known as one of the fastest random field generator, is employed to deal with
the high-dimensional case. For the fast computation of the likelihood, an up-
scaling scheme is used to generate a coarser version of the fine-scale model as
the input to the multi-scale-oriented flow and transport simulator presented
in Chapter 2 for the fast computation of the likelihood. Chapter 3 gives a
detailed description on the development of the proposed MsBMcMC method.

However, the objective of inverse stochastic simulations is not only to gen-
erate i.i.d realizations that honor all of the given information but also to
quantitatively predict reservoir performances and assess their uncertainties.
By examining the reduction of uncertainties due to conditioning, the worth of
data from various sources can be evaluated and ranked for further sampling
design, aquifer remediation operation and reservoir management. Three types
of data sources, i.e., static hard data (lnK), piezometric head (h) or pressure
data (p), spatial concentration data (c) or temporal moments (t) of tracer
data, are systematically evaluated in Chapter 4 with the aid of a synthetic
example under a uniform, natural-gradient flow condition. One of the main
findings from these experiments is that the uncertainty reduction mostly ben-
efits from measurements on the property of the same type. In other words, the
main error source of model or prediction uncertainty comes from the scarcity
of measurements on parameters or responses themselves. The measurements
on other properties play a secondary but complementary role in reducing the
uncertainty of interest by means of jointly conditional simulations. Second,
conditioning on static hard data only makes the uncertainties of estimates re-
duced at the local regions around the measurement points. The uncertainty
reduction due to inverse-conditioning to head observations or travel time mo-
ments is fully regional. Third, inverse-conditioning to travel time moments
significantly improves the estimation on the spreading of solute plume, i.e., the
apparent macrodispersion coefficient. Fourth, uncertainty propagation due to
conditioning on various types of data is examined and its meaningfulness on
the risk assessment of radioactive waste repository is also pointed out.

Besides its stability, well-posedness and flexibility, one of the most striking
features, which is also one of the main objectives of this thesis, is that the
proposed algorithm can generate i.i.d realizations that strictly preserve the
specified spatial statistics and model structure while most of inverse methods
fail to do so. It matters since the spatial statistics and model structure may
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be one of the main error sources for performance prediction and uncertainty
assessment at the spatiotemporal scale. Stochastic models should honor all
of the given information extracted from geological settings or other sources.
Traditional inverse methods tends to destroy these parameters in order to
match the observed state data during the procedure of model calibration and
history matching. Chapter 5 ascertains such importance by comparing two
distinct inverse problem: the BMcMC and the EnKF. Numerical simulations
show that, even though the EnKF method may efficiently provide a better
reproduction of observed dynamic data than the BMcMC method, the preser-
vation of spatial statistics and model structure makes the BMcMC simulations
competitive for some cases in predicting accurately and reliably the future per-
formance of reservoirs particularly at new well locations. Therefore, including
the prior information in the inverse stochastic simulation is of significance for
accurate assessment of model uncertainties and response uncertainties if the
prior parameter information effectively reflects the underground reality.

6.2 Recommendations for Further Research

This study mainly focuses on evaluating the feasibility, the correctness and
the usefulness of the proposed McMC scheme under the framework of the
multi-Gaussian process. Further extensions to other stochastic processes, more
applications to real case studies and detailed comparisons to other inverse
methods are expected to carry out in the near future. Specifically, several
challenges and interesting topics that deserve more investigations are listed as
follows.

• Improvement of the computational efficiency of McMC. Al-
though this study made some trials and advances on the McMC in
dealing with the inverse problem, the computational efficiency is far
from perfect especially for the high-dimensional and high-resolution case
which has been proved extremely demanding in computation. Actually,
the McMC method is quite an active topic in statistics community up to
now. Further advances in easing the computational burden are expected
to be integrated into the proposed methods in this work.

• Extend to real-world field applications. In this study, all exper-
iments are performed on the basis of several synthetic examples. Ac-
cordingly, some general conclusions are hardly drawn only from those
toy case studies. The efficiency and effectiveness of the methods are
needed to be checked in real applications. Especially the significance of
preserving the statistics and spatial structure for models is expected to
be investigated in more applications on some real cases.
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• Extend to 3D multi-phase, transient flow problem. This study
only presents the results from the steady-state single-phase flow exper-
iments. Application on transient problems is expected. The extension
to two-phase and multi-phase flow problems is also of interest to both
petroleum engineering and groundwater communities.

• Extend to non-Gaussian, multi-modal cases. One of the important
requirements in practice is to constrain the non-Gaussian, multi-modal
permeability model on the geological mapping which is based on out-
crop’s analogue, sedimentary study, geophysical imaging, etc. In other
words, use the geological mapping as a training image to generate i.i.d
non-Gaussian, multi-modal physical models for flow simulations. Even
though the proposal kernel is no longer multi-Gaussian, the BMcMC
scheme still applies. To this end, however, a new method for generat-
ing non-Gaussian, multi-modal candidate fields is needed. In addition,
the extension to fracture and fault zones is also a challenging but active
topic.

• Extend to integrate information from other sources, e.g., dis-
charge or recharge, grain size analysis, temperature (Woodbury et al.,
1987), groundwater age (Varni and Carrera, 1998), indirect geophysical
measurements including remote sensing, seismic and ground-penetrating
radar data (Rubin et al., 1992; Hyndman et al., 1994; Copty and Rubin,
1995; Hyndman and Gorelick, 1996), etc. For example, seismic data may
provide densely sampled but low-resolution spatial information which
complements the inability of hard data and state data that are most
often collected at sparsely distributed well sites. However, a striking
problem is that, unlike well logging data, seismic data are highly uncer-
tainly related to hydraulic properties which generally entails a statistical
method to extract the spatial information of physical models from the
seismic properties. For this reason, indirect geophysical measurements
are often called soft data. Integration of soft data into the stochastic
simulation is expected to remarkably reduce the uncertainties.

• Extend to simulate other properties, e.g., porosity φ, distribution
coefficient Kd or retardation factor R (Huang et al., 2004), local disper-
sivity coefficients αL and αT (Nowak and Cirpka, 2006), mass transfer
rate β, etc. For the high-dimensional cases, however, some basic rules
should be built up for upscaling these flow and transport parameters,
see Gomez-Hernandez et al. (2005) for R, Held and Celia (2001) and
Christ et al. (2006) for β, etc. The joint inversion on the combina-
tion of permeability (lnk) and other physical parameters is also useful
in practice.
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• Integrate into the cost-effective, on-line sampling network de-
sign. The sampling design in the synthetic example presented in this
study is purely based on the empirical consideration. It was found that
the installation of sampling network (including the sampling density and
the network orientation) for collecting conditioning data might have re-
markable influence on uncertainty reduction. For example, for the col-
lection of state data (e.g., h, c and t), a sampling spacing less than
the correlation scale of physical model along the mean flow direction
and mean travel path can greatly reduce prediction uncertainty (Da-
gan, 1985). For the collection of static hard data (e.g., lnK and φ),
model uncertainty becomes less important as the number of condition-
ing data increases since substantial uncertainties remain even at a very
high sampling density (Harter and Yeh, 1996). But if the economic of
the dynamic constraint is considered, the sampling design on uncertainty
reduction could be different than that based on the pure scientific value.
The meaningfulness of the economical constraint is twofold: one is the
cost of data acquisition and the other is the economical value of the
uncertainty reduction that the data provide. A cost-effective network
design should provide a balance between these two costs. To such prob-
lem, a complex, sometimes real-time, optimization procedure is involved
to seek the best solution (see Knopman and Voss, 1987, 1988a, 1988b,
1989; Freeze et al., 1992; James and Freeze, 1993; James and Gorelick,
1994; Wagner, 1995; Freeze and Gorelick, 1999).

• Integrate into the closed-loop aquifer remediation strategy or
reservoir production scheme. An optimal decision-making process
for a closed-loop remediation strategy in contaminant reclamation or a
closed-loop reservoir development scheme, which includes well-site selec-
tion, pumping-injection rate, etc., should take into account the uncer-
tainties of the models and the predicted responses (Wagner and Gorelick,
1987, 1989). The information value of conditioning data (including, lnK,
h, c, t, etc.) also depends on to what extent they affect the optimal deci-
sion (Wagner et al., 1992). Seamless integration of stochastic conditional
and inverse-conditional simulation into such decision-making system is
expected to be capable of improve its reliability (Loaiciga and Mariño
1987; Bakr et al., 2003).
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A
An LU-decomposition-based

Sampler

The BMcMC computation needs a fast sampler to generate a large number
of candidate realizations. The joint prior density of a multi-Gaussian random
field is,

π(x|θ) = (2π)−
n
2 ‖Cx‖−

1
2 exp

{
−1

2
(x− µ)T C−1

x (x− µ)
}

,

where π(x) denotes the prior pdf of x ⊂ Rn; n is the length of the vector
x; µ ⊂ Rn is the prior mean of the random field; and Cx ⊂ Rn×n is the
positive-definite covariance matrix of the vector x. Note that x may be partly
observed, say, xobs ⊂ Rm, but seldom fully known, i.e., m < n. In such case,
the sample is called a conditional simulation on linear hard data, i.e., x2|x1,
where, x1 = xobs ⊂ Rm, x = (x1, x2)T , and x2 ⊂ Rn−m.

The objective is to draw randomly a large number of equi-probable realiza-
tions from the distribution x ∼ N(µ, Cx). The LU-decomposition algorithm
is quite efficient and effective in generating a large number of realizations as
required by the BMcMC computation since the LU-decomposition of the co-
variance matrix can be done once for all (Davis, 1987; Alabert, 1987). The
simulated results are rather more precise and accurate than some of others,
e.g., the sequential simulation algorithm.

1. Unconditional Sampler

115
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Sample Algorithm 1. Unconditional sample x ∼ N(µ, Cx), where x, µ ⊂
Rn, and Cx ⊂ Rn×n:

(1) Cholesky decompose Cx = LLT , where L ⊂ Rn×n;

(2) Randomly draw z ∼ N(0,1) ⊂ Rn;

(3) Calculate v = Lz ⊂ Rn;

(4) Generate an unconditional sample x = µ + v.

Note that the step 1 is only needed to be done once, which takes most of
computational time. More realizations can be obtained by repeating from
the step 2 to the step 4. The computational effort lies in the matrix-vector
multiplication, i.e., Lz, as in the step 3.

2. Conditional Sampler

The joint distribution of x = (x1,x2)T is,
(

x1

x2

)
∼ N

((
µ1

µ2

)
,

[
C11 C12

C21 C22

])
,

where x1 ⊂ Rm is the (normalized) conditioning dataset; x2 ⊂ Rn−m is
the (normalized) conditional simulated values; C11 ⊂ Rm×m is the data-to-
data covariance matrix; C22 ⊂ R(n−m)×(n−m) is the unknowns-to-unknowns
covariance matrix; and C21 = CT

12 is the unknowns-to-data covariance ma-
trix, C21 ⊂ R(n−m)×m. It can be shown that the expected value of x2 is
µ2 + C21C

−1
11 (x1 − µ1), which is known as the simple kriging estimate, and

the covariance matrix of x2 is C22 −C21C
−1
11 C12. Therefore, the conditional

realizations can be drawn from,

x2 ∼ N(µ∗,C∗),

where,

µ∗ = µ2 + C21C
−1
11 (x1 − µ1),

and,

C∗ = C22 −C21C
−1
11 C12.

The covariance matrix for all n grid nodes including m conditioning data
can be decomposed into the product of a lower triangular matrix and an upper
one,
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C =
[

C11 C12

C21 C22

]
= LU

=
[

L11 0
L21 L22

] [
U11 U12

0 U22

]
=

[
L11U11 L11U12

L21U11 L21U12 + L22U22

]
.

Therefore, L11, L21, and L22 can be obtained by C11 = L11U11, C21 =
L21U11, and C22 = L21U12 + L22U22, respectively. Note that the matrix
multiplication, the matrix minus and the LU-decomposition are involved in
the procedure of calculating the lower triangle matrices.

A conditional realization x is obtained by the multiplication of L with a
column vector z ⊂ Rn,

(
x1 − µ1

x2 − µ2

)
= Lz =

[
L11 0
L21 L22

](
z1

z2

)
,

where the sub-vector z1 ⊂ Rm is set as z1 = L−1
11 (x1−µ1) and the sub-vector

z2 ⊂ Rn−m consists of the n − m independent standard normal deviates.
Therefore, a conditional realization can be obtained by,

x2 = µ2 + L21z1 + L22z2 = µ2 + L21L
−1
11 (x1 − µ1) + L22z2.

Sample Algorithm 2. Conditional sample x2|x1, where the unknowns
x2 ⊂ Rn−m and the hard data x1 ⊂ Rm, and x ∼ N(µ, Cx), in which
x = (x1, x2)T ⊂ Rn, µ ⊂ Rn, and Cx ⊂ Rn×n:

(1) Calculate L11 ⊂ Rm×m from C11 = L11L
T
11;

(2) Calculate L21 ⊂ R(n−m)×m from C21 = L21L
T
11;

(3) Calculate L22 ⊂ R(n−m)×(n−m) from C22 = L21U12 + L22L
T
22;

(4) Calculate the simple kriging field v1 = L21L
−1
11 (x1 − µ1) ⊂ Rn−m;

(5) Randomly draw z2 ∼ N(0,1) ⊂ Rn−m;

(6) Calculate v2 = L22z2 ⊂ Rn−m;

(7) Generate a conditional sample x2 = µ2 + v1 + v2.

Note that the step 1 through the step 4 are only needed to be done once which
consumes the largest part of the computational efforts of this algorithm. More
realizations can be obtained by repeating from the step 5 to the step 7. The
computational effort focuses on the matrix-vector multiplication, i.e., L22z2,
as in the step 3.
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B
An FFT-based Sampler

Despite the merit of quite cheaply repeatedly generating realizations, the LU-
based sampler has rather limited capability of generating high-dimensional
random fields due to the expensive, even unavailable, computational resources
for the LU-decomposition of a huge covariance matrix. In this regard, the
FFT-based spectral simulation algorithm can handle with quite large scale
random field. Moreover, it is well known that the FFT-based sampler is one
of the fastest generators, which is quite suitable for the BMcMC computation.

Again, our objective is to draw randomly a large number of equi-probable
realizations from the distribution x ∼ N(µ, Cx) whose joint prior density is,

π(x|θ) = (2π)−
n
2 ‖Cx‖−

1
2 exp

{
−1

2
(x− µ)T C−1

x (x− µ)
}

,

where π(x) denotes the prior pdf of x ⊂ Rn; n is the length of the vector
x; µ ⊂ Rn is the prior mean of the random field; and Cx ⊂ Rn×n is the
positive-definite covariance matrix of the vector x. Note that x may be partly
observed, say, xobs ⊂ Rm, but seldom fully known, i.e., m < n. In such case,
the sample is called a conditional simulation on linear hard data, i.e., x2|x1,
where, x1 = xobs ⊂ Rm, x2 ⊂ Rn−m, and x = (x1, x2)T .

1. Basic theory of FFT

A physical process can be described either in the time domain by its at-
tribute value h as a function of time t, i.e., h(t), or in the frequency domain
by its amplitude H as a function of frequency f (or ω = 2πf), i.e., H(f) (or

119
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H(ω)). One can go back and forth between these two representations of the
same function by means of Fourier transform equation pairs,

H(f) =
∫ ∞

−∞
h(t)e2πiftdt,

h(t) =
∫ ∞

−∞
H(f)e−2πiftdf,

where,

ex =
∞∑

k=0

xk

k!
.

The Fourier transform of a function can be estimated from a finite number
of sampled points, which is known as discrete Fourier transform equations,

Hk =
n−1∑

j=0

hje
−2πi j

n
k,

hj =
1
n

n−1∑

k=0

Hke
−2πi k

n
j .

One appealing point is that these two Fourier transform can be quite efficiently
computed using the FFT algorithm.

Since it often happens that a physical process can be performed more
efficiently in the frequency domain than attacking it in the time domain, one
can take advantage of the fact that this physical process can be transformed
to and from using the Fourier transform, typically by FFT, and that the
computation is efficiently performed in the frequency domain. For example,
the convolution of two digital signals can be computed much more efficiently
by transforming them to the frequency domain and performing an element-
wise multiplication there instead of a series of scalar products in the time
domain.

Similarly, a stochastic process x, which is assumed to be second-order
stationary in the space domain, can be constructed in terms of its spectral
representation ω in the “Fourier” domain by,

x =
∫ ∞

−∞
eiω·xdω.

The Fourier increment of the attribute value, dω, must satisfy the following
orthogonal conditions,
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E[dω] = 0,

E[dω · dω∗] = 0; ω 6= ω∗,
E[dω · dω∗] = |S(ω) · dω|; ω = ω∗,

where E[] indicates the mathematical expectation operator, ∗ denotes the com-
plex conjugate operator, the differential vector dω represents the n-dimensional
differential wave number volume elements, dω = (dω0, dω1, ..., dωn−1)T ⊂ Rn,
and S(ω) is the density spectral function which is linked to the covariance
function C(h) through the Fourier transform,

C(h) =
∫ ∞

−∞
eiω·h · S(ω) · dω,

S(ω) =
∫ ∞

−∞
e−iω·h · C(h) · dh.

If one can generate a stochastic process ω in the “Fourier” domain, which
has the statistics satisfying orthogonal conditions, then one can generate its
counterpart x in the space domain, e.g., by the numerical integration through
the discrete Fourier transform. From this fact we can do the simulation in the
“Fourier” domain but retain the structure feature of the specified covariance
in the space domain. Why and how should we do simulations in the “Fourier”
domain? The trick lies in that we only need to multiply the amplitude, which
is derived from the specified covariance function, by a randomly drawn phase,
which has a uniform distribution between 0 and 1 (or between 0 and 2π in
the angular frequency), to form a stochastic process in the “Fourier” domain,
which can be easily and quickly mapped to the space domain through the fast
Fourier transform.

2. Unconditional Sampler

The classical spectral representation theorem shows that any sequence x
can be expressed as a finite series of Fourier coefficients, α and β:

xk = F−1(a) =
n−1∑

j=0

aje
2πi k

n
j =

n−1∑

j=0

[
αj cos

(
2π

k

n
j

)
+ iβj sin

(
2π

k

n
j

)]
,

where k ∈ [0, n), aj = αj − iβj = |aj |e−iφj is the jth complex Fourier co-

efficient, |aj | =
√

α2
j + β2

j is the amplitude, and φj = arctan(−βj/αj) is the
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phase of the jth Fourier coefficient. The amplitude |aj | is related to the discrete
spectral density sj by |aj |2 = sj , j ∈ [0, n). The complex Fourier coefficient is
given by,

aj = |aj |e−iφj = |aj | cosφj − i|aj | sinφj ,

where j ∈ [0, n), and the phase φj is drawn randomly from the uniform distri-
bution between 0 and 2π.

The idea of generating an unconditional random field x given a covariance
C(h) is as follows. Inverse Fourier transform of a provides a discrete finite
realization of x with a specified covariance spectrum s. Perturbing the phase
φ will produce a series of such realizations. This procedure can be done very
fast with prime factor FFT.

Assume that a stationary Gaussian process is imposed over an equi-spaced
regular grid, a symmetric covariance matrix Cx is constructed by the two-
point geostatistics as follows,

Cx =




C0 C1 C2 · · · Cn−1

C1 C0 C1 · · · Cn−2

C2 C1 C0 · · · Cn−3
...

...
...

. . .
...

Cn−1 Cn−2 Cn−3 · · · C0




.

A stochastic realization x can be generated by x = µ + Lz, z ∼ N(0,1),
using the LU-decomposition of the matrix Cx = LLT , i.e., the square root
decomposition of the matrix. However, a high-dimensional case makes the
matrix decomposition easy to fail due to the limitation of computer resources
and the ubiquitousness of numerical round-off errors. Fortunately, the sym-
metric matrix Cx can be extended to form a larger positive definite matrix
S ⊂ R2n×2n with a symmetric circulant structure,

S =




C0 C1 C2 · · · Cn−1 Cn Cn−1 Cn−2 · · · C1

C1 C0 C1 · · · Cn−2 Cn−1 Cn Cn−1 · · · C2

C2 C1 C0 · · · Cn−3 Cn−2 Cn−1 Cn · · · C3
...

...
...

. . .
...

...
...

...
. . .

...
Cn−1 Cn−2 Cn−3 · · · C0 C1 C2 C3 · · · Cn

Cn Cn−1 Cn−2 · · · C1 C0 C1 C2 · · · Cn−1

Cn−1 Cn Cn−1 · · · C2 C1 C0 C1 · · · Cn−2

Cn−2 Cn−1 Cn · · · C3 C2 C1 C0 · · · Cn−3
...

...
...

. . .
...

...
...

...
. . .

...
C1 C2 C3 · · · Cn Cn−1 Cn−2 Cn−3 · · · C0




,
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such that the square root of this matrix can be efficiently computed by the
fast Fourier transform, i.e.,

S = V ΛV T = (V Λ
1
2 )(V Λ

1
2 )T ,

where V is the eigenvector matrix; Λ is a diagonal matrix consisting of the
nonnegative eigenvalues; and the superscript T means the conjugate transpose.
Accordingly, a stochastic realization in the Fourier space x̃ can be generated
by x̃ = V Λ

1
2 z, where z = z1+iz2 and z1, z2 ∼ N(0,1). Its counterpart in the

spatial domain x can be obtained simply by applying an inverse FFT operation
to x̃. Note that only the first column s = (C0, C1, C2, ..., Cn−1, Cn, Cn−1, ..., C1)T

is needed for the numerical implementation.

Sample Algorithm 1. An FFT-based unconditional simulation algorithm
typically includes,

(1) Construct the covariance matrix Cx;

(2) Construct the vector s = (C0, C1, C2, ..., Cn−1, Cn, Cn−1, ..., C1);

(3) Compute the FFT s̃ of the vector s;

(4) Compute the vector
√

s̃;

(5) Generate a random vector z = z1 + iz2, where z1, z2 ∼ N(0,1);

(6) Construct the Fourier coefficients a =
√

s̃z;

(7) Generate a realization through the inverse FFT of a;

(8) Go to step (5) for the next realization.

Since the implementation of the spectral simulation as above will yield
some deviations of mean and variance from the real case, some corrections
will have to be applied to generate the desired physical models.

Sample Algorithm 2. The procedure of the unconditional simulation con-
sists of,

(1) Sample the discrete covariance, C. There are some additional details for
correcting the mean and variance deviations:

• Shift the covariance: First calculate the covariance values by C(h) =
C(h0)−γ(h). Then calculate their mean µ(C). Shift all covariance
values by the current ones, C∗(h) = C(h)−µ(C), so that the shifted
covariance has a zero mean.
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• Rescale the covariance by C(h0)/(C(h0) − µ(C)), so that the gen-
erated realizations have the correct variance.

(2) Calculate the discrete spectral density, s. This procedure can be done
by FFT transforming of the sampled covariance sequence, i.e.,

sj =
1
n

n−1∑

k=0

Cke
−2πi j

n
k; j ∈ [0, n).

(3) Retrieve the amplitude |a| by |aj | = √
sj , j ∈ [0, n).

(4) Randomly draw the phase φ by,

φj ∼ U(0, 2π); j ∈ [0, n).

(5) Build up the Fourier coefficients a, and thus α and β, by,

aj = |aj |e−iφj = |aj | cosφj − i|aj | sinφj ; j ∈ [0, n).

(6) Generate the random field x by inverse FFT transforming a, e.g.,

xk = F−1(a) =
n−1∑

j=0

aje
2πi k

n
j

=
n−1∑

j=0

[
αj cos

(
2π

k

n
j

)
+ iβj sin

(
2π

k

n
j

)]
; k ∈ [0, n).

(7) Go to step (4) for the next realization.

3. Conditional Sampler

The realizations output from the FFT-based unconditional simulator are
independent, identically distributed (i.i.d) which need to be constraint to the
hard data, a posteriori observations, that is, to minimize the objective func-
tion,

J =
m−1∑

i=0

(xsim
i − xobs

i )2,



“myThesis” — 2007/12/27 — 13:30 — page 125 — #147

APPENDIX B. AN FFT-BASED SAMPLER 125

where xi = xsim
i is the unconditional simulation value at the observation

location and xobs
i is the corresponding observed value. It can be viewed as to

tune the unconditional realizations to honor the observation.
Kriging tunes the realizations simply by setting the objective function to

zero. In this sense, Kriging is a minimum (square) error estimator. The critical
step in the kriging-based conditional simulation is to perform a smooth inter-
polation of the difference between conditioning data and the unconditional
simulation values. A traditional way to conditioning on local data is simply
to add an independently simulated residual by kriging into the unconditional
simulation (Journel and Huijbregts, 1978). This process calls for solving one
kriging system per location. In the code implementation, the basic conditional
simulation can be expressed by the kriging mean and error components condi-
tional to linear data plus a stochastic component through any unconditional
simulation. Mathematically it can be written as follows,

x = xu + (x∗K − x∗u,K),

where xu is the stochastic component through the FFT-based sampler and
x∗K − x∗u,K is the kriging error.

Sample Algorithm 3. Steps to obtaining a conditional simulation are as
follows,

(1) Generate an unconditional realization xu, e.g., by an FFT-based method;

(2) Obtain the kriging estimate x∗K using the data xobs;

(3) Obtain the kriging estimate x∗u,K using the unconditional simulated data
xu at the corresponding conditioning locations;

(4) Add the kriging error xu − x∗u,K to the kriging estimate x∗K .
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