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Valencia, Spain. (e-mail: angonsor@upv.es).

Abstract

This paper proposes novel conditions based on linear matrix inequalities
(LMI) for stability analysis of arbitrarily-fast time-varying delays systems.
The time-varying delay interval is divided into smaller pieces in order to
obtain an equivalent switched model with multiple time-varying delays of
smaller interval, which differently from other existing approaches, the maxi-
mum switching frequency is not required for stability analysis. Thus, by the
use of augmented Lyapunov-Krasovskii functionals and the Finsler’s lemma,
together with some relationships among state variables intentionally defined,
the inherent conservatism can be progressively reduced by refining more and
more the delay partition. The superiority of the proposed method is illus-
trated through two benchmark examples.

Keywords: Stability analysis, Time-varying delay, Delay partitioning,
Switched system, Lyapunov-Krasovskii method, Finsler’s Lemma

1. Introduction

Time-varying delays frequently appear in many engineering applications,
such as network control systems [? ], multiagent systems [? ] and vehicle
suspension systems [? ]. It is well known that the presence of delays gener-
ally leads to poor performance or even instability if they are large enough,
although some exceptions have been reported in [? ? ] where delays may
improve the system performance. Motivated by the influence of time delays
in the system behavior, the research of more efficient methods for stability
analysis of time delay systems has been addressed in last decades, where
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the survey [? ] gives an overview of the most recent contributions in this
topic. To cope with their infinite dimensional nature, the use of Lyapunov-
Krasovskii Functional (LKF) methods, among others, has been extensively
applied in this aim. The advantage of LKF is that the stability analysis
can be guaranteed by checking a finite number of Linear Matrix Inequalities
(LMI). Nevertheless, some degree of conservatism is unavoidable, depending
on the choice of the LKF and the bounding techniques used to linearize the
stability conditions.

Therefore, all efforts are aimed at reducing the inherent conservatism of
LKF-based approaches, where two main approaches can be distinguished:
(i) the research of more advanced structures of LKF: augmented LKF [?
? ], delay-partitioning method [? ? ? ], triple integral [? ? ] and
multiple integral based LKF [? ? ] among others, and (ii) the research
of bounding methods aimed at reducing the gap of the integral inequalities
of the form

∫ t
t−h x

T (s)Zx(s) by extending classical Jensen’s inequality to
Wirtinger’s inequality [? ? ] and other techniques, such as auxiliary-matrix
inequality [? ], free-matrix-based inequality [? ? ? ? ? ], and Bessel-
Legendre inequality [? ? ]. For time-varying delay systems, different methods
have been provided to handle the reciprocal convexity (see e.g., reciprocally
convex combination lemma [? ]), where further refinements of this method
have been proposed in [? ? ? ? ] by including more slack variables using
different strategies in order to obtain tighter boundings. Other recent works
introduced additional degree of freedom for stability analysis by means of
delay partitoning with delay-mode LKF in [? ], overlapped switching LKF
in [? ], and some relaxation techniques to deal with quadratic functions [? ?
] and cubic functions [? ] of time-varying delays, whose negativity is proved
by exploiting some geometrical properties [? ]. The wide number of recent
contributions in this field reveals that there still exists room for improvement
in the sense of conservatism reduction for stability analysis of time-varying
delay systems, which motivates this work.

The objective of this paper is to obtain new LMI based conditions for
time-varying delay systems allowing arbitrarily fast or discontinuous time-
varying delays, as usual in communication over networks [? ]. The proposed
method first divides the time-varying delay interval into smaller pieces so as
the time-varying delay system is modeled as a switched system with multiple
auxiliary delay functions of smaller delay interval. Hence, an augmented LKF
is proposed to obtain LMI conditions for stability analysis, where differently
from [? ], the LKF does not depend on the switching signal between the

2



defined auxiliary delays. In addition, some relationships among different
variables of the augmented state vector intentionally defined are treated by
Finsler’s Lemma [? ], leading to further conservatism reduction.

The remainder of the paper is organized as follows: Section ?? describes
the problem statement and gives some preliminary results. Section ?? de-
scribes the proposed delay partition method and the defined equivalence
between state variables. Section ?? presents the stability analysis crite-
ria, Section ?? shows and discusses the achieved improvements through two
benchmark examples, and finally some conclusions are gathered in Section
??.

2. Problem statement and preliminaries

Consider the following delayed system:

ẋ(t) = Ax(t) + Adx(t− d(t)), (1)

x(t) = φ(t), t ∈ [−d̄, 0]

where x(t) ∈ Rn is the state variable, the initial condition φ(t) : R → Rn is
a continuous function defined in [−d̄, 0], and 0 ≤ d(t) ≤ d̄ is a time-varying
delay function with no constraint on the time-derivative ḋ(t), that is to say,
arbitrarily fast time-varying delays are allowed.

The objective of the paper is to establish stability criteria for system
(??) based on the delay partition method described later in Section ?? so as
the conservatism can be reduced as long as the number of delay intervals is
higher. To this end, the following preliminary results are given:

Lemma 1 [? , Lemma 1] Let n be a positive integer and a, b two real values.
Given a symmetric matrix Z ∈ Rn > 0, for any continuous function ω in
[a, b]→ Rn, the following inequality holds:

(b− a)

∫ b

a

ω̇T (s)Zω̇(s)ds ≥ WT

Z 0 0
0 3Z 0
0 0 5Z

W (2)

where

W =

 ω(b)− ω(a)

ω(b) + ω(a)− 2
b−a

∫ b
a
ω(s)ds

ω(b)− ω(a) + 6
b−a

∫ b
a
ω(s)ds− 12

(b−a)2
∫ b
a

∫ b
θ
ω(s)dsdθ

 (3)
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Lemma 2 (Extended Reciprocally Convex Inequality) [? , Lemma
2] Let n be a positive integer, and Z ∈ Rn > 0 be a symmetric definite
matrix. If there exist symmetric matrices X1, X2, X3, X4 and full matrices
Y1, Y2, Y3, Y4 of appropriate dimensions such that[

Z − αX1 − α2X3 −αY1 − (1− α)Y2 − α2Y3 − (1− α)2Y4
(∗) Z − (1− α)X2 − (1− α)2X4

]
≥ 0 (4)

for α = 0, 1, then the following inequality holds ∀α ∈ (0, 1):[
1
α
Z 0

(∗) 1
1−αZ

]
≥
[
Z + S1 S2

(∗) Z + S3

]
(5)

where

S1 = (1− α)X1 + α(1− α)X3, S3 = αX2 + α(1− α)X4, (6)

S2 = αY1 + (1− α)Y2 + α2Y3 + (1− α)2Y4

Lemma 3 [? , Lemma 4] Let f(α) = g0 + g1α+ g2α
2 , where α ∈ [α, α] and

g0, g1, g2 ∈ R. Suppose that the following conditions are satisfied for a certain
integer Np > 1, (i) f(α) < 0, (ii) f(α) < 0, and (iii) δα

2Np+1 ḟ
(
j−1
2Np

δα + α
)

+

f
(
j−1
2Np

δα + α
)
, ∀j = 1, ..., 2Np with δα = α− α. Then f(α) < 0, ∀α ∈ [α, α].

Lemma 4 (Finsler’s Lemma) [? , Lemma 2] Let n be a positive integer,
Ξ ∈ Rn be a symmetric definite matrix, and T ∈ Rm×n such that m < n.
The following statements are equivalent:

• (i) ξTΞξ < 0, ∀ξ ∈ Rn / T ξ = 0, ξ 6= 0,

• (ii) ∃M ∈ Rn×m such that Ξ + (MT )T + (MT ) < 0,

• (iii) T ⊥TΞT ⊥ < 0

where T ⊥ is a right orthogonal complement of T .

3. Description of the proposed delay partition method

Before proceeding with the stability analysis, the idea is to divide the
time-varying delay interval I = [0, d̄] into N smaller pieces Iq such that
I = UNq=1Iq, where

Iq =

{
[δq−1, δq[, q = 1, ..., N − 1,

[δq−1, δq] q = N.
(7)
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Figure 1: Example of the proposed delay partition of a time-varying delay with d(t) =
1 + sin(t) and N = 2 subintervals I1,I2 with δ0 = 0, δ1 = 1, δ2 = 2.

and

δ0 = 0, δq := qδ, q = 1, ..., N, δ =
d̄

N
(8)

Now, let us introduce the following auxiliary time-varying delay functions
τq(t) ≡ τq(d(t)), q = 1, ..., N defined as:

τq(t) :=

{
d(t) if d(t) ∈ Iq,
δq−1 otherwise

(9)

which can be reformulated as

τq(t) = δq−1 + δαq(t) (10)

where 0 ≤ αq(t) ≤ 1 can be viewed as the normalized time-varying delay
corresponding to each τq(t), defined as:

αq(t) =
τq(t)− δq−1
δq − δq−1

=
τq(t)− δq−1

δ
(11)

Note that αq(t) can also be expressed as the convex sum:

αq(t) =
N∑
i=1

λi(t) ((1− αq(t))× 0 + αq(t)× γ̂q,i) =
N∑
i=1

λi(t)αq(t)γ̂q,i (12)
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where

γ̂q,i =

{
1 if q = i

0 otherwise
(13)

and λi(t), i = 1, ..., N are scalar functions defined as:

λi(t) =

{
1 if d(t) ∈ Ii
0 otherwise

(14)

satisfying the convex properties: 0 ≤ λi(t) ≤ 1 and
∑N

i=1 λi(t) = 1, ∀i =
1, ..., N . Note that system (??) can equivalently be modeled as the follow-
ing switched system with multiple time-varying delays with reduced delay
interval δ = d̄/N :

ẋ(t) = Ax(t) +
N∑
i=1

λi(t)Adx(t− τi(t)) (15)

understanding that i denotes the number of the delay subinterval Iq, q =
1, ..., N where d(t) is contained at instant t.

To better illustrate the above definitions, an example is provided in Fig.
1 for a time-varying delay d(t) = 1 + sin(t) (depicted in the top part of
the figure). Choosing N = 2, the two delay subintervals I1 = [δ0, δ1[ and
I2 = [δ1, δ2[ are obtained with δ0 = 0, δ1 = 1 and δ2 = 2. The second and
third pictures (from top to bottom) in Fig. 1 represent the time-evolution
of each time-varying delay function τq(t), q = 1, 2. It can be seen that
d(t) ∈ I2, ∀t ∈ [0, π[ (i = 2) and d(t) ∈ I1, ∀t ∈ [π, 2π[ (i = 1). Therefore,
λ1(t) = 0, λ2(t) = 1, τ1(t) ≡ δ0 = 0, τ2(t) = d(t) ∀t ∈ [0, π[, and λ1(t) = 1,
λ2(t) = 0, τ1(t) = d(t), τ2(t) ≡ δ1 = 1, ∀t ∈ [π, 2π[.

Remark 1 A similar approach was recently proposed in [? ] by modeling
the varying delay d(t) with the composition of multiple time-varying func-
tions (denoted as delay modes) defined in different delay intervals. However,
differently from [? ], each delay mode τq(t) is intentionally set to the lower
bound of the delay subinterval Iq, say, τq(t) = δq−1 when d(t) /∈ Iq. This
definition is helpful to reduce conservatism in the stability analysis, as later
discussed in Remark ??.
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Remark 2 The polytopic model adopted in (??) describes the switching be-
tween delay modes through the functions λi(t). This differs from [? ], where
a delay-mode based LKF is proposed with different conservatism depending
on the maximum switching frequency. In this paper, the stability is proven
here by convexity using continuous LKF (later depicted in (??), (??)) and the
polytopic description of system (??). Therefore, any arbitrarily fast switching
frequency between delay modes is allowed for the proposed stability analysis.

Remark 3 From the definition of λi(t) in (??), it can be deduced that λi(t)λj(t) =
0, ∀i 6= j and λ2i (t) = λi(t). Therefore, the equivalence:(

N∑
i=1

λi(t)Xi

)(
N∑
i=1

λi(t)Yi

)
=

N∑
i=1

λi(t)XiYi (16)

is fulfilled for any arbitrary matrices Xi,Yi of proper dimensions. This prop-
erty will play a key role to simplify the stability analysis by handling cross
product terms with linear dependence on λi(t) without increasing the number
of LMI constraints. More details about this advantage are given in Remark
??.

Remark 4 Let i the delay interval where d(t) is contained at instant t, say,
d(t) ∈ Ii, and λi(t) = 1. Then, by setting τq(t) = δq−1,∀q 6= i, the following
equivalences can be deduced:

N∑
i=1

λi(t) (x(t− τq∗(t))− x(t− δq∗−1)) = 0, (17)

q∗ = 1, ..., N, q∗ 6= i

The equivalences (??) will be useful to further reduce conservatism in stability
analysis by exploiting the above relationships by virtue of Lemma ??.

The equivalences (??) can be illustrated following the example of Fig. 1: for
instance, x(t−τ1(t))−x(t) = 0 is true since τ1(t) = 0 ∀t ∈ [0, π[. Analogously,
x(t− τ2(t))− x(t− 1) = 0 is true since τ1(t) = 1 ∀t ∈ [π, 2π[.

4. Stability analysis

First, let us introduce the helpful notation for next results:

ek =
[
01×k−1 1 01×8N−k

]
⊗ In, 1 ≤ k ≤ 8N (18)
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understanding that 01×0 represents the empty set. Given a set of positive

integers denoted by χ = [k1, ..., km], let eχ =
[
eTk1 ... eTkm

]T
. Then, consider

the matrices eχj , j = 1, ..., 9 and eχ10,i
, eχ11,i

with:

χ1 = [k / 1 ≤ k ≤ N ] , χ2 = [k / 2 ≤ k ≤ N + 1] , (19)

χ3 = [k / 2N + 2 ≤ k ≤ 3N + 1] , χ4 = [k / 3N + 2 ≤ k ≤ 4N + 1] ,

χ5 = [k / 4N + 2 ≤ k ≤ 5N + 1] , χ6 = [k / 5N + 2 ≤ k ≤ 6N + 1] ,

χ7 = [k / 6N + 2 ≤ k ≤ 7N + 1] , χ8 = [k / 7N + 2 ≤ k ≤ 8N − 1] ,

χ9 = [k / 7N + 2 ≤ k ≤ 8N ] , χ10,i = [k / 1 ≤ k ≤ N, k 6= i]

χ11,i = [k / N + 2 ≤ k ≤ 2N + 1, k −N − 1 6= i] , i = 1, ..., N

Also, let us introduce the augmented vectors:

ξ1(t) =
[
xT (t), xT (t− δ1), · · · , xT (t− δN−1)︸ ︷︷ ︸

N

, u1(t), · · · , uN(t)︸ ︷︷ ︸
N

, ũ1(t), · · · , ũN(t)︸ ︷︷ ︸
N

]T
,

ξ2(t) =
[
xT (t), xT (t− δ1), · · · , xT (t− δN−1)︸ ︷︷ ︸

N

, ẋT (t), ẋT (t− δ1), · · · , ẋT (t− δN−2)︸ ︷︷ ︸
N−1

]T
,

uq(t) =

∫ t−δq−1

t−δq
x(s)ds, ũq =

∫ t−δq−1

t−δq

∫ t−δq−1

s

x(θ)dθds, q = 1, ..., N.

(20)

and

ξ̄(t) =
[
xT (t), xT (t− δ1), · · · , xT (t− δN)︸ ︷︷ ︸

N+1

, xT (t− τ1(t)), · · · , xT (t− τN(t))︸ ︷︷ ︸
N

,

vT1 (t), · · · , vTN(t)︸ ︷︷ ︸
N

, wT1 (t), · · · , wTN(t)︸ ︷︷ ︸
N

, ṽT1 (t), · · · , ṽTN(t)︸ ︷︷ ︸
N

, w̃T1 (t), · · · , w̃TN(t)︸ ︷︷ ︸
N

uT1 (t), · · · , uTN(t)︸ ︷︷ ︸
N

, ẋT (t− δ1), · · · , ẋT (t− δN−1)︸ ︷︷ ︸
N−1

]T
, (21)

where

vq(t) =
1

τq(t)− δq−1

∫ t−δq−1

t−τq(t)
x(s)ds, wq(t) =

1

δq − τq(t)

∫ t−τq(t)

t−δq
x(s)ds,

ṽq(t) =
1

(τq(t)− δq−1)2
∫ t−δq−1

t−τq(t)

∫ t−δq−1

s

x(s)dθds, (22)

w̃q(t) =
1

(δq − τq(t))2
∫ t−τq(t)

t−δq

∫ t−τq(t)

s

x(θ)dθds, q = 1, ..., N
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The notation He(.) denotes He(.) = (.) + (.)T for any input matrix, and the
symbol (∗) in a matrix denotes the term induced by symmetry.

The following theorem proves the stability of (??) for any arbitrarily-fast
varying delay 0 ≤ d(t) ≤ d̄, given a certain number of delay subintervals
N > 1:

Theorem 1 Given a maximum delay d̄ and some partition N > 1, sys-
tem (??) is stable for a certain integer Np > 1 if there exist symmetric
matrices P ∈ R3nN , Q ∈ R2nN−n, Zi ∈ Rn > 0, symmetric matrices
X1,i, X2,i, X3,i, X4,i ∈ R3n, i = 1, ..., N , and full matrices Y1,i, Y2,i, Y3,i, Y4,i ∈
R3n,M1,i,M2,i ∈ R(8nN)×(nN) such that the following LMIs hold ∀[i, j] =
[1, ..., N ]× [1, ..., 2Np ]:

Π⊥T8,i (F1,i) Π⊥8,i < 0, Π⊥T8,i (F1,i + F2,i + F3,i) Π⊥8,i < 0, (23)

Π⊥T8,i

(
F1,i +

(
2j − 1

2Np+1

)
F2,i +

(
j2 − j
22Np

)
F3,i

)
Π⊥8,i < 0

and

G1,i ≥ 0, G1,i + G2,i + G3,i ≥ 0, (24)

G1,i +

(
2j − 1

2Np+1

)
G2,i +

(
j2 − j
22Np

)
G3,i ≥ 0

where Π⊥8,i denote a right orthogonal complement of Π8,i = eχ10,i
− eχ11,i

(say,
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any matrix Π⊥8,i satisfying Π8,iΠ
⊥
8,i = 0), and

F1,i = He
(
ΠT

11PΠ2,i +M1,iΠ71

)
+ ΠT

3,iQΠ3,i − ΠT
4QΠ4 + ΠT

5,iZ̄Π5,i − Π61,

F2,i = He
(
ΠT

12,iPΠ2,i +M1,iΠ72,i +M2,iΠ71

)
− Π62,i, (25)

F3,i = He
(
ΠT

13,iPΠ2,i +M2,iΠ72,i

)
− Π63,i,

G1,i =

[
Zi −Y2,i − Y4,i
(∗) Zi −X2,i −X4,i

]
, G2,i =

[
−X1,i −Y1,i + Y2,i + 2Y4,i

(∗) X2,i + 2X4,i

]
,

G3,i =

[
−X3,i −Y3,i − Y4,i

(∗) −X4,i

]
,

Π11 =

 eχ1

eχ7

δ2eχ6

 , Π12,i =

 0
0

δ2Γ̂i (eχ3 − 2eχ6)

 ,Π13,i =

 0
0

δ2Γ̂i (eχ5 + eχ6 − eχ3)

 ,
Π2,i =


Ω̂i

eχ9

eχ1 − eχ2

δeχ1 − eχ7

 , Π3,i =

eχ1

Ω̂i

eχ8

 , Π4 =

[
eχ2

eχ9

]
, Π5,i =

[
Ω̂i

eχ9

]
,

Π61 =
N∑
q=1

WqΦ1,qWT
q , Π62,i =WiΦ2,iWT

i , Π63,i =WiΦ3,iWT
i ,

Π71,i = δeχ4 − eχ7 , Π72,i = δΓ̂i (eχ3 − eχ4) ,

Φ1,i =

[
Zi +X1,i Y2,i + Y4,i

(∗) Zi

]
, Φ2,i =

[
X3,i −X1,i Y1,i − Y2,i − 2Y4,i

(∗) X2,i +X4,i

]
,

Φ3,i =

[
−X3,i Y3,i + Y4,i

(∗) −X4,i

]
, (26)

Zi = diag (Zi, 3Zi, 5Zi) , Z̄ = δ2
(
diagNq=1Zq

)
, Wi =

[
WT

1,i WT
2,i

]
,

W1,i =

 ei − eN+1+i

ei + eN+1+i − 2e2N+1+i

ei − eN+1+i + 6e2N+1+i − 12e4N+1+i

 , (27)

W2,i =

 eN+1+i − e1+i
eN+1+i + e1+i − 2e3N+1+i

eN+1+i − e1+i + 6e3N+1+i − 12e5N+1+i

 ,
Ω̂i = Ae1 + AdeN+1+i, Γ̂i = diag

([
01×i−1 1 01×N−i

])
⊗ In
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Proof : Consider the Lyapunov functional:

V (t) = V1(t) + V2(t) + V3(t) (28)

where

V1(t) = ξT1 (t)Pξ1(t), (29)

V2(t) =

∫ t

t−δ
ξT2 (s)Qξ2(s)ds

V3(t) = δ
N∑
q=1

∫ 0

−δ

∫ t

t+s

ẋT (θ − δq−1)Zqẋ(θ − δq−1)dθds

Time-derivative of V1(t), V2(t) and V3(t) render:

V̇1(t) = ξ̇T1 (t)Pξ1(t) + ξT1 (t)P ξ̇1(t), (30)

V̇2(t) = ξT2 (t)Qξ2(t)− ξT2 (t− δ)Qξ2 (t− δ) ,

V̇3(t) =
N∑
q=1

ẋT (t− δq−1)
(
δ2Zq

)
ẋ(t− δq−1)− δ

N∑
q=1

∫ t−δq−1

t−δq
ẋT (s)Zqẋ(s)ds

The integral terms in the rightmost part of V̇3(t) given in (??) can be de-
composed as:

δ

∫ t−δq−1

t−δq
ẋT (s)Zqẋ(s)ds = (31)

1

αq(t)
(τq(t)− δq−1)

∫ t−δq−1

t−τq(t)
ẋT (s)Zqẋ(s)ds

+
1

1− αq(t)
(δq − τq(t))

∫ t−τq(t)

t−δq
ẋT (s)Zqẋ(s)ds

where 0 ≤ αq(t) ≤ 1 is the normalized time-varying delay defined in (??).
Applying the extended Wirtinger’s inequality (Lemma ??), we obtain:

− (τq(t)− δq−1)
∫ t−δq−1

t−τq(t)
ẋT (s)Zqẋ(s)ds ≤ −ξ̄T (t)WT

1,qZqW1,q ξ̄(t), (32)

− (δq − τq(t))
∫ t−τq(t)

t−δq
ẋT (s)Zqẋ(s) ≤ −ξ̄T (t)WT

2,qZqW2,q ξ̄(t).
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Hence, from (??)-(??), one has that

δ

∫ t−δq−1

t−δq
ẋT (s)Zqẋ(s)ds ≤ ξ̄T (t)

(
1

αq(t)
WT

1,qZqW1,q +
1

1− αq(t)
WT

2,qZqW2,q

)
ξ̄(t),

(33)

where αq(t) is above defined in (??). By applying the extended reciprocally
convex inequality (see Lemma ??), the following inequality is obtained:

1

αq(t)
WT

1,qZqW1,q +
1

1− αq(t)
WT

2,qZqW2,q ≤ WqΦq(t)WT
q , (34)

where Φq(t) is defined as:

Φq(t) =

[
Zq + S1,q(t) S2,q(t)

(∗) Zq + S3,q(t)

]
(35)

with

S1,q(t) = (1− αq(t))X1,q + αq(t) (1− αq(t))X3,q, (36)

S2,q(t) = αq(t)Y1,q + (1− αq(t))Y2,q + α2
q(t)Y3,q + (1− αq(t))2 Y4,q

S3,q(t) = αq(t)X2,q + αq(t) (1− αq(t))X4,q

being X1,q, X2,q, X3,q, X4,q symmetric matrices and Y1,q, Y2,q, Y3,q, Y4,q full ma-
trices satisfying:[

Zq 0
(∗) Zq

]
− αq(t)

[
X1,q Y1,q
(∗) 0

]
− (1− αq(t))

[
0 Y2,q

(∗) X2,q

]
(37)

− α2
q(t)

[
X3,q Y3,q
(∗) 0

]
− (1− αq(t))2

[
0 Y4,q

(∗) X4,q

]
≥ 0,

or equivalently expressed with the definition of G1,q, G2,q, G3,q in (??) as

G1,q + G2,qαq(t) + G3,qα2
q(t) ≥ 0 (38)

From the above definitions and uq(t), ũq(t) in (??), the following equivalences
can be deduced:

uq(t) = (τq(t)− δq−1) vq(t) + (δq − τq−1(t))wq(t) (39)

12



and

ũq(t) = (τq(t)− δq−1)2 ṽq(t) + (δq − τq−1(t))2 w̃q(t) (40)

+ (τq(t)− δq−1) (δq − τq−1(t)) vq(t)

Considering the definitions of ξ1(t) and ξ2(t) in (??), the above equivalence
(??), and the system model (??), the terms given below can be expressed as
a function of the augmented state ξ̄(t) given in (??):

ξ1(t) = Π1(t)ξ̄(t), ξ̇1(t) = Π2(t)ξ̄(t), (41)

ξ2(t) = Π3ξ̄(t), ξ2 (t− δ) = Π4ξ̄(t),

ẋ(t) = Ω(t)ξ̄(t), ẋ (t− δq−1) = e7N+1+q ξ̄(t), q = 2, ..., N,

where

Π1(t) =

 eχ1

eχ7

D0(t)eχ5 +D1(t)eχ6 +D2(t)eχ3

 , (42)

Π2(t) =


Ω(t)
eχ9

eχ1 − eχ2

δeχ1 − eχ7

 , Π3(t) =

 eχ1

Ω(t)
eχ8

 , Π5(t) =

[
Ω(t)
eχ9

]
,

D0(t) = diagNq=1 (τq(t)− δq−1)2 ⊗ In = δ2Λ2(t)eχ5 ,

D1(t) = diagNq=1 (δq − τq(t))2 ⊗ In = δ2 (I − Λ(t))2 eχ6 ,

D2(t) = diagNq=1 (τq(t)− δq−1) (δq − τq(t))⊗ In = δ2Λ(t) (I − Λ(t)) eχ3

and

Λ(t) = diagNq=1 (αq(t)) , Ω(t) =
N∑
i=1

λi(t)Ω̂i (43)

From (??), (??), (??) and (??), the time-derivatives V̇1(t) and V̇2(t) can
be expressed as:

V̇1(t) = ξ̄T (t)He
(
ΠT

1 (t)PΠ2(t)
)
ξ̄(t), (44)

V̇2(t) = ξ̄T (t)
(
ΠT

3 (t)QΠ3(t)− ΠT
4QΠ4

)
ξ̄(t),
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and V̇3(t) can be bounded by applying (??)-(??) as:

V̇3(t) ≤ ξ̄T (t)
(
ΠT

5 (t)Z̄Π5(t)− Π6(t)
)
ξ̄(t) (45)

where Π6(t) =
∑N

q=1WqΦq(t)WT
q with Φq(t) is defined in (??). Then, the

stability of system (??) can be ensured by proving

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) ≤ ξ̄T (t)Π̄(t)ξ̄(t) < 0, ∀t ≥ 0 (46)

where

Π̄(t) = He
(
ΠT

1 (t)PΠ2(t)
)

+ ΠT
3 (t)QΠ3(t) (47)

− ΠT
4QΠ4 + ΠT

5 (t)Z̄Π5(t)− Π6(t)

provided that the following constraint obtained from (??) holds:

Π7(t)ξ̄(t) = 0 (48)

where

Π7(t) = diagNq=1 (τq(t)− δq−1) eχ3 + diagNq=1 (δq − τq(t)) eχ4 − eχ7 (49)

= δΛ(t)eχ3 + δ(I − Λ(t))eχ4 − eχ7

Moreover, as pointed out in Remark ??, if we take into consideration the new
relationships defined in (??), then we have the following extra conditions:

N∑
i=1

λi(t) (eq∗ − eN+1+q∗) ξ̄(t) = 0, ∀q∗ = 1, ..., N, q∗ 6= i. (50)

which can be gathered into a single constraint that depends on the delay
interval Ii where d(t) is contained at instant t:

Π8(t)ξ̄(t) = 0 (51)

where

Π8(t) =
N∑
i=1

λi(t)Π8,i, Π8,i = eχ10,i
− eχ11,i

14



Applying Lemma ?? (Finsler’s lemma), it can be ensured that (??) subjected
to (??) and (??) holds if there exist matrices of suitable dimensions M1(t)
and M2(t) such that the inequality below is true:

Π̄(t) +He (M1(t)Π7(t)) +He (M2(t)Π8(t)) < 0 (52)

It should be noticed that condition (??) implies an infinite number of matrix
inequalities to be checked due to its dependence on time. To circumvent this
issue, in what follows a polytopic description for all terms depending on time
will be found. First, taking into consideration the normalized delays αq(t)
given in the form (??) and the fact that αq(t) = 0,∀q 6= i and αi(t) = 1, it
can be seen that Λ(t) in (??) can be expressed as:

Λ(t) =
N∑
i=1

λi(t)
(

(1− αi(t))× 0nN + αi(t)× Γ̂i

)
=

N∑
i=1

λi(t)αi(t)Γ̂i (53)

From the property of functions λi(t) given in (??), one has that

Λ2(t) =
N∑
i=1

λi(t)α
2
i (t)Γ̂

2
i , (54)

Λ(t) (I − Λ(t)) =
N∑
i=1

λi(t)
(
αi(t)Γ̂i − α2

i (t)Γ̂
2
i

)
Noting from (??) that γ̂2q,i = γ̂q,i = 0, ∀q 6= i, γ̂2i,i = γ̂i,i = 1 and taking into

account (??), it is easy to see that Γ̂2
i = Γ̂i, and hence the matrix Π1(t) can

be rewritten as Π1(t) =
[
eTχ1

eTχ7
δ2gT (t)

]T
, where

g(t) ≡ Λ2(t)eχ5 + (I − Λ(t))2 eχ6 + Λ(t) (I − Λ(t)) eχ3 (55)

N∑
i=1

λi(t)
(
eχ6 + αi(t)Γ̂i (eχ3 − 2eχ6) + α2

i (t)Γ̂i (eχ5 + eχ6 − eχ3)
)
.

Therefore, the time-varying terms Π1(t), Π2(t), Π3(t), Π5(t) and Π7(t) in
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(??) and (??) can be reformulated as:

Π1(t) =
N∑
i=1

λi(t)
(
Π11 + αi(t)Π12,i + α2

i (t)Π13,i

)
, (56)

Π2(t) =
N∑
i=1

λi(t)Π12,i, Π3(t) =
N∑
i=1

λi(t)Π3,i, Π5(t) =
N∑
i=1

λi(t)Π5,i

Π7(t) =
N∑
i=1

λi(t)
(
δeχ4 − eχ7 + αi(t)δΓ̂i (eχ3 − eχ4)

)
=

N∑
i=1

λi(t) (Π71 + αi(t)Π72,i)

Analogously, the time-varying terms S1,q(t), S2,q(t), S3,q(t) in (??) can be re-
formulated as:

S1,q(t) =
N∑
i=1

λi(t)
(
X1,q + αq(t)γ̂q,i(X3,q −X1,q)− α2

q(t)γ̂q,iX3,q

)
, (57)

=
N∑
i=1

λi(t)
(
X1,q + αi(t)(X3,i −X1,i)− α2

i (t)X3,i

)
,

S2,q(t) =
N∑
i=1

λi(t)
(
Y2,q + Y4,q + αq(t)γ̂q,i(Y1,q − Y2,q − 2Y4,q) + α2

q(t)γ̂q,i(Y3,q + Y4,q)
)
,

=
N∑
i=1

λi(t)
(
Y2,q + Y4,q + αi(t)(Y1,i − Y2,i − 2Y4,i) + α2

i (t)(Y3,i + Y4,i)
)
,

S3,q(t) =
N∑
i=1

λi(t)
(
αq(t)γ̂q,i(X2,q +X4,q)− α2

q(t)γ̂q,iX4,q

)
=

N∑
i=1

λi(t)
(
αi(t)(X2,i +X4,i)− α2

i (t)X4,i

)
,

and therefore from (??) and (??) one has that

Π6(t) =
N∑
q=1

WqΦq(t)WT
q =

N∑
i=1

λi(t)
(
Π61 + αi(t)Π62,i + α2

i (t)Π63,i

)
(58)
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Hence, noting again the property of λi(t) given in (??) and defining

M1(t) =
N∑
i=1

λi(t) (M1,i + αi(t)M2,i) , M2(t) =
N∑
i=1

λi(t)M̃i, (59)

the time-dependent condition (??) can be written as the convex sum of the
functions fi(αi(t)) = F1,i + αi(t)F2,i + α2

i (t)F3,i, i = 1, ..., N , that is to say:

N∑
i=1

λi(t)
(
fi(αi(t)) +He

(
M̃iΠ8,i

))
< 0 (60)

where F1,i,F2,i,F3,i are defined in (??). By convexity, the inequality (??) is
true if the following conditions are true ∀i = 1, ..., N

fi(αi(t)) +He
(
M̃iΠ8,i

)
< 0 (61)

Applying again the Finsler’s Lemma, the slack variables M̃i can be removed
from above inequalities (??), leading to the equivalent conditions:

Π⊥T8,i (fi(αi(t))) Π⊥8,i < 0, i = 1, ..., N (62)

Finally, noting that 0 ≤ αi(t) ≤ 1 and the quadratic dependence on αi(t) in
fi(αi(t)), applying Lemma ?? with α = 0, α = 1, the above conditions (??)
and (??) hold if LMIs (??) and LMIs (??) are respectively true, concluding
the proof. �

Remark 5 Note that the Lyapunov functional V (t) (??) is independent of
λi(t) (??) and the discontinuous time-varying delays functions defined in
(??). From this fact and the proof of Theorem ??, it can be deduced that
V (t) is continuous and decreasing at the switching time instants between
delay modes.

The following corollary is obtained from Theorem ?? without taking into
account the equivalences (??)

Corollary 1 Given a maximum delay d̄ and some partition N > 1, sys-
tem (??) is stable for a certain integer Np > 1 if there exist symmetric
matrices P ∈ R3nN , Q ∈ R2nN−n, Zi ∈ Rn > 0, symmetric matrices
X1,i, X2,i, X3,i, X4,i ∈ R3n, i = 1, ..., N , and full matrices Y1,i, Y2,i, Y3,i, Y4,i ∈
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R3n,M1,i,M2,i ∈ R(8nN)×(nN) such that LMIs (??) and (??) (depicted below)
hold ∀[i, j] = [1, ..., N ]× [1, ..., 2Np ]:

F1,i < 0, F1,i + F2,i + F3,i < 0, (63)

F1,i +

(
2j − 1

2Np+1

)
F2,i +

(
j2 − j
22Np

)
F3,i < 0

where F1,i,F2,i,F3,i are defined in (??).

Proof : The proof is similar to Theorem ??, but without including the con-
straints (??) derived from (??). Hence, the condition (??) renders:

Π̄(t) +He (M1(t)Π7(t)) < 0 (64)

which can equivalently be formulated as

N∑
i=1

λi(t)fi(αi(t)) < 0 (65)

Finally, the above condition can be proved checking the LMIs (??) by apply-
ing Lemma ??. �

Remark 6 The property (??), together with the polytopic model (??) and
the definition of M1(t),M2(t) in (??), leads to a reduction of the number of
LMIs in Theorem 1 and Corollary 1 since the product terms Π1(t)PΠ2(t),
ΠT

3 (t)QΠ3(t), ΠT
5 (t)Z̄Π5(t), Λ2(t), M1(t)Π7(t), M2(t)Π8(t) in (??), (??),

(??) contain N terms, instead of N2.

Remark 7 In view of the elimination of the slack variables M̃i via Finsler’s
Lemma (see (??) and (??)), the number of decision variables (NoV) are
the same Theorem 1 and Corollary 1: NoV = (22.5N2 + 25.5N + 0.5)n2 +
(6N − 0.5)n. This fact reveals that the defined relationships (??) are useful
to reduce conservatism by applying Finsler’s Lemma without increasing the
complexity of the stability analysis method given in Theorem 1, as illustrated
in next section.

5. Numerical examples

In this section, two benchmark examples are provided to compare the
maximum delay bound estimation obtained with the proposed method re-
spect to other ones reported in the literature where an upper bound for the
time-derivative of the varying delay function is not available.
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5.1. Example 1

Method d̄ NoV
[? , Theorem 1] 1.64 143
[? , Theorem iv] 1.862 93
[? , Theorem 1] 1.975 -
[? , Theorem 1] 2.395 365

[? , Proposition 6-(ii)] 2.53 485
[? , Theorem 2] 2.542 424

Theorem 1 (N=2, Np = 3) 2.82 589
Theorem 1 (N=3, Np = 3) 3.40 1153
Theorem 1 (N=4, Np = 3) 3.77 1897
Corollary 1 (N=2, Np = 3) 2.79 589
Corollary 1 (N=3, Np = 3) 3.34 1153
Corollary 1 (N=4, Np = 3) 3.69 1897

Table 1: Maximum delay bound d̄ for different number of delay subintervals N (Example
1)

Consider system (??) with system matrices

A =

[
0 1
−10 −1

]
, Ad =

[
0 0.1

0.1 0.2

]
(66)

The maximum delay bound d̄ obtained by means of Theorem ?? and Corol-
lary ?? for different numbers of delay subintervals N is compared in Table 1
with previous results [? ? ? ? ]. It can be seen that both stability criterions
allow to obtain a more accurate estimation of the maximum delay d̄ as long
as N increases, outperforming the best estimation of d̄ reported in previous
results for N ≥ 2.

Moreover, the benefits of the relationships (??) considered in Theorem ??
by the Finlser’s Lemma can be appreciated comparing the results given by
Corollary ?? and Theorem ??: for a given number of delay intervals N , The-
orem ?? gives less conservative estimations of d̄ in comparison to Corollary
1 with the same number of decision variables, showing the effectiveness of
these equivalences, as above discussed in Remark ??. For a fair comparison
between the results obtained with different number of delay intervals N , the
same value for Np = 3 has been chosen. In this example, Np > 3 does not
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Figure 2: Simulation of the state responses obtained for 100 simulations with a time-
varying delay randomly generated satisfying 0 ≤ d(t) ≤ 3.77 (Example 1)

give appreciable conservatism reduction in the estimation of the maximum
delay d̄.

Fig. ?? represents the state evolution of system in Example 1 with initial
condition φ(t) = [2 3]T , t ∈ [d̄, 0]. In order to illustrate the effectiveness
of the proposed method, a large number of simulations with different time-
varying delay functions randomly generated satisfying 0 ≤ d(t) ≤ d̄ have been
performed with d̄ = 3.77 (the larger delay bound, obtained with Theorem
1 and N = 3, Np = 3 depicted in Table 1). It can be appreciated that the
system is stable, as could be expected from the results in Table 1.

5.2. Example 2

Consider system (??) with system matrices

A =

[
−2 0
0 −0.9

]
, Ad =

[
−1 0
−1 −1

]
(67)

The achieved improvements are illustrated in Table 2, where tighter esti-
mations of the maximum delay bound d̄ are obtained by Theorem ?? with
respect to previous results reported in [? ? ? ]. An exception is found in
[? ], where less conservative estimations of d̄ are given. This fact can be
explained from the relaxation given by the maximum switching frequency
between delay modes (namely fi) in [? ], whereas the proposed method
proves the stability, no matter how fast delay modes switch (see Remark
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??). Analogously, the parameter Np used in Lemma ?? has been chosen to
be Np = 2 in all cases for a fair comparison between the results obtained
with different number of delay intervals N . In this example, Np > 2 does not
give appreciable conservatism reduction in the estimation of the maximum
delay d̄.

Method d̄ Number of variables
[? ] 2.24 34.5n2 + 3.5n
[? ] 2.243 28.5n2 + 5.5n
[? ] 2.26 154.5n2 + 4.5n

[? ]
(
N = 2, fi <

0.01
ln(1.5)

)
2.33 19n2 + 5n

[? ]
(
N = 3, fi <

0.01
ln(1.5)

)
2.42 28.5n2 + 7.5n

Theorem ?? (N=2, Np = 2) 2.34 141.5n2 + 11.5n
Theorem ?? (N=3, Np = 2) 2.35 279.5n2 + 17.5n

Table 2: Maximum delay bound d̄ for different number of partitions N (Example 2)

6. Conclusions and perspectives

This paper has proposed a novel LMI-based condition for stability anal-
ysis of arbitrarily fast time-varying delay systems based on a delay parti-
tioning of the time-varying delay interval. A switched system model with
multiple delays of smaller interval has been obtained for this purpose. The
Lyapunov-Krasovskii method has been combined with the Finsler’s lemma
by including some defined relationships between state variables without in-
volving extra decision variables. As a result, conservatism can be reduced
in comparison to previous methods reported in the literature. Finally, two
benchmark examples have been provided to show the effectiveness of the
proposed approach.
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