

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/196930

Guzmán-Giménez, J.; Valera Fernández, Á.; Mata Amela, V.; Díaz-Rodríguez, MÁ. (2023).
Automatic selection of the Groebner Basis' monomial order employed for the synthesis of
the inverse kinematic model of non-redundant open-chain robotic systems. Mechanics
Based Design of Structures and Machines. 51(5):2458-2480.
https://doi.org/10.1080/15397734.2021.1899829

https://doi.org/10.1080/15397734.2021.1899829

Taylor & Francis

This is an Author's Accepted Manuscript of an article published in José Guzmán-Giménez,
Ángel Valera Fernández, Vicente Mata Amela & Miguel Ángel Díaz-Rodríguez (2023)
Automatic selection of the Groebner Basis¿ monomial order employed for the synthesis of
the inverse kinematic model of non-redundant open-chain robotic systems, Mechanics
Based Design of Structures and Machines, 51:5, 2458-2480, DOI:
10.1080/15397734.2021.1899829 [copyright Taylor & Francis], available online at:
http://www.tandfonline.com/10.1080/15397734.2021.1899829

RESEARCH ARTICLE

Automatic Selection of the Groebner Basis’ Monomial Order

employed for the Synthesis of the Inverse Kinematic Model of

Non-Redundant Open-Chain Robotic Systems

J. Guzmán-Giméneza, A. Valera Fernándeza, V. Mata Amelab and M. A.
Dı́az-Rodŕıguezc

aInstituto de Automática e Informática Industrial, Universitat Politècnica de València,
Camino de Vera, s/n, 46022 Valencia, Spain; bCentro de Investigación en Ingenieŕıa
Mecánica, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain;
cDepartamento de Tecnoloǵıa y Diseño, Universidad de Los Andes, 5101 Mérida, Venezuela

ARTICLE HISTORY

Compiled April 21, 2021

ABSTRACT
The most commonly used method employed to synthesize the IKM of open-chain
robotic systems is based on geometry methods. However, these methods strongly
depend on the geometry of the analyzed robot, making it difficult to systematize.
In previous work, we devised a systematic approach relying on Groebner Bases to
synthesize the IKM of non-redundant open-chain robotic systems. Nevertheless, this
study expands further the developed procedure. Specifically, we develop a method-
ology for the automatic selection of the basis’ monomial order. The procedure’s
inputs are the robot’s Denavit-Hartenberg parameters, while the outputs are the
mathematical equations defining the IKM in a form that can be directly used for
the control or simulation of the robot. The developed procedure can be applied to
synthesize the IKM of several types of robot systems such as Cartesian, SCARA,
non-redundant, and multi-legged walking robot, and all the non-redundant robotic
manipulators satisfying the in-line wrist condition. The performance of the pro-
posed approach is evaluated through two study cases considering non-redundant
open-chain robotic systems: a walking hexapod robot and a PUMA serial robot.
The optimal monomial order is successfully identified for all cases. The output er-
rors of all the synthesized IKMs are negligible when evaluated in their corresponding
workspaces, while their computation times are comparable to those required by the
kinematic models calculated following traditional methods.

KEYWORDS
Kinematic Problem; Inverse Kinematic Model (IKM); Groebner Basis; monomial
ordering; non-redundant open-chain robotic systems

AMS CLASSIFICATION
70B15, 93C85

PACS CLASSIFICATION
45.40.Ln, 45.40.Aa, 45.40.Bb

CONTACT: J. Guzmán-Giménez. Email: joguz@upvnet.upv.es

Figure 1. Inverse Kinematic Model (IKM) as a part of the robot’s control system. The IKM’s outputs are

the references for the robot’s multi-axis control.

1. Introduction

The resolution of a robot’s Kinematic Problem can be divided in two parts: the For-
ward Kinematics Problem (FKP) and the the Inverse Kinematic Problem (IKP). The
solution of the FKP, commonly referred as the robot’s Forward Kinematics, is the
equation system that calculates the pose of a specific point of the robot’s structure
according to its current state. This point is normally an important one in its structure,
such as the end effector of a robotic manipulator or the center of mass of a mobile
robot.

The Forward Kinematics is necessary for modeling the robot’s movements, while
it is also important for the synthesis of the Inverse Kinematic Model (IKM). The
function of this IKM, synthesized by solving the IKP, is to calculate the position and
velocity references required by the robot’s actuators to follow a trajectory. The IKM,
as shown in Figure 1, is a fundamental part of the robot’s control system.

The Forward Kinematics of an open-chain robot can be easily calculated by the
application of different systematic procedures, which include Denavit-Hartenberg’s
algorithm (1 –3), dual quaternions (4 –6) and the modeling by Displacement Matrices
(7). All these procedures are completely independent of the mechanical complexity of
the robot’s structure or its geometry.

In contrast, the techniques most commonly used to solve the IKP of open-chain
robotic systems, the geometric method and the analytical procedure, strongly depend
on the robot’s geometry (8). They synthesize the robot’s IKM by either separating
the IKP into several plane geometry problems (3), or by solving the state vector of the
robot’s actuators in the equation system that defines the Forward Kinematics (9 –13).
But in both cases, these techniques depend heavily on the geometry of the robot’s
structure, which implies that they are not systematic procedures that can be equally
applied to all the possible cases.

To address this issue, various works have opted to use different artificial intelligence
techniques to solve the IKP of open-chain robotic systems, such as Neural Networks
(14 –16), Particle Swarm Optimization (PSO) (17), PSO-optimized Neural Networks
(18), Neuro-evolutionary Algorithms (combination of Neural Networks and Genetic
Algorithms) (19) and PSO variants (20 , 21). While these procedures satisfactorily
solve the problem, they could suffer from the known training problems of artificial
intelligence techniques, such as the over-fitting of Neural Networks and Genetic Al-
gorithms. It is also important to bear in mind that the solution offered by these
procedures is not a properly defined IKM. This is because the offered solution is not
composed of fully differentiable functions, therefore it will not be able to calculate the

2

speed or acceleration references for the robot’s actuators.
In order to implement systematic solutions for the Kinematic Problem, several

projects are being developed that use Groebner Basis theory (22). These works calcu-
late a Groebner Basis from the analyzed robot’s kinematic equations, to simplify the
process of solving the Kinematic Problem and, if possible, find an analytical solution.
The works of Kendricks (23) and Wang et al. (24) present a systematic method to
solve the IKP of robotic manipulators using Groebner Bases. Rameau et al. (25) use
this theory to calculate the mobility conditions of several mechanisms that can be used
in robotic arms or parallel robots, while Abbasnejad et al. (26) use it for the kinematic
analysis of cable-driven robots. Groebner Basis theory may also be used to solve the
kinematic problem of closed-chain robotic systems, as is the case of the works of Gan
et al. (27) and Huang et al. (28), which employ it to solve the FKP of parallel robots,
while Uchida et al. (29) use Groebner Bases to triangularize the kinematic constraint
equations of this type of robots.

Based on those previous works, in (8) we presented a systematic procedure for the
synthesis of the IKM of non-redundant open-chain robotic systems, that uses Groebner
Basis theory to find an analytical solution for the IKP of this type of robots. The
main objective of that work was to develop a systematic procedure that requires the
least amount of input information from the user. This objective was mainly achieved,
because the only required inputs for the developed procedure are the robot’s Denavit-
Hartenberg (D-H) parameters and the movement range of its actuators, but the user
still have to select the monomial order of the employed Groebner Basis. This monomial
order selection requires extra knowledge of the robot’s structure, because the optimal
monomial order is related to the correlation of its degrees of freedom (DoF).

All the previously mentioned works have this monomial order selection implied.
Some of those works state that they employ the same monomial order as the one in
which the variables are solved by the traditional methods (8), while most just present
the optimal order for their robotic system, without mentioning how it was selected
(23 , 25 –29).

In order to achieve a fully systematic procedure, it is necessary to develop a method
that automatically selects the optimal monomial order. The present work’s main ob-
jective is to expand the procedure originally shown in (8), which uses Groebner Basis
theory to synthesize the IKM of non-redundant open-chain robotic systems, with the
required method for the automatic selection of the Groebner Basis’ monomial order.
Section 2 contains the definition of the monomial order in Groebner Bases and presents
the different types of orders that can be used and their applications. The full procedure
is explained in Section 4, placing special emphasis in the automatic selection of the
monomial order. This updated procedure is used to calculate the IKM of two robots:
a walking hexapod and Unimate’s PUMA 560 manipulator, which are both shown
in Section 3. Section 5 shows the procedure’s performance analysis, proving that the
selected monomial order is the optimal for each application, and also comparing the
outputs of the synthesized IKMs with those of the reference models calculated by tra-
ditional methods. Finally Section 6 presents the conclusions of the obtained results
and the final remarks of this work, while Section 7 shows the future work that arise
from this research.

3

2. Monomial Ordering in Groebner Bases

The synthesis of an IKM using Groebner Basis theory begins with the Forward Kine-
matics of the analyzed robot, which is a multivariable trigonometric equation system.
Through the application of the systematic procedure originally presented in (8), this
trigonometric equation system is transformed into a multivariable polynomial equa-
tion system, which constitutes the generator set for an Ideal (30). It is from this Ideal
that the Groebner Basis is calculated.

The main objective of the Groebner Basis computation is to obtain a new equation
system, whose solution set is the same as that of the Ideal generator set. This new
equation system, also called basis, is easier to solve than the original multivariable
polynomial equation system and, if certain conditions are met, it has an analytical
solution (8 , 30).

An important factor of the Groebner Basis obtained from any Ideal is the monomial
ordering used in its calculation. This monomial ordering is defined in Definition 2.1
(30).

Definition 2.1. Monomial Ordering. A monomial ordering over a set of variables
x = [x1, x2, ..., xn] on the field k, normally represented as k[x1, x2, ..., xn], is any relation
> on the set of monomials xα, with α ∈ Zn≥0, that satisfies three conditions:

(1) The relation > is a total ordering on Zn≥0. This condition establishes that

for every pair of monomials, xα and xβ, with α = (α1, α2, ..., αn) and β =
(β1, β2, ..., βn) ∈ Zn≥0, exactly one of the three following statements is true:

xα > xβ , xα = xβ or xβ > xα.
(2) If xα > xβ and γ = (γ1, γ2, ..., γn) ∈ Zn≥0, then x(α+γ) > x(β+γ).
(3) > is a well-ordering on Zn≥0. This means that every non-empty subset of Zn≥0 has

a smallest element under this ordering.

The main three types of monomial orderings used in Groebner Bases calculations
are: Lexicographic Order (lex), Graded Lexicographic Order (grlex) and Graded Re-
verse Lexicographic Order (grevlex) (30).

The lexicographic order (lex) arranges the monomials following a strict ordering in
which a variable always precedes those of lesser value in the order, in an analogous
way to the ordering of words in a dictionary. This type of monomial ordering is defined
in definition 2.2 (30).

Definition 2.2. Lexicographic Order (lex). The lex order establishes that xα >lex
xβ if and only if, in the vector difference α − β ∈ Zn≥0, the leftmost non-zero entry is
positive.

With the lex order, a variable will always dominate any monomial involving only
smaller variables, regardless of its total degree. For some purposes, it is desirable to
take into account the total degree of monomials, ordering them by total degree first.
This is done by using the graded lexicographic order (grlex), presented in definition
2.3 (30).

Definition 2.3. Graded Lexicographic Order (grlex). The grlex order estab-
lishes that xα >grlex x

β if the condition of Equation (1) is met:

4

|α| =
n∑
i=1

αi > |β| =
n∑
i=1

βi (1)

or, in the case that |α| = |β|, if xα >lex x
β, i.e. if the leftmost non-zero entry of α− β

is positive.

To reduce the computation time of Groebner Bases, a variation of the grlex, known
as the graded reverse lexicographic order (grevlex), was developed, which is defined in
definition 2.4 (30).

Definition 2.4. Graded Reverse Lexicographic Order (grevlex). The grevlex
order establishes that xα >grevlex x

β if the condition of Equation (1) is met or, in the
case that |α| = |β|, if the rightmost non-zero entry of the difference α− β is positive.

This variation begins like grlex, ordering the monomials by total degree, but then
breaks any possible ties by applying a reverse lexicographical order. This ordering is
the most efficient way to calculate a Groebner Basis for a zero-order Ideal, i.e. an Ideal
that has a finite amount of solutions (30), which is exactly the type of Ideal that the
developed procedure has to work with (8).

The main objective of our procedure, as presented in (8), is to use the Groeb-
ner Basis theory to find an analytical solution to the Inverse Kinematic Problem of
non-redundant open-chain robotic systems, as a means to synthesize their IKM. This
objective is achieved by calculating a Groebner Basis in a two step process: First, an
initial basis is obtained using a grevlex monomial order, using Faugère’s F4 algorithm
(31 , 32). Then this first basis is converted to a Groebner Basis with a lex order,
employing the FGLM algorithm developed by Faugère et al (33). This conversion is
done because the lex monomial order is the only one that guarantees the existence of
a simple analytical solution for the calculated basis.

Section 4 contains all the details about the updated procedure, including the se-
lection of the optimal monomial order and the two-step Groebner Basis computation,
while the next section presents the test platforms that were used in this work.

3. Test Platforms

The two robotic systems that were employed as test platforms for the developed pro-
cedure are a walking hexapod robot BH3-R, built and distributed by Lynxmotion
Inc. (Swanton, Vermont, USA) and a Unimate’s PUMA 560 robotic arm (Danbury,
CT, USA). Both robots, presented in Figure 2, are non-redundant open-chain robotic
systems.

The hexapod shown in Figure 2 has circular geometry, which means that its kine-
matic problem can be solved by synthesizing the IKM of one of the robot’s legs, to
later apply the corresponding transformations between the hexapod’s center and the
origin of each of its extremities. This robot was selected as a test platform because
its extremities have three rotational Degrees of Freedoms (DoF) for positioning, like
most industrial robotic arms and many non-redundant multi-legged walking robots,
and it only requires the resolution of the positioning kinematic problem.

The D-H parameters of the hexapod’s leg are shown in Table 1. With those D-

5

Figure 2. Robotic systems used in this work: BH3-R hexapod walking robot by Lynxmotion Inc. (left) and

Unimate’s PUMA 560 robotic arm (right).

Table 1. Denavit-Hartenberg parameters of the

hexapod’s leg.

Link θ[rad] d [mm] a[mm] α[rad]

1 q1 0 28 π/2
2 q2 0 58 π
3 q3 + (π/2) 0 110 0

H parameters, and following all the steps of Denavit-Hartenberg’s method (1), the
homogeneous transformation between the origin of the hexapod’s leg and its final
point is presented in Equation (2).

0A3 =

cos(q1) sin(q2−q3) −cos(q1) cos(q2−q3) −sin(q1) cos(q1)[28+58 cos(q2)+110 sin(q2−q3)]

sin(q1) sin(q2−q3) −sin(q1) cos(q2−q3) cos(q1) sin(q1)[28+58 cos(q2)+110 sin(q2−q3)]
−cos(q2−q3) −sin(q2−q3) 0 58 sin(q2)−110 cos(q2−q3)

0 0 0 1


(2)

The second robot used as a test platform for the developed procedure is a PUMA 560
manipulator, whose D-H parameters are presented in Table 2. For simplicity reasons,
in this work we will focus only on the PUMA’s first three links, just before the robot’s
wrist. This simplification is valid because the last three links conform an in-line wrist
(3 , 9). Therefore, the end effector of this robot will be considered to be at the anchor
point of this in-line wrist, just in the base of the fourth link (8).

Table 2. Denavit-Hartenberg parameters of the
PUMA 560 manipulator.

Link θ[rad] d [mm] a[mm] α[rad]

1 q1 + (π/2) 660.4 0 −π/2
2 q2 149.1 431.8 0
3 q3 + (π/2) 0 -20.3 π/2
4 q4 433.1 0 −π/2
5 q5 0 0 π/2
6 q6 56.2 0 0

6

Applying the Denavit-Hartenberg’s method, the homogeneous transformation be-
tween the base of the PUMA and the anchor point of its in-line wrist is the matrix
shown in Equation (3). The term “q23” is equal to “q2 + q3”.

0A4 =

[
sin(q1) sin(q23) sin(q1) cos(q23) −cos(q1) −sin(q1)[a2 cos(q2)+d4 cos(q23)+a3 sin(q23)]−d2 cos(q1)

−cos(q1) sin(q23) −cos(q1) cos(q23) −sin(q1) cos(q1)[a2 cos(q2)+d4 cos(q23)+a3 sin(q23)]−d2 sin(q1)
−cos(q23) sin(q23) 0 d1−a2 sin(q2)−d4 sin(q23)+a3 cos(q23)

0 0 0 1

]
(3)

4. Procedure to Synthesize the IKM using Groebner Basis

The first version of the procedure developed to synthesize the IKM of non-redundant
open-chain robotic systems is presented in (8). This second version includes the au-
tomatic selection of the optimal monomial order for the Groebner Basis, and is now
divided in the following six steps:

(1) Information input
(2) Forward kinematics
(3) Obtention of the polynomial equation system
(4) Groebner Bases computation
(5) Automatic monomial order selection
(6) Final IKM algorithm

The first three steps of this second version are exactly the same as in the first one
(8), so in this work we are just going to do a quick review of them. The main change
in this second version is in the fourth and fifth steps, where the Groebner Bases are
computed and the optimal monomial order is selected.

As in the first version, all these steps are only executed once, out of line, to synthesize
the IKM before the robotic system is activated. So it is important to bear in mind that
the execution time of these steps does not affect in any way the online computation
time of the final IKM (8).

In the first step the user has to supply only two data sets: the Denavit-Hartenberg
(D-H) parameters of the robot and the movement range of its actuators. The D-H pa-
rameters are employed to solve the Forward Kinematics problem, while the actuators’
movement range is used to eliminate all the solutions that are not reachable by the
robotic system (8).

This is all the information that the user has to know about the analyzed robot,
which constitutes the absolute minimum data that is required to describe a robotic
system. From this point, the procedure automatically synthesizes the robot’s IKM,
without any further input from the user.

The second step of the procedure is to calculate the robot’s Forward Kinematics,
using as inputs the D-H parameters that were provided in the first step. This is done by
applying the Denavit-Hartenberg method (1 , 8). When the developed procedure is ap-
plied to the hexapod’s leg, this step’s output is the same homogeneous transformation
matrix presented in Equation (2).

The procedure’s third step begins by extracting the equations relating the pose of
the end effector with the robot’s state, from the homogeneous transformation matrix
obtained in the second step. For simplicity, in this work we are only interested in the
position of the end effector. However, the procedure can be extended to use the end
effector’s orientation, to complete the whole pose (8).

Continuing with the case of the hexapod’s leg, the extracted position equations are

7

the ones presented in Equation (4), which correspond to the first three elements of the
fourth column of Equation (2).

px = cos(q1)[28+58 cos(q2)+110 sin(q2−q3)]

py = sin(q1)[28+58 cos(q2)+110 sin(q2−q3)]

pz = 58 sin(q2)−110 cos(q2−q3)

(4)

Equation (4) conforms a trigonometric equation system that describes the end
effector’s position as a function of the current state of the robot’s actuators. The
previous equation system is completed with trigonometric identities of the form
sin(qi)

2 + cos(qi)
2 = 1 for all the robot’s rotational degrees of freedom (DoFs). Lastly,

all the trigonometric expressions are expanded, and variable substitutions of the form
sin(qi) = si and cos(qi) = ci are applied.

The third step’s final output is a polynomial equation system where the variables
are either a pair sine-cosine of a rotational DoF (si and ci), or directly the position
value of a prismatic DoF (qj).

For the hexapod’s leg, this step’s output is the polynomial equation system pre-
sented in Equation (5), where the input parameters are the three components of the
position vector of the leg’s end point (~p), represented by px, py, and pz. The six
variables of Equation (5) that should be solved are s1, c1, s2, c2, s3, and c3.

28c1 + 58c1c2 + 110c1s2c3 − 110c1c2s3 − px = 0

28s1 + 58s1c2 + 110s1s2c3 − 110s1c2s3 − py = 0

58s2 − 110c2c3 − 110s2s3 − pz = 0

s2
1 + c2

1 − 1 = 0

s2
2 + c2

2 − 1 = 0

s2
3 + c2

3 − 1 = 0

(5)

The equation system obtained as the third step’s output is the Ideal generator
set (30). From this point begin the steps that differ from the procedure previously
published in (8).

4.1. Groebner Bases computation

In the work presented in (8), the user of the developed procedure had to choose a
lex order before the computation of the Groebner Basis. But this selection implied
having extra information about the analyzed robotic system, besides the one already
provided in the first step. In this second version we aim to remove this burden from
the user. To do so, the procedure will automatically choose the optimal lex order for
the Groebner Basis.

It is important to highlight that all the possible lex order combinations will produce
an array of Groebner Bases, whose solutions are all the same solution set of the Ideal.
Therefore, solving any of those Groebner Bases will also solve the polynomial equation
system obtained in the third step (30). The only difference between obtaining the
solution from the Groebner Basis generated by one specific lex order over another
one, would be on the computation times required to solve each basis. So the optimal

8

monomial order, that the developed procedure automatically selects, is the one that
requires the least computation time to find its solution.

The main objective of the procedure’s fourth step is to establish the lex orders that
are relevant to the analyzed robot, and calculate their associated Groebner Bases. The
analysis of those bases’ computations times will be done in the fifth step, along with
the selection of the optimal monomial order.

The first task of this fourth step is to recognize all the possible lex order combina-
tions that can be relevant for the analyzed system. The variables that should be solved
in the polynomial equation system are the ones related with the rotational DoFs, that
come in pairs of the form si and ci, and the variables of the prismatic DoFs. For the
case of the hexapod’s leg, shown in Equation (5), the monomials of the Ideal are the
variables s1, c1, s2, c2, s3, and c3. The optimal lex order for the Ideal generated by
the set presented in Equation (5) must be a combination of those variables.

All the possible combinations of the Ideal monomials will be equal to (n+r)!, where
n is the total amount of DoFs of the analyzed robot, and r is the quantity of those
DoFs that are rotational. But all those combinations include the orders that separate
the two trigonometric variables of a rotational DoF (si and ci). These combinations
are not relevant lex orders, because the two variables of a rotational DoF are strongly
related, and should always be adjacent in the lex order. This restriction greatly reduces
the amount of possible lex orders, but it can be further reduced if a relative order is
established between the two variables of each rotational DoF (either si > ci or ci > si).
This way the total amount of relevant lex orders gets reduced to n!, independently if
the robot’s DoFs are rotational or prismatic.

To impose the aforementioned restriction, the developed procedure analyzes which
of the trigonometric variables of every rotational DoF is less likely to be zero. This is
done because, when solving the Groebner Basis, if the lex order is of the form “... >
ci > si > ...”, the value of si (sin(qi)) will be calculated first, while the computation
of ci will surely depend on the calculated value of si. Therefore, if si is equal to zero,
it is very probable that a term of the basis’ equation that defines ci will be canceled
out, which will surely generate an indetermination in the computation of ci.

So, by analyzing the probable values of sin(qi) and cos(qi) in the range of the ro-
tational DoF (qi), the procedure detects the trigonometric variable that is less likely
to be zero, and orders these two variables properly inside the lex order. This analy-
sis is done by calculating the expected value of |sin(qi)| and |cos(qi)|, following the
expressions shown in Equation (6).

E[|sin(qi)|] =

∫ qiup

qilo

|sin(qi)| · p(qi) · dqi

E[|cos(qi)|] =

∫ qiup

qilo

|cos(qi)| · p(qi) · dqi
(6)

In Equation (6), qilo and qiup
are the lower and upper limits of the range of the

actuator qi, and p(qi) is the probability density function (pdf) of qi. This pdf may
be supplied by the user, if the probable distribution of the positions of qi in all its
range is known. Otherwise, the developed procedure assumes a Gaussian pdf, that
covers all the rotational DoF’s range, with its mean in the middle of this range. If
E[|sin(qi)|] > E[|cos(qi)|], then the relative order of the couple of variables related to
qi is selected as ci > si. Otherwise, this relative order is established as si > ci. This

9

-1 -0.5 0 0.5 1

q1 [rad]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Gaussian pdf
|cos(q1)| pdf
E[|cos(q1)|] =0.897
|sin(q1)| pdf
E[|sin(q1)|] =0.344

-0.5 0 0.5 1 1.5

q2 [rad]

0

0.2

0.4

0.6

0.8

1

1.2
Gaussian pdf
|cos(q2)| pdf
E[|cos(q2)|] =0.850
|sin(q2)| pdf
E[|sin(q2)|] =0.429

Figure 3. Graphical representation of the expected values for the variables related with two DoFs of the

hexapod’s leg, q1 and q2. The black dotted line show the chosen pdf for each DoF. The blue areas represent
the E[|cos(qi)|], while the red areas are equal to E[|sin(qi)|]. In both cases E[|cos(qi)|] > E[|sin(qi)|], so the

variables related with these rotational DoFs are ordered as s1 > c1 and s2 > c2.

Table 3. Expected values for the trigonometric variables related with

the hexapod’s rotational DoFs. The columns titled “E[|cos(qi)|]” and

“E[|sin(qi)|]” contain the expected values of the corresponding trigono-
metric variable for each rotational DoF. The largest expected value of

each DoF is marked in bold, and the selected order for each rotational

DoF is shown in the last column.

Rotational DoF E[|cos(qi)|] E[|sin(qi)|] Relative order

q1 0.897 0.344 s1 > c1
q2 0.850 0.429 s2 > c2
q3 0.831 0.460 s3 > c3

way the variable that is less likely to be zero is always computed first.
Figure 3 shows the graphical representation of this order selection process when

applied to the actuators q1 and q2 of the hexapod’s leg. The black dots outline
the Gaussian pdf chosen for each of these robot’s actuators. The blue areas repre-
sent E[|cos(qi)|], while the red areas equate E[|sin(qi)|]. In both cases E[|cos(qi)|] >
E[|sin(qi)|], so the selected orders for these couples are s1 > c1 and s2 > c2, and they
will always appear that way in all the possible lex orders for the hexapod’s leg.

Table 3 presents the expected values for each of the three rotational DoFs that
compose the hexapod’s leg. This table also shows the relative order of the trigonometric
variables related to each of these DoFs.

After establishing all the relevant lex orders, the developed procedure proceeds to
calculate the Groebner Bases related to those orders. These calculations are executed
in a two step process: First, an initial Groebner Basis is obtained using Faugère’s F4
algorithm (31 , 32), with a graded reverse lexicographic order (grevlex). After this
first basis is calculated, a series of FGLM basis conversions, based on the algorithm
developed by Faugère et al (33), are made to convert the original basis to all the
lex orders previously identified as relevant. This way a set of n! different bases is
calculated, one for each of the relevant lex orders. The procedure’s next step is the
selection of the optimal monomial order.

10

Table 4. Relevant lex orders for the

hexapod’s leg.

No Lexicographic Order

1 s1 > c1 > s2 > c2 > s3 > c3
2 s1 > c1 > s3 > c3 > s2 > c2
3 s2 > c2 > s1 > c1 > s3 > c3
4 s2 > c2 > s3 > c3 > s1 > c1
5 s3 > c3 > s1 > c1 > s2 > c2
6 s3 > c3 > s2 > c2 > s1 > c1

Table 5. Possible types of polynomial equations found in the cal-

culated Groebner Bases

Type Degree Polynomial equation

Linear 1 a1x+ a0 = 0
Quadratic 2 a2x2 + a1x+ a0 = 0

Bi-Quadratic 4 a4x4 + a2x2 + a0 = 0
Quartic 4 a4x4 + a3x3 + a2x2 + a1x+ a0 = 0

To continue with the hexapod’s leg example, Table 4 contains the relevant lex orders
for this robotic system. The relevant amount of lex orders is six, because the hexapod’s
leg contains three DoFs (3! = 6).

4.2. Automatic monomial order selection

Once all the Groebner Bases are calculated, the procedure automatically identifies the
basis related with the optimal lex order. As was stated in Section 4.1, the optimal
monomial order is the one that yields the Groebner Basis that requires the lower
amount of computation time to solve. So, in order to find this optimal monomial
order, the following three-step classification criterion is applied:

(1) Lowest computational cost of the highest degree equation
(2) Lowest accumulated computational cost of all the basis’ equations
(3) Lowest accumulated cost of all the equations’ coefficients

The first step of the classification process consists on identifying the Groebner Bases
whose highest degree equation presents the lesser computational time, and discard the
rest.

Table 5 presents all the possible types of polynomial equations that can be found
in the previously calculated Groebner Bases. The maximum possible degree of the
polynomial equations shown in Table 5 is four, because the IKP of the positioning of
non-redundant open-chain robotic systems has at most four solutions (8).

The linear and quadratic equations that our procedure encounters are solved by the
well known algorithms for these types of polynomials. The bi-quadratic polynomial
equations are solved as two concatenated quadratic equations. Finally, the quartic
equations that the developed procedure may encounter are solved using Salzer’s al-
gorithm (34). It is important to highlight that it is not necessary to prepare for the
appearance of cubic equations, because the solutions of the IKP of open-chain robotic
systems always come in pairs (3).

A list of all the operations required to solve the polynomial equations previously
shown is compiled in Table 6. The last column of Table 6 contains the computational
cost, in clock cycles, of every type of polynomial equation, assuming that the micro-

11

Table 6. Computational cost required to solve different types of poly-

nomial equations on an ARM Cortex-M4 CPU (35 , 36).

Type
Operations

Cost [Cycles]
adml div sqrt trig atan

Linear 1 1 0 0 0 15
Quadratic 7 2 1 0 0 49

Bi-Quadratic 9 2 3 0 0 79

Quartic
min 68 4 3 0 0 166
max 80 5 5 1 1 282

Table 7. Computational cost, in clock cycles, for a microcon-

troller with an ARM Cortex-M4 CPU (35 , 36).

Operation Identifier Cost [Cycles]

Addition or Multiplication adml 1
Division div 14

Square root sqrt 14
Trigonometric operation trig 29

Arctangent (atan2) atan 33

controller in charge of the robot’s control has an ARM Cortex-M4 CPU (35) (36).
Table 7 breaks down the cost in clock cycles of each operation for the selected micro-
controller. If the robot has a control system with a different type of CPU, the user can
change the cost of every operation in the initial settings of the procedure, in order to
reflect the real computation times on the robot’s CPU.

In Table 6, the quartic polynomial equation encompasses two rows, identified as
“min” and “max”, because Salzer’s algorithm can take different paths, depending on
the type of roots of the analyzed polynomial equation (34). In this case the computa-
tional cost is the average between the minimum cost for the quartic equation and its
maximum, which is equal to 224 clock cycles for an ARM Cortex-M4 CPU.

Using the costs shown in the last column of Table 6, the procedure selects the
Groebner Bases whose highest degree equation has the lower computational cost, thus
quickly discarding all the bases that would require a larger amount of time and re-
sources to be solved. It is possible that more than one basis passes this first selection
criterion, so the second criterion is applied to all these remaining bases.

The second classification criterion consists on selecting the bases with the lower
accumulated computational cost from all their equations. The accumulated cost of each
basis is equal to the sum of the computational cost of all the polynomial equations that
compose that basis, using again Table 6 to evaluate these costs. This second criterion
is only passed by those bases with the lowest accumulated computational cost.

Once again, more than one basis can progress beyond the second criterion, in which
case the third one is applied. This third classification criterion searches for the basis
with the lowest accumulated cost from all its equation’s coefficients. This last accu-
mulated cost is quantified by adding all the clock cycles required to calculate all the
coefficients in all the basis’ equations. Therefore, after previously discarding all the
bases whose equation types would require larger amounts of time and resources to
be solved, the procedure narrows down the list of Groebner Bases to those which
effectively have the least computation time.

If after these three classification criteria, there is still more than one candidate for
the optimal lex order, then any of the orders related with these remaining bases may
be selected, because all the bases that pass the three criteria will surely present similar
computation times.

12

Table 8. Selection of the lex order for the Hexapod’s IKM.

After each step of the selection process, the discarded orders are

marked in italic. A value of “-” indicates that the lex order was
discarded in a previous step. The first classification criterion is to

search for those lex orders whose basis’ highest degree equation

present the least computation time. The second one seeks for
the bases with the lesser accumulated cost of all their equations,

while the last one searches for the lowest amount of time required
to compute all the basis’ coefficients. All these costs, expressed in

clock cycles, were calculated for a microcontroller with an ARM

Cortex-M4 CPU (35 , 36). The selected lex order is marked in
bold.

Order No
Classification Criteria

Highest Deg. Acc. Cost Coefficients
[Cycles] [Cycles] [Cycles]

1 79 - -
2 224 - -
3 79 - -
4 49 158 103
5 224 - -
6 49 158 201

Continuing with the case of the hexapod’s leg, Table 8 compiles the results obtained
when applying the presented three-step classification criterion to the set of six Groeb-
ner Bases calculated in the fourth step of the procedure. The lex orders 1, 2, 3 and 5
were discarded after the first step of the selection process, leaving only orders 4 and
6 active. Both remaining orders passed successfully the second step, but in the third
one, lex order 6 was eliminated, setting lex order 4 as the chosen one.

As it can be seen in Table 8, lex order 4 is the selected monomial order of the final
Groebner Basis employed for the synthesis of the IKM of the hexapod’s leg. The output
of this fifth step is the Groebner Basis related to the selected lex order, which for the
case of the hexapod’s leg is the set of polynomial equations presented in Equations (7)
to (12):

−p2
x+[p2

x+p2
y]c

2
1 =0 (7)

−pyc1+pxs1 =0 (8)

p5
x+pxp

4
y+pxp

4
z−29360pxp

2
z−26224(p3

x+pxp
2
y)+

+52684800px+2(p3
xp

2
y+p3

xp
2
z+pxp

2
yp

2
z)+

+[1644160(p2
x+p2

y)−112(p4
x+p4

y+p2
xp

2
z+p2

yp
2
z)−224p2

xp
2
y]c1+

+162817600pxc
2
3 =0

(9)

p3
x+pxp

2
y+pxp

2
z−14680px−56[p2

x+p2
y]c1+12760pxs3 =0 (10)

13

28(p5
x+pxp

4
y+pxp

4
z)+56(p3

xp
2
y+p3

xp
2
z+pxp

2
yp

2
z)+

+200704(p3
x+pxp

2
y−pxp2

z)−174562304px+

+[10304(p4
x+p4

y)+20608p2
xp

2
y−p6

x−p6
y−4p2

xp
2
yp

2
z−3(p4

xp
2
y+p2

xp
4
y)+

+7168(p2
xp

2
z+p2

yp
2
z)−p2

xp
4
z−p2

yp
4
z−2(p4

xp
2
z+p4

yp
2
z)−7463680(p2

x+p2
y)]c1+

+[12760(p3
xpz+pxp

3
z+pxp

2
ypz)+10003840pxpz]c3+714560[p2

xpz+p2
ypz]c1c3+

+[116(p5
x+pxp

4
y+pxp

4
z)+232(p3

xp
2
y+p3

xp
2
z+pxp

2
yp

2
z)+

+181888(pxp
2
z−p3

x−pxp2
y)+71300096px]c2 =0

(11)

10304(p3
xpz+pxp

2
ypz)−p5

xpz−pxp5
z−pxp4

ypz+6234368pxpz+

+7168pxp
3
z−2(p3

xp
3
z+p3

xp
2
ypz+pxp

2
yp

3
z)+489216[p2

xpz+p2
ypz]c1+

+[357280(pxp
2
z−p3

x−pxp2
y)+280107520px]c3+

+[10003840(p2
x+p2

y)−12760(p4
x+p4

y+p2
xp

2
z+p2

yp
2
z)−25520p2

xp
2
y]c1c3+

+[116(p5
x+pxp

4
y+pxp

4
z)+232(p3

xp
2
y+p3

xp
2
z+pxp

2
yp

2
z)+

+181888(pxp
2
z−p3

x−pxp2
y)+71300096px]s2 =0

(12)

As can be seen in the previous equations, the obtained Groebner Basis constitutes
a triangular equation system that can be solved in a staggered way (8 , 29). This is
because the first equation of the system, shown in Equation (7), only depends on one
variable, the lesser monomial in the selected lex order. After that equation is solved,
the second one has at most two variables, the one that was previously calculated in the
first equation and a new one, while the third depends at most on three variables, two
computed in the preceding equations and a new one, and so on. Solving this triangular
equation system gives the solution for the all the variables of the original polynomial
equation system (8).

4.3. Final IKM Algorithm

The sixth step of this second version of the developed procedure is again similar to
the last one of the procedure presented in (8). The main objective of this last step
is to transform the triangular polynomial equation system of the selected lex order’s
basis in an algorithm that implements the final IKM.

As was stated before, the solution of the synthesized Groebner Basis will be a set
composed either by the variables of prismatic DoFs (qj), pairs sine-cosine of rotational
DoFs (si and ci), or a combination of both. Therefore, to finish the IKM synthesis of
the analyzed robot, it is only necessary to compute the final value of the rotational
DoFs, using the corresponding expression of the form presented in Equation (13):

qi = atan2 (si, ci) (13)

The output of this last step is the algorithm of the synthesized IKM, implemented
in two different languages: C++, as compiled code ready to be used in the robot’s
microcontroller, and MATLAB R© script (R2017b, MathWorks R©, Natick, MA, USA).
This IKM may be used directly in the robot’s control system, as the generator of the
references for the multi-axis control (see Figure 1), or to simulate the robot’s behavior.

14

The developed procedure can be used to synthesize the IKM of a big range of
open-chain robots, including all the cartesian robotic systems, SCARA robots, all
the non-redundant robotic manipulators that satisfy the in-line wrist condition, and
all non-redundant open-chain robots whose IKM should only solve the positioning
problem, as is the case of most multi-legged walking robots (8).

The performance analyses of the IKM synthesized for the hexapod’s leg, as well as
the one prepared for the PUMA 560, are presented in Section 5.

5. Performance Analysis

The procedure presented in Section 4 was used to synthesize the IKMs of a leg of the
BH3-R walking hexapod and the PUMA 560 manipulator, both presented in Figure
2. As was previously explained, the inputs of the developed procedure are the D-H
parameters of the analyzed robot and the movement range of its actuators, while the
output is the synthesized IKM, both in C++ and in MATLAB R© script. This procedure
also selects automatically the optimal monomial order of the final Groebner Basis that
will constitute the IKM, so the user does not need to have any further information
about the robot.

The performance of the synthesized IKMs were simulated in MATLAB R©, testing
their ability to solve the IKP in the workspace of their corresponding robotic systems.
The solutions obtained by these IKMs were compared with their corresponding ref-
erence models, which are the kinematic models calculated by traditional methods. In
(8) we show the synthesis of the reference models of the PUMA 560 and the hexapod’s
leg.

5.1. Hexapod’s IKM

Throughout this work we have been using the hexapod’s leg as an example for the
application of the developed procedure, giving special attention to the automatic se-
lection of the basis’ monomial order. In this section we will prove that the selected
monomial order is effectively the optimal one. This will be done by analyzing the per-
formance and the computation times of all the Groebner Bases calculated in 4.1, in
order to demonstrate that the IKM synthesized from this selected order presents the
lesser error and execution time.

Figure 4 presents the comparison between the outputs of the hexapod’s leg reference
model and the ones obtained by all six IKMs synthesized for this robot, one for each
of the relevant lex orders presented in Table 4. This figure has marked in green (“Cor-
rectly calculated”) all those positions inside the hexapod leg’s workspace in which the
corresponding IKM obtains the same amount of solutions as the reference model and,
for all those solutions, the root mean square error (RMS) in the configuration space is
less than 1×10−6. Marked by red circles are the singularities found by the IKMs which,
for the case of the hexapod’s leg, are located in the axis defined by the intersection of
the planes X = 0 ∩ Y = 0.

Figure 4 shows that lex orders 1 to 5 correctly calculate all the positions of the
robot’s workspace, including its singularities. Only lex order 6 has some problems,
because it incorrectly computes some false singularities, marked by black circles (“False
Singularities”), along the axis defined by the intersection of the planes Y = 0∩Z = 0.
This happens because the basis generated by lex order 6 has several leading terms
that heavily depend on the values of py and pz, the position of the leg’s tip along

15

-200
-200

-100

200

0

Z
 [m

m
]

Lex Order 1

100

X [mm]

0

Y [mm]

200

0

200 -200

Singularities
Correctly calculated

-200
-200

-100

200

0

Z
 [m

m
]

Lex Order 2

100

X [mm]

0

Y [mm]

200

0

200 -200

Singularities
Correctly calculated

-200
-200

-100

200

0

Z
 [m

m
]

Lex Order 3

100

X [mm]

0

Y [mm]

200

0

200 -200

Singularities
Correctly calculated

-200
-200

-100

200

0

Z
 [m

m
]

Lex Order 4

100

X [mm]

0

Y [mm]

200

0

200 -200

Singularities
Correctly calculated

-200
-200

-100

200

0

Z
 [m

m
]

Lex Order 5

100

X [mm]

0

Y [mm]

200

0

200 -200

Singularities
Correctly calculated

-200
-200

-100

200

0

Z
 [m

m
]

Lex Order 6

100

X [mm]

0

Y [mm]

200

0

200 -200

Singularities
False singularities
Correctly calculated

Figure 4. Performance analysis of the six synthesized IKMs for the hexapod’s leg, one for each relevant

lex order. Marked in green (“Correctly calculated”) are all the the positions in which the corresponding IKM

obtains the same amount of solutions as the reference model, with an RMS error lesser than 1×10−6. The red
circles correspond to the singularities of the leg’s mechanism that are correctly identified by each IKM. The

data show that lex orders 1 to 5 correctly calculate all the positions of the analyzed workspace, including the

singularities of the leg’s structure. Only lex order 6 has some problems, because it incorrectly computes some
false singularities.

16

-200
-200

-100

200

0

Z
 [m

m
]

Lex Order 6

100

X [mm]

0

Y [mm]

200

0

200 -200

Singularities
False singularities
Correctly calculated

Figure 5. Detailed view of the performance of the hexapod’s IKM generated by lex order 6. The difference

between this IKM and the ones generated by lex orders 1 to 5, is that the other IKMs do not present those
false singularities along the axis defined by the intersection of the planes Y = 0 ∩ Z = 0.

the axis Y0 and Z0, respectively. Therefore, when py and pz are both equal to zero,
those leading terms are canceled out, generating an indetermination when the system
is solved. Figure 5 presents a detailed view of the IKM generated by this problematic
lex order.

These false singularities from the IKM generated by lex order 6 are not a problem,
because the selected monomial order is lex order 4, which synthesizes an IKM that
correctly calculates all the positions of the robot’s workspace. But in the case that
the selected monomial order has a problem similar to the one of lex order 6, the
procedure’s user can indicate that the problematic order is not a valid one. In this
case the developed procedure will offer a new IKM, generated by the best monomial
order from a list of lex orders that does not contain the problematic one.

In Figures 4 and 5, all the positions marked as “Correctly calculated” have an RMS
error lesser than 1×10−6 when compared to the ones calculated by the hexapod’s
reference model. Table 9 contains the maximum and average RMS errors obtained
when all the points of the hexapod’s workspace are processed by each of the six IKMs
synthesized for this robot. As it can be seen in this table, the IKM that presents the
least RMS error, both in its maximum value and its average, is the one generated by
the selected lex order: number 4.

Regarding the computation cost of the six synthesized IKMs for the hexapod’s leg,
Table 10 contains a summary of the computation times when those IKMs are presented
with all points in the robot’s workspace, and compares those times with the ones of the
reference model (row named “Ref.”). This table shows the maximum (“Max [ms]”),
minimum (“Min [ms]”) and average (“Avg [ms]”) times required to compute all the

17

Table 9. Maximum and average RMS errors

obtained when all the points of the hexapod’s

workspace are processed by each of the six synthe-
sized IKMs. The selected lex order is marked in bold.

No Avg. RMS Error Max. RMS Error

1 5.566×10−12 2.981×10−8

2 2.577×10−13 5.345×10−10

3 5.754×10−12 2.981×10−8

4 4.542×10−16 1.243×10−14

5 2.561×10−13 5.325×10−10

6 1.177×10−14 1.175×10−12

Table 10. Computation times of the six IKMs

generated for the hexapod’s leg and its refer-
ence model (“Ref.” row), when they are pre-

sented with all points in the robot’s workspace.

Column “Avg [ms]” shows the average computa-
tion times obtained for all the workspace’s points

(in milliseconds), while “Min [ms]” and “Max

[ms]” present the minimum and maximum regis-
tered times, respectively. The selected lex order

is marked in bold.

No Min [ms] Avg [ms] Max [ms]

1 0.226 0.265 0.726
2 0.236 0.285 1.031
3 0.210 0.251 0.748
4 0.199 0.238 0.670
5 0.231 0.281 1.049
6 0.203 0.247 0.787

Ref. 0.033 0.126 0.347

different positions inside the workspace. In this table it can be seen that, as expected,
the smallest computation time among all the synthesized IKMs is the one achieved by
the IKM related to the selected lex order. This proves that the three-step classification
criterion presented in Section 4.2 effectively identifies the optimal monomial order.

It is important to highlight that it is impossible to achieve computation times that
are lower than the ones of the reference model calculated by traditional methods,
because this model is already composed of equations specially crafted for the analyzed
robot. The computation times shown for the selected IKM are close enough to the
ones of the reference model, while achieving a negligible positioning error, so it can be
concluded that the IKM synthesized by our procedure is equivalent to this reference
model.

The performance of the final IKM, synthesized with the selected lex order, was also
tested following a trajectory that covers three consecutive full swings of the hexapod’s
leg, each one with a duration of 2.6s. The first swing has the hexapod walking in a
diagonal direction that is −π/6 rad measured from the forward direction. The second
swing is walking in the forward direction, while the third one has the robot moving
in a π/6 rad diagonal. Figure 6 presents these tests results, where it can be seen that
the outputs given by our IKM allow the hexapod’s leg to follow any trajectory, with
high precision and a completely negligible positioning error.

18

0 2 4 6 8

Time [s]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

q1
 [r

ad
]

Ref. Model
IKM

0 2 4 6 8

Time [s]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

q2
 [r

ad
]

Ref. Model
IKM

0 2 4 6 8

Time [s]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

q3
 [r

ad
]

Ref. Model
IKM

Figure 6. Trajectory tracking analysis for the hexapod’s final IKM. The red dots represent the outputs of

the reference model, for each of the leg’s DoFs, when it is supplied with the predetermined trajectory, while the

continuous blue lines are the IKM’s outputs for that same trajectory. The top left graph contains the computed
outputs for the first DoF (q1). The data of the second DoF (q2) is presented in the top right graph, while the
bottom one displays the third DoF’s outputs (q3). The data show that the IKM’s outputs follow those of the

reference model for all three DoFs, with high accuracy and a negligible error along all the desired trajectory

19

Table 11. Expected values for the trigonometric variables related with

the PUMA’s rotational DoFs. The columns titled “E[|cos(qi)|]” and

“E[|sin(qi)|]” are the expected values of the trigonometric variables
related with a rotational DoF. The relative order of the trigonometric

variables related with the rotational DoF is established depending on

those expected values. The largest expected value of each DoF is marked
in bold.

Rotational DoF E[|cos(qi)|] E[|sin(qi)|] Relative order

q1 0.709 0.561 s1 > c1
q2 0.507 0.763 c2 > s2
q3 0.757 0.511 s3 > c3

Table 12. Relevant lex orders for the
PUMA manipulator.

No Lexicographic Order

1 s1 > c1 > c2 > s2 > s3 > c3
2 s1 > c1 > s3 > c3 > c2 > s2
3 c2 > s2 > s1 > c1 > s3 > c3
4 c2 > s2 > s3 > c3 > s1 > c1
5 s3 > c3 > s1 > c1 > c2 > s2
6 s3 > c3 > c2 > s2 > s1 > c1

5.2. PUMA’s IKM

To demonstrate the application of the developed procedure to robotic manipulators,
it was also used to synthesize the IKM of the PUMA 560 shown in Figure 2. As it
was said before, the user just has to give as inputs the D–H parameters of the PUMA,
presented in Table 2, and the movement range of its actuators.

When applied to the PUMA robot, the output of the procedure’s third step is the
polynomial equation system presented in Equation (14), where the input parameters
are the three components of the position vector of the manipulator’s wrist (~p), repre-
sented by px, py, and pz. As was also the case for the hexapod’s leg, the six variables
of this polynomial equation system that should be solved are s1, c1, s2, c2, s3, and c3.

−a2s1c2 − d4s1c2c3 + d4s1s2s3 − a3s1s2c3 − a3s1c2s3 − d2c1 − px = 0

a2c1c2 + d4c1c2c3 − d4c1s2s3 + a3c1s2c3 + a3c1c2s3 − d2s1 − py = 0

d1 − a2s2 − d4s2c3 − d4c2s3 + a3c2c3 − a3s2s3 − pz = 0

s2
1 + c2

1 − 1 = 0

s2
2 + c2

2 − 1 = 0

s2
3 + c2

3 − 1 = 0

(14)

Table 11 presents the expected values for each of the three PUMA’s DoFs
(E[|cos(qi)|] and E[|sin(qi)|]), while Table 12 shows the relevant lex orders for the
PUMA manipulator. It is important to highlight that the PUMA has three rotational
DoFs, just like the hexapod’s leg, but the lex orders presented in Table 12 are not the
same that the ones used for the hexapod (see Table 4). This is because in the PUMA’s
case: E[|sin(q2)|] > E[|cos(q2)|], so the two trigonometric variables related with q2 are
ordered as: c2 > s2.

The results of the three-step selection criterion applied to the relevant lex orders
of the PUMA manipulator are presented in Table 13. After applying this selection

20

Table 13. Selection of the lex order for the PUMA’s IKM. Af-

ter each step of the selection process, the discarded orders are

marked in italic. The first classification criterion is to search for
those lex orders whose basis’ highest degree equation present

the least computation time. The second one seeks for the bases

with the lowest accumulated cost between all their equations,
while the last one searches for the lesser amount of time re-

quired to compute all the coefficients of the basis. All these costs,
expressed in clock cycles, were calculated for a microcontroller

with an ARM Cortex-M4 CPU (35 , 36). The selected lex order

is marked in bold.

Order No
Classification Criteria

Highest Deg. Acc. Cost Coefficients
[Cycles] [Cycles] [Cycles]

1 37 110 360
2 37 110 405
3 37 110 47
4 37 110 47
5 37 110 405
6 37 110 65

Table 14. Computation times of the six IKMs

generated for the PUMA 560 and its reference
model (“Ref.” row), when they are presented

with all points in the robot’s workspace. Col-

umn “Avg [ms]” shows the average computa-
tion times obtained for all the workspace’s points

(in milliseconds), while “Min [ms]” and “Max

[ms]” present the minimum and maximum regis-
tered times, respectively. The selected lex order

is marked in bold.

No Min [ms] Avg [ms] Max [ms]

1 0.228 0.251 0.597
2 0.213 0.235 0.657
3 0.205 0.231 0.633
4 0.204 0.230 0.621
5 0.210 0.233 0.707
6 0.212 0.239 0.678

Ref. 0.108 0.117 0.275

criterion, the selected lex order for the PUMA is the fourth one, which is the same lex
order in which the variables were solved while applying the geometric method used in
(8).

All six IKM’s synthesized for the PUMA correctly calculate all the positions inside
the robot’s workspace, with an RMS error below 4×10−9. The computation times
required by the all the IKMs synthesized for the PUMA manipulator are compiled in
Table 14. It can be seen that the IKM that has the least average computation time is
the one automatically selected by our three-step criterion: lex order 4.

6. Conclusions

This work presents the second version of the procedure originally exposed in (8),
which applies the Groebner Basis theory to synthesize the IKM of non-redundant
open-chain robotic systems. The IKM synthesis is done applying a six step systematic
methodology, that does not require any special knowledge of the robot’s mechanical
structure, besides its Denavit-Hartenberg parameters and the movement range of its

21

actuators. This improved version also automatically selects the best monomial order
for the Groebner Basis that will constitute the core of the final IKM, without requiring
any further input from the user. The procedure’s output is the synthesized IKM, both
in C++ and as a MATLAB R© script, which may be used directly in the robot’s control
system or to simulate its behavior.

The performance analysis presented in Section 5 shows that the developed procedure
successfully synthesized the IKMs of a non-redundant multi-legged robot, a Lynxmo-
tion’s BH3-R hexapod, and a non-redundant manipulator, a PUMA 560, correctly
selecting in both cases the optimal monomial order for the Groebner Basis that con-
stitute the core of those IKMs. The synthesized IKMs are totally comparable, both in
precision and computation time, with their respective kinematic models calculated by
traditional methods. This implies that the developed procedure represents a system-
atic solution to the Kinematic Problem of non-redundant open-chain robotic systems,
one that is independent of the robot’s mechanical structure.

Finally, it is important to highlight that, even though in this work the developed
procedure was only used to synthesize the IKM of a multi-legged robot and a non-
redundant manipulator, it can also be applied to all Cartesian robotic systems and
SCARA robots, covering this way a large range of non-redundant open-chain robotic
systems.

7. Future Work

The first proposed future work is to extend the procedure to also cover the end ef-
fector’s orientation, completing this way the full pose computation for all types of
non-redundant open-chain robots.

The second proposed future work is the extension to redundant robots, in order to
fully cover all the spectrum of open-chain robotic systems. The application of Groebner
Basis theory to a redundant robot will surely produce an underdetermined equation
system with infinite solutions. Properly solving these types of equation systems will
require the application of kinematic restrictions, such as Lagrange multipliers, as is
common for redundant robotic systems.

Disclosure statement

The authors declare no conflict of interest.

Funding

This research was partially funded by Plan Nacional de I+D+i, Agencia Estatal de
Investigación del Ministerio de Economı́a, Industria y Competitividad del Gobierno
de España, in the project FEDER-CICYT DPI2017-84201-R.

References

(1) Atique, M.U.; Sarker, R.I.; Ahad, A.R. Development of an 8DOF quadruped robot and
implementation of Inverse Kinematics using Denavit-Hartenberg convention, Heliyon
2018, 4 (12), e01053.

22

(2) Flanders, M.; Kavanagh, R.C. Build-A-Robot: Using virtual reality to visualize the
Denavit-Hartenberg parameters, Computer Applications in Engineering Education 2015,
23 (6), 846–853.

(3) Fu, K.S.; Gonzalez, R.C.; Lee, C.S.G. “Robotics: Control, Sensing, Vision and Intelli-
gence”; CAD/CAM, robotics, and computer vision; McGraw-Hill, 1987.

(4) Özgür, E.; Mezouar, Y. Kinematic modeling and control of a robot arm using unit dual
quaternions, Robotics and Autonomous Systems 2016, 77, 66–73.

(5) Wang, X.; Han, D.; Yu, C.; Zheng, Z. The geometric structure of unit dual quaternion
with application in kinematic control, Journal of Mathematical Analysis and Applications
2012, 389, 1352–1364.

(6) Aydm, Y.; Kucuk, S. Quaternion based inverse kinematics for industrial robot manipu-
lators with euler wrist, In 2006 IEEE International Conference on Mechatronics, ICM,
2006; pp 581–586.

(7) Barrientos, A.; Álvarez, M.; Hernández, J.D.; del Cerro, J.; Rossi, C. Modelado de Ca-
denas Cinemáticas mediante Matrices de Desplazamiento. Una alternativa al método de
Denavit-Hartenberg, RIAI - Revista Iberoamericana de Automática e Informática Indus-
trial 2012, 9 (4), 371–382.

(8) Guzmán-Giménez, J.; Valera Fernández, Á.; Mata Amela, V.; Dı́az-Rodŕıguez, M.Á. Syn-
thesis of the Inverse Kinematic Model of Non-Redundant Open-Chain Robotic Systems
Using Groebner Basis Theory, Applied Sciences 2020, 10 (8), 2781.

(9) Rodriguez, R.; Cardozo, T.; Ardila, D.L.; Cuellar, C.A. A consistent methodology for the
development of inverse and direct kinematics of robust industrial robots, ARPN Journal
of Engineering and Applied Sciences 2018, 13 (1), 293–301.

(10) Petrescu, R.V.; Aversa, R.; Akash, B.; Bucinell, R.B.; Corchado, J.M.; Berto, F.; Mirsa-
yar, M.; Apicella, A.; Petrescu, F.I. Anthropomorphic Solid Structures n-R Kinematics,
American Journal of Engineering and Applied Sciences 2017, 10 (1), 279 – 291.

(11) Chen, S.; Luo, M.; Abdelaziz, O.; Jiang, G. A general analytical algorithm for collab-
orative robot (cobot) with 6 degree of freedom (DOF), Proceedings of the 2017 IEEE
International Conference on Applied System Innovation: Applied System Innovation for
Modern Technology, ICASI 2017 2017, 698–701.

(12) Bouzgou, K.; Ahmed-Foitih, Z. Geometric modeling and singularity of 6 DOF Fanuc
200IC robot, In 4th International Conference on Innovative Computing Technology, IN-
TECH 2014 and 3rd International Conference on Future Generation Communication
Technologies, FGCT 2014, aug; IEEE, 2014; pp 208–214.

(13) Manzoor, S.; Ul Islam, R.; Khalid, A.; Samad, A.; Iqbal, J. An open-source multi-DOF
articulated robotic educational platform for autonomous object manipulation, Robotics
and Computer-Integrated Manufacturing 2014, 30 (3), 351–362.

(14) Mahajan, A.; Singh, H.P.; Sukavanam, N. An unsupervised learning based neural network
approach for a robotic manipulator, International Journal of Information Technology
2017, 9 (1), 1–6.

(15) Duka, A.V. Neural Network based Inverse Kinematics Solution for Trajectory Tracking
of a Robotic Arm, Procedia Technology 2014, 12, 20–27.

(16) Toshani, H.; Farrokhi, M. Real-time inverse kinematics of redundant manipulators using
neural networks and quadratic programming: A Lyapunov-based approach, Robotics and
Autonomous Systems 2014, 62 (6), 766–781.

(17) Rokbani, N.; Alimi, A.M. Inverse kinematics using particle swarm optimization, a statis-
tical analysis, In Procedia Engineering, jan; Elsevier, 2013; Vol. 64, pp 1602–1611.

(18) Jiang, G.; Luo, M.; Bai, K.; Chen, S. A Precise Positioning Method for a Puncture
Robot Based on a PSO-Optimized BP Neural Network Algorithm, Applied Sciences
2017, 7 (10), 969.

(19) Köker, R. A genetic algorithm approach to a neural-network-based inverse kinematics
solution of robotic manipulators based on error minimization, Information Sciences 2013,
222, 528–543.

(20) Doan, N.C.N.; Lin, W. Optimal robot placement with consideration of redundancy prob-

23

lem for wrist-partitioned 6R articulated robots, Robotics and Computer-Integrated Man-
ufacturing 2017, 48, 233–242.

(21) Rokbani, N.; Casals, A.; Alimi, A.M.; Azar, A.T.; Vaidyanathan, S. IK-FA, a new heuris-
tic inverse kinematics solver using firefly algorithm, Studies in Computational Intelligence
2015, 575, 369–385.

(22) Buchberger, B. Gröbner bases and systems theory, Multidimensional Systems and Signal
Processing 2001, 12 (3-4), 223–251.

(23) Kendricks, K.D. A kinematic analysis of the gmf a-510 robot: An introduction and appli-
cation of groebner basis theory, Journal of Interdisciplinary Mathematics 2013, 16 (2-3),
147–169.

(24) Wang, Y.; Hang, L.B.; Yang, T.L. Inverse kinematics analysis of general 6R serial robot
mechanism based on groebner base, Frontiers of Mechanical Engineering in China 2006,
1 (1), 115–124.

(25) Rameau, J.F.; Serré, P. Computing mobility condition using Groebner basis, Mechanism
and Machine Theory 2015, 91, 21–38.

(26) Abbasnejad, G.; Carricato, M. Direct Geometrico-static Problem of Underconstrained
Cable-Driven Parallel Robots With n Cables, IEEE Transactions on Robotics 2015,
31 (2), 468–478.

(27) Gan, D.; Liao, Q.; Dai, J.S.; Wei, S.; Seneviratne, L.D. Forward displacement analysis
of the general 6-6 Stewart mechanism using Gröbner bases, Mechanism and Machine
Theory 2009, 44 (9), 1640–1647.

(28) Huang, X.; He, G. Forward kinematics of the general Stewart-Gough platform using
Gröbner basis, In 2009 IEEE International Conference on Mechatronics and Automation,
ICMA 2009, 2009; pp 3557–3561.

(29) Uchida, T.; McPhee, J. Using Gröbner bases to generate efficient kinematic solutions
for the dynamic simulation of multi-loop mechanisms, Mechanism and Machine Theory
2012, 52, 144–157.

(30) Cox, D.A.; Little, J.; O’Shea, D. “Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra”, Fourth ed.; Under-
gradute Texts in Mathematics series; Springer International Publishing, 2015.

(31) Faugère, J.C. FGb: A library for computing Gröbner bases, In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Springer, Berlin, Heidelberg, 2010; Vol. 6327 LNCS, pp 84–87.

(32) Faugère, J.C. A new efficient algorithm for computing Gröbner bases (F4), Journal of
Pure and Applied Algebra 1999, 139 (1), 61–88.

(33) Faugère, J.C.; Gianni, P.; Lazard, D.; Mora, T. Efficient computation of zero-dimensional
gröbner bases by change of ordering, Journal of Symbolic Computation 1993, 16 (4),
329–344.

(34) Salzer, H.E. A Note on the Solution of Quartic Equations, Mathematics of Computation
1960, 14 (71), 279–281.

(35) ARM Limited. Cortex-M4 Technical Reference Manual, Revision r0p0 ; Technical Report,
2009. https://developer.arm.com/documentation/ddi0439/b/.

(36) ST Microelectronics. Getting started with the CORDIC accelerator using STM32CubeG4
MCU Package, AN5325 ; Technical Report, 2019. https://www.st.com/en/embedded-
software/stm32cubeg4.html.

24

