
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tprs20

International Journal of Production Research

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tprs20

Reinforcement learning applied to production
planning and control

Ana Esteso, David Peidro, Josefa Mula & Manuel Díaz-Madroñero

To cite this article: Ana Esteso, David Peidro, Josefa Mula & Manuel Díaz-Madroñero (2022):
Reinforcement learning applied to production planning and control, International Journal of
Production Research, DOI: 10.1080/00207543.2022.2104180

To link to this article:  https://doi.org/10.1080/00207543.2022.2104180

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

View supplementary material 

Published online: 06 Aug 2022.

Submit your article to this journal 

Article views: 548

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tprs20
https://www.tandfonline.com/loi/tprs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207543.2022.2104180
https://doi.org/10.1080/00207543.2022.2104180
https://www.tandfonline.com/doi/suppl/10.1080/00207543.2022.2104180
https://www.tandfonline.com/doi/suppl/10.1080/00207543.2022.2104180
https://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00207543.2022.2104180
https://www.tandfonline.com/doi/mlt/10.1080/00207543.2022.2104180
http://crossmark.crossref.org/dialog/?doi=10.1080/00207543.2022.2104180&domain=pdf&date_stamp=2022-08-06
http://crossmark.crossref.org/dialog/?doi=10.1080/00207543.2022.2104180&domain=pdf&date_stamp=2022-08-06


INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
https://doi.org/10.1080/00207543.2022.2104180

REVIEW

Reinforcement learning applied to production planning and control

Ana Esteso a, David Peidro b, Josefa Mula b and Manuel Díaz-Madroñero b

aResearch Centre of Production Management and Engineering (CIGIP), Universitat Politècnica de València, Valencia, Spain; bResearch Centre on
Production Management and Engineering (CIGIP), Universitat Politècnica de València, Alicante, Spain

ABSTRACT
Theobjectiveof this paper is to examine theuse andapplicationsof reinforcement learning (RL) tech-
niques in the production planning and control (PPC) field addressing the following PPC areas: facility
resource planning, capacity planning, purchase and supply management, production scheduling
and inventory management. The main RL characteristics, such as method, context, states, actions,
reward and highlights, were analysed. The considered number of agents, applications and RL soft-
ware tools, specifically, programming language, platforms, application programming interfaces and
RL frameworks, among others, were identified, and 181 articles were sreviewed. The results showed
that RL was applied mainly to production scheduling problems, followed by purchase and supply
management. The most revised RL algorithms were model-free and single-agent and were applied
to simplified PPC environments. Nevertheless, their results seem to be promising compared to tradi-
tional mathematical programming and heuristics/metaheuristics solution methods, and even more
so when they incorporate uncertainty or non-linear properties. Finally, RL value-based approaches
are the most widely used, specifically Q-learning and its variants and for deep RL, deep Q-networks.
In recent years however, the most widely used approach has been the actor-critic method, such as
the advantage actor critic, proximal policy optimisation, deep deterministic policy gradient and trust
region policy optimisation.
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1. Introduction

Reinforcement learning (RL) is similar to the way
humans and animals learn. In fact many RL algorithms
are inspired in biological learning systems (Sutton and
Barto 2018). RL is a branch of machine learning (ML)
where an agent interacts with an environment by per-
forming actions and perceiving environmental states and
has to learn a ‘correct behaviour’ (the optimal policy) by
means of a feedback rewarding signal. Unlike a stationary
database, the environment has its own internal memory
(a state), which the agent alters with its actions (Sutton
and Barto 2018; Russell and Norvig 2003; Briegel and
Cuevas 2012). In RL, all the agents have explicit goals and
learn decisions by interacting with their environment to
achieve these goals (Han 2018).

Production management is the set of activities that
determines the start and end times of tasks that have
to be performed in a production system to fulfil cus-
tomer orders and demand forecasts (Vollmann et al.
2005; Mehra 1995). Some of the basic subsystems of the
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productionmanagement system are production planning
and control (PPC). PPC activities are developed based
on not only the constraints and objectives defined by a
company or supply chain’s strategic level, but also on
demand forecasts, customer orders, inventory holding,
and work orders in progress. It should be noted that
markets, technologies and competitive pressures are con-
stantly changing, which may require changes in the pro-
cesses and design of PPC systems and their algorithms. In
the twenty-first century, PPC systems must possess char-
acteristics like agility, intelligence and rapid response,
andmust favour the production of high-quality products,
small production batches, customisation requirements,
customer commitment and environmental friendliness
(Qiao andZhu 2000). In addition, the company’s produc-
tion systems can no longer be managed independently,
but must be modelled from the perspective of belong-
ing to one or several supply chains (Lambert and Cooper
2000). In this context, the supply chain is characterised by
concurrent engineering based intensively on information
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and communication technology (ICT), such as dig-
italisation, computer networks, artificial intelligence,
among others.

From a PPC view, Industry 4.0 (I4.0) is a connec-
tion of digital technologies, organisational concepts and
management principles to provide cost-effective, respon-
sive, resilient and sustainable operations (Ivanov et al.
2021; Cañas, Mula, and Campuzano-Bolarín 2020; Mula
and Bogataj 2021; Bueno, Filho, and Frank 2020). The
PPC area is evolving, according to design principles,
digital enabling technologies and implementation prin-
ciples of the I4.0 initiative (Cañas et al. 2021), towards
self-management PPC models based on automation and
autonomy. Serrano-Ruiz et al. (2021) present a classifi-
cation of I4.0 enabling technologies based on seven cat-
egories: (i) infrastructure; (ii) technical assistance based
on software; (iii) technical assistance in manufactur-
ing; (iv) technical assistance at the interface; (v) techni-
cal assistance in data management/decision making; (vi)
technical assistance in communications and connectiv-
ity; (vii) associated with management models. Here ML
and RL are enabling technologies in the relevant trend
of the I4.0 category of technical assistance in data man-
agement anddecisionmaking. RL algorithms canprovide
solutions to many real-world applications from artificial
intelligence to operations research or control engineer-
ing (Szepesvári 2010). Previously, Usuga et al. (2020)
conducted a systematic literature review of 93 articles
to consider ML or deep learning, and the PPC areas of
production scheduling, production planning, production
control and line balancing in the searching strategy. Their
findings showed that the PPC areawithmoreML applica-
tions was smart scheduling and planning. Furthermore,
RL techniques have beenwidespread, which confirms the
interest shown in agent-based models. The aim of other
reviews has been deep RL (DRL) in the job shop schedul-
ing area (Cunha et al. 2020) or RL in health care (Yu, Liu,
and Nemati 2020). Nevertheless, as far as we know, we
have not identified other states of the art that address RL
in PPC.

Here we perform a literature review of 181 articles that
focus on RL techniques and PPC by considering the fol-
lowing PPC areas based on the proposal of Jeon and Kim
(2016): facility resource planning, capacity planning, pur-
chase and supply management, production scheduling
and inventory management. The main contributions of
this paper are to: (i) classify the main RL research and
applications in the PPC area; (ii) define the main high-
lights and limits from the revised RL-PPC literature; (iii)
identify the main characteristics of the RL software tools
used in the PPC area; (iv) discuss and propose the main
trends and further research.

The rest of the paper is arranged as follows. Section 2
revises the main RL and DRL foundations. Section 3

presents the review methodology. Section 4 offers the
literature review. Section 5 discusses the main RL-PPC
trends and further research. Section 6 ends with themain
reached conclusions andnew research lines for the future.

2. Reinforcement learning foundations

Artificial intelligence is a discipline concerned about
creating computer programmes that exhibit human-like
intelligence.ML is defined as an artificial intelligence sub-
field that confers computers the ability to automatically
learn from data without being explicitly programmed
indicating rules. RL is one of the three main branches
of ML techniques: (a) supervised learning, which is the
task of apprenticeship from tagged data and its goal is
to generalise; (b) unsupervised learning, where training
data do not contain labels, but it is the algorithm that will
attempt to classify information; (c) RL is the task of learn-
ing through trial and error and its goal is to act to obtain
the highest reward in the long run (Torres 2020).

According to Sutton and Barto (2018), three main ele-
ments are required for the RL process: a policy, which
defines the actions to choose in a given state of the envi-
ronment; a reward signal, which divides these actions
into good or bad according to the immediate return
received by the transition between states; and a value
function to evaluate which actions have positive long-
term effects by considering not only the immediate
reward of a state, but also the reward that is likely to follow
in the long run.

The agent’s overall goal is tomaximise the total reward
and, therefore, the reward signal is the basis for adjust-
ing the policy and the value function. There is a fourth
optional element in some RL systems, namely a model of
the environment. It mimics the environment’s behaviour
or allows inferences to be more generally made as to
how the environment will behave. Models are employed
for planning, which means any way to decide a course
of action by contemplating what future situations may
take place before they are experienced. Model-based
methods solve the RL problems that utilise models and
plan conversely to simpler model-free methods. They
act explicitly as trial-and-error learners and are consid-
ered virtually the opposite of planning (Sutton and Barto
2018).

RL processes can be modelled as a Markov decision
process (MDP) (Sutton and Barto 2018; Vasilev et al.
2019). A 5-tuple (S,A, P, R, γ ) can formalise this stochas-
ticmathematicalmodel: S is the finite set of all the feasible
environment states; st is the state at time t; A is the set
of all the possible actions; at is action at time t; P is
the environment’s dynamics or the transition probabil-
ities matrix, which can define the conditional probability
of transitioning to a new state s′ with reward r given
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Figure 1. RL cycle.

the existing state, s, and an action, a (for all states and
actions).

Pass′ = Pr(st+1 = s′ ∨ st = s ∨ at = a) (1)

The transition probabilities between states actually rep-
resent the model of the environment; i.e. how it is
likely to change with its current state and an action, a.
Model-based agents possess an internal representation
of P to forecast the results of their actions. In an MDP,
the Markov property guarantees that the new state will
depend ononly the current state rather than on any previ-
ous states. This implies that the state totally characterises
the environment’s total state to make MDP a memory-
less process. So R is the reward function that describes
the reward which the agent will receive when it carries
out action a and transitions from s to s′.

Rass′ = E[rt+1 ∨ st+1 = s′, st = s, at = a] (2)

Lastly, γ is the discount factor, a value within the [0:1]
range that determines how much the algorithm values
immediate rewards as opposed to future rewards.

Figure 1 shows the RL cycle (Sutton and Barto 2018).
One of the main differences of RL in relation to other

ML branches is the presence of delayed rewards. An agent
may receive insignificant rewards during a relatively long
sequence of actions until it reaches a particular state with
a very significant reward value for RL (i.e. finding the
way out of a maze). The agent must be able to learn
which actions are desirable based on a reward that may
arbitrarily take place in the future. This is not the case
with supervised learning,where the data used for training
already contain the desired solution (label). In this case,
the algorithm must learn a model or function to map
an input to an output that is already known in advance.
Thus RL deals with dynamic decisions while traditional
optimisation usually focus on static ones.

In RL, an agent’s policy, denoted as π(a ∨ s), is the
strategy that the agent uses to determine the next action
a based on current state s (a probability distribution that
maps an action a to state s). During the learning process,
the policy may change because the agent acquires more
experience. Then we need a method that automatically

helps to learn and find optimal policies for the agent. This
is why a value function is needed that determines what is
‘good’ for the agent in the long run (it differs from the
immediate reward concept). There are two types of value
functions: state-value function that informs us about the
total return we can expect in the future if we start from
that state (usually denoted by vπ(s)) and action-value
function, which refers to the expected return when the
agent is in state s and performs action a following policy
π (usually denoted by qπ(s, a)).

The state-value and action-value functions can be
defined recursively using the Bellman equation (Sutton
and Barto 2018), which is one of the central elements of
many RL algorithms. It decomposes the value function
into two parts: the immediate reward, plus discounted
future values. This equation simplifies the computation
of the value function in such a way that rather than
summing up many time steps, the optimal solution of a
complex problem can be found by breaking it down into
simpler recursive subproblems and finding their optimal
solutions (Torres 2020). To find the optimal policy, which
maximises the expected reward in the long run, Bell-
man optimality equations supply the basis for iterative
approaches as follows:

(1) Dynamic programming (DP) (Bellman 1957) refers
to a collection of algorithms that can be used to com-
pute optimal policies given a perfect model of the
environment like MDP (model-based method). DP
includes two main different approaches: value and
policy iteration. Value iteration specifies the opti-
mal policy in terms of a value function by iterating
through Bellman equations. The value function is
updated until the difference between two iterations
is smaller than a low threshold. The optimal pol-
icy is then derived. Policy iteration directly learns
the policy. It starts with an initial random policy,
and iteratively updates the policy by first comput-
ing the associated value function (policy evaluation
or prediction) and then improving the policy (pol-
icy improvement or control) (Yu, Liu, and Nemati
2020).

The utility of classic DP algorithms is limited in RL
because them assuming a perfect model (which is unre-
alistic inmost applications) and their high computational
expense as we need to loop through all the states in every
iteration (they can grow exponentially in size and the
state space can be very large, or even infinite).

(2) Monte Carlo (MC) methods are all about learn-
ing from experience (model-free). Any expected
value can be approximated by sample means. So
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it is required to play a bunch of episodes, gather
the returns and average them. MC methods are for
episodic tasks, where the interaction stops when
an agent encounters a terminal state. Thus expe-
rience is divided into episodes, which eventually
terminate no matter what actions are selected. If a
model is unavailable, then it is particularly useful
to estimate action-values (the values of state-action
pairs) rather than state values. With a model, state-
values alone do suffice to determine a policy; it
is a matter of simply looking one step ahead and
choosing whatever action leads to the best com-
bination of reward and the next state. Without a
model, however, state values alone are not sufficient.
It is necessary to explicitly estimate the value of
each action for the values to be useful for suggest-
ing a policy (Sutton and Barto 2018). MC meth-
ods only provide us with a value for found states
and actions, and if we never encounter a state,
its value remains unknown. This will undermine
our efforts in estimating the optimal action-value
function. While performing an action, the agent
ought to strike a balance between exploiting any
knowledge acquired to date by optimally acting and
exploring the unknown space to discover new effica-
cious actions. This exploration-exploitation trade-
off dilemma is one of the most basic theoretical
matters in RL. The commonest approach to achieve
this trade-off is the ε-greedy strategy. According to
this strategy, the agent will perform random action
with probability ε. When training begins, ε is set
at 1 and ensures that the environment is explored
by the agent. With time, ε is reduced using a decay
rate (a hyperparameter) tomake a trade-off between
exploring and exploiting.

(3) Temporal-difference (TD) methods, like MC meth-
ods, can directly learn from raw experience with-
out using a model of the environment’s dynamics.
However, like DP, TD methods can update esti-
mates (step-by-step), partly based on other learned
estimates (bootstrapping), without having to wait-
ing for any final outcome. Q-learning is one of
the widespread off-policy TD approaches in RL
(Watkins and Dayan 1992). Likewise, the SARSA
algorithm (Rummery andNiranjan 1994) is a repre-
sentation for the on-policy TD approaches. As with
MC methods, in Q-learning and SARSA action-
value function q(st, at) is estimated. Here off-policy
means that the action of current state and the action
of the next state do not come from the same pol-
icy. On the contrary in an on-policy approach, the
action selection in the next state follows the same
policy that enables the agent to take the action in the

current state (Farazi et al. 2020). Each experienced
sample brings the current estimate q(st , at) closer to
optimal value. Q-learning starts with an initial esti-
mate for each state-action pair. When an action at is
taken in state st , which results in the next state st+1,
the correspondingQ-value is updated with a combi-
nation of its current value and the TD error. The TD
error is the difference between the current estimate
q(st , at) and the expected discounted return based
on the experienced sample (Yu, Liu, and Nemati
2020). TheQ-value of each state-action pair is stored
in a table for a discrete state-action space. This tabu-
lar Q-learning converges to the optimal when all the
state-action pairs are visited infinitely often and an
appropriate exploration strategy and learning rate
are chosen (Watkins and Dayan 1992).

(4) Policy-based approach. Unlike the value-based
approach, the policy-based approach does not
require having to estimate the value of a certain
state or a state-action pair, but directly searches for
an optimal policy π . In policy-based approaches,
typically a parameterised policy π(a ∨ s, θ) is cho-
sen and this parameter θ of policy π(a ∨ s, θ) is
gradually updated to maximise the expected return.
This parameter update can either be done by a
gradient-free or gradient-based approach (Deisen-
roth, Neumann, and Peters 2013). Gradient-based
(PG) approaches are mostly used in existing RL
algorithms. REINFORCE (Williams 1992) is the
main MC policy gradient algorithm on which
almost all more advanced and modern ones are
based. Policy-based methods are very suitable for
continuous action spaces because they can learn
true stochastic policies unlike value-based methods
(Torres 2020; Sutton and Barto 2018).

(5) Actor-critic (AC) methods. Value-based algorithms
are unable to handle those problems involving con-
tinuous (real-valued) and high-dimensional action
spaces. In addition, as the agent learns to approx-
imate the solution by the Bellman equations, the
agent can resort to a near-optimal policy. In policy-
based algorithms, gradient estimators can possess
very wide variances (Konda and Tsitsiklis 2000).
Furthermore with policy changes, the new gradient
can be estimated regardless of earlier policies. Thus
agents do not learn in relation to previously accu-
mulated information. To cope with this limitation,
the existing literature suggests adopting the actor-
critic approach that combines both policy-based
and value-based algorithms (Konda and Tsitsiklis
2000; Grondman et al. 2012). In the actor-critic
approach, the agent is trained using two estimators:
the critic function, which approximates and updates
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the value function; the actor function, which con-
trols the agent’s policy-based behaviour. Depend-
ing on the value function derived from the critic
function, the actor function’s policy parameter is
updated in the performance improvement direc-
tion. While the actor function controls the agent’s
policy-based behaviour, the critic function assesses
the selected action according to the value function.

Furthermore, we obtain DRL methods when we use
deep neural networks (DNN) to represent the state or
observation, and/or to approximate any of the following
RL components: value function, v̂(s, θ) or q̂(s, a, θ), pol-
icy π(a ∨ s, θ), and model (state transition function and
reward function). Here parameters θ are the weights in
deep neural networks (Li 2018). For example, in value-
methods like Q-learning, theQ value of each state-action
pair is stored in a table. Each additional feature added to
the state space leads to the number of Q-values that needs
to be stored in the table to exponentially grow (Sutton
and Barto 2018). To mitigate this curse of dimensional-
ity, DNN and RL can be integrated to act as a function
approximator. DRL is able to automatically and directly
abstract and extract high-level features and semantic
interpretations from input data to, hence, avoid delicate
feature hand-crafting selection or complicated feature
engineering for an individual task (Sze et al. 2017). Some
very popular DRL algorithms that can be applied to PPC
problems are identified as follows. Regarding value-based
methods, we find: deep Q-network (DQN) (Mnih et al.
2015); double DQN (DDQN) (Van Hasselt, Guez, and
Silver 2016); duellingDQN (Wang et al. 2016); prioritised
experience replay for DQN (Schaul et al. 2016); rainbow
(Hessel et al. 2018); recurrent experience replay in dis-
tributed RL (R2D2) (Kapturowski et al. 2019), among
others. Some DRL actor-critics methods are deep deter-
ministic policy gradient (DDPG) (Lillicrap et al. 2015);
advantage actor critic (A2C, A3C) (Mnih et al. 2016);
trust region policy optimisation (TRPO) (Schulman et al.
2015); proximal policy optimisation (PPO) (Schulman
et al. 2017); decentralised distributed proximal policy
optimisation (DD-PPO) (Wijmans et al. 2020) and soft
actor critic (SAC) (Haarnoja et al. 2018).

Having introduced the main characteristics of the RL
and DRL approaches, this paper offers a literature review
to analyse and classify the RL research produced in the
PPC context to highlight the main trends and research
gaps in the respect.

3. Reviewmethodology

The search for scientific articles applying RL to PPC was
carried out in Scopus. The search was done with ‘Article

Table 1. Number of publications per source.

Source References

International Journal of Production Research 10
Expert Systems with Applications 7
Computers and Industrial Engineering 5
IEEE Access 5
Journal of Manufacturing Systems 5
CIRP Annals 4
IIE Transactions 4
Computers and Chemical Engineering 3
Investigación Operacional 3
Journal of Intelligent Manufacturing 3
Production Engineering 3
The International Journal of Advanced Manufacturing
Technology

3

Applied Intelligence 2
Engineering Applications of Artificial Intelligence 2
IFAC-PapersOnLine 2
Simulation Modelling Practice and Theory 2
Others 118
Total 181

title, Abstract, Keywords’ by combining the following
keywords as follows: reinforcement learning AND (man-
ufacturing OR production planning and controlOR supply
chain OR inventory). The time window is not defined.
Published from 1994 to 2021, 610 scientific articles were
initially collected during this process.

As a second step, three exclusion processes were con-
ducted on the results. Firstly, duplicated articles were
eliminated, which left 596 articles. Secondly, the title,
abstract and keywords of the remaining articles were read
to eliminate those that neither applied RL nor addressed
PPC problems, which left 278. Thirdly, these articles were
completely read to determine if they applied RL to PPC
problems, and those that did not meet this requirement
were ruled out. Finally, 181 papers (see Appendix 1) were
selected for the literature review, of which 101were scien-
tific journal publications, 76 conference proceedings, and
four book chapters. Table 1 presents, in frequency order,
the scientific journals in which more than one article
was published. The articles published in other journals,
conference proceedings or book chapters are grouped as
‘Others’. The results show that research into the applica-
tion of RL to PPC problems is very dispersed in different
conferences and scientific journals, where the Interna-
tional Journal of Production Researchwas that withmore
published research works in this area.

Note that 65% of the articles were published in the last
10 years, while 40% of publications appeared in the last 4
years (Figure 2). This denotes that researchers’ interest in
applying RL to PPC is considerably growing.

In order to analyse and classify the selected 181 refer-
ences, a conceptual framework for the application of RL
to PPC problems is proposed (Figure 3).

The first dimension of the conceptual framework
identifies five relevant PPCareas based on the classification
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Figure 2. Number of publications per year.

Figure 3. Conceptual framework for the application of RL to PPC.

by Jeon and Kim (2016). The main problems that can be
addressed in all these areas are detailed below:

• Facility resource planning: determining location,
resource management, layout design, maintenance
planning and machine (re)configuration

• Capacity planning: establishing optimal quantity to
generate products on a planning horizon by forecast-
ing problems for demand uncertainties, and optimal
capacity selections to set the total cost and product
revenues

• Purchase and supply management: making decisions
for suitable order times, order quantities, lot sizing,
supply chain management network and transporta-
tion planning

• Production scheduling: shop floor scheduling, sched-
ule management (queuing, slack time, due date, pro-
cess sequence planning, bottleneck problems, equip-
ment planning, machine routing, material processing
planning, job-shop planning and management, and
machine job sequence planning)

• Inventory management: product shortages or over-
stocks, lost orders and the forecast inventory turnover
ratio problem

The second dimension identifies the main elements
that define RL approaches, which are:

• Context: it defines the type of productive system
addressed by the revised papers and/or the industrial
sector
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• Method: training algorithms (Q-learning, SARSA,
DQN, A3C, PPO, among others) can be used to sup-
portmodels to learn which actions aremore beneficial
for the system based on its state

• States: identify the states considered by the proposed
RL approaches. These states can be discrete or contin-
uous depending on the employed training algorithm
and the definition of the problem under study

• Actions: they identify the possible decisions to be
made by the agent in existing RL approaches. Actions
can also be discrete or continuous

• Rewards: they determine whether the selected action
is good or bad by evaluating its impact on the state

• Highlights: they define the main contribution of each
paper as identified by the authors of the revised papers

• Challenges and limitations: they identify the main
limitations as well as the future research lines pointed
out, in most cases, by the authors of the revised papers

Finally, the third dimension comprises four elements
related to the software used to solve the RL algorithm:

• Number of agents: it identifies if the RL approach is
developed for a single-agent or a multi-agent environ-
ment, understood as a system composed of multiple
distributed entities that autonomously make decisions
and interact in a shared environment (Weiss 1999)

• SW tool: it identifies whether RL has been imple-
mented into high-level programming language
(Python, Java, C++, Delphi C# or Visual Basic. NET,
among others) or has been extracted from an exist-
ing library. It also identifies the rest of the software
involved in solving RL: ML platforms (Tensorflow,
Pythorch, DL4J); ML APIs (Keras, Google, Microsoft,
Amazon); RL frameworks (TensorForce, Keras-RL,
RLlib, Stable Baselines); and other tools and plat-
forms or simulation software, such as Simpy, ARENA,

MATLAB, CSIM, Weka, Minitab, GAMBIT, and
multi-agent platforms like JADE and MADKit

• Application: it defines whether the proposed RL algo-
rithms are applied to a numerical study, a benchmark,
a case study or a real-world problem

• Problem size: it identifies the number of each element
considered in the problem addressed by the proposed
RL models during experimentation

4. Literature review

This section examines the conceptual framework put for-
ward to be used to analyse and classify the previously
identified and selected RL proposals based on PPC areas,
RL characteristics and RL software tools.

4.1. PPC areas

On the PPC areas dimension, the publication frequency
of RL approaches to address the problems related to each
area is analysed (Figure 4). The results show that RL
approaches applied to PPC have focused mainly on pro-
duction scheduling (60% of the papers). This problem
is followed by purchase and supply management, which
has been addressed by 18% of the papers. The remaining
PPC has hardly been addressed with RL in the literature:
17 papers have dealt with facility resource planning, 20
papers have addressed inventory management problems,
and four proposals have covered the capacity planning
problem.

4.2. RL characteristics

In this section, the main RL characteristics of the revised
papers are analysed and classified for each identified PPC
area, namely:method, context, states, actions, reward and
highlights.

Figure 4. Number of RL approaches per PPC area.
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On the facility resource planning problem (see
Appendix 2), we identified that value-based approaches
are themain RL algorithms used, and in this order of use:
Q-learning, Q-batch learning, SMART, iSMART, Q-P
learning and R-learning. Regarding the DRL value-based
approaches, D convolutionary Q-network and DDQN
are employed to a lesser extent. Only one article uses an
actor-critic approach, and more concretely the PPO. In
addition, one article follows the MC control algorithm.

As expected, the manufacturing system is the appli-
cation context for the reviewed facility resource planning
problems.Here problems are generally similar and do not
address very complex machine maintenance and config-
uration problems. Thus the number of machines con-
sidered in the reviewed problems ranges from 1 to 10.
Most of them address operational maintenance and tacti-
cal preventive maintenance problems (repair or replace-
ment strategies), the majority of RL algorithms contem-
plate the states related to machines (e.g. machine age,
remaining maintenance duration, machine’s deteriora-
tion state). The second type of problem is operational
machine reconfiguration, which contemplates the states
related to productive cycle times or the machine’s cur-
rent configuration. Actions aremostly related tomaintain
machines (repair, corrective or preventive maintenance)
or to do nothing about machine maintenance problems
and select machine configuration (reset, align barcode
reader, increase or reduce limits, increase or reduce pres-
sure) or do nothing aboutmachine reconfiguration prob-
lems. Revenue and costs are themain feedback rewarding
signals, while inventory position and capacity loss are
promptly considered. Rewards based on specific rules or
performance measures are identified.

About capacity planning (Table 2), different authors
follow several RL value-based methods to address tac-
tical and operational decision problems. Here the old-
est articles utilised RL algorithms (Q-learning and least
square policy iteration) to define the production capac-
ity of manpower or machines in a manufacturing system
to minimise the related costs. About manpower hiring,
workers with different knowledge levels (new-hired,
semi-experience, fully-experienced) can be contracted,
which affects inventory levels (states) and hiring costs
(reward) (Karimi-Majd, Mahootchi, and Zakery 2017).
About controlling operations, machines are switched
on/off (actions) according to inventory levels (states)
and costs (reward) (Zheng, Lei, and Chang 2017a,
2017b). The latest one was based on a DRL algorithm,
DQN, applied to select the demand forecasting method
(action) in a semiconductor supply chain: single expo-
nential smooth, simple moving average, naïve forecast,
Syntetos-Boylan approximation, artificial neuronal net-
work, recurrent neuronal network and support vector Ta
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regression. The selection of the forecasting model is
dynamic and is based on the agent learning about inven-
tory levels, shortage of supply, last historic demand,
length of successive zero demand (states) and forecasting
errors (reward received) (Chien, Lin, and Lin 2020).

Regarding purchase and supply planning (Appendix 3),
and similarly to the facility resource planning problems,
value-based approaches are the main applied RL algo-
rithms and in this order of use: Q-learning, SARSA,
SMART, average reward learning (ARL), FFRL and profit
sharing. As for DRL approaches, the A2C actor-critic
method is applied in one article (Barat et al. 2019) and
two articles use the PPOmethod (Alves andMateus 2020;
Vanvuchelen, Gijsbrechts, and Boute 2020). Only one
article follows the MC tree search algorithm.

In these cases, the supply chain is the most addressed
application context, followed by the manufacturing sys-
tems, for purchase and supply planning problems. As
expected, the tactical and operational decision levels are
themost contemplated ones in the reviewed papers. Only
one article considers the strategical decision level. For
tactical decisions, production planning, inventory man-
agement, procurement and truck assignment and routes
planning and bullwhip effect problems are addressed.
With operational decisions, inventory control, vendor
management inventory (VMI), production scheduling,
production and procurement problems are modelled.
The strategical decision level is related to a global supply
chain management problem.

States are related mainly to inventory level, inven-
tory position, demand, backorders, prices, among oth-
ers. Actions focus mostly on defining the order quantity
and/or the order up to level at the tactical and operational
decision levels, while the strategical decision level con-
siders the supplier selection and transportation modes
(Pontrandolfo et al. 2002).

With feedback rewarding signals, economic aspects
like costs, followed by revenues and profits, are those that
come over more in the revised articles. Only one arti-
cle considers the environmental aspect of sustainability
for minimising waste in a grocery supply chain (Barat
et al. 2019). Once again, only one article considers the
social aspect of sustainability to define the service level
as a reward (Jiang and Sheng 2009).

In production scheduling problems (Appendix 4),
value-based approaches are the most frequently
employed RL algorithms and are from the most to
the least used as follows: Q-learning, approximate
Q-learning, TD(λ) algorithm, SARSA, ARL, informed
Q-learning, dual Q-learning, gradient descent TD(λ)
algorithm, profit sharing, Q-III learning, relational
RL, relaxed SMART, and TD(λ)-learning. For DRL,
value-based approaches like DQN, deep Q-learning,

loosely-coupled DRL, multiclass DQN and Q-network
algorithm have been utilised.

Three papers consider a policy gradient approach
(Zheng, Gupta, and Serita 2020; Qu, Wang, and
Jasperneite 2018; Gabel and Riedmiller 2012). Four arti-
cles apply actor-critic RL approaches, such as adapted
Q-learning (Schneckenreither and Haeussler 2019), A2C
(Hubbs et al. 2020a), TRPO (Kuhnle et al. 2019, 2021 )
and PPO (Park et al. 2021). One paper follows an MC
approach (Tuncel, Zeid, and Kamarthi 2014).

In this case, scheduling and order acceptance opera-
tional problems are addressed in these contexts ordered
from the most to the least frequently occurring ones:
manufacturing system, job shop, flow shop, shop floor,
work cell, single machine, multisite company, semi-
conductor industry, supply chain, workflow, automotive
industry, cloud manufacturing, discrete automated pro-
duction line, injection mould industry, parallel machines
and wafer manufacturing shop.

States are related mainly to the number of jobs in
the system or await to be processed per machine, job
attributes, machine attributes, set up of machines, pro-
cessing times, inventory level, availability of machines,
mean tardiness and capacity of resources. Actions cen-
tre mostly on selecting a schedule rule, allocating jobs
to machines, selecting the job to be processed, accept-
ing/rejecting orders, among others. Feedback rewarding
signals in scheduling problems do not only include eco-
nomic measures like profits or costs, but most articles
include rewards or penalties related to production time
indicators, such as makespan, lateness and tardiness.

Inventory management problems (Appendix 5) are
addressed mostly by value-based approaches, specifically
and in order of use as follows: ARL, Q-learning, CMRL,
fitted Q-iteration, R-learning, and TD(λ) algorithm.
Regarding DRL approaches, the A3C actor-critic method
is applied in one article (Kim, Jeong, and Shin 2020),
two articles apply the PPO method, and another uses
the DDPG and clipped PPO algorithms. On DRL value-
based algorithms DQN, duelling DDQN and deep Q-
learning are applied to solve inventory management
problems.

In this case, the tactical and operational inventory
management problem is addressed in manufacturing
systems and supply chain contexts. Only one article
addresses this problem in a different context: blood
banks (Elkan 2012). Regarding states, most proposals
include an inventory level or position, while others
include information like customer demand or in-transit
inventory. Actions focus mainly on defining replenish-
ment or reorder quantities or defining certain inventory
safety factors like safety stock, safety factor or safety
lead time. In the blood bank-related proposal, not only
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replenishment quantity is defined, but the allocation of
the blood type to blood demand is also defined according
to compatibilities among blood types.

For feedback rewarding signals, two main types of
rewards are envisaged: rewards that promote the partic-
ipants’ economic sustainability, such as profits or inven-
tory management costs, and rewards that promote social
sustainability, such as service level.

4.3. RL software tools

In this section, the number of agents, software tools,
and the application of each proposal, are summarised in
Appendix 6. In application terms, a distinction is made
in a numerical example that consists of using a small
invented dataset to validate the proposed approach, a
benchmark consisting of using an instance of data pub-
lished in other sources (research articles or benchmark
instances) to compare its performance and results, a case
study that consists of using realistic simulated data, and
a real-world problem in which real data from a real
company are used. Additionally, the quality solution is
identified in problem dataset size terms, i.e. number of
products, machines or suppliers, among others. Regard-
ing runtimes, agents’ training times, which are the most
important part of the solution time (Valluri, North, and
MacAl 2009; Shiue, Lee, and Su 2018; Park et al. 2020),
are not normally specified by the reviewed articles. As
an illustrative example, Huang, Chang, and Chakraborty
(2019) provide training times of around 7.5 h. Similarly,
although execution times are not indicated, they are
almost negligible compared to training times.

Almost 80% of the consulted works use a single agent
in learning algorithms. With multi-agent approaches,
agent training can be classified into two large groups: dis-
tributed, where each agent learns independently of other
agents and no explicit information exchange takes place;
centralised, where agents’ policies are updated based on
shared mutual information (Weiß 1995). Apart from
training type, agents can be classified according to the
way they select actions. There are two execution schemes:
centralised, where agents are guided from a central unit
that sets the joint actions for them all; decentralised,
where agents determine actions according to their own
individual policy. For a more detailed use of RL and DRL
in multi-agent systems, readers are referred to Gronauer
and Diepold (2021) and to Canese et al. (2021). Here
multi-agent approaches are mainly developed with the
JAVA programming language using multi-agent frame-
works like JADE. Python has also recently appeared to
support multi-agent approaches.

Continuing with programming languages, it is worth
noting that until the current main ML platforms like

Tensorflow (Abadi et al. 2016) and Pytorch (Paszke et al.
2017, 2019) appeared, most approaches used general lan-
guages, such as C++,MATLAB, JAVA,Visual Basic.NET
andDelphi, or simulation applications likeARENA.After
these platforms were released and their ease of use with
Python API, this language seems to be predominate
for developing agents, although we ought not to for-
get the presence of MATLAB and JAVA. The use of
Python is supported by the OpenAI Gym toolkit appear-
ing (Brockman et al. 2016), which allows the develop-
ment in this language of simulation environments for
agents’ autonomous learning. Before this tool emerged, it
was once again necessary to build custom environments
for learning agents. Even so, other tools are also used in
different programming languages to simulate the learn-
ing environment, such as Simpy, MATLAB, SImTalk,
Anylogic, among others.

The application of RL is no straightforward process as
the different algorithms to be applied to the agent and
the environment have to be tested and fine-tuned. For
this purpose, integrated frameworks that facilitate this
entire development and testing process are employed.
These frameworks facilitate the creation of new algo-
rithms, or the application and adjustment of algorithms
that already exist in the literature (no need to programme
from scratch) to newproblem environments. For this rea-
son, these frameworks have begun to appear in the last 5
years, and include Tensorforce (Kuhnle, Schaarschmidt,
and Fricke 2017), Keras-RL (Plappert 2016) and Sta-
ble Baselines (Hill et al. 2018). It is noteworthy that
there are now more frameworks than those indicated
above, such as TF-Agents (Guadarrama et al. 2018), RL-
Coach (Caspi et al. 2017), Acme (Hoffman et al. 2020),
Dopamine (Castro et al. 2018), RLlib (Liang et al. 2017)
and Stable Baselines3 (Raffin et al. 2021), among others.
It is also worth highlighting the RL frameworks selec-
tion methodology proposed by Winder (2020), which
contemplates quantitative classification criteria associ-
ated with GitHub repository statistics (stars, number of
commits, number of committers, time since the project
was launched, etc.) and criteria related to modularity,
ease of use, flexibility and maturity. It also analyzes 15
frameworks, but does not contemplate others like Acme
and Stable Baselines3. According to the methodology of
Winder (2020), and by extending it to other frameworks,
it is worth pointing out that if ML library Tensorflow
is employed, using the Tf-Agents framework could be
suitable. If ML library Pytorch is utilised, the Stable Base-
lines3 framework might also be a good initial option,
an easy one to apply and one that comes with the avail-
able documentation. Yet despite the easy use of DNN
API Keras, the frameworks that it uses do not arouse
much interest. Finally, it is worth stressing the selection
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of two frameworks, Acme and Rllib, via the ray project.
Acme is quite a new framework (and does not come
with complete documentation) that is mostly research-
oriented. The design of its architecture is good and is
used by DeepMind (one of the leading firms to investi-
gate in RL and AI). RLlib is an industrial-grade library
for RL built on top of Ray. Ray is a distributed execution
framework that allows programs in Python to be scaled
thanks to Rllib via Ray, which is a relatively affordable
form by means of developed documentation. Besides, it
canworkwith both Tensorflow andPytorch. In Ray, there
are other libraries apart fromRLlib that allow the scalable
adjustment of hyperparameters and RaySGD to support
distributed training algorithms.

Finally, it is worth indicating that the vast majority of
the RL applications to PPC are carried out on numer-
ical examples or case studies, which are not normally
very large in size. Fewer than 9% of the contributions are
applied to real-world problems. Thus the use of RL, and
more currently DRL, leaves plenty of room for develop-
ment in PPC, and generally in the operations research
and industrial engineering areas. Indeed the work of
Hubbs et al. (2020) develops OR-Gym, an open-source
library for developing RL algorithms to address opera-
tions research problems.

5. Discussion

One of the first steps in applying RL is to properly define
states and actions. States ought to be defined so that they
come as closely as possible to the behavioural policy that
generates data. It is preferable to have a detailed design
of those data to help the agent learn the most appropri-
ate policy. Yet enlarging the state space makes the model
a more complex one to be solved. Therefore, deciding
about good state representation is fundamental, and one
that can include only those factors with a causal rela-
tion to the actions to be taken and outcomes. In order to
reduce the state space size, most articles assume the dis-
cretisation of their values based on very simplified input
dat, which cand generate accuracy losses in the solution.
This makes it difficult to apply RL algorithms to more
complex and realistic PPC problems with satisfactory
results.

As regards actions, the vast majority of the analysed
articles have also focused mainly on the discretisation
of the action space and using discrete decision variables.
This discrete formulation is quite reasonable in PPC
when related to binary decisions (e.g. whether or not to
activate a location of a resource or facility), combina-
torial decisions (which product to sequence from those
available in the next period on a machine), or integer
decisions (purchase or production batches). However,

provided that the underlying problem contemplates con-
tinuous decision variables, the action space should also
adopt this format to obtain quality results. Once again,
although some DRL algorithms work with continuous
spaces, such as actor-critic or policy-based methods, if
the action space is large/infinite, proper action selection
becomes more complicated. Moreover, one disadvan-
tage of DRL is there is no optimality guarantee in these
algorithms, which tend to converge to the local opti-
mal instead of the global optimal. Furthermore, state and
action spaces are becoming larger as the problem’s com-
plexity grows. This makes convergence less efficient in
times and solution quality terms. This is one of the main
challenges to be faced with RL algorithms.

Therefore, the RL algorithms in our literature review
have been applied to adapted and simplified environ-
ments. RL is data-intensive, and it is necessary to have a
history of data samples to feed agents’ training to obtain a
good policy. With no such real or representative samples,
these types of solutions cannot be applied to enterprise
environments. Moreover, if that data history contains
biases, they will be learned by the agent itself. As previ-
ously mentioned, only a few analysed works have been
applied to real environments. It is worth noting that
in the I4.0 concept, cyber physical systems, Internet of
things (IoT) and/or Internet of everything (IoE), together
with traditionalMES (manufacturing execution systems)
and WMS (warehouse management systems), can help
to capture the necessary samples to train agents in the
PPC area.

The learning process typically takes place in the sim-
ulation environment with which the agent interacts.
Appendix 5 identifies the different RL software tools
applied in the literature to create these simulation envi-
ronments: Anylogic, ARENA, MATLAB, Simpy, JADE,
OpenAI Gym, among others. It should be noted that
the vast majority of the analysed algorithms are free
of models. This means that the agent which interacts
with the (simulated) environment has no a priori knowl-
edge about what will happen when it performs a cer-
tain action in that environment. Therefore, it learns to
maximise its reward by trial-and-error. As the agent
may have to make many trial-and-error attempts while
learning, the simulator has to be efficient since, depend-
ing on the problem, the model may be difficult to
build. Hence an important challenge to be addressed
in RL algorithms is related to hyperparameter tun-
ing, where it is necessary to investigate and develop a
methodology to set the initial values so that algorithms
learn more quickly and satisfactorily. So this structured
approach to adjust hyperparameters is needed to reduce
the number of trial-and-error attempts, which condition
convergence speed.
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One of the great advantages of RL and DRL is that
once the agent is trained (although it may take time to
train it), the time required to obtain a solution is practi-
cally instantaneous. The solution will be obtained from
a sequence of accesses to a Q-table (in the case, tabu-
lar Q-learning) or will pass through a DNN (with a DRL
algorithm). This feature is very useful for those use cases
in the PPC area that are operational or real-time based.
In these situations, the possibility of making a quick,
or even a real-time decision, is a feature that should be
taken into account. This partly explains why there are
more contributions in the production scheduling area
(Appendix 4).

The works herein shown present RL and DRL as a
viable promising alternative in the PPC area as they have
compared the results of the proposed algorithms to tradi-
tional resolution models (heuristics, metaheuristics and
mathematical programming optimisation) and obtained
similar, or even better, results in different scenarios. This
is because of another advantage of DRL: it is easier to
incorporate uncertainty or non-linear relations into sim-
ulation than, for example, into alternative mathematical
resolution models. So it is necessary to bear in mind
that if there are solutions based on traditional opera-
tions research models that are efficient in time, money
or computational capacity terms, it is not necessary to
resort to other types of solution approaches like those
based on RL. This is because these models have better
solution guarantees than many RL algorithms and their
behaviour is well-known. However, if uncertainty and/or
non-linear relations have to be incorporated into a prob-
lem, traditional stochastic and DP models quickly pro-
duce the curse of dimensionality, which can considerably
prolong resolution times. Additionally,many problems in
the PPC area can be very diverse and/or complex and are
much easier to simulate than formulating a mathemati-
cal programming model. Therefore, we suggest readers
using traditional mathematical programming models for
PPC problems in static and determinist contexts when
they can obtain satisfactory solutions in a reasonable
computational time. RL algorithms are recommended for
PPC scenarios in dynamic and uncertain contexts that
contemplate Industry 4.0 issues such as: online applica-
tions, real-time data, cyber physical production systems,
the combination of production systems and automated
guided vehicles (AGVs), among others.

Notwithstanding, there are limitations to the use of
RL algorithms which, being mainly model-free and with
no reference model, have difficulties in responding to
changes in the environment. For example, if the demand
pattern changes for an agent trained in the purchase and
supply chain management area, the quality of these deci-
sions can drastically decrease. In some cases, retraining

agents is necessary to avoid loss of quality decisions.
Here self-tuning approaches based on AI algorithms are
proposed as a challenge by several reviewed articles.

It is noteworthy that no more than 20% of the studied
articles in the literature adopt the multi-agent approach,
whose training requires higher computational capac-
ity because the space of actions and states substan-
tially increases with number of agents. All the multi-
agent approaches herein analysed apply the centralised
training type, and most of the analysed works adopt a
decentralised execution scheme. According to Stone and
Veloso (2000), it is not possible to completely solve many
real-world problems by only one active agent interact-
ing with the environment. Indeed several problems in the
purchase and supplymanagement area adoptmulti-agent
approaches because they involve different companies that
belong to one same supply chain. This makes it difficult
to use a single agent with all the necessary information to
both model and overcome them.

Over the years, RL algorithms’ complexity and scale
have significantly grown. In this scenario, programming
an RL implementation from scratch can be a tedious job
and might pose a high risk of programming errors. To
address this, the RL community started building frame-
works and libraries to simplify the development of RL
algorithms. These libraries offer a number of built-in
algorithms (both single-agent and multi-agent) and also
facilitate the creation of custom algorithms. These frame-
works are also prepared to take advantage of the high
computational capacity that can be achieved only with
parallel and distributed systems composed of heteroge-
neous servers with multicore CPUs and hardware accel-
erators GPU and TPU (Torres 2020). In this literature
review, the use of these libraries and frameworks has
started being identified (especially in recent years). In
the present and immediate future, the use of these tools
is expected to become more widespread for both the
accomplished time savings and meeting the increased
computational demands of most current RL problems.
Hence the difficulty of deciding which of all the avail-
able RL frameworks is the most suitable one to be used
in the PPC domain. This is because there are many avail-
able options (some of which have been abandoned) and
new frameworks have been constantly created in recent
years. Besides, selecting a specific framework can mean
having to invest learning time, which can later com-
plicate the possibility of changing to another different
(albeit assumedly better) framework. Based on the selec-
tion methodology of Wan et al. (2020), Ray via RLlib
enables rapid scaling, facilitates the adjustment of hyper-
parameters and applies distributed training. Thus it is
considered to be one of themost suitable ones for the real
implementation of RL applications in the PPC domain.
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Thus the following research gaps were identified: (i)
more RL approaches should be applied and tested in facil-
ity resource planning, capacity planning and inventory
management problems, and generally inmore real-world
PPC problems; (ii) tactical and strategical decision lev-
els can be addressed with RL and DRL approaches; for
instance, supply chain design, facility location, aggre-
gate planning, master production scheduling and mate-
rial requirement planning are problems that can be
focussed on; (iii) environmental and social aspects of sus-
tainability have hardly been dealt with in many of the
revised RL approaches, which have been oriented mostly
on the economical aspect. Therefore, RL-PPC models
should contemplate the triple bottom line of sustainabil-
ity; (iv) comparative studies between the different RL
and DRL methods applied to similar real-world prob-
lems are scarce. Hence the need to compare distinct RL
and RDL methods in computational efficiency terms per
PPC area; (v) the performance of RL and DRL solu-
tions in more generic and comprehensive environments
should be evaluated to identify the best solutions, which
might also be robust in different environments; (vi) lack
of robustness of model-free algorithms to face changes
in the environment, which can be solved by retraining
the agent or applying the transfer learning concept. If the
agent is retrained from the beginning, all the accumu-
lated knowledge will be discarded. However, the human
brain does not work like that because it does not dis-
card previously obtained knowledge when solving a new

task. Transfer learning attempts to mimic this behaviour
to retrain agents that have already been applied to simi-
lar situations to obtain a much faster convergence when
learning the new underlying policy (Garnier et al. 2021);
(vii) agent training can be done by means of hybrid sys-
tems that can combine RL with optimisationmethods. In
this way, while learning agents can consult the output of
a mathematical programming solver to learn how to use
certain actions in the futurewithout having to run it again
(Hubbs et al. 2020b); (viii) the practitioner and academic
use of RL frameworks and libraries should become more
general due to both the savings made in modelling times
and to face the greater computing demands generated by
the most current real-world RL problems.

Finally, Figure 5 summarises the main limitations and
challenges of RL applied to PPC problems.

6. Conclusions

This paper presents a thorough literature review on RL
applications in the PPC field. The collected, selected
and analysed papers were classified according to the fol-
lowing PPC areas: facility resource planning, capacity
planning, purchase and supply management, production
scheduling and inventory management. RL approaches
have focused mainly on production scheduling and
order acceptance operational problems followed by the
purchase and supply management area, where tacti-
cal problems related to production planning, inventory

Figure 5. Main limitations and challenges of RL applied to PPC.



14 A. ESTESO ET AL.

management, procurement and truck assignment and
routes planning and bullwhip effect problems, and oper-
ational problems related to inventory control, VMI, pro-
duction scheduling and production and procurement
planning, are mostly contemplated. Moreover, the strate-
gical decision level has been considered in a global supply
chain management problem.

Tactical and operational inventorymanagement prob-
lems have been addressed in manufacturing systems and
supply chains, although one article has addressed this
problem for blood banks. Regarding facility resource
planning, operational maintenance, tactical preventive
maintenance and operational machine reconfiguration
are the main problems to have been addressed. Very few
RL approaches have dealt with capacity planning, and
from the tactical and operational decision levels, they
have modelled and solved manpower hiring, machine
control and forecasting method selection problems.

In relation to the RL method, RL value-based
approaches are the most frequently used specifically for
Q-learning and their variants, SMART and their variants,
ARL, SARSA and profit sharing. For DRL approaches,
DQN and their variants, Q-network and policy gradi-
ent methods have been utilised. Regarding actor-critic
based approaches, PPO is the most widespread followed
by A2C, A3C, DDPG and TRPO approaches. Finally,
a few MC approaches have been adopted in the facil-
ity resource planning, purchase and supply management
and production scheduling areas.

Managerial implications aim to provide an overview
of the possible applications of RL and DRL approaches
for PPC practitioners and academics. The usefulness of
this literature review for PPC managers is twofold: on
the one hand, to serve as a general guide to find similar
PPC problems to be solved with RL and DRL approaches
and, on the other hand, to also provide a guide that pro-
poses new approaches to support PPC problems with a
view to select RL software tools, which have been exten-
sively discussed, and to define states, actions and rewards
in similar problems to be addressed.

It should be highlighted that this literature review
has some limitations. The consulted database is Sco-
pus, which is constantly being updated and the pro-
vided data correspond to those obtained at the time
when the research was conducted. Here we review the
literature published until February, 2021. In the mean-
time, several new studies on RL in PPC problems have
appeared (Kuhnle et al. 2021; Panzer and Bender, 2022;
Yang and Xu, 2021, among others) which corroborates
the great interest in this research area. Furthermore,
despite having followed a systematic search process,
some valuable papers could have been overlooked for
this review. For instance, we avoided specific searching

words like ‘scheduling’ because it contemplates an exten-
sive research area (around 2,000 papers when combin-
ing ‘reinforcement learning’ and ‘scheduling’), which
requires more specific reviews, and even addresses fields
with production control regarding computers or robotics
scheduling tasks, which have been addressed by other
specific reviews. In any case, some limitations that were
revealed while conducting the study are an opportunity
for new research lines and forthcoming works. Thus,
we consider it necessary to develop more specific liter-
ature reviews oriented to RL and scheduling (Kayhan
and Yildiz 2021). Furthermore, it would be desirable to
extend RL and DRL approaches to new real-world strate-
gical and tactical problems in the PPC areas of facility
resource design specifically for supply chain design and
facility and warehouse location problems, and also in
the capacity planning and purchase and supply man-
agement areas to model and solve aggregate planning,
lot-sizing and scheduling (Rummukainen and Nurmi-
nen 2019; Lang et al. 2020; Zhang et al. 2020), and
even logistics problems (Rabe and Dross 2015). Then
these RL and RDL approaches could be automatically
and autonomously connected to operational production
scheduling and inventory management problems to look
for self-managed PPC systems as claimed in the I4.0 era.
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