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ABSTRACT: The preparation of novel efficient catalysts�that could be
applicable in industrially important chemical processes�has attracted great
interest. Small subnanometer metal clusters can exhibit outstanding catalytic
capabilities, and thus, research efforts have been devoted, recently, to synthesize
novel catalysts bearing such active sites. Here, we report the gram-scale
preparation of Ag20 subnanometer clusters within the channels of a highly
crystalline three-dimensional anionic metal−organic framework, with the
formula [Ag20]@AgI2NaI2{NiII4[CuII2(Me3mpba)2]3}·48H2O [Me3mpba4− =
N,N′-2,4,6-trimethyl-1,3-phenylenebis(oxamate)]. The resulting crystalline
solid catalyst�fully characterized with the help of single-crystal X-ray
diffraction�exhibits high catalytic activity for the catalytic Buchner ring
expansion reaction.

■ INTRODUCTION
The preparation, stabilization, and characterization of sub-
nanometer metal clusters (SNMCs) has been a main challenge
for chemists during the last years.1−7 Indeed, the preparation
of such ultrasmall entities is highly complex and often requires,
for instance, the use of stabilizing blocking ligands8 that
prevent their agglomeration into larger metal nanoparticles
(MNPs) but, in turn, may worsen their catalytic properties.
Moreover, the characterization of such tiny SNMCs is really
not an easy task and requires the use of high-resolution
microscopy techniques�for example, high-angle annular dark-
field−scanning transmission electron microscopy (HAADF−
STEM)�whose electron beam can, with time, degrade the
sample that is being observed.9 However, despite such
complications, the outstanding medical, optical, and/or
catalytic properties of SNMCs make it well worth the
effort.3,4,10,11

Focusing on the catalytic properties of SNMCs, stabilizing
capping ligands of SNMCs dramatically reduces their catalytic
activity as they prevent a proper contact with reactants and
trigger their decomposition under reaction conditions. There-
fore, it seems clear that “naked” SNMCs, with all metal atoms
exposed, are called to offer the best catalytic performances.12 In
this context, a proper strategy to obtain ligand-free SNMCs
consists in supporting these metal species in porous solids such
as zeolites or organic porous materials.13 More recently,
another type of porous materials, the so-called metal−organic
frameworks (MOFs),14 have emerged as a suitable platform
not only to host SNMCs but also to be used as chemical
reactors for the in situ chemical synthesis of the SNMCs.15,16

MOFs are crystalline porous materials that have attracted
significant attention in the past 2 decades due to the myriad
applications they can be used in.17 Moreover, aiming at
encapsulating/synthesizing SNMCs, or even single-atom
catalysts,18−22 MOFs offer clear advantages compared to
other porous materials such as a fine control of the
functionalities decorating the channels�which allows us to
retain and align metals in specific positions and controlled
stoichiometries�and the possibility to use single-crystal X-ray
crystallography23−25 to unveil the crystal structure of these
ultrasmall metal species.
In this context, we recently used,21 as a chemical reactor, a

highly robust anionic three-dimensional MOF, with the
formula NiII2{NiII4[CuII2(Me3mpba)2]3}·54H2O [Me3mpba4−

= N,N′-2,4,6-trimethyl-1,3-phenylenebis(oxamate)], for the
MOF-driven preparation of ligand-free tetranuclear [Pd4]2+
clusters after two consecutive post-synthetic steps consisting of
first replacing the Ni2+ cations hosted within its channels by
Pd2+ ones and the concomitant reduction to form the final
tetranuclear species within the empty space of the MOF. The
resulting host−guest material had the following formula:
[Pd4]0.5@Na3{NiII4[CuII2(Me3mpba)2]3}·56H2O (Figure 1).
Overall, the anionic nature of the MOF allowed a fine control
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of the number of inserted Pd2+ cations in the first step, which
were occupying specific positions by interacting with the
carboxylate oxygens from the network. Then, the confined
space, as well as the mentioned controlled stoichiometry,
allowed the formation of the small [Pd4]2+ clusters,
homogeneously distributed within the walls of the MOF
(Figure 1). As expected, such naked clusters, possessing all four
metal atoms outwardly exposed, exhibited outstanding catalytic
activity, outperforming state-of-the-art metal catalysts in
carbene-mediated reactions, also showing high yields (>90%)
and turnover numbers (up to 100,000). However, considering
the high cost of palladium, it would be highly desirable to
achieve highly performing SNMCs with lower prices.

■ RESULTS AND DISCUSSION
Herein, aiming at expanding these results to more affordable
metals, we report the two-step post-synthetic preparation of
A g 20 n a n o c l u s t e r s u s i n g t h e s a m e MO F
NiII2{NiII4[CuII2(Me3mpba)2]3}·54H2O (1) as the host matrix
(Figure 2a). First, nickel(II) cations, located in the pores of 1,

are exchanged by Ag+ ones, yielding the novel compound
AgI4{NiII4[CuII2(Me3mpba)2]3}·51H2O (2) (Figure 2b). Then,
after introducing NaBH4, the reduction process occurs to give
the final compound [Ag20]@AgI2NaI2{NiII4[CuII2(Me3-
mpba)2]3}·48H2O (3) (Figure 2c). The whole process could
be followed by single-crystal X-ray diffraction (SCXRD),
unveiling certain details about the nanocluster formation,
which constitutes one of the very few examples of MOF-hosted
silver subnanometer clusters26 and the first whose crystal
structure could be elucidated.
The nature of the final hybrid material, 3, containing Ag2

clusters (together with unreduced Ag+ ions) has been further
confirmed by the combination of a variety of techniques
including inductively coupled plasm−mass spectrometry
(ICP−MS) (Table S1, Supporting Information), elemental
mapping, powder X-ray diffraction (PXRD), thermogravimet-
ric analysis (TGA), X-ray photoelectron spectroscopy (XPS),
and scanning electron microscopy (SEM). The N2 adsorption
isotherms at 77 K confirmed the permanent porosity of 2 and
3 (see below). Finally, as previously mentioned, SCXRD with
synchrotron radiation allowed the resolution of the crystal
structure of 2 and 3 (Table S2, Supporting Information) and
the observation of ultrasmall silver dinuclear entities and
surroundings within the solid in 3 (Figures 2 and S1).
The anionic NiII4CuII6 open-framework structures in both 2

and 3 are isoreticular and crystallize in the P4/mmm space
group of the tetragonal system. Compound 2 exhibits the Ag+
cations situated within the walls of the hydrophilic octagonal
pores (virtual diameter of 2.0 nm), where they are stabilized by
noncovalent interactions involving oxamate oxygen atoms
[Ag+···Ooxamate of 2.72(1)−2.79(1) Å], with no evidence of
previously Ni2+ cations of 1, thus indicating that they are
completely exchanged by Ag+ ones (Figure 2b). Ag+ ion
surroundings unveil interacting oxygen atoms likely belonging
to nitrate anions (the whole fragments were not found from
the ΔF map, see Supporting Information, Figures S1−S3) or
solvent water molecules [Ag+···O distance range of 2.38(3)−
2.56(3) Å], together with Ag+···Ag+ with a separation of
2.74(2) Å, which is shorter than the van der Waals contact
distance, and they might be considered as precursors of the Ag20
dimers observed in 3. On the other hand, the crystal structure
of 3 reveals the stabilization provided by the nano-confined
space of the MOF on the as-synthesized Ag20 dimers,
constricted into the walls of the hydrophilic octagonal channels

Figure 1. Crystal structure of the previously reported [Pd4]0.5@
Na3{NiII4[CuII2(Me3mpba)2]3}·56H2O MOF.21 Atoms constituting
the framework and Pd atoms are represented by light yellow and blue
spheres, respectively.

Figure 2. Design approach showing the crystal structures of 1 (a), 2 (b), and 3 (c) showing the two-step post-synthetic process consisting of the
exchange of the NiII cations in the pores of 1 by AgI ones to yield 2 and the reduction process to form the Ag20 clusters in 3. Virtual diameters of
larger octagonal pores are 2.0 nm for MOFs 1−3, respectively. Copper and nickel atoms from the network are represented by cyan and orange
polyhedra, respectively, whereas organic ligands are depicted as gray sticks. Orange, yellow, and blue spheres represent Ni, Na, and Ag atoms,
respectively.
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of the anionic Ni42+Cu62+ open-framework net (Figures 2c, S4,
and S5), together with unreduced Ag+···Ag+ dimers in smaller
square pores (Figures 2c and S5). Further hydrated charge-
counterbalancing alkali Na+ cations are retained in the
preferential cationic sites, which stabilize the final material,
showing an outstanding robustness (Figures S4 and S5). The
poorer accessibility to the small square pores for solvated
NaBH4 is most likely the reason for still unreduced Ag+···Ag+
dimers [blocked by Ag+···Ooxamate interactions at a distance of
2.84(1) Å] (Figure S5). Figure 3 shows that Ag20 dimers

[intradimer Ag···Ag distance of 3.19(1) Å] are well-fixed and
stabilized inside the walls of the largest pores of the network by
means of supramolecular interactions involving oxamate
ligands [Ag···Ooxamate distance range of 2.93(1)−3.05(1) Å]
and very weak connections with solvent molecules [Ag0···Owater
distance of 3.25(1) Å].
SEM coupled with energy-dispersive X-ray spectroscopy

(EDX) measurements of 2 and 3 are given in Figures S6 and
S7. EDX elemental mappings for Cu, Ni, Ag, and Na (3)
elements show a heterogeneous spatial distribution of Ag
atoms always located next to Cu and Ni atoms. Moreover,
aberration-corrected HAADF−STEM (AC-HAADF−STEM)
images are shown in Figure S8. They allow a direct
visualization of both Ag2 dimers together with Ag1 species�
most likely to silver atoms residing in smaller square channels.
TGA of 2 and 3 (Figure S9) established the solvent contents

for both materials, which are reflected in their chemical
formulas. PXRD patterns of 2 and 3 (Figure S10) indicate that
the bulk samples are crystalline and pure, with no typical peaks
of Ag0 nanoparticles. Indeed, experimental diffraction patterns
of 2 and 3 are identical to the theoretical ones extracted from
the SCXRD data. XPS spectra of compounds 2 and 3 are
depicted in Figure S11. For 2, only possessing Ag+ cations, two
bands at 367.6 and 373.6 eV, ascribed to Ag 3d5/2 and Ag 3d3/2
binding energies, respectively,27 are observed (Figure S11a). In
turn, for MOF 3�where SCXRD and elemental analyses
suggest that Ag+ cations and Ag20 nanoclusters coexist�apart
from the same Ag 3d5/2 and Ag 3d3/2 bands at 367.6 and 373.6
eV, respectively, indicative of Ag+, two additional peaks at

368.4 and 374.4 eV can be observed, which are attributed to
reduced Ag0 atoms, with a 1:1 ratio respect to Ag+ (Figure
S11b). CO-probe diffuse reflectance infrared Fourier transform
spectroscopy (DRIFTS) was conducted on MOF 3, run at 77
K to avoid any in situ reduction of Ag+ and to observe
potential Ag0−CO species (Figure S12). The results show
three main peaks, one at 1938 cm−1, consistent with CO
bridged-bonded to Ag0 atoms,28 a second at 2059 cm−1,
attributable to Ag(CO)+ species,29 and a last peak at 2043
cm−1, corresponding to free CO, after saturation. It is known
that the adsorption of CO on Ag0 is lower than Ag+;30 thus, the
lower intensity of the former makes sense and could very well
correspond to a 1:1 ratio between Ag oxidation states. These
results strongly support that 50% of Ag+ present in 2 are
reduced by NaBH4 forming Ag20 nanoclusters, whereas 50% of
Ag+ cations remain untouched, occupying inaccessible
sheltered interstitial positions where the reducing agent cannot
accede (see the structural description). The N2 and CO2
adsorption isotherms for 1−3 confirm their permanent
porosity (Figures S13 and S14). N2 adsorption isotherms for
1−3, with calculated Brunauer−Emmett−Teller31 surface
areas of 974, 1013, and 625 m2/g, respectively, indicate a
very similar permanent porosity for 1 and 3, which is in
agreement with their identical estimated virtual diameters of
2.0 nm. In turn, MOF 2 exhibits lower N2 adsorption despite
having the same virtual diameter (2.0 nm), which could be due
to a partial collapse of the structure upon solvent evacuation
treatment. Remarkably, CO2 adsorption isotherms show a 66%
uptake increase for 3, suggesting quadrupole interactions
between CO2 molecules and Na+ cations.
The Buchner ring expansion reaction was attempted with

catalytic amounts of 3. The results show that the reaction
between toluene (4) and ethyl diazoacetate (5) (EDA)
proceeds rapidly (30 min) in a very high yield, under standard
reaction conditions (Figure 4 top).21,32 Blank experiments
without any catalyst gave a 8% conversion, and the use of

Figure 3. One single channel of 3, showing supramolecular
interactions involving oxamate ligands of the network (distances are
reported in angstroms).

Figure 4. Top: results for the Buchner ring expansion reaction
between toluene 4 and ethyl diazoacetate 5 catalyzed by MOF 3.
Bottom: Hot filtration test after adding 5 at once, error bars account
for 5% uncertainty. (a) GC yield after syringe pump addition of 5,
with the result after the addition of 5 at once given in parentheses; the
result with Rh2(OAc)4 as a catalyst (5 mol %) is 63%.
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MOFs 1 and 2 as catalysts showed the lower catalytic activity
of these MOFs than that of 3, with a 3 times lower initial rate
for the former (Figure S15). Commercial Ag NPs on alumina
only gave a 16% conversion, and remarkably, the state-of-the
art catalyst for this reaction, that is, Rh2(OAc)4, gave a lower
result than MOF 3 in this study, under identical reaction
conditions (63% after the addition of 5 at once). An optimum
>95% yield of product 6 was obtained after maintaining a low
concentration of 5 during the reaction, which was achieved by
adding a solution of 5 (in dichloromethane) into the reaction
mixture using a syringe pump, instead of adding it at once.
Otherwise, the unwanted dimerization reaction of 5 occurs. It
is worth noting here that product 6 corresponds to the typical
mixture of cycloheptatriene isomers, in accordance with
previous results.21,32 A hot filtration test, where the solid
MOF catalyst 3 is removed from the reaction mixture at the
reaction temperature (60 °C) at an early conversion (∼30%),
shows that the catalytic active species are not present in
solution within the experimental error (<10%, Figure 4
bottom), which supports the relative stability of the solid
catalyst. In accordance with this result, MOF 3 can be
recovered at the end of the reaction by centrifugation, washed,
and reused six times, maintaining a good catalytic activity
(Figure S16). However, the catalytic yield of MOF 3 decreased
to 30% after six uses, which could be due to the progressive
(although minor) leaching of active species during the
reaction.
The Buchner ring expansion reaction catalyzed by 3 could

be expanded to other aromatic substrates (Table 1).

Halogenated (products 13, 14, and 17), cyano (product 15),
methoxy (product 16), and ortho-disubstituted (product 18)
aromatic compounds react with 5 in good to excellent yields
and still in short reaction times (<2 h). These results should be
remarked upon as this is difficult to find in the open literature
Ag-catalyzed Buchner ring expansion reactions.32−35 The
slightly lower results obtained for the bigger substrates 11
and 12 can be explained by the size discrimination associated
to the microporous structure of MOF 3. To check this, 1,3,5-
triisopropylbenzene 19 was tested as a substrate for the
reaction, and product 20 was not found (Figure S17). Besides,
diffusion tests with varying stirring speeds confirmed that the
initial reaction rate is dependent on the stirring, which
confirms that the reaction occurs inside the MOF’s channels
(Figure S18). Indeed, 1,3,5-triisopropylbenzene 19 reacted

when the Rh2(OAc)4 salt was used as a catalyst (3 mol %, 69%
yield, Figure S17). Therefore, for MOF- or zeolite-stabilized
Pd clusters,21,36 the formation of Ag2 clusters in micro-
structured solids enables not only the catalytic use of this metal
in this complex organic synthetic reaction but also its recovery
and reuse.36,37 Interstitial Ag+ cations must be excluded as
catalytically active species since reagents cannot access these
sites; besides, leaching does not occur under the reaction
conditions employed. Finally, the integrity of MOF 3 is
ensured by PXRD (Figure S19) and XPS (Figure S20) after
catalytic experiments.

■ CONCLUSIONS
In conclusion, ligand-free Ag20 clusters have been prepared,
stabilized and characterized within an MOF and used as
efficient and recoverable catalysts for the Buchner ring
expansion reaction. These results expand the toolkit of readily
affordable Ag species for heterogeneous catalysis in organic
synthesis.

■ EXPERIMENTAL SECTION
Preparation of AgI4{NiII4[CuII2(Me3mpba)2]3}·51H2O (2). Well-

formed deep green prisms of 2, which were suitable for XRD, were
obtained by immersing crystals of 1 (ca. 0.0015 mmol) for 48 h in 5
mL of a AgNO3 aqueous solution (0.004 mmol), which was replaced
three times. A multigram scale procedure was also carried out by using
the same synthetic procedure but with greater amounts of both, a
powder sample of compound 1 (ca. 20 g, 5.8 mmol) and AgNO3
(2.38 g, 14.0 mmol), with the same successful results and a very high
yield (20.33 g, 96%). Anal.: calcd (%) for Cu6Ni4Ag4C78H162N12O87
(3707.7): C, 25.27; H, 4.40; N, 4.53. Found: C, 25.34; H, 4.37; N,
4.59. IR (KBr): ν = 3008, 2961 and 2926 cm−1 (C−H), 1601 cm−1

(C�O).
Preparation of [Ag2]AgI2NaI2{NiII4[CuII2(Me3mpba)2]3}·48H2O

(3). Both crystals (ca. 5 mg) and a powder polycrystalline sample of 2
(ca. 10 g) were suspended in 50 mL of a H2O/CH3OH (1:2)
solution, to which an excess of NaBH4, divided in 26 fractions (each
fraction consisting of 1 mol of NaBH4 per mole of 2 to give a final
NaBH4/MOF molar ratio of 26 or a NaBH4/Ag atom molar ratio of
13, which is the same), was added progressively in the space of 72 h.
After each addition, the mixture was allowed to react for 1.5 h. After
this period, samples were gently washed with a H2O/CH3OH
solution and filtered on paper, giving high yields (ca. 98%). Anal.
Calcd (%) for Cu6Ni4Ag4Na2C78H156N12O84 (3699.61): C, 25.32; H,
4.25; N, 4.54. Found: C, 25.28; H, 4.17; N, 4.59. IR (KBr): ν = 3011,
2971 and 2928 cm−1 (C−H), 1605 cm−1 (C�O).
Gas Adsorption. The N2 and CO2 adsorption−desorption

isotherms at 77 and 273 K were obtained on polycrystalline samples
of 2 and 3 using a BELSORP-mini-X instrument. Samples were first
activated with methanol and then evacuated at 348 K during 19 h
under 10−6 Torr prior to their analysis.
Microscopy Measurements. SEM elemental analysis was carried

out for 2 and 3 using a HITACHI S-4800 electron microscope
coupled with an EDX detector. Data were analyzed using QUANTAX
400.
HAADF−STEM characterization for 3 was performed using an

HAADF-FEI-TITAN G2 electron microscope. 5 mg of the material
was re-dispersed in 1 mL of absolute EtOH. Carbon-reinforced
copper grids (200 mesh) were submerged into the suspension 30
times and then allowed to dry on air for 24 h.
PXRD Measurements. Polycrystalline samples of 2 and 3 were

introduced into 0.5 mm borosilicate capillaries prior to being
mounted and aligned on an Empyrean PANalytical powder
diffractometer, using Cu Kα radiation (λ = 1.54056 Å). For each
sample, five repeated measurements were collected at room
temperature (2θ = 2−60°) and merged in a single diffractogram.

Table 1. Results for the Buchner Ring Expansion Reaction
between Different Aromatics 7−12 and 5, Catalyzed by
MOF 3a

entry aryl substrate substituent(s) product yield (%)a

1 7 Cl 13 66.5
2 8 Br 14 64.9
3 9 CN 15 92.8
4 10 OMe 16 82.6
5 11 CH2Br 17 50.2
6 12 Me-ortho-F 18 72.7

aGC yields after syringe pump addition of 5.
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XPS Measurements. Samples of 2 and 3 were prepared by
sticking, without sieving, the samples onto a molybdenum plate using
a scotch tape film, followed by air-drying. Measurements were
performed on a K-Alpha XPS system using a monochromatic Al
K(alpha) source (1486.6 eV). As an internal reference for the peak
positions in the XPS spectra, the C 1s peak has been set at 284.8 eV.
DRIFTS of Adsorbed CO. DRIFTS using CO as a probe molecule

was used to evaluate the electronic properties of MOF 3. The
experiments have been carried out in a homemade IR cell able to
work in the high and low (77 K) temperature ranges. Prior to CO
adsorption experiments, the sample was evacuated at 298 K under
vacuum (10−6 mbar) for 1 h. CO adsorption experiments were
performed at 77 K in the 0.2−20 mbar range. Spectra were recorded
once complete coverage of CO at the specified CO partial pressure
was achieved. Deconvolution of the IR spectra has been performed in
the Origin software using Gaussian curves where the full width at half-
maximum of the individual bands has been taken as a constant. The
peak areas are normalized to the sample weight.
X-ray Crystallographic Data Collection and Structural

Refinement. Crystals of 2 and 3 with ca. 0.06 × 0.08 × 0.08 and
0.08 × 0.12 × 0.12 mm dimensions, respectively, were selected and
mounted on a MITIGEN holder in Paratone oil and very quickly
placed on a liquid nitrogen stream cooled at 90 K to avoid the
possible degradation upon dehydration. Diffraction data for 2−3 were
collected using synchrotron at the I19 beamline of the DIAMOND at
λ = 0.6889 Å. Crystallographic details can be found in the Supporting
Information
General Catalytic Reaction Procedure. MOF 3 (9.5 mg, 10

mol % Ag) was weighed in a 2 mL vial with a magnetic stirrer, and the
aromatic substrate (0.8 mL) was added. Then, the vial was placed in a
pre-heated oil batch at 60 °C, and ethyl diazoacetate 5 (0.1 mmol)
was added, either at once or using a syringe pump (solution in
dichloromethane). The mixture was allowed to react for 0.5−2 h.
After the reaction was complete, filtration was carried out to separate
the solid catalyst. The reaction mixture was analyzed by gas
chromatography (GC) and GC−MS. Further details can be found
in the Supporting Information.
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