Aaa UNIVERSITAT

0
Dslie

INFORMATICS | COMPUTACIO

UNIVERSITAT POLITECNICA DE VALENCIA

Dept. of Computer Systems and Computation

Improving particle physics event simulation by using
Variational Autoencoders in the context of LHC
experiments

Master's Thesis

Master's Degree in Artificial Intelligence, Pattern Recognition and
Digital Imaging

AUTHOR: Balanza Garcia, Raul

Tutor: Gomez Adrian, Jon Ander

External cotutor: SALT CAIROLS, JOSE FRANCISCO
Experimental director: RUIZ DE AUSTRI BAZAN, ROBERTO

ACADEMIC YEAR: 2022/2023

Agradecimientos

Este trabajo representa para mi el final de otra dura etapa de gran esfuerzo, durante la
cual he podido formarme més extensamente en mi vocacién, pero también a la vez crecer
como profesional. En este afio me he podido demostrar que, con motivacién y ganas,
puedo cumplir la mayoria de objetivos que me proponga.

Pero, sin duda, poder terminar una etapa académica y trabajar durante el mismo
periodo de tiempo con el esfuerzo que ello requiere no habria sido posible sin el apoyo
de numerosas personas y organizaciones, a las cuales quiero mostrar mi agradecimiento.

En primer lugar, quisiera agradecer a mi tutor en la UPV Jon Ander Gémez Adridn
su constante apoyo y dedicacién, que me ha aportado gran cantidad de conocimiento.
Estoy seguro de que, sin su confianza y ayuda, desarrollar un trabajo como este no me
habria sido posible.

En segundo lugar, a mis dos tutores externos del IFIC (Centro Mixto CSIC-Universitat
de Valencia): José Salt Cairols y Roberto Ruiz de Austri Bazan, que han aportado gran
cantidad de conocimiento en relacién con la fisica y han resuelto todas las dudas que
he tenido, ademds de proporcionar el conjunto de datos que ha permitido realizar la
experimentacién que se expone en el trabajo.

En tercer lugar, a mis padres, por apoyarme de forma incondicional durante todas las
etapas académicas y profesionales de mi vida, animdndome dia a dia hasta finalizar mis
estudios de méster con este trabajo, y dotarme de todos los recursos y facilidades que he
necesitado.

En cuarto lugar, agradezco a mis compafieros de trabajo y amigos de todas las etapas
que siempre han creido en mi (en ocasiones més que yo mismo) su apoyo y motivacién
diarios, que ha sido determinante en muchos momentos del camino que me ha llevado
hasta aqui.

Finalmente, quisiera agradecer a ValgrAl - Valencian Graduate School and Research Net-
work for Artificial Intelligence, fundacion de la que soy miembro, y a la Generalitat Va-
lenciana su apoyo a través de los recursos que me han proporcionado para facilitar mis
estudios de master.

Resum

ATLAS és el detector de particules de proposit general més gran del Large Hadron
Collider, un accelerador de particules situat al CERN. Aquest experiment, entre d’altres,
va ser creat perque el Model Estandard, que és el marc tedric més amplament acceptat en
fisica, no pot explicar alguns comportaments fonamentals de la materia a causa d’algunes
limitacions.

Per a resoldre aquestes qiiestions, es van crear detectors en cerca de senyals de Nova
Fisica utilitzant el LHC. Aquests senyals s6n extensions del model actual que podrien
explicar potencialment fenomens desconeguts. Comparant dades experimentals reals
amb dades simulades de models teorics, podria ser possible detectar aquests senyals i
validar nous descobriments. No obstant, simular dades amb metodes tradicionals és
temporalment i computacionalment molt costés. Per a reduir aquests costos i fer que el
descobriment de Nova Fisica siga més accessible, és possible utilitzar models generatius
basats en Deep Learning com generadors rapids d’esdeveniments de Monte Carlo en el
context del LHC.

Aquesta aproximacié pot reduir significativament el temps i 1’energia requerits res-
pecte a les técniques existents a 'estat de l'art actual. Anteriorment, diversos models
generatius han sigut explorats tractant d’obtindre el millor generador d’esdeveniments
possible. En aquest treball, profunditzem en 1'tis de Variational Autoencoders amb eixe
objectiu, i també usem metriques per a comparar el rendiment d’aquests models amb
altres metodes.

Paraules clau: Esdeveniments de Monte Carlo, Models generatius basats en Deep Lear-
ning, Nova Fisica, Variational Autoencoder, Large Hadron Collider

Resumen

ATLAS es el detector de particulas de propésito general mds grande del Large Ha-
dron Collider, un acelerador de particulas situado en el CERN. Este experimento, entre
otros, fue creado porque el Modelo Estandar, que es el marco teérico mas ampliamen-
te aceptado en fisica, no puede explicar algunos comportamientos fundamentales de la
materia debido a algunas limitaciones.

Para resolver estas cuestiones, se crearon detectores en busca de sefiales de Nueva
Fisica utilizando el LHC. Estas sefiales son extensiones del modelo actual que podrian
explicar potencialmente fenémenos desconocidos. Comparando datos experimentales
reales con datos simulados de modelos tedricos, podria ser posible detectar estas sefiales
y validar nuevos descubrimientos. Sin embargo, simular datos con métodos tradicionales
es temporal y computacionalmente costoso. Para reducir estos costes y hacer que el des-
cubrimiento de Nueva Fisica sea mds accesible, es posible utilizar modelos generativos
basados en Deep Learning como generadores rdpidos de eventos de Monte Carlo en el
contexto del LHC.

Este enfoque puede reducir significativamente el tiempo y la energia requeridos res-
pecto a las técnicas existentes en el estado del arte actual. Anteriormente, varios mode-
los generativos han sido explorados intentando obtener el mejor generador de eventos
posible. En este trabajo, profundizamos en el uso de Variational Autoencoders con ese
objetivo, y también utilizamos métricas para comparar el rendimiento de estos modelos
con otros métodos.

Palabras clave: Eventos de Monte Carlo, Modelos generativos basados en Deep Learning,
Nueva Fisica, Variational Autoencoder, Large Hadron Collider

vi

Abstract

ATLAS is the largest general-purpose particle detector experiment at the Large Hadron
Collider, a particle accelerator located at CERN. This experiment, among others, was cre-
ated because the Standard Model, which is the most widely accepted theoretical frame-
work in physics, cannot fully explain certain fundamental behaviors of matter due to
some limitations.

To address these questions, detectors were created to search for signals of Physics
Beyond the Standard Model using the LHC. These signals are extensions of the current
model that could potentially explain unknown phenomena. By comparing real experi-
mental data to simulated data from theoretical models, it may be possible to detect these
signals and validate new discoveries.

However, simulating data with traditional methods is time-consuming and compu-
tationally intensive. To reduce these costs and make the discovery of BSM physics more
accessible, generative models based on Deep Learning can be used as fast Monte Carlo
event generators in the LHC context.

This approach can significantly reduce the time and energy required with respect to
existing state-of-the-art techniques. Previously, several Deep Generative models have
been explored trying to obtain the best event generator possible. In this work, we delve
into the use of Variational Autoencoders for that purpose, and we also use numerical
metrics to compare the performance of these models to other methods.

Key words: Monte Carlo event generator, Deep Generative Models, New Physics, Varia-
tional Autoencoder, Large Hadron Collider

Contents

Contents vii
List of Figures ix
List of Tables xii
Acronyms xiii
1 Introduction 1
1.1 Problem description and motivation 2

1.2 Objectives e 3

1.3 Structureof thiswork 3

2 State of the art 5
2.1 Analysis of the current situation 0 0L 6

3 Dataset details 7
31 Datageneration 0 7
3.2 Dataformat e, 8

4 Proposed models 11
4.1 Autoencoders e 11
4.2 Variational Autoencoders 12
4271 oa-VAE . . 13

422 PB-VAE 13

5 Used hardware and software 15
51 Hardwarecomponents 15
5.2 Software libraries 16
52.1 Model topology definition 16

5.2.2 Data analysis and representation 17

6 Evaluation metrics 19
6.1 Data distribution similarity 19

6.2 Event generation quality and efficiency 21

7 Experimentation 23
7.1 Sequential dataloading. 23

72 Dataanalysis. 24

7.3 Experiment 0: Baselinemodel 26
73.1 Preprocessing 26

7.3.2 Model architecture e 26

733 Trainingresults 29

7.4 Experiment I: Binary mask and per-particlemodel 33
741 Preprocessing e 33

7.4.2 Model architecture 34

743 Trainingresults 36

7.5 Experiment II: Statistical numerical mask generator 44
751 Preprocessing 44

752 Maskgenerator L L o 44

7.5.3 Model architecture 46

vii

viii

CONTENTS

754 Trainingresults L. 438

7.6 Experiment III: Single model with reduced dataset 56

7.6.1 Preprocessing 56

7.6.2 Model architecture L L 56

7.6.3 Trainingresults 58

7.7 Model application in BSM processes 66

771 Trainingresults 66

8 Conclusions 75

81 Futurework 76

Bibliography 77
Appendices

List of Figures in Appendices 81

A Model components 83

A.1 Activation functions L 83

A2 Lossfunctions e 84

A3 LayersinKeras 85

B Ground truth data distributions 87

B.1 Eventfeatures 87

B.2 Particledata 88

C Sustainable Development Goals 93

List of Figures

1.1

4.1
4.2

51
52

7.1
7.2
73
74
7.5
7.6

7.7
7.8
7.9
7.10
7.11
7.12
7.13

7.14
7.15
7.16
717
7.18
7.19

7.20
7.21

7.22
7.23

7.24

7.25

7.26

Schematic of the ATLAS detector located at CERN. 2
Diagram of the internal components of an Autoencoder. 12
Diagram of the internal components of a Variational Autoencoder. 12
NVIDIA GeForce RTX 4090 high-end graphicscard. 16
Used technology stack with Kerasontop. 17
Representation of the circular array of lines of a file when creating a batch. 24
Histogram of muon object parameter E in the used SM and BSM events. . 24
Histogram of muon object parameter ¢ in the SM and BSM dataset. 24
Correlation heatmap of several event features in the ttbar dataset. 25
Training the a-VAE using one kind ofevent. 27
VAE architecture scheme for the baseline model (variator omitted for sim-

plicity). 28
Generating events with thea-VAE. 28
Histograms of missing energy (MET and MET¢) and total energy in each event. 29
Histograms of first jet parameters in the baseline experiment (x = 0.2). . . 30
Histograms of first lepton parameters in the baseline experiment (« = 0.2). 30
Histograms of second jet parameters in the baseline experiment (x = 0.2). 31

Histograms of first photon parameters in the baseline experiment (x = 0.2). 31
Correlation heatmap of several features on events generated by the base-

linemodel. 32
Event separation into several files for each independent model in experi-

mentl. 33
a-VAE architecture scheme for the MET and binary mask model of experi-

mentl. 34
Event generation pipeline combining the use of every model in experiment I. 36
Histograms of MET event feature with different a values in experimentl. . 36
Histograms of MET¢ event feature with different & values in experimentl. 37
Histograms of total energy event feature with different a values in experi-

mentl. 37

Histograms of 1% jet E particle feature with different a values in experiment 1. 37
Histograms of 1% jet pr particle feature with different a values in experi-
mentl. 38
Histograms of 1% jet 7 particle feature with different « values in experiment I. 38
Histograms of 1% jet ¢ particle feature with different a values in experi-

mentL 39
Histograms of 1% lepton E particle feature with different a values in exper-
mentl 39
Histograms of 1% lepton pr particle feature with different a values in ex-
perimentl. o 39
Histograms of 1% lepton 7 particle feature with different a values in exper-
imentl 40

X

LIST OF FIGURES

7.27

7.28

7.29

7.30

7.31

7.32
7.33

7.34
7.35
7.36
7.37
7.38
7.39
7.40
741
7.42
743
7.44
7.45
7.46
747
7.48
7.49
7.50
7.51
7.52
7.53
7.54
7.55

7.56
7.57

Histograms of 1 lepton ¢ particle feature with different a values in exper-

imentl 40
Histograms of 1% photon E particle feature with different a values in ex-
perimentl.o o 41
Histograms of 15! photon pr particle feature with different a values in ex-
perimentl. 41
Histograms of 15! photon 7 particle feature with different a values in ex-
perimentl. o 41
Histograms of 1% photon ¢ particle feature with different a values in ex-
perimentl. 42

Correlation heatmap of several features on events generated in experiment I. 43
Statistically generated frequent mask proportions compared to the original

dataset. 45
Statistically generated rare mask proportions compared to the original dataset. 45
Two-level statistical mask generator with generation example. 46
Event generation pipeline combining the use of every model in experiment

IL e 47
B-VAE architecture scheme for the MET model of experimentII. 48
Histograms of MET event feature with different g values in experiment II. . 48

Histograms of MET¢ event feature with different B values in experiment II. 49
Histograms of total energy event feature with different g values in experi-

mentIl. 49
Histograms of 1% jet E particle feature with different 8 values in experiment
IL 50
Histograms of 1% jet pr particle feature with different § values in experi-
mentILl 50
Histograms of 1% jet i particle feature with different B values in experi-
mentIl. 50
Histograms of 1% jet ¢ particle feature with different B values in experi-
mentIl. 51
Histograms of 1% lepton E particle feature with different B values in exper-
imentIl. 51
Histograms of 1% lepton pr particle feature with different § values in ex-
perimentIL 52
Histograms of 1! lepton # particle feature with different B values in exper-
imentIl. 52
Histograms of 1% lepton ¢ particle feature with different B values in exper-
imentIL. 52
Histograms of 1 photon E particle feature with different B values in ex-
perimentIl.. 53
Histograms of 1% photon pr particle feature with different values in ex-
perimentIL.. 53
Histograms of 1% photon 7 particle feature with different B values in ex-
perimentIL.. 54
Histograms of 1% photon ¢ particle feature with different B values in ex-
perimentIL.. 54
Correlation heatmap of several features on events generated in experiment
IL e 55
B-VAE architecture scheme for the model of experimentIIL. 57
Event generation pipeline using the event model of experiment IIl. 58
Histograms of MET event feature with different g values in experiment III. 59

Histograms of MET¢ event feature with different B values in experiment III. ~ 59

7.58
7.59
7.60
7.61
7.62
7.63
7.64
7.65
7.66
7.67
7.68
7.69
7.70
7.71
7.72
7.73
7.74
7.75
7.76
7.77
7.78
7.79
7.80
7.81
7.82
7.83
7.84
7.85
7.86
7.87

7.88
7.89

Histograms of total energy event feature with different B values in experi-

ment IIL. e e 59
Histograms of 1% jet E particle feature with different B values in experiment
Histostams of 1% ot ps partcls featue seit difforont 8 valics in exgert.
Hiotograms of 19 1t 1 pacticle fentute with different B values in experi.
e e e s 1
Eiesr:)grlams of 15 jet ¢ particle feature with different B values in experi- ’
Histogranms of 2 et & paricle feature avith, different 8 valucs in expert.
Hiotograrms of 2% et g particle eatire with different B values in expers.
Histograms of 2" fe 5 particle featare st different 8 values i experts
Hitogrars of 21 et ¢ partile feature with different 8 valucs in experi.
Histogramms of 34 et & pacticle feuture with different 8 valuos i experts
Hiotograris of 37 ot pr particle foatue seidh cifforent B values in xpert.
Hiotogranms of 3 fet 1 paricle feature svith, cifferent 8 valucs fn expert.
e e e s 4
Eiesrtl:)grlams of 3" jet ¢ particle feature with different B values in experi- °
Comrelation hesimen of several features om events enerated in oxperiment
TIL. . . . 65

Histograms of MET event feature with different models in the BSM dataset. 66
Histograms of MET¢ event feature with different models in the BSM dataset. 67
Histograms of total energy event feature with different models in the BSM

dataset. 67
Histograms of 1% jet E particle feature with different § values in the BSM
dataset. 67
Histograms of 1% jet pr particle feature with different B values in the BSM
dataset. 68
Histograms of 1% jet 5 particle feature with different B values in the BSM
dataset. 68
Histograms of 1% jet ¢ particle feature with different B values in the BSM
dataset. 69

Histograms of E particle feature with different B values in the BSM dataset. 69
Histograms of pr particle feature with different § values in the BSM dataset. 69
Histograms of 7 particle feature with different B values in the BSM dataset. 70
Histograms of ¢ particle feature with different § values in the BSM dataset. 70
Histograms of E particle feature with different g values in the BSM dataset. 71
Histograms of pr particle feature with different § values in the BSM dataset. 71
Histograms of 7 particle feature with different B values in the BSM dataset. 71
Histograms of ¢ particle feature with different § values in the BSM dataset. 72

Correlation heatmap of several features on ground truth BSM events. . .. 73
Correlation heatmap of several features on BSM events in experiment II. . 73
Correlation heatmap of several features on BSM events in experiment IIl. . 73

xi

xii LIST OF TABLES
List of Tables

3.1 Definition of symbols representing final-state objects of each event. 8
3.2 Generated SM and BSM signal processes with their identification. 9
7.1 Metrics of events generated by the baselinemodel. 32
7.2 Metrics of the generated events in experiment. 42
7.3 Metrics of the generated events in experimentIL. 55
74 Metrics of the generated events in experimentIIL. 65
7.5 Metrics of the generated BSM events in experiments Illand III. 72
8.1 Metrics of the generated events in the best model of each experiment. . . . 75

Acronyms

AE Autoencoder. ix, 11, 12

ANN Artificial Neural Network. 85
BSM Beyond the Standard Model. viii, ix, xi, xii, 1, 2, 5, 6, 9, 11, 24, 66, 67, 69, 71-73, 75

CERN European Organization for Nuclear Research. 1, 3, 5

CPU Central Processing Unit. 15

DL Deep Learning. 3
DNN Deep Neural Network. 11

GAN Generative Adversarial Network. 5, 6

GPU Graphics Processing Unit. 15

LHC Large Hadron Collider. 1, 5

MC Monte Carlo. 2, 3, 5, 13,75

NF Normalizing Flows. 6

PRHLT Pattern Recognition and Human Language Technology. 15
SM Standard Model. ix, xii, 5, 6,9, 23, 24, 72, 75

VAE Variational Autoencoder. vii, ix, x, 1, 5, 6, 11-13, 2628, 35, 47, 48, 54, 56-58, 66, 75

xiii

CHAPTER 1
Introduction

The Standard Model stands as the most widely accepted theoretical framework in physics
at present, providing an explanation for the composition of matter and the fundamental
forces that govern physical processes. Nevertheless, certain observed phenomena do not
conform to its theoretical predictions, and there exist limitations in the model’s ability to
address fundamental aspects such as neutrino masses, gravity, and dark matter. Addi-
tionally, there exist unexplained parameters, including the surprisingly low Higgs boson
mass regardless of its quantum corrections, evidencing gaps in our understanding.

Because of that, at the Large Hadron Collider (LHC), situated at the European Organi-
zation for Nuclear Research (CERN), particles are propelled to high velocities to produce
collisions, enabling the meticulous examination of their interactions and providing de-
tailed insights into the fundamental laws that govern the workings of nature. The LHC
is considered as the most powerful and largest collider in the world.

At CERN, the aforementioned particle collider is used to acquire real data of proton-
proton collisions (which make up a small portion of the total), that is then selected and
recorded as events. Online selection of events is made from a trigger, and then events are
processed and reconstructed. The data collection process takes place at four distinct col-
lision points along the 27-kilometer circular ring of the LHC, employing seven detectors
utilized by various experiments [1].

During the course of an experiment, simulated data is generated through various
methods to facilitate a comparison between data from different theoretical models and
the actual event characteristics. Subsequently, the findings derived from analyzing the
accumulated data are discussed. These investigations aim to identify novel theoretical
frameworks, known as Physics Beyond the Standard Model (BSM), that may provide
explanations for the aforementioned limitations of the current model.

Up to this point, a substantial volume of data has been collected across four distinct
experiments. Within the scope of this study, our attention centers on the ATLAS ex-
periment (Figure 1.1), which is a general purpose experiment with the objective of re-
searching about the origin of masses and BSM physics. Although there is no clear sign of
confirmed new physics models for now, further experimentation could yield promising
results.

Our proposal is to use Deep Generative Models! to provide a faster way to simu-
late physical events when compared to traditional Monte Carlo approaches. In previous
works [3], we already explored this kind of models to approach the problem, obtaining
a solid baseline. Now, we focus on different variants of a particular type of model: Vari-
ational Autoencoders (VAEs), improving their architecture and presenting some metrics
to quantify the precision of each model.

1Unsupervised learning tasks in machine learning that involve learning patterns in input data so that the
model can be used to generate new samples that follow the same patterns found in the original dataset.

1

2 Introduction

barrel New Small Wheel (NSW)

barrel toroid magnet
muon chambers muon chambers 8

muon chambers | inner detectors

endcap toroid
magnet

endcap calorimeters

barrel electromagnetic calorimeter

solenoid magnet

ATLAS

EXPERIMENT

barrel hadronic calorimeter

Figure 1.1. Schematic of the ATLAS detector located at CERN. [2]

1.1 Problem description and motivation

Without the use of Deep Learning models, the simulation of physical processes is mostly
done following the Monte Carlo method, that is usually performed in two steps:

1. Firstly, pseudo-random numbers from a probability distribution are sampled.

2. Secondly, the generated numbers are transformed by an algorithm into simulated
physical events, which in this case are high energy particle collisions.

However, a significant challenge associated with numerical simulations lies in their
extensive demand for computational resources. Consequently, scientific advancements
in this field are constrained by the limitations of simulation speed and available budgets.
As an example, the generation of an MC event in particle physics experiments, including
the response of the detector, can consume up to 10 minutes of computation time because
it relies on non-optimal algorithms of toolkits like GEANT4 [4].

In upcoming experiments, the accumulation of real data generated with the collider
will require the generation of billions of events to compare with. However, the current
methods employed for event generation pose two significant challenges. Firstly, the re-
quired generation times using these methods will be impractical. Secondly, if these meth-
ods were to be utilized, they would impose a substantial environmental burden in terms
of energy consumption. Therefore, optimizing event generation becomes an imperative
task to enhance efficiency and address these concerns.

While a significant speedup for studies of signals of BSM physics was already achieved
in our previous work by redesigning the event generation pipeline with the help of Deep
Generative Models, the obtained results did not fully adjust to the quality of events that
were generated using MC-based methods.

Moreover, accurate numeric measures of the quality of our event generation models
were not defined, so if several models produced very similar results, we did not have any
precise way to compare them due to the lack of metrics.

1.2 Objectives 3

The use of generative models has already proven to be very helpful when producing
simulated data in large quantities while saving temporal, energy, and economic resources
during physics studies and analysis. Furthermore, it will facilitate the assessment of
systematic errors. Estimating these errors is crucial whenever measurements of various
physical quantities are conducted.

One additional concern pertains to the challenge of accurately defining the properties
of simulated events. In data analysis, it is frequently necessary to generate events that
exhibit similar kinematic characteristics to those observed in the actual data. Currently,
event generators generate a substantial quantity of events and subsequently filter out the
interesting ones while discarding the remaining events. Exploring methods to minimize
the generation of irrelevant events is also a topic of interest.

1.2 Objectives

After fully describing the problem and its motivation, and taking into account our pre-
vious study that already involved using Deep Generative Models, we establish several
objectives to be accomplished in this work, aiming to address and overcome some of the
existing limitations.

First, we require to refine our current DL framework for event generation taking as a
base existing Monte Carlo data (known as ground truth), making sure that it is capable of
obtaining results with similar properties than the current methods.

Then, the obtained results need to be compared with the classical approaches using
appropriate metrics to verify that our newly adjusted framework performs similarly re-
garding data quality (i.e., events are generated with a similar distribution) while being
more efficient in terms of time and/or required resources.

Finally, several approaches will be evaluated with the help of our metrics to decide
which one is more similar to the ground truth events, obtaining a balance of efficiency and
quality. It is important to obtain event distributions that are similar to real MC events.

1.3 Structure of this work

The structure of this work consists of the following parts: Chapter 1 begins with a brief
explanation of the problem and ongoing experiments at CERN. It is followed by an
overview of the current shortcomings and the defined objectives to address them.

Moving on to Chapter 2, we delve into an analysis of the current state-of-the-art,
describing classical approaches as well as machine learning solutions that closely align
with our goals.

Chapter 3 provides a comprehensive description of the dataset utilized in our re-
search. We outline the various types of events and particles present in the dataset, elabo-
rate on the recorded information for each event and particle, and describe the format in
which the data is provided.

In Chapter 4, we explain the theoretical foundations of the models that we use during
the experimentation, aiming to enhance the models referenced in the second chapter and
to obtain valid models that fulfill the specified objectives. Prior to delving into the prac-
tical aspects, we introduce the software and hardware technologies employed in Chapter
5, which enable the execution of all the experiments.

4 Introduction

Then, Chapter 6 focuses on describing the metrics that will quantify the results of
the performed experiments in order to determine in a more precise way which model
performs better.

Chapter 7 is dedicated to presenting and describing the results of our experimenta-
tion. We present a detailed explanation of the model architecture and event generation
pipeline employed for each experiment, focusing on the results obtained and providing
analysis that guides the exploration of different models, ultimately leading to the identi-
fication of the most effective approach.

Finally, in Chapter 8, we conclude by interpreting the suitability of the chosen ap-
proach for the desired experiment and determining the best model architecture by com-
paring all the possibilities studied.

CHAPTER 2
State of the art

Many efforts have been made in the past to detect signals of new physics at the LHC
through the utilization of supervised and unsupervised machine learning algorithms. As
of now, an indication of BSM physics has yet to be discovered, proving the importance of
developing appropriate methods that facilitate investigations and establish a solid frame-
work for future experiments.

First of all, we highlight our previous work where we made our first attempt to use
Deep Generative Models to generate SM and BSM events [3]. There, we took as a starting
point some techniques used in previous studies to create a framework that was capable
of generating events in a more efficient way than traditional Monte Carlo methods. Par-
ticularly, we presented several variants of generative models, being the best performing
one our own variation of a Variational Autoencoder: the a-VAE, that showed the best
results when using values of « ~ 0.2.

A relevant event within the scientific community relevant to this study was The Dark
Machines Anomaly Score Challenge, which is extensively discussed in [5]. The dataset em-
ployed in our work is the same that was used in this challenge, and its characteristics
are detailed in Chapter 3. The primary objective of the challenge was to identify in-
dications of new physics at the LHC using unsupervised machine learning algorithms.
Initially, an anomaly score implementation was proposed to define model-independent
signal regions. Subsequently, a wide array of anomaly detection and density estimation
algorithms, specifically developed for the data challenge, were examined, and their per-
formance was evaluated within a range of realistic analysis environments. This challenge
serves as a groundwork for new benchmarks and the development of more effective ap-
proaches in the detection of BSM signals.

One experiment that closely relates to both of our works is a previous investigation
focused on generating events from a physical process that already used Deep Generative
Models [6]. This study aimed to explore the feasibility of learning event generation and
the accurate frequency of occurrence to generate events similar to those produced by
MC generators. Initially, several Generative Adversarial Network architectures and the
Variational Autoencoder with a standard normal prior were unable to generate events
with the correct frequency of occurrence. However, a specific VAE configuration, known
as the B-VAE, yielded promising outcomes. This approach produced distributions that
were very similar to real MC events and generated events significantly faster.

The ATLAS project team at CERN also investigated in this topic, defining their own
strategy to find potential indications of BSM physics [7]. In their approach, events were
categorized based on their final state, resulting in multiple event classes. For each event
class, an automated search algorithm was employed to assess the compatibility of the
data with the expected outcomes simulated by MC simulations across various distri-

6 State of the art

butions sensitive to the effects of new physics. The significance of any deviation was
quantified using pseudo-experiments. If a data selection exhibited a significant devia-
tion, it would define a signal region for a subsequent in-depth analysis, incorporating an
improved background expectation. Statistical interpretation of the signal regions derived
from the data was performed on a new dataset. The sensitivity of this approach was eval-
uated using SM processes as well as benchmark signals representing potential instances
of new physics.

To conclude, it is worth mentioning several approaches that were explored in different
areas of the event processing field of study. Concerning detector simulation, we can find
some GAN-based models [8, 9, 10], but also some VAE-based ones [11, 12, 13]. Regarding
event generation, there have been a wide number of attempts to use GAN-based models
[14, 15, 16], but the possibilities of VAEs have not been explored deeply. Also, in relation
to Monte Carlo integration, we observe the use of regression in many studies [17, 18]
and also some attempts to use Normalizing Flows [19]. Finally, recent research has also
been made in the use of models based on Normalizing Flows [20, 21].

2.1 Analysis of the current situation

Once we have performed an analysis on the state of the art regarding some of the most
significant and recent contributions related to our topic of interest, we obtain several
noteworthy conclusions and identified specific observations that provide insights into
our current status:

* The majority of physics research has predominantly employed supervised learning
methods. However, there has been a recent surge in the popularity of unsuper-
vised learning within the scientific community, indicating ample room for further
exploration in this area.

* Our study performed in [3] and some others already experimented with VAEs.
However, that experiment did not evaluate the models with appropriate metrics
nor obtained an approach that was good enough to be used in real world use cases.

¢ The data challenge outlined in [5] established a robust framework for evaluating
the performance of different approaches to event generation, and provided a good
dataset to use as a starting point to develop new models.

* While there have been many attempts to use GANSs for event generation and de-
tector simulation, the possibilities of VAEs and NFs have been less extensively ex-
plored.

Considering the aforementioned observations, our focus in this work centers around
exploring the possibilities of unsupervised learning by utilizing VAE-based models. Ad-
ditionally, we keep using the same already known and diverse dataset that includes both
Standard Model (SM) and Beyond the Standard Model (BSM) processes, with the goal of
constructing a viable model capable of being trained for any type of process.

CHAPTER 3
Dataset details

As we already did in [3], the dataset that we used for our experimentation in this work
is the one that was proposed in The Dark Machines Anomaly Score Challenge [5], which is
available to download in [22]. Although a comprehensive explanation of the data genera-
tion procedure format can be found in [23], we provide here a concise overview, focusing
on the key details that are particularly relevant to our study:.

3.1 Data generation

The simulated events consist of proton-proton collisions that are similar to the ones ob-
served at the LHC, with a center-of-mass energy of 13 TeV!. The signal and background
processes were generated using conventional methods and tools. Once generated, the
final-state physics objects as outlined in Table 3.1 were saved in a CSV text file, with each
event represented in a single line.

During a collision event, a maximum of 20 objects are produced, and for each object,
various properties such as total energy (E), transverse momentum (pr), pseudo-rapidity
(), and azimuthal angle (¢) are measured and recorded. An event is considered valid
and stored in the dataset if it satisfies at least one of the following criteria:

* One or more jets or b-jet with pr > 60 GeV and |1| < 2.8

¢ One or more electrons with pr > 25GeV and || < 2.47 except for 1.37 < || < 1.52
* One or more muons with pr > 25 GeV and || < 2.7

¢ One or more photons with pr > 25 GeV and || < 2.37

Certain additional criteria regarding the event weight were imposed. However, for
the sake of simplicity, neither the original data challenge nor this study take that variable
into account. The requirements on the final objects stored in the dataset were:

e jetor b-jet: pr > 20GeV and || < 2.8
e electron or muon: pr > 15 GeV and |y| < 2.7
 photon: pr > 20 GeV and |y| < 2.37

The objective was to generate a versatile dataset that could be used for various types
of studies, each potentially requiring distinct selection criteria. The complete list of the
generated processes can be found in Table 3.2.

LOne eV is the amount of kinetic energy gained or lost by a single electron accelerating from rest through
an electric potential difference of 1 volt in vacuum.

8 Dataset details

Symbol ID Object

j jet

b b-jet

e- electron (e™)
e+ positron (e™)
m- muon (™)
m+ antimuon (u™)

g photon (1)

Table 3.1. Definition of symbols representing final-state objects of each event.

3.2 Data format

As mentioned in the preceding section, the data is presented in a CSV file format, with
each event represented by a single line. Each line varies in length and consists of
followed by the kinematic features of each object within the event.

Each file represents a distinct process. The number of events generated for each pro-
cess is guaranteed to be equal to or greater than the minimum requirement for obtaining
10fb~! of data® (Njgfp-1). Additionally, when Njgz,-1 < 20000, a second file with 20000
lines is provided. The format of all CSV files is as follows:

MET; METphi; objl, E1, ptl, etal, phiil;
obj2, E2, pt2, eta2, phi2;

The event ID serves as a unique identifier for each event, represented by an integer
value. Its purpose is to facilitate event-specific debugging. The process ID, on the other
hand, is a string that corresponds to the process responsible for generating the event, as
outlined in Table 3.2. While the event weight depends on the cross section of a specific
process and the number of events within a file, it is not considered in our experiments.
These components are the event specifiers within each line of the CSV file.

In terms of the kinematic features, the MET and MET¢ entries correspond to the magni-
tude E?s and azimuthal angle ¢pniss of the missing transverse energy vector within the
event. These values represent the transverse energy and azimuthal angle of objects that
effectively go undetected. Such objects are considered to have evaded detection.

The object identifiers (obj1, obj2, etc.) are strings that uniquely identify each object
within the event, according to the specifications outlined in Table 3.1. Following each
object identifier, there are four comma-separated values that comprehensively describe
the characteristics of the object: E1 (E), pt1 (pr), etal (), and phil (¢). These features
align with the ones mentioned in the previous section.

The arrangement of particles within each event follows the sequence of: b-jets, jets,
leptons, and photons. Within each particle type, they are sorted in descending order
based on their transverse momentum (pr). Consequently, in the results section, when
mentioning the leading particle, we are referring to the one with the highest pr within its
respective category.

The events are categorized by process and distributed across 65 files, with a total size
of 66.5 GB. However, during the experimentation phase, only the largest files for each
process type were selected. Specifically, for processes that achieved 10fb~! with less than
20K events, the file containing 20K events was chosen.

2The inverse femtobarn is a measurement of particle-collision events per femtobarn; a measure of both
the collision number and the amount of data collected (1fb~! = 102 proton-proton collisions).

3.2 Data format 9
SM processes BSM processes
Physics process Process ID Physics process Process ID

pp —jj njets pp — §3 (1 TeV) gluino_01
pp — WE(+2§) w_jets pp — §3 (1.2 TeV) gluino_02
ppr — v(+2j) gam_jets ppr — 33 (1.4 TeV) gluino_03
pr — Z(+2j) z_jets ppr — 33 (1.6 TeV) gluino_04
pp — tE(+2)) ttbar ppr — 35 (1.8 TeV) gluino_05
pp — WEH(+2)) wtop pp — §3 (2 TeV) gluino_06
pp — WEE(+2)) wtopbar pp — §3 (22 TeV) gluino_07
pp = WTW~(42)) | ww pp — b1ty (220 GeV), mg =20 GeV | stop_01
pp — t+ jets(+2j) | single_top pp — h1f1 (300 GeV), mzo = 100 GeV | stop_02
pp — F+ jets(+2j) | single_topbar pp — ify (400 GeV), my = 100 GeV | stop_03
pp — vy(+2j) 2gam pp — fif1 (800 GeV), mzo = 100 GeV | stop_04
pp — WEy(+2j) | Wgam pp — Z' (2 TeV) Zp_01
pp — ZW*(+2)) ZW pp — Z' 2.5 TeV) Zp_02
pp — Zy(+2)) Zgam pp — Z' (3 TeV) Zp_03
py — ZZ(+42) zz pp — Z' (3.5 TeV) Zp_04
ppr — h(+2j) single_higgs pp — Z' (4 TeV) Zp_05
pp — tky(+1)) ttbarGam
pp — tZ ttbarZ
pp — tth(+1j) ttbarHiggs
pp — tH(+2)) atop
pp — tHIW* ttbarW
ppr — vEH(+2)) atopbar
pp — Zt(+2)) ztop
pp — ZE(+2)) ztopbar
pp — tttt 4top
pp — HHWTW™ ttbarWW

Table 3.2. Generated SM and BSM signal processes with their identification.

CHAPTER 4
Proposed models

Considering the current state of the art as described in Chapter 2, and after deciding
and analyzing the dataset to work with, we propose a solution based in using several
Variational Autoencoder models to try to obtain relevant results when generating events.

The presented approach tries to build upon our previous work, improving its results
(i.e., obtaining similar data distributions) and allowing the generation of new samples
from a random normal distribution, instead of applying a permutation to already existing
events.

We decided to focus in the use of VAEs due to the existence of less studies choosing
this model, and also because we saw that this kind of models has great potential in tasks
that are related to this one. However, Normalizing Flow models are also a popular and
often used kind of Deep Generative Models in the Al field, and we believe that promising
results can be obtained with both of these techniques.

While we already obtained a model that fits the data distribution of our dataset in
our previous work, the objective here is to focus in generating new events without using
any ground truth data in the generation process. A model that can satisfy this require-
ment will vastly improve extensive searches for signals of Physics Beyond the Standard
Model, making it possible to confirm new theoretical models. A brief description of the
theoretical concepts that define autoencoders and its evolution into the architecture of
VAEs follows.

4.1 Autoencoders

An autoencoder (AE) [24] is a type of Deep Neural Network that consists of a central
hidden layer with a lower dimension compared to the input layer. Its target space coin-
cides with the input space. These networks are trained to reconstruct features of the input
data while incorporating a bottleneck structure to prevent them from merely learning the
identity mapping. The dimension of the central layer plays a crucial role as it determines
the level of feature compression.

The architecture of an autoencoder is therefore composed of:

¢ An encoder component, that compresses the input data into the latent space.

¢ A decoder component, which uses information from the lower dimensional latent
space to transform it back into the input dimensions.

This type of DNN has been used before in some High Energy Physics applications. In
[25], an AE is trained extensively on SM data and reaches reasonably low reconstruction

11

12 Proposed models

errors, that make it good enough to be used as part of an anomaly detection algorithm.
The model could identify anomalous events from their higher reconstruction error.

X ENCODER A > DECODER X
Gy Fy
Input event Latent-Vector Predicted event from Z

Generated from X

P(Z|X) P(X|Z)

Figure 4.1. Diagram of the internal components of an Autoencoder. [26]

4.2 Variational Autoencoders

A Variational Autoencoder (VAE) [27, 24] can be seen as an autoencoder architecture that
incorporates regularization techniques during training. This aims to prevent overfitting
and ensure desirable properties in the latent space, enabling the generation of new data
from arbitrary numbers.

Similar to a standard autoencoder, a VAE (Figure 4.2) also shares the same encoder
and decoder components. However, in this approach, a small modification is made dur-
ing the encoding-decoding process to introduce regularization in the latent space.

Here, instead of encoding an input as a single point, it is encoded as a distribution
across the latent space. The bottleneck layer is formed by the encoder outputting two val-
ues per dimension in the latent space, typically representing the mean and standard de-
viation of a normal distribution. This approach ensures both local (variance) and global
(mean) regularization.

Mean

DECODER

X ENCODER e A Ol
Py(X|Z)

Py(2|X) [

Predicted event from Z

Input event Sampled

L | Latent-Vector
Variance or

Standard Deviation

Figure 4.2. Diagram of the internal components of a Variational Autoencoder. [26]

The training process can be described as follows: First, the input is encoded into a
distribution across the latent space. Then, a point is sampled from that distribution in the
latent space. Subsequently, the sampled point is decoded, and the reconstruction loss is
computed. Finally, the error is backpropagated through the network.

The loss function minimized during VAE training consists of two components: a re-
construction term (located in the output layer of the decoder), which focuses on improving
the performance of the encoding-decoding process, and a regularisation term (located in
the latent layer), which is proportional to the Kullback-Leibler (KL) divergence and is
used to regularize the structure of the latent space by helping the distributions generated
by the encoder to approximate a standard normal distribution.

4.2 Variational Autoencoders 13

4.21. «a-VAE

In our previous work [3], we presented a new type of Variational Autoencoder that con-
sisted of several differences when compared to the original version described in the pre-
vious section.

In this version, that we call ®-VAE, its main feature is that after encoding the input
in the usual way, we add Gaussian noise to the latent representation of the input data
that follows a normal distribution with zero mean and a standard deviation with value
«. This effectively replaces the Kullback-Leibler divergence layer.

We used this kind of model, as well as the 3-VAE (described in the following section)
for generating events by taking ground truth data and applying a permutation also com-
ing from a random normal distribution with the same mean and standard deviation used
in the Gaussian noise in the training process. This approach is shown as a baseline for
this work in Section 7.

42.2. B-VAE

For some applications, giving the same importance (weight) to every component of the
loss function does not produce the best results. To avoid this problem, it can be a good
approach to balance out the relative importance of the reconstruction term (L.c) and the
regularisation (Lxy) term. To accomplish that objective, a hyperparameter p is sometimes
introduced to adjust this relative importance. Then, we can formulate the loss function
as follows:

Lyag = (1 = B) * Lyec + B * L (4.1)

However, during our experiments we found out that this way of applying p to balance
the weight of each component of the loss function did not help the model to learn the data
distributions correctly. For that reason, we finally applied the following slightly modified
version:

Lyag = Lyec + B * Lkt (4.2)

Variational Autoencoders that use this description of the loss function are known as
B-VAE. We propose using this kind of model for generating accurate MC events from
random numbers, as it is described in Section 7.

CHAPTER 5
Used hardware and software

In the past, the implementation of machine learning algorithms and model topologies
involved creating them from scratch, precisely specifying the details of the calculations
required during the training or inference process.

However, thanks to ongoing research and collaborative efforts within the scientific
community, significant progress has been made over the years. Today, we have access to
a multitude of libraries and tools that simplify the development and testing of models by
providing high-level programming interfaces that are very straightforward to use.

These libraries and tools have revolutionized the field by abstracting away the need to
delve into low-level implementation details. They allow us to focus on the core concepts
and innovations in our models, rather than defining basic operations. By leveraging these
tools, the process of building and testing different model architectures has become more
simple.

During the experimentation performed in this work, we used several hardware and
software tools (Figure 5.2) to help us build and train the designed models without requir-
ing to dive into low-level implementation details.

5.1 Hardware components

To effectively train and test a machine learning model, a substantial number of calcu-
lations of a specific nature must be executed, often requiring multiple iterations with
different configurations. When it comes to hardware, GPUs are undoubtedly the ideal
devices for conducting these calculations, offering superior performance in comparison
to CPUs, specially in batch calculations.

Due to that fact, the hardware infrastructure that we used to perform experiments
during this work consisted of high-end servers featuring up to 128 GB of RAM memory
and high-performance NVIDIA GeForce RTX 20, 30 and 40 series graphics cards, that
include GPUs with several machine learning specifically designed cores and up to 24
gigabytes of VRAM (graphics memory).

However, the servers also had high-performance CPUs, particularly Intel Core i5 and
i7 processors with up to 16 cores running at 5.4 GHz. This processors made it easy to
parallelize the event generation pipeline when it was required to generate particles one
by one.

The availability of these computing resources was possible thanks to the infrastruc-
ture provided by the Pattern Recognition and Human Language Technology (PRHLT)
research center, which belongs to the Universitat Politécnica de Valeéncia.

15

16 Used hardware and software

0000000000000

Figure 5.1. NVIDIA GeForce RTX 4090 high-end graphics card. [28]

5.2 Software libraries

In the context of our research, we chose to use a Linux-based software environment,
which proved to be a reliable and efficient platform for our experimentation. To carry out
our investigations, we decided to use Python as our high-level programming language.
This was due to the high availability of libraries related to ML for it, that make it easy to
quickly define complex topologies with a comprehensive syntax.

5.2.1. Model topology definition

We selected TensorFlow and Keras as the libraries for model definition and training in
our experimentation. This choice provided a robust framework to effectively execute the
entire training and generation process.

TensorFlow [29] is an open-source machine learning framework developed by Google.
It provides a feature-rich set of tools, libraries, and resources for building and deploying
models, making it suitable for a wide range of applications. At its core, computations
are represented as computational graphs: a series of interconnected nodes, where each
node represents a mathematical function. The data is represented as tensors, which are
multi-dimensional arrays.

The framework offers a high-level API that allows developers to define and train ML
models easily, supporting a wide variety of models. It also provides a vast collection
of pre-built layers, optimizers, and loss functions that can be used to construct models
efficiently. TensorFlow has become one of the most popular and widely used frameworks
for machine learning and deep learning, powering numerous applications across diverse
domains.

Keras [30] is a deep learning framework with a high-level interface for building and
training neural networks that runs on top of TensorFlow. It is open-source and designed
to be user-friendly, modular, and easy to understand, making it popular among beginners
and experienced deep learning researchers. Its intuitive API abstracts away much of the
complexity of building neural networks, making it easy to prototype and experiment
with different network architectures, as well as customize and fine-tune models to suit
their specific needs.

5.2 Software libraries 17

Keras provides a wide range of pre-built layers that can be easily stacked together
to construct complex neural network architectures. Additionally, it supports multi-input
and multi-output models, allowing the creation of sophisticated networks with multi-
ple data inputs or outputs. The framework also includes various optimizers, activation
functions, loss functions, and metrics, as well as utilities for data preprocessing. It also
supports both symbolic and imperative programming, offering flexibility and ease of in-
tegration with other Python libraries.

Keras API

'd)

Backend: TensorFIow][Theano }[CNTK

8

Ve

Low-level library: CUDA, cuDNN] [BLAS, Eigen

g

()\
Hardware: GPU J [CPU

-

Figure 5.2. Used technology stack with Keras on top. [31]

5.2.2. Data analysis and representation

To assess the quality of the obtained results and evaluate their alignment with the desired
objectives, it is necessary to create a visually accessible and easily interpretable represen-
tation of the data. In order to accomplish this, we used various libraries and software
tools. Specifically, we employed Netron, for visualizing model architectures; and Mat-
plotlib, Scikit-learn and Pandas, for calculating and visualizing statistics of our generated
data.

Matplotlib [32] is a popular data visualization library in Python. It provides a wide
range of tools for creating different types of visualizations of data. It is designed to be
flexible, customizable, making it suitable for both simple and complex plotting tasks.

This library allows to create various types of plots and use its large set of functions
and classes for controlling different aspects of them, including axes, labels, titles, legends,
colors, markers, and gridlines, to enhance the visual representation of the data. It pro-
vides different APIs for creating plots, such as pyplot, that is a collection of functions that
closely resemble the plotting functions in MATLAB; and the object-oriented API, that
provides more control and flexibility by directly manipulating the plot objects. Addition-
ally, it supports various output formats, including saving plots as image files (e.g., PNG,
JPEG or SVG).

Netron is a visualization tool used for inspecting and analyzing neural network mod-
els. It allows users to view the structure and details of a deep learning model in a graph-
ical format, aiding in model understanding and debugging.

The library supports a variety of file formats, including TensorFlow and Keras mod-
els. The tool visualizes the model’s architecture, showcasing the layers, connections, and
parameters in a clear and intuitive manner. It also supports visualization of interme-
diate outputs and activations, facilitating a better understanding of how information is
processed within the model. In addition to static visualization, Netron offers dynamic
capabilities, allowing users to simulate the forward pass of a model and observe the out-
put produced by feeding in sample inputs. This can be helpful for model debugging and
comprehension.

18 Used hardware and software

Netron is available as a standalone application and it also has a web version, that
provides the same functionality