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A B S T R A C T 

One of the main targets of the Laser Interferometer Space Antenna (LISA) is the detection of extreme mass-ratio inspirals 
(EMRIs) and extremely large mass-ratio inspirals (X-MRIs). Their orbits are expected to be highly eccentric and relativistic 
when entering the LISA band. Under these circumstances, the inspiral time-scale given by Peters’ formula loses precision and the 
shift of the last-stable orbit (LSO) caused by the massive black hole spin could influence the event rates estimate. We re-derive 
EMRIs and X-MRIs event rates by implementing two different versions of a Kerr loss-cone angle that includes the shift in the 
LSO, and a corrected version of Peters’ time-scale that accounts for eccentricity evolution, 1.5 post-Newtonian hereditary fluxes, 
and spin-orbit coupling. The main findings of our study are summarized as follows: (1) implementing a Kerr loss-cone changes 
the event rates by a factor ranging between 0.9 and 1.1; (2) the high-eccentricity limit of Peters’ formula offers a reliable inspiral 
time-scale for EMRIs and X-MRIs, resulting in an event-rate estimate that deviates by a factor of about 0.9–3 when compared to 

event rates computed with the corrected version of Peters’ time-scale and the usual loss-cone definition. (3) Event-rate estimates 
for systems with a wide range of eccentricities should be revised. Peters’ formula o v erestimates the inspiral rates of highly 

eccentric systems by a factor of about 8–30 compared to the corrected values. Besides, for e 0 � 0.8, implementing the corrected 

version of Peters’ formula is necessary to obtain accurate estimates. 

Key words: black hole physics – gra vitational wa ves – methods: analytical. 
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 I N T RO D U C T I O N  

assive black holes (MBHs) at the centre of galaxies can capture 
ompact objects – such as stellar-mass BHs, white dwarfs (WDs), 
eutron stars (NSs), and e ven bro wn dwarfs (BDs) – that can either
uffer a direct plunge or slowly inspiral to the event horizon without
eing disrupted. The latter events are known as extreme mass-ratio 
nspirals (EMRIs) when the mass ratio q between the compact object 
nd the MBH is of the order of 10 −4 , and as extremely large mass-
atio inspirals (X-MRIs) when q ∼ 10 −8 . During the inspiral process,
he binary would emit low-frequency gravitational waves (GWs) that 
pace-borne detectors like the Laser Interferometer Space Antenna 
LISA) can detect (Barack & Cutler 2004 ; Amaro-Seoane et al. 
012 ; Klein et al. 2016 ; Babak et al. 2017 ; Amaro-Seoane 2018 ;
arack et al. 2019 ), providing detailed information about the binary 
nd the surrounding space–time that is impossible to obtain via 
lectromagnetic observations. Such detections would allow testing 
eneral relativity with exceptional accuracy; therefore, it is crucial to 
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ccurately estimate the event rates and the characteristics of inspiral 
rocesses. 
The eccentricity of an EMRI or X-MRI when entering the LISA

and depends on the formation channel. There are two basic forma-
ion scenarios that result in two different eccentricity regimes: the 
wo body relaxation driven decay and the so-called Hills mechanism. 

The first scenario involves a dynamical process in which two-body 
elaxation increases the eccentricity of an orbiting object such that, at
he pericentre, the object passes so close to the MBH that the energy
oss by GW emission becomes significant. Ideally, after a pericentre 
assage, the orbital parameters evolve exclusively by GW emission, 
esulting in a very eccentric EMRI or X-MRI in which the semimajor
xis can be very large compared to the pericentre. Ho we ver, the
rocess is not that simple. Relati vistic ef fects can become rele v ant
t pericentre. Moreo v er, at the apocentre, the two-body relaxation
rocess that initially brought the object into the desired orbit could
ither enlarge the pericentre, making the GW emission negligible, 
r deflect the object into the loss cone where the secondary object
apidly plunges into the MBH and is lost to the system after a single
W burst (Alexander & Hopman 2003 ). The loss cone is a region of
hase space such that the angular momentum of the incoming object
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1 We define the MBH spin as a • = cJ MBH / ( GM 

2 
MBH ), where M MBH and J MBH 

are the MBH’s mass and angular momentum magnitude, respectively, c is the 
speed of light in vacuum, and G is the gravitational constant. 
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s not large enough to escape the MBH (Merritt 2013 ); it is defined
y an angle ̂ θlc , known as the loss-cone angle, and depends on the
osition of the last stable orbit (LSO). For a successful inspiral, the
ompact object has to be ‘immune’ to relaxation processes once it
as reached a pericentre that is sufficiently close to the MBH to
mit GWs, i.e. its merger time-scale ( T GW 

) has to be shorter than
r similar to the time needed by two-body relaxation to perturb its
ericentre. This condition is fulfilled at a specific critical semimajor
xis ( a crit ) that depends on several factors like the mass and spin of
he MBH, the distribution of stars and compact objects around it,
nd the merger time-scale. The value of the critical semimajor axis is
ecessary to estimate event rates (Sigurdsson & Rees 1997 ; Hopman
 Alexander 2005 ; Amaro-Seoane et al. 2007 ). 
The second scenario involves a binary system composed of at

east one compact object orbiting at short distances from the MBH.
f the gravitational force from the MBH acting on one of the binary
omponents is larger than the binding energy, the binary is disrupted
nd one of the objects is captured by the MBH. If the captured
bject is a compact object, it could become an EMRI or X-MRI,
s it can resist tidal disruption at such close distances. Its initial
emimajor axis would be equal to the binary-disruption distance,
hich is smaller than the semimajor axis involved in the two-body

elaxation formation process. As a result, the eccentricity of an EMRI
r X-MRI formed by this process would be low when it enters the
ISA band (Amaro-Seoane 2020 ). This idea is based on the work
f Hills ( 1988 ), who predicted that the presence of an MBH in the
alactic centre would result in the disruption of binary systems

omposed of main-sequence stars: one of the stars would be tidally
isrupted, while the other would be ejected at high velocities (up to v 
 4 × 10 3 km s −1 ). These ‘hyper-velocity stars’ were first disco v ered

y Brown et al. ( 2005 ), who detected a star leaving the Galaxy
ith velocity ∼700 km s −1 , providing evidence of the existence of

he process. Ho we ver, the population of binary systems containing
ompact objects near an MBH is not well understood, impeding
eliable event-rate estimations. 

In this work, we obtain event rates ( ̇� i ) of EMRIs and X-
RIs formed by two-body relaxation around Schwarzschild ( 1916 )

nd Kerr ( 1963 ) MBHs with a mass similar to that of Sgr A 

∗

4.3 × 10 6 M �), by modifying two elements: the merger (or inspiral)
ime-scale and the loss-cone angle ̂  θlc . 

Usually, the merger time-scale of a binary system is obtained with
eters’ formula (Peters & Mathews 1963 ; Peters 1964 ). However,

n this formation scenario, the high eccentricities and the relativistic
ffects that appear in the proximity of the MBH reduce the accuracy
f Peters’ approach. In Section 2, we describe a set of correction
actors presented by Zwick et al. ( 2020 ), Zwick et al. ( 2021 ) that
mpro v e Peters’ time-scale behaviour under such circumstances, and
ompare it with an alternative form of Peters’ formula, valid for high
ccentricities, previously used to obtain EMRI and X-MRI event rates
Hopman & Alexander 2005 ; Amaro-Seoane, Sopuerta & Freitag
013 ; Amaro-Seoane 2019 ). 
The critical semimajor axis and the loss cone depend on the

osition of the LSO, which is constant for a non-spinning MBH
nd is defined through the Schwarzschild radius ( r S = 2 GM / c 2 ),
ut for a Kerr MBH it also depends on the spin magnitude and on
he orbital inclination of the secondary object. Amaro-Seoane et al.
 2013 ) obtained event rates that account for this effect and found that
bjects originally classified as direct plunges can form an EMRI if
hey approach in prograde orbits, whereas objects in retrograde orbits
ontribute more to the plunge rate. In Section 3, we re-derive the
ritical semimajor axis for Schwarzschild and Kerr MBHs including
he correction factors in the merger time-scale and the shift in the
NRAS 510, 2379–2390 (2022) 
SO. In Section 4, we present the necessary elements to estimate
he event rates, and we derive two versions of a Kerr loss-cone angle
hat account for the shift in the LSO position to finally obtain an
xpression for �̇ i that includes the Peters’ time-scale corrections and
he Kerr loss-cone angle. 

In Section 5, we analyse the effects of the time-scale correction
actors and the Kerr loss-cone angle on the event rates for EMRIs
nd X-MRIs composed of stellar-mass BHs, NSs, WDs, and BDs.
e consider prograde and retrograde orbits with orbital inclinations

 θ | = [0, 0.1, 0.4, 0.7, 1.0, 1.3, 1.57] radians, and an MBH with
imensionless spin a • = 0 to a • = 0.999. 1 Finally, we conclude in
ection 6. 

 T H E  I NSPI RAL  TIME-SCALE  

 reliable estimate of the merger time-scale is needed to understand
he inspiral processes. In this work, we refer to a generic GW-induced
ecay time-scale as T GW 

. The most commonly used estimate of T GW 

s the so-called Peters’ formula, 

 P ( a 0 , e 0 ) = 

5 

256 

a 4 0 c 
5 

G 

3 M MBH m 2 ( M MBH + m 2 ) 
f ( e 0 ) , 

f ( e 0 ) = 

(
1 − e 2 0 

)7 / 2 
(

1 + 

73 

24 
e 2 0 + 

37 

96 
e 4 0 

)−1 

, (1) 

here a 0 and e 0 are the initial semimajor axis and eccentricity,
espectively, and m 2 is the mass of the orbiting compact object.
his formula is obtained from the average change in the semimajor
xis due to energy loss by GW emission, 〈 d a /d t 〉 , described by Peters
 Mathews ( 1963 ) based on the following assumptions: 

(A) The binary’s orbit is Keplerian. 
(B) GW radiation is described by Einstein ( 1916 )’s quadrupole

ormula. 
(C) The secular evolution of the orbital parameters is slow with

espect to the period of the orbit. 
quation (1) is obtained by integrating 〈 d a /d t 〉 assuming that 
(D) The secular evolution of the eccentricity can be neglected. 

ecause of these assumptions, Peters’ formula is not an exact
easure of T GW 

, and fails to accurately model the behaviour of
ighly eccentric and highly relativistic orbits. Note that Peters ( 1964 )
rovides a merger time-scale valid for arbitrary eccentricities, 

 GW 

= 

60 

1216 

c 4 0 c 
5 

G 

3 M MBH m 2 ( M MBH + m 2 ) 

×
∫ e 0 

0 

de e 29 / 19 [1 + (121 / 304) e 2 ] 1181 / 2299 

(1 − e 2 ) 3 / 2 
, (2) 

here c 0 is a constant obtained from the initial conditions a 0 and e 0 .
o we ver, its solution requires numerical integration. 
The case of highly eccentric orbits ( e 0 > 0.9) is important for

MRI and X-MRI event rates estimates. Therefore, some authors
e.g. Hopman & Alexander 2005 ; Amaro-Seoane et al. 2013 ; Amaro-
eoane 2019 ) adopted a different estimate for T GW 

which is obtained
y modifying assumption (D) to 
(D) ∗ The secular evolution of the pericentre ( p 0 ) can be neglected.
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Figure 1. Comparison between the different merger time-scales normalized 
to the Peters’ time-scale T P (purple solid line), for the case of a compact 
object of 10 M � in an equatorial prograde orbit around a 4.3 × 10 6 M �
MBH, and a pericentre distance p 0 = 6 r S . The green solid line, T ṗ = 0 , is the 
time-scale obtained with equation (3). The blue dashed line, T R , includes the 
correction for the secular eccentricity evolution R (equation 4). The black ( a •
= 0) and red ( a • = 0.999) solid lines, T RQ , include the correction factors R 

and Q , which accounts for post-Newtonian effects up to order 1.5. 

Table 1. In this table, we summarize the characteristics and validity ranges 
of the different estimates for the GW-induced merger time-scales. We use 
the corrected time-scale T RQ as a benchmark from which to say whether the 
time-scales T ṗ = 0 , T P , and T R o v er or underestimate the result. 

Name Validity Time-scale accuracy PN effects 

T P Low e 0 Underestimates No 
T ṗ = 0 High e 0 Over/under No 
T R Any e 0 Underestimates No 
T RQ Any e 0 Best Yes 
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he resulting time-scale follows from integrating equation (2) o v er 
ne period assuming M MBH � m 2 and e → 1 (Peters 1964 ): 

 ṗ = 0 ( a 0 , e 0 ) 	 

√ 

2 
24 

85 

a 4 0 c 
5 

G 

3 m 2 M 

2 
MBH 

(1 − e 0 ) 
7 / 2 . (3) 

ssumption (D 

∗) is much better suited to describe orbits with extreme 
ccentricities for which the pericentre remains nearly constant during 
he inspiral. The time-scales given by equations (1) and (3) differ in
heir range of validity because of their different assumptions. 

In Zwick et al. ( 2020 ), a simple correction factor, R , is proposed to
orrect for the omitted secular eccentricity evolution of equation (1), 
nd therefore it interpolates between the low-eccentricity validity of 
 P and the high-eccentricity validity of T ṗ = 0 (see also Bonetti et al.
018 , for an alternative formulation). The correction factor is 

( e 0 ) = 8 1 −
√ 

1 −e 0 . (4) 

By multiplying T P by R , Peters’ formula extends its validity to
ll eccentricities. The corrected formula, denoted as T R , reproduces 
 ṗ = 0 in the high-eccentricity limit. The time-scale T R ef fecti vely does
way with assumption (D) or (D 

∗). 
Zwick et al. ( 2021 ) obtained an additional correction factor Q

hat impro v es the estimate of the inspiral time-scale by modelling
ost-Ne wtonian ef fects up to order 1.5, based on the follo wing
ssumptions: 

(A) ∗ The binary’s orbit is post-Newtonian (1 PN). 
(B) ∗ GW radiation is described by post-Newtonian fluxes (1.5 

elative PN). 
(C) The secular evolution of the orbital parameters is slow with 

espect to the period of the orbit. 

he common theme among all of these formulations is assumption 
C), which is appropriate when the mass ratio of the binary is extreme
nd the residence time at a given separation, a/ ̇a ∝ 1 /q, is much
onger than the period of an orbit. 

The explicit formula of Q is found in Zwick et al. ( 2021 ); this
orrection factor is valid for arbitrary values of initial eccentricity, 
emimajor axis, MBH spin, and orbital inclination θ . The fully 
orrected time-scale is 

 RQ = T P RQ. (5) 

quation (5) takes into account the relativistic effects that can 
nfluence the inspiral resulting in an accurate time-scale for the 
ccentricity regime ( e 0 > 0.9) and pericentre distances ( p 0 � 6 r S )
xpected for EMRIs and X-MRIs (see also Gair, Kennefick & Larson
006 , where an impro v ed inspiral time-scale for parabolic orbits
ased on numerical perturbative calculations is presented). 
Fig. 1 shows the differences between the various GW-induced 
erger time-scales as a function of eccentricity for a BH of 10 M �

n an equatorial prograde orbit with a pericentre distance, p 0 , of 6 r S ,
round a Milky Way-like MBH, with M MBH = 4.3 × 10 6 M � and
 • = 0 or a • = 0.999. Note that, in the limit of high eccentricity,
 P → T ṗ = 0 / 8 and T ṗ = 0 is ∼60 ( ∼40) per cent of T RQ when a • = 0
 a • = 0.999). An interesting coincidence occurs when the correction 
actors R and Q multiplied together mimic the factor of ∼8 difference
etween T P and T ṗ = 0 and the two lines ( T RQ and T ṗ = 0 ) cross o v er
ach other. For equatorial orbits, this effect occurs at e 0 ∼ 0.8 if a •
 0.999 and at e 0 ∼ 0.95 if a • = 0. 
Peters’ time-scale T P underestimates the merger time since it 

ssumes that the eccentricity remains at its initial value throughout 
he evolution, artificially boosting the radiation of GWs. In contrast, 
he time-scale T ṗ = 0 o v erestimates the merger time-scale for low 
ccentricities since it assumes that the pericentre of the orbit does not
ecay, artificially decreasing the amount of GW emitted. The effect 
f the PN correction factors is to increase the estimate of the merger
ime-scale, especially for circular orbits. Nevertheless, for p 0 � 6 r S 
nd eccentricity values e 0 > 0.9, relevant for EMRIs and X-MRIs,
 ṗ = 0 ∈ (1 . 2 − 0 . 4) × T RQ . Table 1 summarizes the characteristics of

he different merger time-scales. 

 T H E  C R I T I C A L  SEMI MAJOR  A X I S  

he critical semimajor axis a crit marks the end of the relaxation-
ri ven e volution regime, i.e. two-body relaxation ef fects become
rrele v ant, and the energy loss due to GWs emission dominates the
volution of the orbit. Its value is found by solving 

 GW 

= T peri ( a 0 , e 0 ) , (6) 

here T GW 

is the merger time-scale, and T peri is the time required
y two-body relaxation to change the pericentre of the inspiraling 
bject (Amaro-Seoane et al. 2007 ), given by 

 peri ( a 0 , e 0 ) = T rlx ( a 0 ) ×
(
1 − e 2 0 

)
. (7) 

This time-scale is derived from the angular momentum diffusion 
ime-scale, 

 J ∼ T rlx × [ J /J max ] 
2 = T rlx ( a) 

(
1 − e 2 0 

)
, (8) 
MNRAS 510, 2379–2390 (2022) 
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here J = ( a (1 − e 2 ) GM MBH ) 1/2 , J max = ( aGM MBH ) 1/2 is the angular
omentum of a circular orbit, and T rlx ( a ) is the relaxation time-scale

t a distance equal to the semimajor axis a (see equation 12 below). 
Two-body interactions also cause energy diffusion, which changes

he semimajor axis of the objects orbiting the MBH on the relaxation
ime-scale 

 rlx ∼ E/ ̇E , (9) 

here E = GM MBH /2 a . This effect is not rele v ant to the inspiral
rocess because, only by energy diffusion, it can take several
elaxation time-scales to reach orbital parameters for which GWs
mission becomes significant. From equation (8), if e 0 
= 0, then
 J � T rlx , indicating that two-body relaxation diffuses angular
omentum faster than it diffuses energy (Hopman & Alexander

005 ), increasing the eccentricity of an orbit while its semimajor
xis remains approximately constant, allowing the object to reach
ery short distances to the MBH at the pericentre. This is a key
ynamical aspect in the EMRIs/X-MRIs formation; taking T peri ( a 0 ,
 0 ) = T J in equation (6) guarantees that objects with a 0 � a crit that
eached highly eccentric orbits due to a decrease in their angular
omentum, merge before their pericentre changes by diffusion. If

he term (1 − e 2 0 ) is omitted in the same equation, systems with longer
 GW 

for which diffusion in angular momentum is still significant can
e mistakenly considered as potential inspiraling sources, artificially
ncreasing the event rates. 

At each pericentre passage, the energy loss by GWs emission is
aximum, shrinking the semimajor axis and increasing the binding

nergy between the MBH and the compact object. If the new binding
nergy is high enough, the binary decouples dynamically from
he surrounding stellar system, and diffusion in J and E becomes
egligible; the orbit then evolves only due to the energy loss by GWs
mission, creating a successful inspiral that ends when the object
rosses the event horizon of the central MBH. Otherwise, the object
emains in the dynamical regime performing a random walk in the
hase space driven by diffusion in energy and angular momentum,
o either plunge into the MBH, diffuse to wider orbits, or become a
otential inspiral source by diffusing into tighter orbits. 
F or each giv en semimajor axis a 0 � a crit , there is a critical

ccentricity abo v e which the orbiting compact object becomes
mmune to the relaxation processes and, by fixing the pericentre
f the secondary body at the LSO around the MBH, we set a high-
ccentricity limit given by e plunge = 1 − r LSO / a 0 , where r LSO is
he position of the LSO. If, for a given a 0 � a crit , e 0 > e plunge , the
ericentre of the orbit is located inside the LSO and the orbiting body
rosses the event horizon of the MBH, without inspiraling, after a
ingle pericentre passage (Amaro-Seoane et al. 2007 ). 

This formation scenario is characterized by the balance between
 peri and the GW time-scale T GW 

. While the latter depends only on
he source characteristics, the former requires a model of the stellar
ensity in the vicinity of the MBH. 
We obtain r LSO from the critical angular momentum described in

eukolsky & Shapiro ( 1983 ) for a non-relativistic particle in a highly
ccentric orbit around a Schwarzschild BH, 

 crit = 4 GM MBH /c. (10) 

he abo v e equation describes a parabolic orbit with a pericentre
istance equal to p LSO = 4 r S . As any particle with J < J crit plunges
nto the MBH, the value of p LSO defines the plunge radius. Therefore,
or the Schwarzschild case, we assume that the LSO is located at the
lunge radius r LSO = 4 r S . 
For a Kerr MBH, the change in the position of the LSO due to the

pin and inclination with respect to the spin axis, is modelled through
NRAS 510, 2379–2390 (2022) 
he function W( θ, a •) derived in Amaro-Seoane et al. ( 2013 ) from
he separatrices between stable and unstable (plunging) orbits. The
nclusion of W( θ, a •) can increase the number of cycles a prograde
MRI or X-MRI spends inside the LISA frequency band in such a
ay that it becomes detectable. Its deri v ation is based on the scheme
resented in Sopuerta & Yunes ( 2011 ), that takes elements from
he multipolar, post-Minkowskian formalism and BH perturbation
heory to describe an inspiral trajectory, including also the radiation-
eaction from the GWs emission to the system. For a Kerr MBH, the
f fecti ve pericentre at the LSO is 

 = a(1 − e) = W( θ, a •) × 8 GM MBH 

c 2 
. (11) 

To estimate T rlx , we consider that inside the influence radius of
he MBH, defined as R h = GM MBH /σ

2 
0 , with σ 0 the central velocity

ispersion, the stellar density distribution follows a power-law cusp
( r ) ∼ r −γ . This is a theoretical prediction of Peebles ( 1972 ) and
ahcall & Wolf ( 1976 ) from the 1970s that has been tested in the
ast decade by numerical approaches (see, e.g. Freitag & Benz
001 ; Amaro-Seoane, Freitag & Spurzem 2004 ; Preto & Amaro-
eoane 2009 ), concluding that stellar cusps may be common around
BHs. A strong support of these assumptions is found in the work

f Gallego-Cano et al. ( 2018 ), Sch ̈odel et al. ( 2018 ), Baumgardt,
maro-Seoane & Sch ̈odel ( 2018 ), in which the authors conduct

n e xtensiv e search for the stellar density cusp around Sgr A 

∗, by
erforming observations and N -body simulations of the innermost
tructure of the Milky Way’s nuclear star cluster. They find an
xcellent agreement between the theory, their observational data,
nd their simulations, consistent with the existence of a power-law
ensity cusp around Sgr A 

∗. 
Stellar-mass BHs dominate the central density as they sink to the

entre due to mass se gre gation forming a cusp for which different
ndices have been suggested, for example γ = 1.3–1.4 (Freitag,
maro-Seoane & Kalogera 2006 ), γ = 1.75 (Bahcall & Wolf 1976 ),

nd 2 � γ � 11/4 in strong mass se gre gation scenarios (Ale xander
 Hopman 2009 ; Preto & Amaro-Seoane 2009 ; Amaro-Seoane &
reto 2011 ). We assume that these objects with a typical mass of
 BH = 10 M � are the driving species in the relaxation process. Less
assive species distribute into a shallower profile and do not affect

he relaxation rates. 
The relaxation time-scale inside R h at a distance equal to the

emimajor axis a (Baumgardt, Makino & Ebisuzaki 2004a , b ; Freitag
 Benz 2002 ; Hopman & Alexander 2005 ) is 

 rlx = T 0 

(
a 

R h 

)γ−3 / 2 

, (12) 

 0 = 0 . 3389 
σ 3 

0 

ln ( � ) G 

2 m 

2 
BH n 0 

, (13) 

here ln( � ) 	 13 is the Coulomb logarithm (Binney & Tremaine
987 ), and n 0 is the number density given by 

 0 = 

3 − γ

4 π

N 0 

R 

3 
h 

, (14) 

0 = 

(
1 

1 + γ

GM MBH 

R h 

)1 / 2 

, (15) 

here N 0 is the number of stellar-mass BHs inside R h . With these
lements, equation (13) becomes 

 0 	 

4 . 26 

(3 − γ )(1 + γ ) 3 / 2 

√ 

R 

3 
h ( GM MBH ) −1 

ln ( � ) N 0 

(
M MBH 

m BH 

)2 

. (16) 

As inspiral time-scale, we take equation (5) to include the correc-
ion factors, and e v aluate it at the LSO as long as it is located no
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Figure 2. Critical semimajor axis as a function of eccentricity, for an 
inspiraling BD with e 0 = 0.998. We consider a • = 0 and a • = 0.999, for 
which the orbital inclination of the BD is θ= 0.1 rad. These values of spin 
and θ maximize the correction associated with the spin. The diagonal green 
coloured curves are isochrones that represent the inspiral time of the binary in 
years. The dotted isochrones are obtained with Peters’ formula (equation 1), 
the solid isochrones with the corrected time-scale T RQ and a • = 0, and the 
dashed isochrones with T RQ and a • = 0.999. Black lines represent the LSO, 
the solid line is the Schwarzschild case, and the dotted, the Kerr case. The 
intersection between the LSO and the horizontal lines are the values of a crit 

for the Schwarzschild and Kerr cases. The subscript RQ (blue lines) indicates 
that the correction factors in equation (19) are included, whereas the subscript 
P (red lines) indicates the value without the corrections. The magenta lines 
indicates the value of a ṗ = 0 , obtained using the merger time-scale T ṗ = 0 , given 
by equation (3). 
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loser than 3 r S . At shorter distances, the correction factors involving
he PN terms are not accurate (Zwick et al. 2021 ); in that case, we
ompute Q at 3 r S . We re-write the correction factor Q in terms of the
BH spin, the function W( θ, a •), and the initial eccentricity. 
If p 0 ≤ 3 r S , the correction factor Q is computed at 3 r S : 

 = exp ( A ) 
[
1 . 67 − 2 . 75 

(
e 2 0 − 3 . 16 e 0 

)]
, 

A = s 

[
0 . 15 

1 . 5 
e 0 + 1 . 37(1 − e 0 ) 

3 / 2 

]
+ | s| 3 / 2 [( 0 . 36 e 0 ) 

5 / 2 + 2 . 94(1 − e 0 ) 
3 
]
, (17) 

here s = a •cos ( θ ). 
If p 0 > 3 r S , the correction factor Q is given by 

 = q h ( e 0 , W( θ, a •) ) q s ( s, e 0 , W( θ, a •) ) , (18) 

ith 

 h ( e 0 , W( θ, a •)) = exp 
( 0 . 7 

W( θ, a •) 

)
×

{
1 + (1 − e 0 ) 

2 

×
[

exp 

(
0 . 55 

W( θ, a •) 

)
− 1 

)]
+ 

(
0 . 95 

W( θ, a •) 

)3 / 2 (
e 2 0 − e 0 

)}
, 

 s ( s, e 0 , W( θ, a •) ) = exp 

{
s 

[
0 . 3 e 0 

4 W( θ, a •) 
+ ( 1 − e 0 ) 

3 / 2 

×
(

3 . 7 

4 W( θ, a •) 

)3 / 2 ]
+| s| 3 / 2 

[(
0 . 275 e 0 
W( θ, a •) 

)5 / 2 

+ (1 − e 0 ) 
3 

(
1 . 075 

W( θ, a •) 

)3 ]}
. 

ombining these elements, the critical semimajor axis takes the form 

 crit = R h 

[
ε W( θ, a •) 5 / 2 

m 

2 
BH 

m 2 ( M MBH + m 2 ) 

]1 / ( γ−3) 

×
[ 

f ( e 0 ) (
1 − e 2 0 

)
(1 − e 0 ) 5 / 2 

R Q 

] 1 / ( γ−3) 

, 

ε = 

(3 − γ )(1 + γ ) 3 / 2 

4 . 26 

(
5 × 8 5 / 2 

256 

)
N 0 ln ( � ) . (19) 

The correction factors can be turned off by setting RQ = 1, in
hich case a crit is determined by T P (equation 1) and is denoted as
 P . If the correction factors RQ are applied, the critical semimajor
xis is denoted as a RQ , and as a ṗ = 0 if its value is derived using T ṗ = 0 

s the merger time-scale (see equation 28 in Amaro-Seoane 2019 ). 
Fig. 2 shows the values of a RQ , a P , and a ṗ = 0 for a BD X-MRI

ith e 0 = 0.998 inspiraling into a Schwarzschild MBH, and into a
err MBH for which a • = 0.999, and θ = 0.1 rad. For a • = 0, we
nd that a P ∼ 8.5 a RQ , which can significantly reduce the event rates
hen computed with a RQ ; in contrast, the value of a ṗ = 0 is of about
.9 a RQ . In the Kerr case, the effect of R and Q is larger resulting in
 P ∼ 12 a RQ , and a ṗ = 0 ∼ 1 . 3 a RQ . 
The difference between a P and the values obtained for a ṗ = 0 

nd a RQ originates in the lack of accuracy of Peters’ time-scale 
or highly eccentric and relativistic orbits, revealing the need to 
horoughly verify Peters’ time-scale’s validity depending on the 
hysical characteristics of the system. 

 T H E  IN SPIR A L  E V E N T  R AT E  

he event rate of successful inspirals is calculated by integrating 
he number of sources (Hopman & Alexander 2005 ), n ( a ), in a
olume defined from the minimum distance at which we expect 
o find at least one potential EMRI/X-MRI source, a min (Amaro- 
eoane 2019 , see equation 23 below), to the critical semimajor
xis: 

˙
 i 	 

∫ a crit 

a min 

d n ( a) 

T rlx ( a) ln ( ̂  θ−2 
lc ) 

, (20) 

here dn ( a ) is obtained from the number of potential sources around
he MBH, as explained below, and ̂  θlc is the loss-cone angle associated
o the position of the LSO. 

Inside the integration volume defined by a min and a crit , two-body
elaxation is the leading mechanism that brings a source sufficiently 
lose to the MBH to produce an inspiral event. In the following
ection, we derive a min , dn ( a ), and the loss-cone angle of a Kerr

BH that can deviate from a Schwarzschild loss-cone angle if the
pin of the MBH is sufficiently high. 

.1 Number of sources around an MBH 

o obtain the number of objects of a given species, we assume that,
imilarly to stellar-mass BHs, lighter objects follow a mass density 
istribution given by a power law with exponent β, resulting in a two-
opulation system in which the value of γ dictates the distribution of
he stellar-mass BHs around the MBH, and β the inspiraling object’s 
opulation distribution. The number of objects of a given species 
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Table 2. Mass and fraction number of inspiraling objects. 

Inspiraling object mass [M �] f sub 

Stellar-mass BH 10 .0 8.13 × 10 −4 

Neutron star (NS) 2 .7 4.24 × 10 −3 

White dwarf (WD) 0 .8 7.20 × 10 −2 

Brown dwarf (BD) 0 .05 0.21 
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ithin a given semimajor axis is 

( a) = f sub N tot 

(
a 

R h 

)3 −β

, (21) 

here N tot is the total number of objects (main-sequence stars,
ompact objects, and substellar objects) within the influence radius
f the MBH, and f sub is the fraction number of the considered species
btained from a Kroupa ( 2001 ) broken power law, � ( m ) ∝ m 

−α
∗ ,

ith m � the average stellar mass. We use α = [0.3, 1.3, 2.3] for the
ass intervals [0.01, 0.07, 0.5, 150] × M � where [0.01–0.07] M � is

he BD mass range. Table 2 shows the masses and fraction numbers
f each considered object. The numerator of equation (20) comes
rom differentiating equation (21) 

 n ( a) = f sub (3 − β) 
N tot 

R h 

(
a 

R h 

)2 −β

da. (22) 

he distance a min at which at least one object of a given species can
e found is obtained by setting equation (21) equal to 1 and taking
 tot = M MBH / m � , 

 min = R h 

(
m � 

f sub M MBH 

)1 / (3 −β) 

. (23) 

.2 The loss-cone angle for Schwarzschild and Kerr black holes

ot all the objects that approach the MBH can produce an EMRI or
-MRI. The pericentre distance has to be sufficiently small for GWs

mission to occur; ho we ver, if it falls within the LSO, the object
uffers a direct plunge. We can identify plunging orbits through their
 elocity v ector; if it lies within a cone defined by a half-angle equal
o the loss-cone angle, the orbit takes the object inside a sphere of
adius equal to the LSO and rapidly merges with the MBH. The
oss-cone angle is calculated as 

̂ lc = 

(
J max 

J lc 

)−1 / 2 

, (24) 

here J 2 lc is the angular momentum of an orbit around the MBH that
akes a particle to a distance equal to the loss-cone radius r lc . For
 Schwarzschild BH, we take J lc = J crit from equation (10), so that
 lc, S = 4 r S , thus the associated loss-cone angle is 

̂ S = 

(
a 

8 r S 

)−1 / 4 

. (25) 

or a Kerr BH, the shift in the LSO changes the loss-cone radius;
herefore, it is necessary to implement a Kerr loss-cone angle that
onsiders this effect. We implement two versions for the Kerr loss-
one angle; the first, is based on the LSO position shift given by the
unction W ( θ , a •). We write the Kerr loss-cone radius as r lc , W 

=
 r S W ( θ , a •); the associated loss-cone angle is 

̂ W 

= 

(
a 

8 r S W( θ, a •) 

)−1 / 4 

= 

̂ θS W( θ, a •) 1 / 4 (26) 

For the second version, we use the analytic approximation for the
ritical angular momentum ( J crit ) of a non-relativistic test particle
NRAS 510, 2379–2390 (2022) 
rbiting a Kerr BH obtained by Will ( 2012 ), which compared to
umerical solutions is accurate within a 5 per cent for 0.9 ≤ a • ≤
.99, and is valid for arbitrary orbital inclinations: 

J crit = 

GM 

c 
[ 2 K( θ, a •) + 2 ] , 

K( θ, a •) = 

√ 

1 − s − (1 / 8) a 2 • sin 2 ( θ ) F ( a •, cos ( θ ) ) , 

 ( a •, cos ( θ )) = 1 + 

s 

2 
+ 

a 2 •
64 

(7 + 13 cos 2 ( θ )) 

+ 

a 2 •s 
128 

(23 + 5 cos 2 ( θ )) + 

a 4 •
2048 

× (55 + 340 cos 2 ( θ ) − 59 cos 4 ( θ )) + O 

5 ( a 5 • ) . 

(27) 

A particle with J < J crit rapidly plunges into the MBH, determining
 Kerr loss-cone angle given by 

̂ K = 

(
2 a 

r S 
[ 2 K( θ, a •) + 2 ] −2 

)−1 / 4 

. (28) 

An inspiraling object approaching an MBH in a prograde orbit
nds the LSO closer to the MBH; consequently, the loss-cone angle
agnitude decreases with respect to the Schwarzschild case, and it

s easier for the incoming body to a v oid direct plunge. For retrograde
rbits, the LSO is pushed away from the MBH; hence the loss-cone
ngle magnitude is larger than in the prograde cases, increasing the
hase space that produces a direct plunge. This effect can be easily
een in equation (26) as W( θ, a •) � 1 for prograde orbits, and � 1
or the retrograde cases. 

In Fig. 3 , we show that the two versions of the Kerr loss-cone
ngle yield similar results, especially for retrograde orbits with θ �
1.3 rad. The value of ̂ θK slightly deviates from 

̂ θW 

in the case of
rograde orbits with θ ∼ 0.4–0.7 rad and a • � 0.95. 
The MBH spin effects are weak for θ ∼ ±1.57 rad, and both

ersions of the Kerr loss-cone angle indicates that if the inspiraling
bject approaches an MBH in a highly inclined orbit, regardless if it
s in a prograde or retrograde orbit, the phase space that produces a
irect plunge is reduced if the MBH is rotating. The strongest spin
ffects appear with θ = ±0.1 rad and a • = 0.999; in the case of
rograde orbits, ̂  θW 

∼ ̂ θK ∼ 0 . 5 ̂  θS , and ̂  θW 

∼ ̂ θK ∼ 1 . 19 ̂  θS for θ =
0.1 rad. 
Finally, we use equations (12), (22) and (24) to solve equation (20)

ith the correction factors embedded in the value of a crit , thus
btaining 

˙
 i = 

3 − β

2 λT 0 

N tot 

R 

λ
h 

f sub 

{[
a λcrit 

(
ln 
(a crit 

D 

)
− 1 

λ

)]
−

[
a λmin 

(
ln 
(a min 

D 

)
− 1 

λ

)]}
, (29) 

ith λ = (9/2) − β − γ , and D a term associated to the loss-cone
ngle, given by 

 = 

⎧ ⎨ ⎩ 

8 r S , for ̂  θ−2 
lc = 

̂ θ−2 
S , 

8 r S W( θ, a •) , for ̂  θ−2 
lc = 

̂ θ−2 
W 

, 

0 . 5 r S [ 2 + 2 K( θ, a •) ] 2 , for ̂  θ−2 
lc = θ−2 

K . 

(30) 

 EFFECT  O F  T H E  C O R R E C T I O N  FAC TO R S  

N D  T H E  LOSS-CONE  A N G L E  IN  T H E  E V E N T  

ATES  

pplying the correction factors results in longer merger time-scales
ompared to T P and T ṗ = 0 (for high enough eccentricities), giving
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Figure 3. The figure shows the ratio between the loss-cone angles ̂ θi / ̂ θj = 

[ ̂ θW 

/ ̂ θS , ̂ θK / ̂ θS , ̂ θK / ̂ θW 

] obtained with equations (25), (26) and (28). We 
show prograde (top panel) and retrograde (bottom panel) orbits with three 
different orbital inclinations: | θ | = [0.1, 0.7, 1.57] rad. The black horizontal 
line is plotted as a reference: the closer the lines are to the black line, the 
closer the values are between them. The ratios ̂ θW 

/ ̂ θS and ̂ θK / ̂ θS indicate 
the deviation of the Kerr loss-cone angle with respect to the Schwarzschild 
case as a function of the MBH spin, whereas ̂ θK / ̂ θW 

shows the difference 
between the two versions of the Kerr loss-cone angle. 
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Table 3. Maximum and minimum eccentricity (equations 31 and 32) 
for each type of compact object. The values of e min and e max are 
obtained for θ = 0.1 rad (prograde orbits), θ = −0.1 rad (retrograde 
orbits), a crit = a RQ , M MBH = 4.3 × 10 6 M �, and a • = 0 or 0.999. 

a • = 0.0 
Object e min e max 

BD 0.963178 0.998160 
WD 0.981957 0.999790 
NS 0.997268 0.999919 
BH 0.996791 0.999971 

a • = 0.999 
Prograde Retrograde 

e min e max e min e max 

BD 0.990605 0.999954 0.947489 0.995773 
WD 0.995396 0.999995 0.974270 0.999505 
NS 0.999303 0.999998 0.996104 0.999810 
BH 0.999181 0.999999 0.995424 0.999932 
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ore time to the relaxation processes to perturb the orbit of the
ompact object and prevent an inspiral. Therefore, to decouple from 

he dynamics regime, the inspiraling body has to be closer to the
BH, resulting in a smaller critical semimajor axis such that a RQ �

 ṗ = 0 < a P . The semimajor axis a 0 of an inspiraling object would be
elimited by a min and a crit < R h , and the pericentre distance would
e fixed at the LSO position (equation 11). With these conditions, 
e define an eccentricity range e 0 = [ e min ( a •, θ ), e max ( a •, θ )] given
y 

e max ( a •, θ ) = 1 − r LSO /a crit , (31) 

e min ( a •, θ ) = 1 − r LSO /a min . (32) 

Objects with e 0 > e max plunge into the MBH after a single
ericentre passage, and as we do not expect to find objects with
 0 < a min , the value of e min defines the plunging limit for the objects
hat are located closest to the MBH. 

As the pericentre is fixed, orbits with a 0 = a ṗ = 0 , and specially with
 0 = a P can have higher eccentricities than orbits with a 0 = a RQ . For
his reason, we obtain e max by setting a crit = a RQ in equation (31);
his eccentricity value is valid for all the cases, as a crit sets the upper
imit for the semimajor axis of an inspiraling orbit. Table 3 shows the
ange of eccentricities for the considered compact objects obtained 
or θ = ±0.1 rad, a • = [0.0, 0.999], and a crit = a RQ . 

For the mass density distribution, we choose γ = 1.75 for the 
tellar-mass BHs, β = 1.5 for the lighter populations (Bahcall & 

olf 1976 ), R h = 1 pc, and N 0 = 1.2 × 10 4 . We focus on systems
omposed of a central MBH of 4.3 × 10 6 M � with a spin range a •
 [0.0–0.999] and an inspiraling object (a stellar-mass BH, an NS 
r a WD in the case of EMRIs; a BD in the case of X-MRIs) of mass
 2 ; the masses and fraction numbers are given in Table 2 . Although
e focus on MBHs of mass 4.3 × 10 6 M �, we include event-rate

stimates for BH EMRIs with a central MBH of mass ranging from
0 4 to 10 7 M �, which can be rele v ant for LISA. 

.1 The effect of the correction factors 

o investigate the effect of the correction factors in the inspiraling
ates, we estimate �̇ i with ̂ θlc = 

̂ θS in the eccentricity range given 
y equations (31) and (32). We denote as �̇ P the event rates without
he corrections, i.e. setting RQ = 1 in equation (29), as �̇ RQ the
ates with the correction factors included, and as �̇ ṗ = 0 the event rates
omputed as in Amaro-Seoane et al. ( 2013 ), where equation (3) is
sed as merger time-scale. 
For the initial eccentricities given in Table 3 , the correction factor

 (equation 4) takes a value that goes from R ∼ 5 when e 0 ∼ 0.94,
o ∼8 when e → 1. The factor Q (equations 17 and 18) is mainly
ffected by the spin and the orbital inclination; for a fixed θ , the PN
orrection reaches its maximum value when a • = 0.999. 

Figs 4 and 5 show the ratios �̇ P / ̇� RQ and �̇ P / ̇� ṗ = 0 , respectively,
s a function of the initial eccentricity for the considered EMRIs
nd X-MRIs in prograde and retrograde orbits with θ = ±0.1 rad,̂ lc = 

̂ θS , and a • = 0.999. These plots show the largest difference
etween the rates, as this configuration of MBH spin and orbital
nclinations results in the highest (lo west) e vent rates in the case
f prograde (retrograde) orbits. As shown in Table 4 , the combined
ffect of the eccentricity evolution and the PN corrections represents 
n important impro v ement o v er �̇ P : for a central MBH with a • =
.999, �̇ P ∼ 8 − 30 �̇ RQ ; for a • = 0, �̇ P ∼ 10 − 20 �̇ RQ . On the
ther hand, the estimate given by �̇ ṗ = 0 is between ∼1.3 and 2 times
arger than the fully corrected value �̇ RQ when a • = 0, and between
˙
 ṗ = 0 ∼ 0 . 9 − 3 �̇ RQ for a • = 0.999. 
To show the effect of the spin on �̇ ṗ = 0 and �̇ RQ , we compute event

ates considering a • = 0 and a • = 0.999. For a central MBH (M MBH 

 4.3 × 10 6 M �) with a • = 0, we obtain �̇ 

Schw 
i ∼ 10 −6 –10 −7 yr −1 for

he considered EMRIs and X-MRIs. Ho we ver, the e vent rates denoted
s �̇ 

Kerr 
i for a • 
= 0, are higher than �̇ 

Schw 
i when the inspiraling orbits

re prograde, and �̇ 

Kerr 
i � �̇ 

Schw 
i if the orbits are retrograde. For θ =

.1 rad, the rates �̇ 

Kerr 
ṗ = 0 are enhanced by a factor that can be as high

s ∼47 with respect to �̇ 

Schw 
ṗ = 0 . With the correction factors, we obtain

hat �̇ 

Kerr 
RQ increases by a factor ∼23 with respect to �̇ 

Schw 
RQ in the most
MNRAS 510, 2379–2390 (2022) 
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Figure 4. Ratio �̇ P / ̇� RQ as a function of the initial eccentricity for EMRIs 
and X-MRIs in orbits with θ = 0.1 rad (upper panel) and θ = −0.1 rad (lower 
panel) around a 4.3 × 10 6 M � Kerr MBH with a • = 0.999. �̇ P represents the 
event rates obtained using Peters’ formula as the merger time-scale (i.e. setting 
RQ = 1 in equation 29), whereas �̇ RQ are the corrected values. Both event 
rates are obtained with the usual loss-cone angle ̂ θS . Brown lines represent 
a BD ( m 2 = 0.05 M �) X-MRI, blue lines an inspiraling NS ( m 2 = 2.7 M �) 
EMRI, pink lines a WD ( m 2 = 0.8 M �) EMRI, and black lines a stellar-mass 
BH ( m 2 = 10 M �) EMRI. 

Figure 5. Same as Fig. 4 , but for the ratio �̇ ṗ = 0 / ̇� RQ . The rates �̇ ṗ = 0 are 
obtained using equation (3) as the merger time-scale. 

e  

r
 

M  

t  

Table 4. Ratios �̇ P / ̇� RQ and �̇ ṗ = 0 / ̇� RQ for EMRIs and X-MRIs 
with θ = ±0.1 rad, around an MBH of mass M MBH = 4.3 × 10 6 M �, 
and a • = 0 or 0.999. 

a • = 0.0 �̇ P / ̇� RQ �̇ ṗ = 0 / ̇� RQ 

e min e max e min e max 

BD 14 .429 21 .712 1 .364 2 .057 
WD 15 .319 20 .628 1 .566 2 .110 
NS 18 .360 20 .408 1 .913 2 .127 
BH 10 .436 11 .500 1 .675 1 .846 

a • = 0.999 �̇ P / ̇� RQ 

θ = 0.1 rad θ = −0.1 rad 
e min e max e min e max 

BD 26 .021 32 .344 10 .365 16 .295 
WD 26 .396 30 .533 11 .234 15 .751 
NS 28 .609 30 .205 14 .031 15 .794 
BH 14 .990 15 .788 8 .366 9 .396 

a • = 0.999 �̇ ṗ = 0 / ̇� RQ 

θ = 0.1 rad θ = −0.1 rad 
e min e max e min e max 

BD 2 .693 3 .349 0 .936 1 .477 
WD 2 .838 3 .283 1 .125 1 .579 
NS 3 .114 3 .288 1 .433 1 .614 
BH 2 .496 2 .629 1 .323 1 .486 

Table 5. Ratios �̇ 

Kerr 
RQ / ̇� 

Schw 
RQ and �̇ 

Kerr 
ṗ = 0 / ̇� 

Schw 
ṗ = 0 obtained 

for WD, NS, and BH EMRIs, and a BD X-MRI in 
prograde and retrograde orbits, with | θ | = 0.1 rad, around 
a central MBH with mass M MBH = 4.3 × 10 6 M �, and 
a spin value of a • = 0.999 in the Kerr case. 

�̇ 

Kerr 
RQ / ̇� 

Schw 
RQ �̇ 

Kerr 
ṗ = 0 / ̇� 

Schw 
ṗ = 0 

θ = 0.1 rad 

BD 23 .841 47 .071 
WD 23 .068 41 .817 
NS 24 .807 40 .378 
BH 13 .371 19 .92 

θ = −0.1 rad 
BD 0 .509 0 .350 
WD 0 .515 0 .370 
NS 0 .500 0 .375 
BH 0 .573 0 .452 
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xtreme case ( a • = 0.999, θ = 0.1 rad). In Table 5 , we show the
atios �̇ 

Kerr 
ṗ = 0 / ̇� 

Schw 
ṗ = 0 and �̇ 

Kerr 
RQ / ̇� 

Schw 
RQ . 

We choose the specific case of a BH EMRI approaching a central
BH (M MBH = 4.3 × 10 6 M �) in an orbit with e 0 = 0.9992 to show

he influence of the spin and the orbital inclination. Fig. 6 shows
NRAS 510, 2379–2390 (2022) 
he ratio �̇ ṗ = 0 / ̇� RQ for this EMRI as a function of a •, obtained with
ifferent orbital inclinations ( θ = [0, ±0.1, ±0.4, ±0.7, ±1.0, ±1.3,
1.57] rad). In the prograde cases, the difference between �̇ RQ and

˙
 ṗ = 0 is larger for high spin values because the LSO shifts closer to

he event horizon, and relativistic effects become more important.
n the contrary, relativistic effects are weaker for retrograde orbits,

s the LSO is pushed away from the event horizon. 
Finally, for the eccentricity range given in Table 3 , we plot in

ig. 7 the rates �̇ RQ and �̇ ṗ = 0 for objects with orbital inclinations θ
 ±0.1 rad approaching a Kerr MBH of mass M MBH = 4.3 × 10 6 M �

nd a • = 0.999. Prograde WD EMRIs have the highest event rates
ith �̇ ṗ = 0 ∼ 1 . 5 × 10 −4 yr −1 and �̇ RQ ∼ 5 × 10 −5 yr −1 . For NS
MRIs we obtain �̇ ṗ = 0 ∼ 3 . 2 × 10 −5 yr −1 , and �̇ ṗ = 0 � 2 × 10 −5 

r −1 for BH EMRIs, and BD X-MRIs. The corrected version gives
˙
 RQ ∼ 1 × 10 −5 yr −1 for NS EMRIs, �̇ RQ � 9 × 10 −6 yr −1 for BH
MRIs, and �̇ RQ ∼ 6 . 5 − 8 × 10 −6 yr −1 for BD X-MRIs. 
The highest event rate of the retrograde cases is also ob-

ained for WD EMRIs with �̇ ṗ = 0 ∼ 1 . 4 × 10 −6 yr −1 and 
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Figure 6. Ratio �̇ ṗ = 0 / ̇� RQ as a function of the spin a • for a BH EMRI 
approaching a central MBH of mass M MBH = 4.3 × 10 6 M �. The colours 
represent the different orbital inclinations, θ , given in radians. The top 
(bottom) panel shows the prograde (retrograde) cases. 

Figure 7. Inspiral event rates for prograde (upper panel) and retrograde orbits 
(lower panel) with | θ | = 0.1 rad, around a central MBH (M MBH = 4.3 × 10 6 

M �) with a • = 0.999; �̇ ṗ = 0 (dotted lines) is obtained with the time-scale 
T ṗ = 0 (equation 3), whereas �̇ RQ (solid lines) comes from equation (29). 
Brown lines represent a BD ( m 2 = 0.05 M �) X-MRI, blue lines an NS ( m 2 

= 2.7 M �) EMRI, pink lines a WD ( m 2 = 0.8 M �) EMRI, and black lines a 
stellar-mass BH ( m 2 = 10 M �) EMRI. 

�  

N  

�  

�

c
f  

∼
 

0  

a  

c
 

c  

m  

n  

A  

M  

l
 

a
a
o
t  

(  

V
 

w  

t  

m

a

w

e

a

R

T  

s

�

N  

b  

R  

T  

g  

r  

a

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/2/2379/6448491 by U
niversity of Edinburgh user on 05 April 2023
˙
 RQ ∼ 1 . 2 × 10 −6 − 8 . 6 × 10 −7 yr −1 . For retrograde BH EMRIs,
S EMRIs, and BD X-MRIs, the event rates are ∼10 −7 yr −1 , and

˙
 RQ � �̇ ṗ = 0 , with the only exception occurring at e 0 � 0.95, where

˙
 ṗ = 0 � �̇ RQ for BD X-MRIs. These values remain approximately 
onstant along the eccentricity range, the largest variation occurring 
or retrograde BD X-MRIs, where there is a difference of a factor
1.5 between the values of �̇ RQ evaluated at e min and e max . 
Note that �̇ RQ gives an upper limit for the event rate when θ =

.1 rad, because p 0 < 3 r S and the correction factor Q is e v aluated
t p 0 = 3 r S , whereas for θ = −0.1 rad �̇ RQ contains the full PN
orrection as p 0 > 3 r S . 

LISA will be able to detect EMRIs and X-MRIs if the mass of the
entral MBH is between ∼10 4 M � and ∼ 10 7 M �. For lower MBH
asses, the GWs amplitude would be very low and the source would

eed to be located within a few Gpc to be detected (Gair et al. 2004 ;
maro-Seoane et al. 2007 ). On the other hand, if the mass of the
BH is higher than ∼10 7 M �, the signal’s frequency would be too

ow to be detected. 
Black holes at the low-mass end ( ∼10 4 − 5 M �) can be identified

s intermediate-mass black holes (IMBHs). Although their existence 
nd the validity of the scaling relations remain uncertain, kinematic 
bservations of globular clusters and dwarf galaxies seem to indicate 
he presence of IMBHs in the central region of these stellar systems
L ̈utzgendorf et al. 2013 , 2014 ; Tremou et al. 2018 ; Reines &
olonteri 2015 ; Baldassare et al. 2020 ). 
The description presented in this work can be extended to systems

ith M MBH ∈ [10 4 , 10 7 ] M �, assuming that scaling relations between
he central MBH and the host’s stellar system holds for this MBH

ass range. In that case, the critical semimajor axis scales as 

 crit ∼ 5 . 33 × 10 −1 pc × R Z ( N ˆ e ) −4 / 5 ×

×
(

m BH 

10 M �

)−8 / 5 (10 M �
m 2 

)−4 / 5 [4 . 3 × 10 6 M �
M MBH 

]−4 / 5 

, 

(33) 

here we take an eccentricity of 0.9992 so that 

ˆ  ≈
(

1 

1 . 28 

)
f ( e 0 ) (

1 − e 2 0 

)
(1 − e 0 ) 5 / 2 

, 

nd 

 = 

(
R h 

1 pc 

)
, N = 

N 0 

12000 

ln ( � ) 

13 
, 

Z = ( R Q ) −4 / 5 W( θ, a •) −2 . (34) 

he event rate for m 2 = m BH = 10 M �, β = γ = 7/4, and ̂ θlc = 

̂ θS ,
cales as 

˙
 i ∼ 7 . 76 × 10 −8 yr −1 × R 

−4 / 5 N 

1 / 5 

(
M MBH 

4 . 3 × 10 6 M �

)3 / 5 

×
{
Z ˆ e −4 / 5 ×

[
96 + ln 

(
Z R ( N ̂  e ) −4 / 5 

×
(

M MBH 

4 . 3 × 10 6 M �

)−1 / 5 
) ]

− 9 . 6 × 10 −6 N 

−4 / 5 

(
M MBH 

4 . 3 × 10 6 M �

)8 / 5 

×
[ 

89 + ln 

( 

R 

(
M MBH 

4 . 3 × 10 6 M �

)−8 / 5 
) ] }

. (35) 

ote that to obtain the correct value for a crit and �̇ i , the term Z has to
e e v aluated. Neither the function W( θ, a •) nor the correction factors
Q (equations 4, 17 and 18) depend on the mass of the MBH or m 2 .
herefore, the effect of the term Z in the last equation is fixed for a
iven set of a •, θ , and e 0 ; it decreases the event rates by a factor that
emains between � 0.9 and � 3 for the different orbital inclinations
nd spin value. 
MNRAS 510, 2379–2390 (2022) 
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Figure 8. Event rates �̇ RQ , and �̇ ṗ = 0 , obtained with ̂ θS and e 0 = e min , for 
an EMRI composed of a BH of mass m 2 = 10 M � and a central MBH 

of mass M MBH ∈ [10 4 , 10 7 ] M �. Black and coloured lines represent the 
Schwarzschild and Kerr case ( a • = 0.999) case, respectively. Blue and purple 
lines are obtained for the orbital inclination θ = 0.1 rad and θ = 1.57 rad, 
respectively. 
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and Kerr case ( a • = 0.999) case, respectively. Blue and purple lines are 
obtained for the orbital inclination θ = 0.1 rad and θ = 1.57 rad, respectively. 
The event rates are obtained considering ̂ θS and e 0 = e min . 
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Fig. 8 shows �̇ RQ , and �̇ ṗ = 0 , obtained for a BH EMRI with
rbital inclinations θ = 1.57 rad and θ = 0.1 rad, around a central
BH of mass M MBH ∈ [10 4 , 10 7 ] M �, a • = [0, 0.999], and e 0 
 e min (equation 32). To compute the value of e 0 , we assume that

he M –σ relation for the velocity dispersion described in Tremaine
t al. ( 2002 ), σ0 ∼ 200 ( M MBH / 10 8 M �) 1 / 4 km s −1 , holds for the
onsidered MBH masses. The event rate decreases with the mass of
he central MBH; also, as the value of e min depends on M MBH and R h ,
MRIs in the low-mass end are more eccentric compared to EMRIs

ormed around the most massive central MBHs; a similar behaviour
ccurs if we take e 0 = e max , since the magnitude of a crit also decreases
ith the mass of the central MBH. 
Fig. 9 shows the ratio �̇ ṗ = 0 / ̇� RQ for the same EMRI configuration.

s the effect of the spin is weak on highly inclined orbits ( θ =
.57 rad), the effect of the eccentricity becomes more important,
ncreasing the ratio �̇ ṗ = 0 / ̇� RQ as M MBH → 10 4 M �. For M MBH =
0 7 M �, the eccentricity value is ∼0.995, so the effect of the RQ
orrections is weaker than for the less massive MBHs where e 0 →
.999999. On the other hand, for θ = 0.1 rad, the influence of the
pin dominates o v er the eccentricity evolution and PN effects are
tronger; �̇ ṗ = 0 / ̇� RQ ∼ 2 . 6–2.7 along the MBH’s mass range. 

.2 The effect of the loss-cone angle 

he shift in the LSO position can reduce or increase the magnitude
f the loss-cone angle, modifying the phase-space volume that places
he pericentre of an orbit inside the LSO. As a • → 1, the Kerr loss-
one angles ̂  θW 

and ̂  θK (equations 26 and 28) deviate more from the
chwarzschild loss-cone angle ̂  θS . Ho we ver, the change in the event
ates is small even for high spin values, as �̇ i ∝ ln ( ̂  θ−2 

lc ). 
The factor Q indicates that the influence of a • and θ is not as large

s the one obtained when the function W( θ, a •) is implemented (see
NRAS 510, 2379–2390 (2022) 
able 5 ), so it is no surprise that the rates �̇ ṗ = 0 are more affected bŷ W 

and ̂  θK compared to �̇ RQ . 
By computing �̇ RQ and �̇ ṗ = 0 with ̂  θlc = 

̂ θS , ̂  θW 

, and ̂  θK for a spin
alue of a • = 0.99 that guarantees the accuracy within 5 per cent of
 crit (equation 27), we find that the asymmetric effect of the MBH
pin is still noticeable. It can be seen in Fig. 10 , where we show the
orrected event rates computed with the different loss-cone angles –

˙
 

̂ θS 
, �̇ 

̂ θW 

, and �̇ 

̂ θK 
– as a function of e 0 for the considered EMRIs

nd X-MRIs. 
In Section 4.2, we showed that, for prograde orbits around a Kerr
BH, ̂ θW 

∼ ̂ θK , and that, for high spin values, ̂ θW 

� 0.5 ̂ θS . This
eduction in the loss-cone angle increases the EMRI and X-MRI
vent rates �̇ ṗ = 0 by a factor ∼1.2 compared to the Schwarzschild
ase. For objects in retrograde orbits, �̇ ṗ = 0 are reduced by a factor
0.8 due to the small increase in the magnitude of the Kerr loss-

one angle. In the case of �̇ RQ , the Kerr loss-cone angle changes the
ates estimate by a factor ∼0.9 to ∼1.1, which is still negligible. In
able 6 , we give the ratio between these rates. 

 DI SCUSSI ON  A N D  C O N C L U S I O N S  

he spin of the MBH and the orbital inclination of the inspiraling
bject can not be ignored; these quantities can affect the event rates
n two forms. Firstly, through the pericentre of an inspiraling orbit:
s we fix the pericentre at r LSO , a shift in the LSO position changes
he value of the critical semimajor axis and the integration volume
f equation (20), significantly enhancing the event rates of prograde
rbits, and slightly reducing the event rates in the retrograde cases,
s the effect of the MBH spin is not symmetric. Secondly, through
he loss-cone: its value also depends on r LSO and determines the
et of velocity vectors that take an object to a direct plunge. We
ive two expressions, ̂ θW 

and ̂ θK , to obtain a loss-cone angle that
ccounts for spin effects. Both versions of the Kerr loss-cone angle
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Figure 10. Event rates �̇ RQ computed with the different loss-cone angles, as 
a function of e 0 for EMRIs and X-MRIs with | θ | = 0.1 rad in prograde (upper 
panel), and retrograde orbits (lower panel), around a MBH of mass M MBH = 

4.3 × 10 6 M �, and a • = 0.99. The subscript indicates which loss-cone angle 
is used to obtain the event rates; ̂ θS is given by equation (25), ̂ θW 

is the Kerr 
loss-cone angle given by equation (26), and ̂ θK is given by equation (28). 

Table 6. Comparison of event rates computed with ̂ θS and 
the Kerr loss-cone angles ̂ θW 

and ̂ θK for each inspiraling 
object. We take θ = ±0.1 rad, M MBH = 4.3 × 10 6 M �, and 
a • = 0.99. The upper section shows the change induced by 
the Kerr loss-cone angles in �̇ RQ and the lower part shows 
the change in �̇ ṗ = 0 . 

�̇ RQ �̇ 

̂ θW 

/ ̇� 

̂ θS 
�̇ 

̂ θK 
/ ̇� 

̂ θS 

θ [rad] 0.1 −0.1 0.1 −0.1 

BD 1.17 0.92 1.16 0.92 
WD 1.13 0.94 1.12 0.94 
NS 1.12 0.95 1.11 0.95 
BH 1.11 0.95 1.10 0.95 

�̇ ṗ = 0 �̇ 

̂ θW 

/ ̇� 

̂ θS 
�̇ 

̂ θK 
/ ̇� 

̂ θS 

θ [rad] 0.1 −0.1 0.1 −0.1 
BD 1.22 0.89 1.21 0.88 
WD 1.16 0.93 1.15 0.92 
NS 1.14 0.94 1.13 0.93 
BH 1.13 0.94 1.12 0.94 
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ive similar results and, as a • → 1, ̂ θW 

and ̂ θK deviate more from
he Schwarzschild case ̂ θS . Ho we ver, we find that the influence of
he MBH spin added through the pericentre condition, p 0 = r LSO ,
lready contains the most rele v ant ef fects regarding the event rates,
o that implementing ̂ θW 

or ̂ θK changes the event rates by a factor 
hat ranges between 0.9 and 1.2, which does not produce a significant
mpact on the rate estimates. 

We obtained event rates for EMRIs and X-MRIs by implementing 
hree different merger time-scales, T P , T RQ , and T ṗ = 0 . Peters’ for-
ula, T P , o v erestimates the energy loss by GWs and fails to give

n accurate merger time-scale; this can be a v oided by including
ccentricity evolution and post-Newtonian corrections through the 
orrection factors R and Q ; the resulting time-scale, T RQ , is longer
han T P and produces the best merger time-scale estimate for 
rbitrary eccentricities, orbital inclinations, and MBH spin values. 
he alternative formulation T ṗ = 0 gives a reliable estimate of the 
erger time-scale, T ṗ = 0 � T RQ , in the context of EMRIs and X-
RIs. Ho we ver, for arbitrary values of e 0 , θ , or a •, its accuracy can

ot be guaranteed. 
We have shown that for the eccentricity range and pericentre 

istances expected for EMRIs and X-MRIs ( e 0 > 0.9, p 0 = r LSO ),
mplementing T GW 

= T P results in unreliable event rates estimates. 
˙
 P are artificially enhanced by a factor that ranges between ∼8 to
0 compared to the corrected values �̇ RQ . On the other hand, the
stimates given by �̇ ṗ = 0 , which include the influence of the MBH
pin and the orbital inclination through the function W( θ, a •), differ
rom �̇ RQ by a factor between 0.9 and 3. 

We conclude that both the Kerr loss-cone and the RQ corrections to
eters’ time-scale do not have a dramatic impact on the event rates for
MRIs or X-MRIs, when compared to the high-eccentricity approach 
f Amaro-Seoane et al. ( 2013 ). Ho we ver, this work considers only
he dynamical and relativistic aspects of the EMRIs and X-MRIs
ormation and considers the galactic nucleus of the Milky Way as a
epresentativ e e xample of the galaxies that could harbour potential
nspiral sources. If EMRIs and X-MRIs in Nature happened to form
t very low eccentricities, or if environmental effects (not included 
n this work; e.g. torques induced by background gas) can induce a
ignificant reduction of the initial eccentricity of EMRIs and X-MRIs
 e 0 � 0.8), it would be necessary to implement the eccentricity-
volution and PN corrections to obtain accurate event rate estimates. 
n any case, all event rates for MBH binaries and stellar-mass
inaries should be revisited using our impro v ements because their
ccentricities will span through all possible values. Furthermore, our 
escription holds for MBHs with masses between ∼10 4 M � and 
10 7 M �, co v ering the mass interval detectable by LISA. 
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