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Abstract
This project focuses on developing a system for collecting data from a Neuvition Titan M1-
A solid-state LiDAR and a Bashler a2A1920 monocular camera. The system is designed
to be deployed in a protective case in order to obtain data from construction zones as part
of the RoBétArmé project.

The protective case for the sensors was designed using FreeCAD software and fabricated
using a laser cutter with acrylic material. A calibration process has been executed to
calculate its intrinsic parameters to solve lens distortion in the camera image.

To achieve accurate data fusion, it is essential to determine the relative position of each
sensor. An extrinsic calibration method was used for this purpose.

The developed system was tested in a construction area in Copenhagen, yielding results
that can be further analyzed and utilized for improvements. This project contributes to the
advancement of coordinated systems for data collection in construction environments,
enhancing the capabilities of robots in the RoBétArmé project.

The project was made in collaboration with other student Carlos Gascon Bononad in order
to compare results. It was therefore divided into different objectives, the ones assesed
in this document are: Enclosure desing, intrinsic calibration, Matlab LiDAR to camera
extrinsic calibration and data fusion.

Keywords: LiDAR; Camera; Extrinsic Calibration; Intrinsic Calibration; Robot; Percep-
tion; Data Fusion; Dataset; 3D Design; ROS; Linux; Git; Enclosure.
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1 Introduction
Robots are currently having a significant impact on our economy. They have been widely
employed across various industries to enhance productivity, improve efficiency, and en-
sure safety. Initially, robots relied heavily on human intervention due to technological lim-
itations. However, computing power and Artificial Intelligence advancements have made
robots more autonomous, capable of independent movement and interaction with their
surroundings.

Robots are commonly utilized in assembly line production, particularly in tasks where
robotic arms are used to handle heavy objects with precision. A prominent example is the
automotive industry, where robotic arms are employed to maneuver various components
during vehiclemanufacturing. However, themovement of traditional robotic arms is limited
as they are fixed to a specific location. To address this limitation, the development of
mobile robots has gained a lot of attention in recent years. These robots can navigate
and transport objects within large areas, such as factory floors. They employ mapping
and localization techniques to navigate and avoid obstacles. The combination of both
types of robots has greatly improved production systems in the economy.

To function effectively, robots need to perceive and understand their surroundings. This
project focuses on creating a system to gather visual data using sensors like LiDAR and
cameras. The sensors will be protected and configured to be utilized by the robot, enabling
the collection of data for further analysis. The data will be synchronized, and transforma-
tion parameters between different frames will be determined to extract consistent features
of objects.

The collected data from this project will be used in collaboration with the RoBétArmé
project, funded by the European Commission. The RoBétArmé project aims to develop
autonomous robots specifically for the construction industry. Construction is a vital sector
that contributes 6% to the global GDP, and its significance continues to grow, [Alm+16].
The autonomous robots developed in this project will make the maintenance and moni-
toring activities in the construction field simpler and more efficient, simplifying operations
and improving overall infrastructure management.
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2 Problem description
The aim of this thesis is to develop a data collection system for a robot, specifically for
visualizing data from a camera and a LiDAR sensor mounted on a Clearpath Husky A200
UGV robot. To protect the sensors from external elements like weather, dust, and potential
hazards in construction zones, they will be housed inside a protective casing. This casing
will be mounted on a pan-tilt unit attached to the robot’s arm.

(a) Robot from back (b) Robot from lateral

Figure 2.1: Clearpath Husky A200 UGV

To ensure accurate data acquisition, it is necessary to obtain the intrinsic parameters of
the camera. These parameters account for lens variations and are crucial for precise im-
age analysis. Additionally, for effective data correlation between the camera and LiDAR
sensor, an extrinsic calibration process will be conducted. This calibration aligns the sen-
sors’ perspectives to focus on the same field of view and establish a relationship between
the data obtained from each sensor. Once the data collection system is set up and cal-
ibrated, it will be deployed in construction zones to gather relevant data. This collected
data will be further analyzed and utilized by other stakeholders for various purposes and
applications.
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3 Background
This chapter aims to provide a concise overview of the important topics that are relevant
to understanding the project. Each item will be described briefly, as the main purpose of
this chapter is to establish a foundation for comprehending the subsequent chapters.

3.1 Software framework for Autonomous Systems
The Robot Operating System [ROS] is a development kit consisting of libraries and pack-
ages that facilitate the creation of robotic applications. It is an open-source platform de-
signed to enable easy communication of data and workflows among different software
components in a robot system. ROS not only handles data and package management
but also facilitates communication with the sensors.

In ROS, the system is structured around nodes, which are individual pieces of code and
functionalities grouped into packages. These nodes can subscribe to and publish topics,
which are messages containing data. Additionally, ROS provides services that allow for
the modification of package parameters. One of the advantages of ROS is its flexibility in
programming languages, as it supports both C++ and Python.

3.2 Sensors
The sensors used in the project are a monocular camera and a Light Detection and Rang-
ing (LiDAR). These sensors provide color (RGB) and a point-cloud respectively.

3.2.1 Monocular camera
The camera used for the project is a Basler a2A1920-160ucBASIC [Bas]. This camera
provides a high resolution (1920 x 1200) with a frame rate up to 164 frames per second
(fps).

The visible spectrum of the human eye is able to see light with a wavelength between 400
and 700nm. Depending on this wavelength, the color will change as seen in figure 3.1.

Figure 3.1: Visible light spectrum

The camera follows the same idea, being able to capture visible light (RGB cameras). In
the case of the Basler camera, it not only depends on the wavelength range that is able
to detect but also the intensity of the detection. Figure 3.2 is shown the sensitivity of the
sensor used to capture the data.
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Figure 3.2: Basler camera response

3.2.2 LiDAR
LiDARs are sensors that uses lasers to detect distances on the surroundings. Some
LiDARs use mechanical structures to capture the data in a 360º range, but the LiDAR of
this project is a solid-state LiDAR. Neuvition Titan M1-A [Neu] uses a single laser beam
to capture a forward image, like a camera. With this type of LiDAR, the captured data has
higher resolution compared with the data of mechanical LiDARs. In figure 3.3 is shown a
comparison between one of the most used mechanical LiDAR and the used in the project.

(a) Velodyne point-cloud (b) Neuvition Titan M1-A point-cloud

Figure 3.3: Point-cloud comparison

Both distributors provide packages to connect the sensors with ROS, publishing topics
with the data.

3.3 Intrinsic Parameters
In order to obtain correct projections of the 3D points in the space to the camera plane
we need to account for the camera intrinsic parameters and correct the image in order to
compensate for the wide angle lens distortion. This is relevant because when calculating
the camera-LiDAR extrinsic parameters the results of the frames obtained would be far
from the truth as the used images would be distorted. In an ideal pinhole camera we
would only have to account for the camera matrix (K), that considers the optical center
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and focal length of the camera. However the light rays passing by the camera lenses and
hitting the sensor get bent and translated because of the lenses and there is a need to
find several coefficients to model equations that compensate those rays distortions.

3.4 Extrinsic Parameters
LiDAR and camera sensors provide information about the surroundings that are crucial
for autonomous systems. However, in order to effectively acquire and combine data from
these sensors, it is necessary to establish a connection between what they are perceiving.
This is achieved through an extrinsic calibration process that determines the transforma-
tion relationship between the sensors, enabling the fusion of their data. This transfor-
mation relationship can be defined as a 4x4 transformation matrix that combines rotation
(yaw, pitch, roll) and translation (x,y,z) assuming that the multiplication of the matrix and
a point in frame A returns the same point in frame B.

XB

YB
ZB

1

 =


r1,1 r1,2 r1,3 tX
r2,1 r2,2 r2,3 tY
r3,1 r3,2 r3,3 tZ
0 0 0 1



XA

YA
ZA

1

 (3.1)
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4 Related work
This chapter will explain different methods for each calibration that can be used.

4.1 Intrinsic Calibration Method
4.1.1 Lens distortion background

Figure 4.1: Intrinsics and Extrinsics

As explained in [Mata], in an ideal pinhole camera, there is no lens distortion as there
is a really small aperture where light rays pass through and project on the image plane.
Therefore the parameters that comprehend the intrinsics of a pinhole camera can be rep-
resented in the camera intrinsic matrix, K, which is:

K =

fx s cx
0 fy cy
0 0 1

 (4.1)

Where:
cx, cy - Optical center in pixels.
fx, fy - Focal length in pixels.
s - Skew coeficient.

We need to account for the lens distortion, which can be divided into two types:

• Radial: Radial distortion is produced by the bend of the light rays gradually increas-
ing at the edges of the lens.
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• Tangential: Tangential distortion happens when the image plane and the lens are
not parallel.

Radial distortion can be modeled as:

xdistorded = x(1 + k1 · r2 + k2 · r4 + k3 · r6)

ydistorded = y(1 + k1 · r2 + k2 · r4 + k3 · r6)

Where:
x, y - Undistorted pixel locations which are non-dimensional parameters calculated by the
translation of the point in pixels to the optical center and dividing it by the focal length in
pixels.
k1, k2, k3 - Radial distortion coefficients of the lens.
r2 = x2 + y2

And tangential distortion can be modeled as:

xdistorded = x+ [2 · p1 · x · y + p2 · (r2 + 2 · x2)]

ydistorded = y + [p1 · (r2 + 2 · y2) + 2 · p2 · x · y]

Where:
x, y - Undistorted pixel locations which are non-dimensional parameters calculated by the
translation of the point in pixels to the optical center and dividing it by the focal length in
pixels.
p1, p2 - Tangential distortion coefficients of the lens
r2 = x2 + y2

4.1.2 Zhang’s method
When calibrating cameras we need the distortion parameters to get the intrinsic matrix,
and we need the intrinsic matrix to obtain the distortion parameter. The approach will be
based on Zhang’s method [Zha00] (that we could understood in depth thanks to the article
[Ayy]) which computes the intrinsic parameters assuming the distortion parameters are 0
and then with the computed parameters we calculate the distortion parameters, then we
do several iterations using the results obtained in the processes.
For this methodology, we will make use of the Rotation and translation from the checker-
board to the camera frame, as well as the homography. As we can observe in Figure 4.1
we can say that:

Pcam = [R|t] · Pobj where : R = [r1 r2 r3]

Combining them with the Intrinsics of the lens and the homography we can obtain the
following two equations:

pimg = K[R|t]Pobj and pimg = λHPobj

Pobj has the shape of (X,Y, Z, 1)T as Z is always zero because the checkerboard target
is an X-Y plane we can remove the third column of the rotation vector, as well as the Z
coordinate of Pobj . Then:

pimg = K[r1 r2 t]

XY
1
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So we can conclude that:
λH = K[r1 r2 t ]

Now for every view of the chessboard, we will add 8 constraints from the homography
matrix, 6 unknowns, due to the translation and rotation of the target and every view will
share the same 4 unknowns from the intrinsic parameters. Therefore we will need at
least two different poses of the checkerboard in order to obtain the intrinsic parameters.
Calculating the homography for each view we can solve for the intrinsic parameters. H
can be expressed as a vector of columns:

H = [h1 h2 h3]

Then:
λ[h1 h2 h3] = K[r1 r2 t]

Solving this equation: r1r2
t

 =

λK−1h1
λK−1h2
λK−1h3


r1 and r2 are orthonormal meaning:

rT1 r2 = 0 ⇒ h1(K
−1)TK−1h2 = rT1 r2 = 0

and :

rT1 r1 = rT2 r2 ⇒ h1(K
−1)TK−1h1 = h2(K

−1)TK−1h2

We will define B, which is:

B = (K−1)T =

B11 B12 B13

B12 B22 B23

B13 B23 B33

 =

 1/f2
x 0 −cx/f

2
x

0 1/f2
y −cy/f

2
y

−cx/f
2
x −cy/f

2
y cx/f

2
x + cy/f

2
y + 1


Then every one of the equations obtained from r1 and r2 being orthonormal can be rep-
resented as:

hTi Bhj where 1 ≤ i, j ≤ 2

hTi Bhj = vTijb = [hi1hj1 hi1hj2+hi2hj1 hi2hj2 hi3hj1+hi1hj3 hi3hj2+hi2hj3 hi3hj3]



B11

B12

B22

B13

B23

B33


Then we need to find out B, and for that, we can solve the following system of linear
equations with the help of the previous equations.[

v12
(v11 − v22)

T

]
b = 0

We can indeed see that the b vector is constant as it is a function of the camera. However,
the v vector changes with each of the views from the checkerboard, what we will do is to
compute the homography from each of the views and append it to the v12 and (v11−v22)

T
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of each view obtaining a long column vector. Then we will solve for b using singular value
decomposition. Obtaining B we can get the camera matrix parameters:

cy = (B12B13 −B11B23)/(B11B22 −B2
12)

λ = B33 − (B2
13 + cy(B12B13 −B11B23))/B11

fx =
√

λ/B11

fy =
√
λB11/(B11B22 −B2

12)

cx = −B13f
2
x/λ

Then we can compute the extrinsic parameters for the rotation and the translation:

r1 = λK−1h1 r2 = λK−1h2 r3 = r1 × r2 t = λK−1h3

Now we have the intrinsic matrix and the rotation and translation parameters. With this
data we can proceed to compute the distortion parameters. The image-points that we
obtained from the different photos of the checkerboard are the distorted points (xd, yd)

T

while we can compute the place were the points should lie on an ideal projection (xc, yc)
T

by using the equations we previously defined

pimg = K[R|t]Pobj and pimg = λHPobj

With both of the points using the equation for tangential and radial distortions:[
xc
yc

]
= (1 + k1r

2 + k2r
4 + k3r

6)

[
xd
yd

]
+

[
2p1xdyd + p2(r

2 + 2x2d)
2p2xdyd + p1(r

2 + 2y2d)

]
Finally as this equations are linear we can simply obtain the solution for the coefficients
by stacking more rows of equations using the points from different views and then using
a least-squares method.

4.2 Extrinsic Calibration Method
4.2.1 Automatic Extrinsic Calibration of a Camera and a 3D LiDAR using

Line and Plane Correspondences
This method [ZLK18] uses a checkerboard in order to obtain the extrinsic LiDAR to Cam-
era calibration parameters given in the form of a rotation matrix and a translation vector.
Its main advantages when compared to other methods is that the minimum number of
poses of the calibration target required to obtain calibration results is only one. This is
achieved by using the plane from the checkerboard as well as the 3D lines that outline it.
The method is implemented in MATLAB with the MATLAB function estimateLiDARCam-
eraTransform

A. Problem definition

Our aim is to obtain the transform from LiDAR to camera composed of the rotation matrix
RC

L and the translation vector tCL for this purpose this method makes use of the checker-
board plane π and its 4 borders Lij where j is the number of the line {1,2,3,4}
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Figure 4.2: Planes seen from the LiDAR and the camera on a pose i and the lines that
define them.

B. Automatic Feature Extraction

The approach for extracting the plane and lines from the LiDAR is the following: first of all,
the algorithm uses RANSAC in order to find the checkerboard plane. Then the boundary
of each of the scan lines is found by projecting the point into the checkerboard plane and
the projecting that point on the scan-line as can be seen in figure 4.4. Finally we can
apply RANSAC at the points of each of the lines in order to get read of any outliers. For

Figure 4.3: Denoise of the boundary points. In red: filtered points, blue: unfiltered points

the camera the approach is to obtain the images and detect the checkerboards. Then the
planar parameters are obtained with the homography between the checkerboard and its
image. Then the lines of the image are obtained by the LSD algorithm. We choose the
four lines enclosing the detected checkerboard. Then obtain the 3D boundary lines with
the intersection of the back-projected plane in 2D and the checkerboard plane.
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C. Extrinsic calibration

The extrinsic calibration is complex and properly defined in the paper. As a summary:

Figure 4.4: Algorithm Flowchart
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5 Implementation

5.1 Design Case
There was a need for installing the different sensors of this project in an enclosure that
was water-tight in order to protect the components from accidental hits, as well as to keep
the inside dry. Also it was important for the enclosure to be rigid and to maintain the com-
ponents within fixed frames from each-other. This chapter reflects the process undergone
since the first material selection steps to the final mounting of the sensors in the mobile
robot.

5.1.1 Choice of the material

The first part assessed was the selection of the materials [CPl] to use in the enclosure,
as this would determine the fabrication method and the design that would be made. It
is often seen in different real life examples such as action cameras that polycarbonate
is used because of its good durability properties as well as it is less likely to crack under
stress when compared to other transparent plastics. Acrylic on the other hand is more
rigid, wich is good in order to avoid the displacement between the frames of the LiDAR
and the mono-camera, it has also a better light transmittance, of 92% which means the
mono camera sensor will receive more light. Acrylic is also generally cheaper than poly-
carbonate, easy to mechanize and easier to glue together, so it was the final material
chosen for the enclosure. It was also proposed to use acrylic for the front part of the box
and wood on the other sides, however this option was soon discarded due to the porosity
of the wood not making a great candidate for a water tight enclosure.

5.1.2 Selection of a parametric design software

Then a method for fabricating the enclosure had to be selected. Laser cutting was cho-
sen as it was easily available for thesis projects at DTU Skylab. It is fast for prototyping,
and easy to use. Provided that we would use a laser cutter, the design would have to
be provided in a vector format to the cutting software, with the most popular being .svg
or .dxf. The design could have been made entirely into 6 different 2D pieces, however
for better visualization of all of the pieces assembled together we decided that the best
methodology to follow would be to make a 3D design first and then convert each of the
pieces into .svg format.

There are 2 main options of software available for use that were analysed in order to
make the 3d model:
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FreeCAD Fusion 360
Parametric modeling. Parametric Modeling.
Steep learning curve,

extensive Wiki community. Ease of use and quality tutorials.

Open Source. Proprietary Software.

Free. Free licenses only for educators
and students.

Lots of available macros and
environments,can create
your own with python.

Apps and plugins available, many
of them are not free.

Available in Windows, MacOs
and Linux distributions

Available only in Windows and
MacOs

FreeCAD 0.20.2 was finally selected [Fre] as it was available for our Ubuntu OS, it has
a big open-source community and lots of macros and environments can be installed in
order to ease the process of the design of our case.
-
Due to being completely new to the process of CAD design and to FreeCAD, a series of
videos and some research in its Wiki were followed in order to get to know the basics:

• FreeCAD tutorial (YouTube playlist)

• Finger-Slotted box

• FreeCAD Wiki

5.1.3 Design of the enclosure

The main idea for the design of the enclosure was to make an acrylic cuboid that holds
the sensors When designing the cuboid a finger-slotted method for the joints was chosen
for two main reasons: Mainly because it would provide more rigidity when glued together
when compared to a plain corner joint, but also as it would facilitate the aligning of all of
the pieces for the gluing stage.

Sketching

In order to make the finger-slot box, the first attempt was to make all of the pieces of the
box by hand. For this we would need to reach into the data-sheets of each of the com-
ponents in order to get their dimensions. Figure 5.7. Then a sketch for the bottom part
of the box was made in order to estimate the measurements of the final box considering
the thickness of the acrylic material as well as the dimensions of the mono-camera and
LiDAR. The planned dimensions for the box were: 200*280*96 mm.

Development and design of a robotic data collection platform 13
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(a) Camera Sketch (b) LiDAR Sketch

Figure 5.1: Dimensions of the sensors

Box design
The methodology for creating a box in FreeCAD was the following:

1. Create a body.

2. Make a sketch inside that body with the shape of one of the faces of the box.

3. Fully constraint that sketch.

4. Pad the sketch in order to make a solid part.

5. Make a new sketch with the places of the different holes.

6. Fully constrain the sketch.

7. Use the pocket feature in order to remove material from the object.

8. Repeat for each of the asymmetric faces of the cuboid shaped enclosure.

9. Translate all of the created bodies in order to form the box.

-
Designing and constraining the pockets for all of the finger slot joints on all of the differ-
ent faces was a really tedious process. It was made better by making use of parametric
design with the spreadsheet workspace and specifying the different relevant dimensions
of the box such as the thickness of the walls the size of the box or the shape of the finger-
joint pattern. Then with the variables specified in the spreadsheet we could use two really
interesting tools to make the process way faster.

• PartDesign LinearPattern: This tool can make a linear pattern of a feature(s) in an
specified direction, with a selected number of occurrences and between a selected
length.

• Sketcher Symmetry: This tool can copy a geometry and paste it across a selected
line or a sketch axis.

With this tools and the variables recorded in our spreadsheet we can make the design of
our part parametric, which means than instead of assigning numerical values to the Linear
pattern or to the constraints of the different geometries we can just change the box values
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in the spreadsheet and the whole design will generate according to this parameters. This
is really useful for future projects as we could change the size of our enclosure according
to our needs f.e. when adding more sensors.
Later in the process we discovered doing bibliography research that a macro does this
exact same task. Macros in FreeCAD can be programmed in python, added easily with
the Add-On manager and can objectively speed-up the design process. For this case
BoxCreator.FCMacro was used as can be appreciated in Figure 5.2a.

(a) BoxCreator Macro (b) Final Design

Figure 5.2: FreeCAD design process

After making the box, the only thing needed was to add the pockets for the mounting of
the camera and the LiDAR sensors, the next steps were followed:

1. Create a new body.

2. Copy the bottom part of the box.

3. Add it as a base feature to the newly created body.

4. Create a new sketch.

5. Constraint the sketch.

6. Pocket the sketch.

As an addition the LiDAR and the mono-camera were modeled based on their CAD di-
mensions in order to check their fitting before finally cutting the acrylic on the laser cutter,
see Figure 5.2b.
It is worth mentioning that the design of both of the components was a great learning
experience, where some other FreeCAD tools were used such as Datum planes or trans-
lation of the components.

Making of the SVG file
For the laser cutting of our 6 different pieces we need to arrange them in such way that
they fit in an acrylic board and we also need to provide the CNC cutting program a 2D
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file in a format that can be interpreted in order to send the correct instructions to the laser
cutter.
Luckily there is a open-source workspace for FreeCAD, LCInterlocking, that is designed
for changing our pieces from 3D to 2D SVG. The procedure consists on selecting the
bodies that we want and click export on the tools bar, this will create a 2D vector shape
of the object. After doing the same step with the rest of the objects we can place them
in a way that they fit in our laser cutter. Then select File/Export and export it as an SVG
format.

5.1.4 Assembling the case
The case was Laser cut in the DTU Skylab facilities by first importing the 2D file into
CorelDRAW 2021, then selecting the outline and turning it red rgb(255,0,0) wich is the
key color for cutting. Finally it was sent by clicking print to the laser cutter, being careful
to select the adequate material (3mm acrylic).

The components were attached firmly to the enclosure base using M3 and M6 bolts, nuts
and washers for the camera and the LiDAR respectively. An H frame of 2020 and 4040
T-Slot aluminum that was previously made to attach sensors to the mobile data collec-
tion platform was used to add more rigidity to the base. Figure 5.3 The rest of the case
wasn’t assembled as the deployment of the sensors was done in an indoor controlled
environment.

Figure 5.3: Final enclosure

5.2 Intrinsic Calibration
The method used for the intrinsic calibration of the camera was the Zhang’s method de-
scribed in 4.1.2 which has been widely used since its release in 2000 because of its
reliability and the simple calibration target used (checkerboard). Several libraries such as
OpenCV [Ope] or MATLAB offer a simple implementation for the intrinsic calibration of a
camera.

5.2.1 Intrinsic calibration using Python and OpenCV
First of all we define the object-point vector which is comprised of the position of the
checkerboard corners in 3D. As we saw before, we consider the checkerboard to be in
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Figure 5.4: Calibration implementation flowchart

the X-Y plane so the Z component of those points will be zero. Then it will have the
following format:

(0, 0, 0), (1, 0, 0), (2, 0, 0), ...., (xcorners, ycorners, 0)

Then a loop goes trough each of the images and extracts the 2D position of the corners
of the checkerboard in the image with the help of OpenCV findChessboardCorners.

1 ret, corners = cv.findChessboardCorners(img, (x_corners ,y_corners), None)

If the return of the function is True it means it was able to find the corners and we will
append them to an array of vectors (image-points), then do the same for the object-point
vector appending it to an object-points array and move on to the next image of the loop.

We should end up with two arrays of vectors of equal size, one for the image-points and
one for the object-points. With this information we can do the implementation in OpenCV
of Zhang’s method by means of OpenCV calibrateCamera

1 ret, mtx, dist, rvecs , tvecs = cv.calibrateCamera(objpoints , imgpoints , img.
shape[::-1], None, None)

The most relevant parameters obtained with this function are mtx: the camera matrix and
dist: the distortion vector. This parameters will be later used to undistort the image.

5.2.2 ROS camera_calibration
ROS camera_calibration [Jam] is a python based node that helps with the calibration of a
monocular or stereo camera. For its installation:
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1 $ rosdep install camera_calibration

Then initialize the camera:
1 $ roslaunch pylon_camera pylon_camera_node.launch

Open a new terminal and start the camera_calibration node.
1 $ rosrun camera_calibration cameracalibrator.py --size 7x5 --square 0.08

image:=/pylon_camera/image_raw camera:=/pylon_camera

We can observe that we need to specify some parameters, first of all the CB size which
is the number of inner corners. Then the square size in meters and finally the image and
camera topics.

An interface like the one in Figure 5.5 will appear. The app will automatically start taking

Figure 5.5: Camera_calibration app

samples of the checkerboard until it has enough data to calibrate the camera. We then
have to move the checkerboard to different positions and poses until the bars on the
top right corner for X Y and Size fill up. Once that is completed the calibrate button
can be pressed, obtaining then an image of the camera calibrated. If the results are
satisfactory(having straight edges on the image) click the commit button which will save
the parameters into a YAML file. We can then specify the url of that file in our camera
default.yaml file in order to get a rectified image from the camera.

5.2.3 MATLAB
For the intrinsic calibration using MATLAB the cameraCalibrator app was used. Figure 5.6
First of all type cameraCalibrator on the MATLAB prompt. This will open the application.
Then we can add images from the checkerboard in different positions from 10-20 should

18 Development and design of a robotic data collection platform



Figure 5.6: cameraCalibration app

be enough to get good calibration results. We should also input the checkerboard square
size in millimeters.

After that we can click on the calibrate button. When the calibration is done we can
visualize the rectified image, as well as a comparison of the originally detected points
and the re-projection when the camera is rectified.

The app also plots themean error of the calibration images in pixels which help us evaluate
the quality of the result. If we’re satisfied with the results we can export them as a .mat
file. The calibration results will be the camera matrix, as well as two coefficients for the
radial distortion and another two for the tangential distortion.

5.3 Extrinsic Calibration
5.3.1 Automatic Extrinsic Calibration of a Camera and a 3D LiDAR using

Line and Plane Correspondences
As it was mentioned in section 4.2.1 the method could be implemented in MATLAB with
some previous processing [Matb].
Making of the target
For the calibration to work we need a rigid rectangular planar surface in which to stick the
checkerboard. There is no problem for the rigid surface to be larger than the checker-
board as long as we define the padding later in our program [Matc]. In this case an 8x6
checkerboard with 80mm squares was used and pasted onto a 3mm birch plywood plank.
See figure 5.7b.

Also the pointcloud data obtained by the neuvition LiDAR showed a variance from the
measurements between the white and black squares, where the white squares seemed
to be closer to the LiDAR than the black ones, this can be due to white being more re-
flective and the LiDAR having trouble when getting accurate measurements from the low
reflectance of the checkerboard. The consequences of this problem as well as an alter-
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native solution will be addressed later.

(a) Calibration target paddings (b) Used checkerboard

Figure 5.7: Calibration targets

Gathering of the calibration data
In order to implement the calibration, different poses of the checkerboard must be cap-
tured with both the LiDAR and the camera. It is important then, as the target is going to be
displaced, that data is picked at the same time from camera and LiDAR. For this purpose
we will gather synchronised data.

The images are saved in a folder as .jpg while the point-clouds are saved in the .pcd for-
mat. Then we can manually choose the best samples of images and their corresponding
point-cloud as data to feed to our program.

Implementation of the calibration
There are four main steps figure 5.8 to follow in order to obtain the LiDAR to camera
transform:

First the intrinsic parameters of the camera are computed with the help of Zhang’s method
as explained in 4.1.2. For the shake of simplicity the intrinsic calibration is made with
MATLAB, with the help of estimateCameraParameters as the parameters obtained will
be in the proper format for its use in the next functions.

Then we will estimate the 3D checkerboard points from the images using the estimate-
CheckerboardCorners3d function [Matd]. It is possible to obtain them because it is known
the checkerboard size its padding and the intrinsics of the camera.

Later the plane segment in the point-clouds is detected, we can specify the minimum
distance for clustering, as well as a ROI in the form of [xmin, xmax, ymin, ymax, zmin,
zmax] in order to only consider certain points of the point-cloud for the computing of the
plane. Then with the help of the MATLAB function detectRectangularPlanePoints we can
detect the rectangular planes of the point-cloud.

Finally, with the previously obtained 3D points from the camera and LiDAR data, we can
apply 4.2.1 that can be implemeted with the help of estimateLiDARCameraTransform.
This will return the transform from LiDAR to Camera in the form of a rotation matrix and a
translation vector.
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Figure 5.8: Implementation diagram

LiDAR Camera Calibrator app
This app, figure 5.9, allows for fast LiDAR-camera extrinsic calibration. It follows the
same logic mentioned above, but offers better visualization of the data and makes the
selection of the ROI easier. To use the app we first need to install the LiDAR package
for MATLAB, as well as the dependent packages. Then simply start the app by writing
LiDARCameraCalibrator [Mate] in the MATLAB prompt.

First select Import>Import Data and choose the images and the point-clouds folders to be
imported. Then the checkerboard dimensions as well as the padding are inserted.

The app will accept the data for calibration if it finds the checkerboard planes in both the
image and the point-cloud.

It was found that it was pretty determinant for a data pair to be accepted, to modify the
region of interest in order to contain mainly the checkerboard plane. It is also possible
to modify other parameters such as the cluster threshold or the dimension tolerance that
can have an effect in finding planar regions within the data given by the LiDAR.

After enough accepted pairs are obtained click on the calibrate button. Then the calibra-
tion parameters can be exported and used in further applications.

The app also provides 3 bar plots to evaluate the calibration errors, one for translation,
another one for the angle error and a final one that displays the re-projection error for each
of the pairs. It also provides a final colored point-cloud showing the fusion of the results.
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Figure 5.9: LiDAR Camera Calibrator app interface
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6 Final results
This chapter summarizes the results obtained during the project, mainly the intrinsic and
extrinsic calibration as well as the data collected during the testing.

6.1 Intrinsic calibration results
The calibration of the camera was made with the three different methods mentioned in
section 5.2.

6.1.1 Showcase of the different results
Python & OpenCV

K =

1177.56786 0 906.282368
0 1176.97430 543.142150
0 0 1


Radial coefficients

(k1, k2, k3) = (−0.250571918, 0.123913316,−0.0369855407)

Tangential coefficients

(p1, p2) = (−4.27097213e− 04,−1.53169632e− 04)

ROS camera_calibration

K =

1179.97894 0 926.64154
0 1181.48564 555.55689
0 0 1


Radial coefficients

(k1, k2, k3) = (−0.223102, 0.065771, 0.000000)

Tangential coefficients
(p1, p2) = (0.000210, 0.000224)

MATLAB cameraCalibrator

K =

1194.15720 0 918.98551
0 1194.56706 552.89826
0 0 1


Radial coefficients

(k1, k2, k3) = (−0.231815542, 0.0839317475, 0)

Tangential coefficients
(p1, p2) = (0.000210, 0.000224)

As we can see in Figure 6.2 the straight lines in real life, such as columns or the edges of
the calibration target, are straightened, whichmeans all of the intrinsic calibrationmethods
seem to be working properly within some degree of error. The focal length and the focal
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center obtained only varies in a few pixels between the methods which can be due to
different calibration targets being used for each method. Overall we can conclude that all
of the methods worked properly and that the errors in the calibration can be attributed to
the lack of sampling of different poses of the checkerboard, irregularities in the calibration
pattern or not having a perfectly planar surface in which to stick the checkerboard.

Figure 6.1: Comparison between the RAW image and the different calibration methods

6.2 Extrinsic calibration results
The results of the extrinsic calibration show different values for each method. The trans-
form results obtained with the method 5.3.1 developed in this thesis:

−0.9997 −0.0180 −0.0158 0.0690
0.0181 −0.9998 −0.0057 −0.0145
−0.0156 −0.0060 0.9999 −0.1501

0 0 0 1.0000


And the transform provided by the velo2cam method [Bel+] method implemented in an-
other bachelor thesis developed in the context of the same project is:


−0.9991 −0.0018 −0.0429 0.112
0.0030 −0.9997 −0.0261 0.0129
−0.0428 −0.0262 0.9987 0.057

0 0 0 1


Both transformation matrix are applied to the LiDAR frame to obtain the points from this
sensor frame to the camera frame. Changing to the Euler axis, the translation and rotation
are:
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Figure 6.2: Combination of the data with method 5.4.2

Parameters Matlab Velo2cam
Translation (X) 0.0690 0.112
Translation (Y) -0.0145 0.0129
Translation (Z) -0.1501 0.057

Yaw 178.96 179.83
Pitch 0.89 2.4536
Roll -0.3438 -1.5073

Table 6.1: Translation and Rotation Vectors

The translation values are in meters, and the angles are in degrees. As it is observable,
the rotation values are practically the same while the translation values are much more
different. For a better comparison, it has been observed in rviz:

Figure 6.3: Top view of the frames

Figure 6.3 shows the frames in a top view, being the blue axis as the Z-axis of the sensors,
which is where they are facing. The LiDAR frame is neuvition while the pylon_camera is
the camera frame obtained by the velo2cammethod and the pylon_camera_matlab frame
by the MATLAB method. The rotation of both frames is similar. But the translation is a
bigger problem, MATLAB method has moved the camera frame backwards in the Z-axis.
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The method velo2cam obtains the frame with more similarities, generating the camera
moved forward in X-axis, as planned during the enclosure design to avoid the camera
perceiving the LiDAR lateral.

Due to the calibration results, themethod used for extracting data is the velo2cammethod,
explained in section ??.

6.2.1 Errors
The errors from the MATLAB extrinsic calibration are given when implementing the func-
tion estimateLidarCameraTransform. We can observe three different errors, translation,
rotation and reprojection. Errors are plotted for each image for better interpretation. Fig-
ure 6.4

Figure 6.4: Errors for 5 and 20 samples respectively

The same 100 samples were used for the calibration and in both cases the ROI was
modified to the checkerboards region in the point-cloud. In the case of the 20 samples
the Cluster Threshold and the Dimension Tolerance were set to lower and higher values
respectively in order to obtain more acceptance of the samples. We can see that the
reprojection error is lower in the 20 samples case, with the exception of some outliers, but
it hasn’t improved significantly. This may be due to some images being blurry due to the
movement of the checkerboard or to some of the planes in the point-cloud found with this
more permissive parameters not fitting the real position of the plane perfectly.

6.2.2 Results compare
After collecting data, both extrinsic calibrations were compared, combining images and
point-clouds. It has been created a 3D model with an image and a .pcd file, to compare
them.
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(a) Results MATLAB calibration

(b) Results velo2cam calibration

Figure 6.5: Comparision of 3D model

Comparing figure 6.5, the low difference between both calibration models is observable.
The error among the pixels is around 10 pixels, as obtained in the MATLAB calibration.
MATLAB method get better results for far objects while the velo2cam method for near
objects.
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6.3 Data obtained
To obtain former data, the system was tested inside a construction area. this data has
given us the necessary feedback to improve the calibration and fix failures in the system.
Also, the data will be used to create a dataset for the RoBétArmé project.

The data has been divided into the different objects observed. The test started by collect-
ing data about broken ceiling parts.

Figure 6.6: Degraded concrete ceiling showing the inner rebar

Figure 6.6 is observable in the construction pipeline. LiDAR data is in intensity mode to
differentiate better the objects rather than the distance. Both data overlap each other with
a minimum difference. It is observable that the shape of the pipeline structure is green,
while the surrounding ceiling is blue. The image is unclear and does not provide enough
information about the calibration. The next type of data collected is the structure of the
construction.
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Figure 6.7: Steel rebar surrounding a beam

Figure 6.7 shows a better calibration resolution. The structure is clearly differentiable, and
the shape combines with the camera’s image. The calibration results seem to be good,
providing a correct data fusion. Finally, another type of data collected is the surroundings
of the construction zone, the material and machinery used and the obstacles a robot could
face.

Figure 6.8: People and scaffolding

Figure 6.8 shows the possible situation of robots in construction areas, where they interact
with people and scaffold structures. The robot must be able to detect them precisely to
localize and avoid them. At this point of the testing, the first problem of the system was
detected. The LiDAR has moved from the original position inside the case due to not
being fixed correctly to the attachment. The image shows the point-cloud of the person
with some variations in the fusion.
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Figure 6.9: Obstacles

After moving the LiDAR to the original position, the problemwas slightly solved, as moving
it to the exact location was impossible. Figure 6.9 showsmore obstacles with better fusion
than the previous image but still with some errors.

Thanks to the data collected, it has been possible to receive some feedback on the de-
veloped system, taking notes on improvements that can be made to the design and the
calibration procedures.

All the codes used in this project are uploaded to a GitHub repository.
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7 Future work
This chapter discuss some ideas for the improvement of the results and data gathered
that can be helpful for other future projects.

7.1 Improvement of the calibration
There are several factors that can alter the extrinsic calibration of the sensors and directly
affect the quality of the data gathered.

7.1.1 Rigid fixing of the components
Initially when designing the case, slotted holes in the Z direction were made to move the
LiDAR in order to find it’s best position. However this had the downside that if the LiDAR
is not correctly fastened to the holes it can move around in the Z direction as well as in the
yaw axis due to some tolerances. This movement makes for a big error in the transform
from LiDAR to camera which is not good when joining the data. The fix to this problem
would be to redesign the base and make normal holes. Another option would be using
self locking nuts to avoid the bolts coming lose.

7.1.2 Changing the checkerboard paper
Due to the reflectivity differences of black and white, in the point-cloud data there were big
disparities in the Z values of the checkerboard plane. See Figure 7.1. This irregularities
can be altering the results of the calibration and make it hard for the program to automat-
ically find the checkerboards. Our solution was to modify the region of interest to include

Figure 7.1: Checkerboard Z values disparities between black and white checkers

only the checkerboard points. As well as lowering the cluster threshold and incrementing
the dimension tolerance in order to find some of the checkerboards. However this last
two things can be compromising the quality of the final calibration result.

Then, if better data of the checkerboard was obtained the calibration process would be
easier and more reliable. There is a physical way of improving the measurements of
the LiDAR from the checkerboard and that is to use photographic paper instead of normal
one as it will make the checkerboard more reflective and therefor the LiDAR will get better
measurements. However there is a trade-off with the camera data, as a more reflective
paper can make for overexposed parts of the checkerboard due to some sources of light
making it hard for the program to detect the checkerboard.

Another way of improving the Z measurements of the checkerboard could be to increase
the power of the LiDAR which will make for more accurate measurements in the darker
parts.
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7.1.3 Switching the lenses of the camera to ones with a greater focal
length

Most of the LiDARs in the market are 360 degrees and low resolution, this means that a
wide angle lenses is a great complement for this setup as we will focus on the information
that is on a close range and therefore we want a great field of view.

However the Neuvition titan M1-A is a high resolution solid state LiDAR, that is made for
gathering information at long distances but at a cost, only a 45 degrees horizontal field of
view.

The problem comes with the wide angle lens used for the camera. Capturing such a great
field of view means that there will not be a lot of information in pixels of the 45 degrees
field of view that we are interested in, therefor we are wasting a lot of resolution of the
sensor in parts of the image that we are not using to complement the point-cloud. The
most evident solution then would be to change the lenses. To calculate the focal length
of the new lens for the camera we would need to use the following formula:

FOV = 2 · arctan
(

sensors size

2 · focal length

)

Knowing that our sensor horizontal size is 6.6mm and the wanted horizontal FOV is 45
degrees an 8mm focal length lenses would be the best replacement for the camera.

7.2 Add new sensors

The addition of sensors to the data collection platform would allow for more data to be
collected in future deployments.

7.2.1 Stereo camera

An stereo camera consists on two different cameras separated by a distance (baseline)
that works in the same way as the human eyes, with the processing of the images by
software we can obtain depth of the points in the image. Then it can be useful for gener-
ating point-cloud with RGB values for feature detection. A case was designed in order to
include more sensors in the future. See Figure 7.2
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Figure 7.2: Case with two layers to allocate more sensors. The top and the bottom parts
are bolted to the 3D H structure making it easy to mount the sensors.
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8 Summary
This thesis project aims to develop a perception system for a robot that collects data using
a solid-state LiDAR and a monocular camera. A protective housing was designed using
FreeCAD and fabricated with a laser cutter to ensure the sensors’ safety in a construction
area, where the robot will be deployed as part of the RoBétArmé project. The hous-
ing also maintains a fixed relative position between the sensors to enable synchronized
movement.

The monocular camera suffers from lens distortion, which can be corrected by calculating
its intrinsic parameters. Variousmethods were considered, including Python with OpenCV
or MATLAB. However, the ROS package provided an intrinsic calibration solution that
generated a file usable in the camera drivers.

For accurate data fusion, it is crucial to determine the extrinsic parameters that define the
transformation between sensor frames. Although some existing methods were incompat-
ible with the solid-state LiDAR used, two successful approaches were implemented and
tested: one in MATLAB and the other in ROS. The ROS implementation yielded better
translation results, while the MATLAB method exhibited errors in closer objects data fu-
sion mostly due to this translation error. However the Matlab method seems to obtain
a more accurate rotation matrix between frames with a combined mean rotation error of
about a 2 percent, meaning that it will provide good results in further distances were the
rotation errors become more noticeable than the translation ones.

During testing in a construction area, several observations were made regarding the
project’s strengths and weaknesses. The housing structure needs improvement to en-
sure rigidity and prevent sensor movement. The intrinsic calibration effectively addressed
distortion, while the extrinsic calibration, although satisfactory for data fusion, it can be im-
proved. Using better calibration target, changing the material of the paper of the checker-
board or switching the lens of the camera.

Finally it was impossible to fulfill the mounting of the sensors unit into the robot due to the
lack of availability of a pan-tilt unit.

In conclusion, the project achieved positive results, providing an easily deployable sys-
tem for data collection. The knowledge gained will contribute to future enhancements,
including better results and the incorporation of additional sensors.
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