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Abstract

The strong language capabilities of current Large Language Models (LLMs) are
motivating a large-scale adoption in the workflows of businesses and individuals.
These LLMs have the potential to be used in cutting-edge applications, but they could
also be leveraged for malicious intents. A promising line of research to control their
use is detecting Machine-Generated Text (MGT) and attributing it to specific models.
While this approach has been explored for specific domains, the detection and
attribution of MGT in more realistic scenarios is yet to be studied. This work explores
MGT detection and attribution in a multilingual, multi-domain, multi-style and multi-
generator setting. This is achieved by compiling corpora for the tasks, organizing an
evaluation campaign, and developing various MGT detection and attribution models.
Our focus is threefold: (i) to study the MGT detection and attribution models that
achieve high performance under various settings, (ii) to explore their generalization
capabilities to different scenarios, analyzing their applicability to unseen types of
data, and (iii) to successfully organize an evaluation campaign for MGT detection
and attribution, thereby encouraging further developments in this line of research.

Resumen

Las sólidas capacidades lingüísticas de los Modelos de Lenguaje de Gran Tamaño
(LLMs, por su sigla en inglés) actuales están motivando su adopción a gran escala en
los flujos de trabajo de empresas y particulares. Estos LLMs tienen el potencial de ser
utilizados en aplicaciones de vanguardia, pero también podrían ser aprovechados con
intenciones maliciosas. Una línea prometedora de investigación para controlar su
uso es la detección de Texto Generado por Máquina (MGT, por su sigla en inglés) y su
atribución a modelos específicos. Si bien este enfoque se ha explorado para dominios
específicos, es escaso el estudio de la detección y atribución de MGT en escenarios
más realistas. Este trabajo explora la detección y atribución de MGT en un entorno
multilingüe, multidominio, multiestilo y multimodelo. Esto se logra mediante la
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compilación de conjuntos de datos para las tareas, la organización de una campaña
de evaluación y el desarrollo diversos modelos de detección y atribución de MGT.
Nuestro enfoque es triple: (i) estudiar los modelos de detección y atribución de MGT
que logren un alto rendimiento en diversos contextos, (ii) explorar sus capacidades
de generalización a diferentes escenarios, analizando su aplicabilidad a tipos de
datos no observados, y (iii) organizar con éxito una campaña de evaluación para la
detección y atribución de MGT, fomentando así nuevos desarrollos en esta línea de
investigación.
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1Introduction

In this introductory chapter we introduce the objectives of this work, while also
mentioning the articles and academic presentations that resulted from it. More
specifically, we provide motivation for studying Machine-Generated Text (MGT)
detection and attribution, describing the framework and goals of the thesis. Lastly,
we present how the contents of this work are organized.

1.1 Motivation

The recent surge in capabilities of Large Language Models (LLMs) is motivating
a large-scale adoption in the workflows of businesses and individuals. Tasks like
creative writing, coding, or information seeking through search services are nowa-
days aided with LLMs to reduce human effort. The impact of LLMs on society is not
negligible, and it has been estimated that the adoption of LLMs could affect to at
least 10% of the tasks performed by 80% of the workforce in some countries [46].

In addition, there have been recent large-scale democratization efforts to broaden the
public’s access to large models [147, 165, 180, 150] which, paired with substantial
access to high-end computing power through cloud services and APIs, have made it
easier for non-technical people to interact with and use LLMs for various interesting
applications [46, 99].

These generative models have the potential to be used in cutting-edge applications.
Prominent examples include ChatGPT [118], which set the record for the application
with the fastest-growing user base,1 programming assistants such as Codex [20], or
to support financial advisors [183].

However, efforts in AI democratization have also lowered the barrier of entry for users
to generate high-quality, multi-style and multi-domain text in a massive scale. This
means that motivated users could leverage LLMs for malicious intents, e.g., spreading
propaganda or disinformation by generating human-like fake news [59], opinions
[32], or scientific papers [73], posing a threat to the reputation of companies,

1https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-
analyst-note-2023-02-01/
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academic institutions and individuals [82, 80]. Moreover, the aforementioned
advancements have also promoted discussions in ethical AI [177] as well as model,
data and training regulations,2 and new licenses [11, 28]. Additionally, the public’s
usage of LLMs may compromise data quality. Recent research has shown that
33% to 46% of manually-annotated data may have been generated by an LLM
[170]. In addition to this, Shumailov et al. [155] argue that future LLMs will suffer
from model collapse, a phenomenon that manifests when models are trained on an
overwhelmingly larger amount of generated data. In general, these findings suggest
that future LLM-powered applications may (i) model language that is insufficiently
diverse and complex, given that the more generated data they observe, the less they
will be able to model the intricacies of real language, and (ii) lack domain-specific
knowledge, further perpetuate biases or memorize content, since generated data
often reflects content that is readily available and widely consumed, meaning that
an overwhelming majority of generated content would focus on popular topics and
opinions, resulting in models that may not be sufficiently exposed to specific domains
or opinions.

Content moderation and defense against large-scale spam, propaganda or disinfor-
mation attacks; new developments in AI regulations and licenses; as well as the
need to guarantee and maintain high-quality language data are strong motivators
to ensure a responsible use of LLMs and generated content in general. A promising
approach to carry this out consists in detecting MGT, and applying content moder-
ation techniques on top. In this line of research, there has been a recent surge of
models [107], services [117], and watermarking techniques [84], aimed towards
detecting or assisting to detect MGT. This approach has been explored in specific
scenarios, including detecting fake news [186], bots in online environments [164],
and MGT in technical research [138]. Furthermore, there has been a recent focus
toward larger-scale studies in MGT detection techniques in various languages and
domains through evaluation campaigns [81, 152]. However, from the legal, security,
and forensic points of view, solely detecting whether a text has been automatically
generated is not good enough to identify the actors and motives behind the MGT. In
that sense, model attribution [167] can be employed to attribute a text to a specific
LLM or families of LLMs, yielding more insights into the party generating potentially
malicious MGT.

This work is an attempt to further advance the research barriers into a better
understanding of the tasks of MGT detection, where one must identify whether a
text has been generated automatically or written by a human, and MGT attribution,
where once an MGT has been correctly identified, one predicts the model that
generated it.

2European Commission, Proposal for a Regulation of the European Parliament https://eur-lex.
europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206
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Pre-trained Fine-tuned
Accessibility

Not modified
by a human

Everyone Only technical
Computational Resources Low High
Human Resources Low Low
Generation Scale High High
Generation Quality Medium High
Accessibility

Modified
by a human

Everyone Only technical
Computational Resources Low High
Human Resources High High
Generation Scale Low Low
Generation Quality High Perfect

Tab. 1.1.: Types of MGT. In this work we focus on generations from pre-trained models
without human modification.

For this, we curate AuTexTification 2023,3 a high quality multi-domain and multi-
style dataset as a benchmark for MGT detection and attribution systems. In compiling
this dataset we consider the most accessible way for users to generate text (see
Table 1.1), which involves little computational and human resources, and can be
used to generate vast amounts of MGT. We leverage this dataset in the AuTexTifica-
tion 2023 Shared Task with the purpose of exploring many dimensions of various
approaches to solve these tasks, while also carrying out an extensive experimentation
to study (i) the generalization of the more popular approaches to new model families
and parameter scales, as well as (ii) the feasibility of model family and parameter
scale attribution, instead of fine-grained MGT attribution. For the following sections
of this work, we will use family to refer to groups of models that share the same
underlying architecture and are trained with the same data in the same manner.4

Similarly, we use scale to refer to models of different families but with similar number
of parameters.

1.2 Framework

This work has been carried out while the author was employed as a Junior Research
Scientist at Symanto,5 and is also supported by the valgrAI6 - Valencian Graduate
School and Research Network of Artificial Intelligence and the Generalitat Valenciana,
and co-founded by the European Union.

3https://sites.google.com/view/autextification
4For instance, BLOOM refers to the family consisting of BLOOM-1b7, BLOOM-3b, BLOOM-7b1, etc.
5https://www.symanto.com/
6https://valgrai.eu/
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1.3 Goals

Building upon the motivation of this work, we define the following goals:

• To compile a multilingual, multi-domain, multi-style and multi-generator
dataset of human and generated text to evaluate MGT detectors and attributors
in realistic scenarios.

• To promote research in MGT detection and attribution by successfully organiz-
ing a shared task.

• To study MGT detectors’ generalization capabilities to different scenarios.

• To explore the feasibility of different approaches to tackle the open problem of
MGT attribution.

1.4 Document Structure

The following chapters of this work are structured as follows. Chapter 2 provides a
historical overview of text generation approaches, delving deeper into state-of-the-art
methods and techniques that make these models stand out. Similarly, Chapter 3
describes the different approaches to MGT detection, also discussing the lack of
research in MGT attribution. Moreover, Chapter 4 presents the AuTexTification 2023
dataset and shared tasks, including the data gathering process and evaluation of
generations, the participating submissions and analysis of their results. Building
on top of this, in Chapter 5 we carry out further experiments and analyses into the
generalization capabilities of MGT detectors to unseen model families and parameter
scales, and explore the feasibility of MGT attribution to model families and parameter
scales in Chapter 6. Finally, Chapter 7 provides a summary and conclusions of the
work, while also discussing future avenues of research in this field.

4 Chapter 1 Introduction



2Text Generation

2.1 Introduction

Text generation, more generally sequence generation, has been an important line of
research throughout many decades encompassing artificial intelligence. By generat-
ing coherent and contextually relevant text, Language Models (LMs) can facilitate
tasks such as machine translation, summarization, question answering, dialogue, and
open-ended content generation, tasks that are vital for improving human-computer
interaction as well as reducing or removing barriers of communication.

In this chapter, we provide a historical overview of Natural Language Generation
(NLG) models, and delve deep into the inner-workings of state-of-the-art NLG
models that dominate most tasks in the field of Natural Language Processing (NLP).
Specifically, we will describe (i) how and why the state-of-the-art models perform
better than others, (ii) the various architecture, data, and speed improvements
that were carried out to reach better capabilities, (iii) their generation process
and common usage patterns, as well as (iv) evaluation metrics for open-ended
generation.

2.2 History

2.2.1 First Steps

NLG research has been carried out for over 60 years prominently. The main focus
was on building machines capable of generating text as a way to build assistive
technology, improve and remove barriers of communication, and for creating natural
language interfaces and dialogue systems that could aid and improve upon our
day-to-day lives. As more and more advances have been developed, we have seen
this technology be utilized by hundreds, thousands and now millions of users across
the globe.

However, language generation can be dated back to Ramon Llull’s Ars Magna,
created in the 13th century. This was a system of logic based on general principles
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that was used in early Spain to prove statements about the christian God, which
worked by spinning concentric paper-craft wheels to combine into letters. Yet, it was
seven centuries later where focus on sequence generation and modelling became of
importance through the works of Markov, who introduced the Markov chain [102].
This technique is now used in countless algorithms and is applied in various domains
with different types of sequences.

A completely different but nevertheless also groundbreaking idea was presented by
leaders of the Dadaist movement, who proposed an algorithm to make a dadaist
poem, consisting in shaking and retrieving cut out words of newspapers [94]. While
at the time this was part of an art movement, it defines a set of random processes
that approximate some of the early techniques to generate language, since by cutting
words and shaking them in a container, words that appeared more frequently would
be more favored. This process essentially equates to unigram sampling as it is
defined today.

Moreover, one of the first works focusing exclusively on NLG was carried out in
Goldman [60], where the authors described the implementation of Conceptual
Dependency networks, “unambiguous, language-free representations of meaning”.
This was the starting point that defined one of the main ideas behind NLG research:
abstract representations that can capture meaning at various dimensions. As more
efficient and adequate representations were designed, NLG systems were used in
more and more applications.

2.2.2 Statistical Language Models

The first popular models are now known as statistical language models [139]. They
were made up of various tables that kept track of various counts, which were
employed to model language in a probabilistic setting. Once these tables had learned
an adequate probability distribution of the language, one could generate text by
sampling from them. These sampling procedures are omitted for statistical LMs in
this work. However, similar sampling ideas are currently being used in state-of-the-
art NLG models, which will be briefly described in the following sections.

More formally, assuming a vocabulary Y , in order to generate realistic and diverse
language, we wish to find a model M that better approximates the probability
of a sequence, PM(y0, . . . , yk) or the probability of the next symbol yk ∈ Y given
a previously observed sequence y<k = y0, . . . , yk−1 ∈ Y k of k symbols7 PM(yk |

7Due to the nature of most language systems, left-to-right was adopted by convention. However, it is
important to note that this choice is arbitrary.
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y0, . . . , yk−1). Assuming PM models language adequately, by simply sampling from
it we would be able to generate realistic phrases.

The relationship of the two probability expressions can be found through repeated
applications of the chain rule:

PM(y0, . . . , yk) = PM(y0)
k∏

i=1
PM(yi | y<i) (2.1)

= PM(y0)
k∏

i=1
PM(yi | y0, . . . , yi−1). (2.2)

Researchers quickly realized that approximating such a function was intractable and
would give rise to numerous issues due to data and hardware constraints. Thus, many
approximations were proposed. The first popular attempts to generate language
were built upon the Markov assumption, consisting in limiting the observations to a
fixed window by proposing n-gram LMs. These would approximate the conditional
probability by constraining the history to a sequence of smaller length

PM(yk | y0, . . . , yk−1) ≈ PM(yk | yk−n−1, . . . , yk−1) (2.3)

and could easily approximate PM by counting n-gram occurrences in a corpus.
However, given the length constraints, these models were usually unable to generate
text of high-enough quality, lacking especially in capabilities to maintain long range
dependencies and avoiding generations of repeating sequences [43]. Another issue
in their use was the need for smoothing techniques to take into account unseen
n-grams, for which many heuristics were designed and evaluated [115, 21].

A different approach to model PM was through Probabilistic Context-Free Grammars
(PCFGs) [23, 89]. These were finite state machines with additional sets of rules that
modeled language using paths of transitions through various states. Each transition
modeled the likelihood of choosing that rule during the generation process, and was
learned by counting the number of times that paths included its starting and ending
states in the training process, by observing a corpus of text.

These two ideas were surpassed by Hidden Markov Models (HMMs) [8, 77], non-
deterministic Markov chains that can incorporate n-gram relationships and additional
more complex ones similar to those from PCFGs. However, while HMMs were not as
expressive as PCFGs, they also did not suffer from more computationally expensive
training, making them better alternatives for modeling and generating language.

Throughout the years PCFGs, HMMs and n-gram LMs were used in various generative
(and otherwise) applications. Yet, after observing further developments in neural-
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based modelling techniques, researchers started focusing on neural models for
generation, by first generating without considering previous history, and slowly
introducing it in the generation process as hardware got better and faster.

2.2.3 Neural Language Models

The first neural LM was proposed by Bengio et al. [10]. It was a simple architecture
consisting in an embedding matrix that mapped words to a vector representation to
be used by a Multi-Layer Perceptron (MLP) to generate the next token. While the
originally proposed architecture was slightly different, most popular versions can be
formalized as variations of

yk ∼ PM(yk | y<k) (2.4)

∼ softmax(We<k + b), (2.5)

with W and b being the weights and biases of the MLP, and e<k denoting the
embedding of the previous context. The latter was usually obtained by concatenating
the product of a one hot representation of each word, in a window of n previous
words, with the embedding matrix E

e<k =
[
EI(yk−1); EI(yk−2); . . . ; EI(yk−n+1)

]
, (2.6)

where we denote the indicator function with I.

This way, the model learned PM(yk | y<k) by observing large quantities of texts,
with the added advantage that since it operated in a continuous space, it learned
a continuous function (as opposed to learning a table of counts of occurrences),
meaning that its generalization capabilities to unseen contexts was better. It was the
first LM trained using backpropagation [140], and it laid the foundations of current
state-of-the-art methods in doing so. However, this model and its further modifica-
tions were constrained in a similar manner to n-gram LMs by the length of the input
sequence, and they lacked the capability for learning long-range dependencies.

Hence, Recurrent Neural Networks (RNNs)[45] were considered instead of MLPs.
Here, the instead of only producing outputs based on the inputs alone, the LM also
includes a hidden state or memory which also conditions the result. Formally, this
only resulted in the inclusion of an additional term in (2.4),

PM(yk | y<k) = softmax(We<k + V h + b), (2.7)

where we also introduce a hidden vector h and its corresponding weight matrix V .
This way, the model maintained a memory of previous elements in the sequence
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without having to explicitly observe them multiple times. However, in introducing
cycles it added complexity to the training dynamics of these models, for which
backpropagation through time [109] was designed, consisting in an unrolling of the
network up to a fixed length to compute gradients and successfully learn to model
language. In addition, exact gradient methods [179] were developed but found to
be computationally too expensive to be feasible in practice.

While recurrent networks have some advantages for sequence tasks, the condition-
ality introduced by the cyclic connections also comes with the gradient vanishing
and explosion problems especially when layered to obtain deep networks. When un-
rolling an RNN, longer paths from input to output can cause the gradient to explode
or vanish. This occurs because a gradient much greater than 1 leads to increasingly
larger gradients in subsequent modules, destabilizing training. Conversely, a gradi-
ent close to 0 diminishes until it becomes insignificant, resulting in no parameter
updates. These issues were reduced by modifying the RNN architecture, resulting in
new recurrent neural units such as the Long Short-Term Memory [70], the Gated
Recurrent Unit [22], the Simple Recurrent Unit [92, 119] and more. Additionally,
some architectures included bidirectional RNNs [148] to obtain direction-invariant
representations, and attention [4] layers were introduced, responsible for managing
information flow. The latter then became a key component in state-of-the-art LMs, as
will be mentioned in future sections. Interestingly, while these models are not as pop-
ular for language modeling today, there are currently many efforts to re-introduce
recurrences within state-of-the-art LM architectures. Prominent examples include
RWVK [124] and Recurrent Memory Transformers [18].

Another idea consisted in expanding upon MLP LMs by considering larger and larger
context windows instead of adding memory units to the architecture. This was
achieved through Convolutional Neural Networks (CNNs), which include various
learned kernels that, when multiplied with the input, act as signal filters by enhancing
important information and weaken the noise. CNNs are implemented by replacing
the free-form W in (2.4) with a circulant matrix where all rows include the same
values and are rotated by one position. Through layers of CNN modules and faster
implementations using Fourier transforms, these models learned more adequate
representations of language. Note that unlike more popular applications of CNNs
such as for image data, pooling was typically not used in these models to maintain
positional information. Notable examples of CNN LMs include Gated CNNs [35]
and lightweight CNNs [182]. Similarly to RNNs, these ideas are being used and
incorporated in state-of-the-art architectures, some of which include H3 [53] and
Hyena [130] which break records in long-range tasks [162].

Finally, as better hardware was developed, more data could fit in GPUs and more
computation could be carried out faster. This meant that we could do away with the
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need of memories altogether as in RNNs, and stop considering only small windows
of the text as in CNNs, and instead process the complete context at once to model
PM. This is the main idea of the Transformer [169], which is comprised solely of
attention and MLP layers, and together with a few tricks to improve the optimization
process [74], is now the main idea behind current language models, becoming
state-of-the-art not only in NLG and NLP in general [17, 97], but also in other areas
that involve different types of signals [42, 131, 78].

2.3 Decoder-only Transformers

The emergence of Large Language Models (LLMs) has had a profound impact on our
society, revolutionizing various aspects of our lives. These advanced AI systems have
significantly enhanced natural language understanding and generation, resulting
in (i) more accurate and sophisticated applications, (ii) effective communication
across different cultures through accurate translations, (iii) efficiency in creative
tasks by using them as writing assistants, (iv) improved user experience through
dialogue systems. The LLMs used for these tasks consist mainly in decoder-only
Transformers (i.e. models that only attend to past inputs), as opposed to the original
Transformer architecture which was an encoder-decoder model. Researchers have
built upon the original architecture, adding more layers of different types and
including better training and inference schemes. While encoder-decoder models
can and are also used for NLG [135, 26], their larger parameter scales make them
more computationally expensive and less favored in practice, with the best encoder-
decoder models not achieving comparable capabilities to decoder-only models.
In this section we will briefly explain how the decoder-only Transformer works,
describe the present techniques that establish this architecture as state-of-the-art,
along with the ideas that make LLMs what they are. We will also present various
decoding strategies used to generate text, as well as various techniques to evaluate
generations.

2.3.1 Architecture

Decoder-only Transformer LMs, also known as autoregressive or causal LMs, are
particularly popular at time of writing. As w, they are composed of (i) an embedding
layer, which converts discrete tokens to a learned vector representation that considers
both meaning and position, (ii) a stack of Transformer decoder layers, (iii) an
unembedding to get a final representation of the possible tokens to emit, and (iii) a
final MLP with a softmax activation, which accurately models PM .
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Fig. 2.1.: Transformer decoder as presented in [169].

While the first and last component are common in most neural LMs, it is the
second component consisting in a stack of Transformer decoders that allows these
models to learn better language representations. Figure 2.1 presents a decoder-only
Transformer, which consist in MLPs, multi-head self-attention, layer normalization
[3], and residual connections [68]. We will briefly describe how the latter three are
defined and what their role is in the network. For more information, please refer to
the original Transformer paper [169].

Multi-Head Self-Attention. It is a technique that controls the flow of information in
a complex manner, and is the main mechanism that enhanced language modelling
capabilities in the last few years. Transformer LMs use a particular type of attention:
scaled dot product attention. In a decoder-only transformer, given an input sequence
x1, . . . , xn of n d-dimensional embeddings as rows of a matrix X, scaled dot product
self-attention computes the dot product between elements of the sequence as a way
to measure similarity scores, using these learned attention weights to adequately
control how much information the different elements contribute to each other’s
representations. Traditionally, this is understood through the lens of information
retrieval, where a set of queries Q are compared with a set of keys K, and these
similarities are used as weights of their corresponding values V ,8

a(Q, K, V ) = softmax
(

QT K√
dh

)
V. (2.8)

Here, we use dh for the head dimension, and by dividing by its square root, we
ensure that the resulting distribution from the softmax operation has a variance

8For example, when you search for videos in popular platforms, search engines map your query (text
in the search bar) against a set of keys (video title, description, etc.) associated with candidate
videos in their database, then present you the best matched videos (values).
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of 1. Notably, the computation is split into various attention heads to employ
smaller matrices, and with the idea that each of these will learn different patterns of
information flow through the use of different learned weights,

headi = a(W Q
i X, W K

i X, W V
i X). (2.9)

We concatenate the head outputs, projecting to the original dimension, to obtain the
final output of multi-head attention,

mha(X) = [head1; . . . ; headh]WO. (2.10)

Layer Normalization. This is a common technique used to normalize the distribution
of the vectors in a given layer, ensuring more stable training dynamics, usually
applied after multi-head self-attention and MLP layers. The method directly estimates
the mean µl and standard deviation σl of a layer hl = hl

1, . . . , hl
H consisting of H

embedding vectors,

µl = 1
H

H∑
i=1

hl
i, σl =

√√√√ 1
H

H∑
i=1

(hl
i − µl)2, (2.11)

and normalizes accordingly, also including a learned affine transform through g and
b for better training:

LayerNorm(h) = g

σl
⊙ (hl − µl) + b. (2.12)

Here, ⊙ denotes the Hadamard product.

Residual connections. As larger models are trained, these tend to take longer to
start training efficiently due to random initializations of the model parameters. This
is what residual connections attempt to solve by introducing a simple sum of the
input x, and the output of a layer F ,

ResidualConnection(x, F) = F(x) + x. (2.13)

In this manner, when computing gradients through backpropagation, the path that
goes through x always yields a gradient of 1, ensuring that the model parameters
will be updated by optimizing the residual mapping instead of the original one.

Whilst this has been a brief overview of the components of the decoder-only trans-
former, it is only a simplified form of what current LLM architectures include.
Additionally, given their proven success in countless pattern recognition tasks, many
researchers have recognized the need to understand what makes them special. In
the following sections we briefly explore research in decoder-only Transformer in-
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terpretability, and illustrate some model variants that have proven effective in LLM
architectures.

2.3.2 Why Decoder-only Transformers Stand Out

These models have been getting bigger and better as more research has been carried
out, and there has been many efforts to understand their learning dynamics and
interpret what they have learned. The general consensus is that attention is the main
mechanism that allows for their dominance with respect to other architectures.

Early work in attention interpretability has found that these models learn patterns
that are familiar to us. Prominent examples include [44], where authors found
that zero-layer attention-only networks (i.e. only the product of the embedding
and unembedding matrices) approximate bigram models. Similarly, one-layered
architectures learn skip-trigram models, while two-layered architectures learn to
carry out an induction process, i.e. completing a previously seen pattern. This was
the first step in understanding what decoder-only LMs are able to achieve currently
by in-context learning, learning to carry out tasks by observing a small subset of
examples in their input context. However, other works have found that attention is
not the only important aspect in Transformers, and that deep attention-only networks
struggle to learn more complex patterns [41].

Another avenue of interpretability consisted in understanding what the MLP layers’
role was [58], finding that MLPs in Transformer-based LMs operate as key-value
memories, with each key correlating with particular textual patterns in training
examples, and each value being a distribution over the vocabulary. Moreover, there
have been efforts in understanding their inference process. Prominent examples
include [116, 9], techniques used to extract the tokens of highest confidence in the
latent layers of decoder-only Transformer. Using these methods, authors found many
cases where the model was very confident in one particular token from a set layer,
but in some peculiar instances it moved its confidence to other tokens in the last
layer.

Finally, large amounts of research has been carried out to understand the scaling
laws of these models, in most cases finding that the more data and the bigger the
model, the better its final performance will be [79, 71]. This avenue of research aids
us in taking more informed business decisions and wasting little resources, given
that we can now estimate how much compute and data is needed to train a language
model to perform as desired [183].
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In order to go from small models of at most 100 million parameters, to current
LLMs such as GPT [134, 17], BLOOM [147] or LLaMa [165] that have billions of
trainable weights, many important challenges had to be overcome. Specifically,
we can group these in two categories: resource and data challenges. The former
involved issues such as fitting larger models in multi-GPU systems, training them
effectively and using them efficiently in inference mode, while the former refer to
challenges regarding the quality and quantity of language data available for training.
In the following sections we briefly describe the most important advances that helped
the research community overcome these challenges.

2.3.3 Model Improvements

Various types of techniques have been investigated to improve the original Trans-
former architecture. While here we focus of decoder-only models, many of these
techniques are also used in other types of architectures as well.

Better Positional Information. Since self-attention is permutation invariant by
design, in order for Transformer models to learn linguistic relationships, they need to
be given positional information. In the original architecture, this was done via a set
of interweaving sinusoidal functions. Throughout the years many other techniques
were considered, such as using learned [1] or relative [153] positional encodings,
and the LLM researchers converged to rotary embeddings, RoPE [158]. Rotary
embeddings encode positions via block diagonal matrices consisting of blocks of
euclidean rotation matrices. In this manner, they include positional information as
rotations in a high dimenisonal space, thus maintaining both absolute and relative
relationships. RoPE embeddings were first introduced in LLMs through EleutherAI’s
GPT-J-6B[171] and GPT-NeoX-20B [14], and after observing their success, they were
included by default in most LLM architectures as of today.

Different Circuits. Various modified configurations of the original transformer
were considered. Specifically, researchers found that pre-normalizing (i.e., including
layer normalization inside the residual blocks, before self-attention or MLP layers),
stabilized training with respect to the original architecture [185]. Additionally,
researchers considered a parallel circuit of the MLP and self-attention layers instead
of a serialized one, finding that this alternative yielded similar results more effi-
ciently [14]. There has also been discussion regarding whether tying or untying the
embedding and unembedding matrices is better for LLM training. 9 Currently no
agreement has been reached within the research community. Prominent examples
include Pythia models [13] which do not tie the matrices, and PaLM models [24]
that do.

9This is commonly known as weight tying.
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Better Activations Throughout the years, there have been many discussions re-
garding the types of activation functions that perform better for different tasks in
different neural architectures. Specifically, in decoder-only Transformer LLMs it has
been found that SwiGLU activations introduced in PaLM models [24] perform better
than others. These usually require more computational resources but yield better
results in the long run.

Longer Contexts. Improving the context length of LLMs is crucial for long-range
dependency tasks that are defined at document or multi-document levels. External
memories [83] and the reuse of hidden states [33] were considered, but these
efforts converged in ALiBi [132], where by simply adding constant terms in the
query-key product, decoder-only models trained on 1024 context lengths were able
to generalize to 2048 context lengths easily. Currently, ALiBi is employed in most
architectures such as BLOOM [147] and MPT [163].

Decoder-only transformers have greatly benefited from these techniques, with many
of them being used in most newly released LLMs. However, model improvements
alone were not enough, hardware usage and data quality improvements were key
too.

2.3.4 Resource Improvements

Three key types of innovations stand out regarding resource use and guaranteeing
large models fit in memory and can be trained and used: parallelism, lower precision
parameters, and fused kernels.

Parallelization. In order to efficiently train large models that can only fit in multiple
GPUs, many proposals were made for different parallel schemes to take better ad-
vantage of hardware resources and train and infer more efficiently. These techniques
are encompassed in three categories: (i) data parallelism, consisting in replicating
the model across GPUs and feeding in different training examples, (ii) tensor paral-
lelism, where model weights are sharded across GPUs, and (iii) pipeline parallelism,
where the model layers are split between GPUs. Many of these advances have been
incorporated into popular Transformer training and inference frameworks such as
Megatron-LM [85], DeepSpeed [95], and HuggingFace Accelerate [66]. Some also
include methods that offload optimization statistics to secondary memory [137],
thus further democratizing billion-scale parameter LLM training.

Lower Precision. In the past, most models were trained with the popular FP32
single precision arithmetic proposed in the IEEE 754-2008. However, as models
became larger, they required more memory to fit in single consumer-grade GPUs.
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This issue motivated research toward lower-precision training and inference through
quantization techniques, i.e. discretizing or reducing the representation ranges of
model weights, thus requiring less bits-per-parameter to load the model in memory.
Through various developments, it became standard for LLMs to be trained using
mixed-precision FP16 formats [105] and new research suggests that other formats,
e.g. 8-bit or 4-bit floats [106, 38], or even 8-bit or 4-bit integers [36, 184] might be
favored in the future for more efficient training and inference of LLMs. Quantization
techniques are offered through popular libraries such as bitsandbytes [37].

Fused Kernels. Another avenue for optimizing training and inference runtime
consists in improving the implementation of the modules within Transformers. Here,
instead of implementing new techniques using common deep learning frameworks,
researchers are opting to invest time to implement efficient CUDA kernels and
carrying out kernel fusion [172], i.e. combining various kernels into single ones, thus
reusing loaded data and removing redundant loading and storing operations that
usually occur between kernel calls. A prominent example of this is FlashAttention
[34], a plug-in efficient implementation of scaled dot-product attention that is now
used in all LLMs and has been natively incorporated in the newest PyTorch [122]
version.

2.3.5 Data Improvements

While the aforementioned improvements allowed for efficient usage of resources
for training and inference of LLMs, there was another dimension that needed to
be addressed: data quality. The internet contains vast quantities of text data.
However, most of it is not suitable for training language models in its raw form.
Rather, it requires filtering, cleaning and further processing to be of high enough
quality so that language models can better understand and generated language.
Access to high quality multilingual text in many domains and styles posed many
challenges that have been and are constantly worked on with the release of better
and bigger corpora. Prominent examples include The Pile [56], ROOTS [90], and
C4 [135], which are used in as training data in many current LLMs. Moreover,
developments in instruction fine-tuning have also culminated in multiple released
instruction datasets for fine-tuning existing pre-trained LLMs, such as P3 [142] and
its multilingual version xP3 [111]. Finally, researchers have found that LLMs become
better reasoners when also trained with code data.10 Various models have also
incorporated code datasets as part of LLM training [96], observing that in doing so
these models perform better in various reasoning tasks.

10https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-
Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
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Another aspect of language model data efficiency consists in the tokenization schemes
used to split texts into tokens. It is crucial to carry this step out adequately. In doing
so, one can reduce the vocabulary size into a smaller scale, thus both reducing the
number of embedding and unembedding matrix parameters and also passing less
possible information that the language model has to learn on (larger vocabularies
imply more combinations of tokens that the model must observe to adequately model
language). Efforts in better tokenization schemes consisted in splitting words into
subwords [151, 87], reducing the vocabulary size and maintaining the ability to
represent most words through simple concatenation. Further advances consisted
in regularizing the splitting process to obtain different subword splits [133] and
learning probabilistic tokenizers [86].

2.4 Text Decoding Strategies

Once a language model has been adequately trained, it is desirable to generate
text. This is where decoding strategies are involved, which can be used to control
the generation process such that it produces realistic and diverse text, or the most
probable one. The latter usually consists in algorithms such as greedy decoding,
consisting in always emitting the token with highest probability, or beam search, a
tree-based search algorithm that attempts to find more probable texts. These are not
usually applied for most NLG tasks, being mostly popular for tasks such as machine
translation where obtaining the best possible translation is desirable [112]. Instead,
for open-ended generation we will focus on decoding strategies that sample from
PM to produce realistic and diverse texts. The most commonly used ones are (i)
top-k sampling [48], (ii) top-p or nucleus sampling [72], and (ii) contrastive search
[160, 159].

The first two are sampling techniques, differing in the criterion used for sampling:
top-k samples from the k tokens of highest probability, while nucleus sampling
samples from the smallest set of tokens that comprise the top p% of probability
mass. While top-k is able to filter ill-fitted tokens, since the algorithm consists in
always selecting the k most probable tokens, it limits the model’s creativity in flat
distributions and maintains undesirable tokens in sharp distributions. Alternatively,
nucleus sampling attempts to solve top-k’s shortcomings by considering minimal sets
of tokens that encompass most of the probability mass, thereby allowing the size of
the tokens that can be sampled to increase or decrease dynamically according to the
shape of PM. Importantly, in any sampling procedure there exists a temperature
parameter that controls how peaky or flat the final PM after applying the softmax in
the LLMs head. Controlling this parameter is essential in obtaining diverse texts that
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maintain closeness to real human text, and inadequate values may result in highly
repetitive, generic or otherwise random generations.

Finally, contrastive search builds upon these sampling techniques, incorporating
a contrastive objective as part of the decoding strategy. This is done by linearly
interpolating PM of various candidates obtained through top-k sampling with a
degeneration penalty measured as the maximal cosine similarity of the embedding
representation of the token to be emitted together with the previous context’s tokens.
This way, larger degeneration penalties condition the decoding process to generate
more similar text, while smaller ones allow for more diverse generations.

2.5 Evaluating Open-Ended Generation

Once generations have been produced, it is important to verify that these are
of high quality. There are various aspects of text quality that must be evaluated,
including token repetition and diversity, semantic coherence to the input, distribution
similarity to human text, and more. In this section we describe the common text
quality measures that are used in open-endedness research, and that will be used
as a way to characterize generated text in this work. Specifically, we consider
measures that only take into account the generated text, measures that compare
generations to prefixes, and measures that contrast generated continuations with
human continuations. We consider three types of sequences involved in generating
MGT: the original human text yh, the prefix or prompt used as input to an LLM yp,
and the generated continuation yg.

One of the main ways to measure generated text is by calculating various statistics of
generated text. These are measured using text perplexity, repetition of n-grams [175,
160] and diversity [175], ratios of stop-words and symbols, as well as Self-BLEU
[190].

Perplexity. Given a probability distribution p, we can measure its perplexity as
2H(p), where H(p) = −

∑
yg∈Y ∗ p(y) log2 p(y) is the entropy of p. To measure text

perplexity, we can use p ≡ PM′ , with M′ being a different model to the one whose
generations are being evaluated.

n-gram Repetition and Diversity. They were introduced as a way to measure the
n-gram repetition in a text as well as its general diversity. Given a text y, repn is
defined as

repn(y) = 100 ×
(

1.0 − |unique n-grams(y)|
|total n-grams(y)|

)
, (2.14)
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and is usually obtained with n ∈ {2, 3, 4}, to be used to measure Diversity:

diversity(y) =
4∏

n=2

(
1.0 − repn(y)

100

)
. (2.15)

Diversity measures text degeneration, where lower scores mean more severe de-
generations. Generally, we hope that the generated text is not too diverse nor too
repetitive.

Stop-word and Symbol Ratios. We can also obtain a good image of the quality of
generated text by measuring the mean ratio of stop-words and symbols with respect
to other tokens in the generated texts.

Self-BLEU. It evaluates the diversity of generated data using the known BLEU [121]
metric used in machine translation tasks. This way, by measuring BLEU scores
between generated sentences and averaging them, one obtains Self-BLEU scores for
generated text.

Another approach to measure the quality of generated text is to measure its semantic
similarity to the prefix used to generate it, or to measure the generation’s entailment
to the prefix. This can be measured by observing the number of entailed, neutral or
contradictory generations with respect to the prompts, using a different language
model trained for Natural Language Inference (NLI) [157].

In addition to comparing generated text statistics and similarities with the prefixes,
we can also compare the generated text distribution with the human one using
MAUVE [128]. This metric was proposed to measure the generations’ distribution
similarity to human text, by measuring an approximated KL divergence for these
distributions, following a particular procedure to adequately sample from them.
The authors approximate the human and generated text distributions in a discrete
manner, by embedding the texts with an external LM and quantizing them through
a clustering step into low-dimensional discrete representations.

2.6 Use and Misuse

With these technological and algorithmic advances, and the emergence of new
capabilities of LLMs, there are now various ways to use and misuse these models.
Prominent examples from the media regarding users misunderstanding how these
models work, and their output’s factual correctness, include lawyers that cited
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nonexistent cases,11 or workers that share personal and company information.12 In
this section we aim to provide a brief overview of usage techniques and ways in
which these models can be easily exploited to generate biased, toxic or generally
harmful text.

In order to generate text using LLMs, one can simply generate continuations given
a prefix, or use a prompt, i.e. text that instructs the model on what type of task
it needs to perform. Various types of prompting techniques exist, and the need to
understand how to effectively use them to control generations has created the new
position of prompt engineer in several companies. Generally, several insights have
been found: (i) it is better to be simple and specific, (ii) impreciseness should be
avoided, (iii) whenever possible, it is desirable to include in-context examples of
input-output pairs. We refer to Saravia [144] and White et al. [176] for a more
complete overview of prompt engineering techniques.

Moreover, there have been findings that, through careful design, prompts and
inputs in general can be used to deceive LLMs such that they generate undesirable
outputs. Prominent examples of these include adversarial attacks [188, 173], where
researchers evaluate an LLMs capability to be robust to small changes in the input;
(ii) red teaming language models [55, 125], where researchers attempt to break
these models through inputs that simulate power seeking, persuasion and other
critical threat scenarios; (iii) prompt hacking to get the model to output what a
user wants, through techniques such as prompt injection [63], jailbreaking [174]
or prompt leaking [126] which manipulate the input in different ways, e.g. by
prompting the model to ignore everything it was instructed and instead print the
hidden prompt it was given at the start of the interaction. These techniques are
important in that they allow for users to easily generate massive quantities of text
that could be used for beneficial or malicious purposes.

11https://www.reuters.com/legal/transactional/lawyer-who-cited-cases-concocted-by-
ai-asks-judge-spare-sanctions-2023-06-08/

12https://www.cnbc.com/2023/05/02/samsung-bans-use-of-ai-like-chatgpt-for-staff-
after-misuse-of-chatbot.html
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3Detecting and Attributing
Machine-Generated Text

3.1 Introduction

As was mentioned in Section 1.1, one of the ways to ensure a responsible use of LLMs
is by detecting and attributing Machine-Generated Text (MGT). Detecting MGT has
shown remarkable results under assumptions of identical domain distribution and
access to the generative model. However, in cross-domain settings or with certain
writing styles, only few works showed that the performance of specific detectors
plummets [5]. This hints at a lack of generalization when these assumptions are
broken.

MGT detection has become a more popular area of research, tripling its frequency in
research publications in the last ten years.13 This shows that the research community
realizes how important of an issue MGT is, how much potentially harmful uses it has,
and how identifying it from human text is paramount to mitigate harm. However,
the field is still in its early stages: similar tasks such as MGT attribution have not
been explored thoroughly yet. In the next sections we define both tasks and provide
an overview of proposed solutions by various research works.

3.2 Detecting Machine-Generated Text

Formally, MGT detection is a task in which, given a text y, one must design a
model MD such that it can correctly identify whether y has been written by a
human, or generated automatically. Specifically, when we discuss MGT in this work,
we adopt the following definition: “Text that has been produced without human
intervention”. While other works use a more broad definition that may include
human modifications, since our goal in this work is to focus in mitigating massive
scale malicious generations, we opt to exclude this aspect due to the human resource
cost (see Section 1.1 for a more in-depth discussion).

13According to app.dimensions.ai.
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Generally, most works striving to detect MGT fall under the following perspectives:
(i) machine-aided detection, (ii) zero-shot detection, and (iii) supervised detection.
Additionally, there are preventive techniques that aim to watermark MGT such that
it is easily identifiable automatically. In the following sections we briefly describe
these approaches. For additional techniques and problems regarding MGT detection
we refer to the survey carried out by Crothers et al. [31].

3.2.1 Machine-aided Detection

In this paradigm, a human detector of MGT is assisted with statistical methods that
capture generation artifacts. Since humans are good at noticing incoherence or
factual errors in text and automatic methods are good detecting statistical abnormal-
ities of token distributions, machine-aided detection strives to leverage the best of
both worlds. The most prominent example is GLTR [57], a suite of statistical tools
that improve humans’ detection rate of text generated by GPT-2 [134] from 54% to
72% without any training. Yet, it requires a significant amount of human effort to be
useful in practical scenarios, e.g., preventing massive campaigns of disinformation.

3.2.2 Zero-shot Detection

These approaches usually work under the white-box assumption, where a defender
has access to the text-generation model that generated an MGT. Then, the same
model is used to detect texts generated by itself or similar models, focusing on log-
probabilities of the generated tokens. Two prominent examples of zero-shot detectors
are presented in [107] and [156]. In [156], an approach based on thresholding the
sum of log-probabilities was found to detect MGT from a GPT-2 model with 85%
accuracy. DetectGPT [107] built upon this idea, improving the zero-shot detection
of fake news using log-probability ratios of text and perturbed samples. Zero-shot
approaches are practical as they require no human intervention or training data.
Nevertheless, their generalization capabilities to new generators are limited due to
the white-box assumption, which severely constrains their application.

3.2.3 Supervised Detection

These detectors are trained in a supervised fashion using datasets consisting of
human-authored and machine-generated texts. While some consist in more tradi-
tional approaches that consider features capturing frequency [54], fluency [30], style
of texts [52], most are fine-tuned Transformer-based [169] language models such as
RoBERTa [138, 156], BERT [75, 103] or GROVER+LogisticRegression [186], with
results usually higher than 90% macro F1 under in-domain and in-model scenarios.
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Supervised detectors require diverse high-quality datasets that encompass various
domains, text-generation models, generation hyper-parameters, and writing styles.
However, the generalization capabilities of supervised detectors to new scenarios is
still unexplored, and few works studied it tangentially for very specific detectors [5].
Depending on how well supervised detectors generalize, building these datasets
could be impractical. To our knowledge, this is the first work that studies the gen-
eralization of Transformer-based supervised detectors across model families and
parameter scales.

3.2.4 Watermarking

Instead of aiming to detect MGT, these techniques are designed to distinguish MGT
from human-authored text by modifying the generator’s decoding strategy. Thus,
the MGT includes a signature that makes it easily identifiable as MGT for automatic
detectors. A notable example is watermarking by randomly ranking logit scores [84],
which ranks logit scores between tokens with a pseudo-random function, assigning
them as part of the watermark through a set seed. Another interesting approach [64]
is to use a multi-task learning framework, where the model learns a set of back-doors
pre-defined by its owner. However, watermarking could encourage LLMs to generate
lower quality text in an effort to satisfy watermark rules. Moreover, it requires
enforcement, and malicious users could simply avoid using watermarked LLMs.14

Lastly, recent efforts have shown that watermarking can be beaten via paraphrasing
MGT with another non-watermarked LLM [141].

3.3 Attributing Machine-Generated Text

After carrying out MGT detection and identifying texts as MGT, from a forensic
perspective the next step is to understand more about the actor behind the MGT.
This includes carrying out MGT attribution, where a given MGT y needs to be
attributed by a model MA into one of many text generation models, i.e. the one
that generated y. This is a similar to the problem of authorship attribution, where a
model is tasked with identifying the human author that produced a given text. In
human authorship attribution there have been vast amounts of research, taking into
account various domains [143], models [120, 154], and languages [16]. However,
this is not the case for MGT attribution. Moreover, various survey papers in the field
of neural text forensics consider MGT attribution an open problem [31, 65, 166]
that has not been thoroughly studied.

14At time of writing, the European Parliament is pondering watermark obligation for generative AI
[12].
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One of the first works in MGT attribution was from Uchendu et al. [167], where
authors studied various human authorship attribution techniques as a first step to
understanding the task. They tried various common machine and deep learning
approaches, finding that random forests with linguistic and readability features
performed the best. There also is a benchmark that includes MGT attribution in the
list of tasks[168]. However, these works were carried out when much weaker text
generation models than those we have today. The problem of attributing text to a
generator was easier due to the high variability in writing signature, style and overall
quality. That is currently not the case due to the better capabilities of newly-released
LLMs (see Section 2.3). Moreover, these works studied MGT attribution in specific
domains, but a more realistic study in multi-domain scenarios has not been carried
out.
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4Evaluation Campaigns and
Shared Tasks

4.1 Introduction

Evaluation campaigns have been at the core of the artificial intelligence research
community for years. These initiatives are organized to encourage researchers,
practitioners and enthusiasts to promote and push knowledge boundaries in partic-
ular research areas. They usually involve shared tasks, collaborative efforts where
participating teams attempt to solve specific research problems, answering concrete
questions regarding previously unexplored topics. Popular evaluation campaigns
include SemEval [47], the Dialog State Tracking Challenge (DSTC) [178], the NIST
Speaker Recognition Evaluation (SRE) [62], the Conference and Labs of the Eval-
uation Forum (CLEF) [7], and the Iberian Languages Evaluation Forum (IberLEF)
[108]. The past years there have also been shared tasks to promote research in
Machine-Generated Text (MGT) detection, prominent examples of which include the
Detecting Automatically Generated Scientific Papers (DAGPap22) Shared Task [81],
where participants developed systems to detect automatically generated scientific
papers, and the Russian Artificial Text Detection (RuATD-2022) Shared Task [152],
with the purpose of developing and studying MGT detectors of Russian text. In the
following sections we present the datasets, systems and results of the AuTexTification
2023 Shared Task, which focuses in MGT detection and attribution in multi-domain
settings.

4.2 The AuTexTification 2023 Shared Task

We find it important to promote research in MGT detection and attribution due to
the presented motivation from Section 1.1, as well as the lack of research carried
out to evaluate MGT detectors in realistic scenarios and the scarce work done
for MGT attribution described in Chapter 3. This motivated us to organize the
AuTexTification (Automated Text IdenTification) 2023 Shared Task at IberLEF2023
(Iberian Languages Evaluation Forum 2023). This shared task is proposed to study:
(i) the automatic detection of MGT, (ii) the generalization capabilities of MGT
detectors to new domains, and (iii) the feasibility of fine-grained MGT attribution
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to one of many generation models. Furthermore, we automatically collected a
multi-domain annotated dataset of human-authored text and MGT generated by
various LLMs, which is a valuable resource for exploratory linguistic analysis of
machine-generated and human-authored texts. For more details about this dataset,
please refer to Section 4.3.2. To our knowledge, AuTexTification 2023 is the first
shared task to study both MGT detection and attribution in a multi-domain setting
for English and Spanish, while also focusing on generalization of MGT detectors to
new domains.

The AuTexTification 2023 Shared Task includes two subtasks in English and Spanish
in five different domains.

Subtask 1: MGT Detection. This subtask consists in distinguishing between human
and generated text. It is framed as a binary classification task of human text (HUM)
and MGT (GEN), where text from three domains is included in the training set, and
submissions are evaluated in two unseen domains. This way, we aim to study the
MGT detectors’ cross-domain generalization capabilities.

Subtask 2: MGT Attribution. In this subtask, participants must attribute MGT to the
model that generated it, out of six models. Thus, Subtask 2 is framed as a six-class
classification task, where we strive to study the feasibility of fine-grained attribution.
Differently to Subtask 1, the training and test splits include all five domains.

A total of 114 teams signed up to participate, of which 36 sent a total of 175
submissions, with 20 of them sending their working notes.

4.3 Dataset

4.3.1 Data Gathering Process

Having observed the need of a multilingual, multi-domain, multi-style and multi-
generator dataset of MGT and human text, and in order to organize the AuTexTifica-
tion 2023 shared task, we compile a dataset of human and generated texts that share
the same prefix. For instance, given a human text “Today it’s 20 degrees. It is sunny
in Valencia.”, we could use “It is sunny in Valencia.” as human text, and generate
a continuation by prompting an LLM with “Today it’s 20 degrees.”. Therefore, both
generated and human texts are plausible continuations of the same prefix and they
can be compared fairly in terms of topics and domains. To build the dataset in
this way, we opted for a data gathering process consisting in the steps depicted in
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This is my opinion
about the hotel.

LLM

<BOS>It was
exceptional, with all

kind of facilities,
dining options, and
attractions. <EOS>

This is my opinion about the hotel:
Simply perfect.

Prompt

Human
Prefix

 
Simply perfect. Perfect

location to spend a
great vacation.   

Wonderful breakfast.

Human text

Generated text

Perfect location to spend a great
vacation. Wonderful breakfast.

It was exceptional, with all kind of
facilities

Human
continuation

Generated sampleHuman sample

Clean &
Filter

I III

IV

II

Fig. 4.1.: Data gathering process.

Figure 4.1, namely (i) gathering human data, (ii) preparing the inputs for LLMs, (iii)
generating MGTs, and (iv) cleaning and filtering the resulting texts.

We first gather a set of human-authored texts H from the source datasets for each
domain and language. We manually analyze and define extraction schemes for
splitting H into prefixes Hp and continuations Hc such that H = Hp ⊕ Hc. In some
domains and source datasets, we also define prompts P to prevent the generation
models from generating topic-inconsistent texts, e.g., guiding models to generate
hotel reviews instead of car reviews by using a prefix from the COAH dataset, made
up of hotel reviews. Afterwards, the prompts and prefixes P ⊕ Hp are fed into each
LLM to obtain one resulting generation per prompt and prefix. We refer to the set of
generations as G. Texts from both Hc and G are fed into a text cleaning pipeline that
removes duplicated spaces, multiple line breaks, and special symbols. Additionally,
we ensure that the human continuation and generation obtained from the same
prefix have roughly the same token-lengths by truncating to the minimum length of
the two texts, thus removing token-length bias. Then, we apply a set of language
identification filters: langdetect,15 SpaCy FastLang16 and fastText [76]. If one of
these filters finds a text to be not in Spanish or English, the text is removed from our
dataset.

15https://github.com/Mimino666/langdetect
16https://github.com/thomasthiebaud/spacy-fastlang
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English Spanish
Legal MultiEURLEX MultiEURLEX
News XSUM MLSUM & XLSUM
Reviews Amazon Reviews COAR & COAH
Tweets TSATC XLM-Tweets & TSD
How-to WikiLingua WikiLingua

Tab. 4.1.: Source datasets containing human-authored text for the AuTexTification 2023
dataset.

To obtain the dataset for Subtask 1, we sample a subset of Hc labeled as HUM and
a subset of G labeled with GEN. The dataset was then split into training and test
sets for a cross-domain scenario: tweets, how-to articles and legal documents were
included in the training set, while reviews and news data comprised the test set. To
compile the dataset for Subtask 2, we only sample texts from G, labeling each text
with the LLM’s name that generated it. The dataset is randomly split into training
and test sets following 80%-20% proportions in a stratified manner. All the five
domains are included in both training and test splits. The released version of the
dataset for Subtask 2 includes anonymized model lables to remove bias towards
particular models or model families in participating submissions.

4.3.2 The AuTexTification 2023 Dataset

The AuTexTification 2023 dataset consists of texts written by humans and LLMs in
five domains: tweets, reviews, how-to articles, news and legal documents. These
domains were chosen to encompass a range of writing styles, from more structured
and formal to less structured and more informal. We collected human texts from
publicly available datasets, namely: MultiEURLEX [19], XSUM [114], XLSUM [67],
MLSUM [149], Amazon Reviews [104], WikiLingua [88], COAR & COAH [61],
XLM-Tweets [6], TSATC [113], and TSD [93]. Table 4.1 groups these datasets per
domain and language.

The MGT was generated from the human texts by using three BLOOM models [147],
BLOOM-1B7,17 BLOOM-3B,18 and BLOOM-7B1;19 as well as three GPT-3 models
[17, 118]: babbage, curie, and text-davinci-003, with 1b, 6.7b and 175b parameter
scales, respectively. Our motivation behind using these models were fourfold: (i)
both BLOOM and GPT-3 show great capabilities in multiple languages, (ii) BLOOM
models’ usage is not as restricted via licensing (as opposed to other popular models
such as LLaMA [165] or OPT [187]), (iii) GPT-3 has been one of the most popular

17https://huggingface.co/bigscience/bloom-1b7
18https://huggingface.co/bigscience/bloom-3b
19https://huggingface.co/bigscience/bloom-7b1
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Subtask 1 Subtask 2
BLOOM GPT

GEN HUM Σ 1b7 3b 7b1 1b 6b7 175b Σ

Sp
an

is
h

Legal 4,846 4,358 9,204 640 665 712 919 942 919 4,797
News 5,514 5,223 10,737 839 860 881 972 978 987 5,517
Reviews 5,695 3,697 9,392 952 962 935 945 941 947 5,682
Tweets 5,739 5,634 11,373 967 965 965 928 930 964 5,719
How-to 5,690 5,795 11,485 894 929 960 970 983 966 5,702
Total 27,484 24,707 52,191 4,292 4,381 4,453 4,734 4,774 4,783 27,417

En
gl

is
h

Legal 5,124 5,244 10,368 809 779 832 890 887 927 5,124
News 5,464 5,464 10,928 747 854 906 983 984 984 5,458
Reviews 5,726 5,178 10,904 944 946 939 977 974 972 5,752
Tweets 5,813 5,884 11,697 987 968 980 951 963 969 5,818
How-to 5,862 5,918 11,780 962 976 982 993 993 963 5,869
Total 27,989 27,688 55,677 4,449 4,523 4,639 4,794 4,801 4,815 28,021

Tab. 4.2.: AuTexTification 2023 dataset statistics presented by domain, class, and language
in both subtasks.

and best performing language models until recently,20 and (iv) we aimed to cover
a broad spectra of model families and scales. While we were hoping to include
BLOOM-175B generations too, this was not possible due to the lack of public APIs.

We manually tuned the decoding parameters to obtain MGT that appears realistic
through subjective evaluations carried out by two of the authors. We found that with
nucleus sampling [72], using a top-p of 0.9 and a temperature of 0.7, the models
generated texts of higher quality. The maximum number of completion tokens was
manually selected for each domain to be similar to the median token-length of the
human texts: 20 tokens for tweets, 70 for reviews, and 100 for news, legal, and
how-to articles.

The statistics of each subtask’s data per domain, class, and language are presented
in Table 4.2. In both subtasks, both languages contain similar amounts of texts, and
the domains and classes are balanced in both splits. This way we guarantee that
our analysis is fair by ensuring that every dimension is balanced. Furthermore, in
Figure 4.2 we verify that the generated texts follow the Zipf (Figure 4.2a) and Heap’s
(Figure 4.2b) empirical laws, thus ensuring that the dataset is of high quality.

4.3.3 Evaluation of Generations

We first set out to verify the claims that in-domain MGT detection is an easy task by
generating reviews in English and Spanish and training simple MGT detectors on
this data. We also use this opportunity to experiment with various types of decoding
strategies and models both in a subjective manner and using the objective evaluation
metrics described in Section 2.5.

20GPT-3.5-turbo and GPT-4 were not released at time of compiling our dataset.
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Fig. 4.2.: Zipf and Heaps plots for English (top) and Spanish (below) for Subtask 1. B-
prefix denotes BLOOM models and G- prefix denotes GPT models.

Our first efforts for generating text consisted in trying various smaller models:
BLOOM-560m [147], GPT-2 [134], and XGLM-546M [98], with different decoding
strategies for a single domain of reviews, in both English and Spanish. For this, we
manually tried various parameters of each decoding strategy described in Section
2.4 to ensure the generated text was readable and of good quality, and ran various
generations with these models. We then trained a simple logistic regression classifier
with bag-of-word features, finding that the model achieves a Macro F1 score of over
95% when detecting MGT.21

Having corroborated that in-domain MGT detection (and attribution) is easy, we
evaluate the generations of the AuTexTification 2023 dataset using the metrics
described in Section 2.5. Given the large amount of metrics, we first focus on metrics
that measure the quality of generations (i.e. repetition, diversity, stop-word and
symbol ratios, self-BLEU, perplexity), using these values as representation vectors of
each text. We sample 500 texts per domain and author (i.e. human or each LLM),
calculate these metrics, apply z-score normalization and use t-SNE [101] to project
them22 to a 2-dimensional space. The resulting plots are presented in Figure 4.3.
In Figure 4.3a we present groupings by label, finding that there generally it is not

21We carry out a similar experiment with the same domain on the final data generated by larger
models, finding similar results. Additionally, similar results were found for MGT attribution.

22We use a perplexity parameter of 15, keeping the remaining parameters as default.
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Fig. 4.3.: t-SNE plots of generated text using evaluation metrics as representation vectors
for both English and Spanish. Grouped by model. B- prefixes denote BLOOM
models while G- prefixes denote GPT models.

difficult to distinguish, and that human text is more closely packed than generated
text. This is interesting considering that MGT was generated using only six models,
while the human data contains texts from thousands of authors. More over, in Figure
4.3b where the data is grouped by generation models, we observe that the data is very
mixed between models, meaning that generally the attribution task will be difficult.
Additionally, we find a cluster on the right that includes a mix of all the models.
When observing domain-wise groupings of the data (Figure 4.3c), we find that this
cluster corresponds to tweets data. This suggest that we should expect tweet data to
be much more difficult to attribute to different models correctly. Additionally, the
remaining domains are mixed with no clear distinctions between them, hinting that
the detection and attribution in multi-domain settings is much more difficult than in
an in-domain scenario. Similar plots for the previously-described first generation
efforts are presented in Appendix A.

Furthermore, we evaluate the entailment of the generations with respect to the
prompts used as inputs to the text generation models to ensure that the generated
MGT maintains similar meaning to the input. We present the results for English
grouped by domains and models in Tables 4.3 and 4.4, respectively. From these we
find that most texts either have a positive or neutral entailment, but that certain
amounts contradict the prompt. This is understandable and can be due to (i) the
used NLI model not being good enough at capturing entailment in complex scenarios,
or (ii) the text generation models being unable to always generate text that entails
from the prompt. Specifically, from Table 4.3 we find that more MGT is contradicting
the prompts in texts from the legal and wiki-how domains, showing that in more
formal styles and related to specific niche areas, LLMs do not perform as well as
in other areas. This is further observed in the tweets domain, where most MGT is
entailed from the prompt, which also suggests that the NLI model may be biased
shorter texts. Finally, Table 4.4 shows that the smaller GPT models, babbage and
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Domain Contradiction Neutral Entailment
Legal 994 1,995 2,135
News 434 2,818 2,212
Reviews 446 2,753 2,527
Tweets 214 939 4,660
WikiHow 654 2,755 2,453

Tab. 4.3.: Per domain entailments of prompts and generations.

Model Contradiction Neutral Entailment
BLOOM-1B1 312 2,073 2,069
BLOOM-3B 319 1,963 2,205
BLOOM-7B1 363 2,012 2,264
babbage 766 1,719 2,309
curie 681 1,767 2,353
davinci 301 1,726 2,787

Tab. 4.4.: Per model entailments of prompts and generations.

curie, generate MGT that contradicts the prompts more commonly to other models.
This could be a sign that these models are under-trained while the smaller BLOOM
models are not.

We additionally evaluate the final generated data with its human counterparts using
MAUVE [128], which was briefly described in Section 2.5. As previous analyses
yielded similar results for both languages, we use MAUVE to evaluate only the English
subset of the dataset. We present the MAUVE divergence curves of human and MGT
texts in each domains, as well as of all the dataset in Figure 4.4. Similarly, MAUVE
scores and the frontier integral between the human and MGT text distributions are
presented in Table 4.5. From these, we observe that most of the domains’ MGT
is distributed similarly to the human text, but that the legal domain is especially
different. However, after some manual inspection,23 it was found that legal MGT
was not very different from human-authored text. Thus we hypothesize that this
low MAUVE score is due to the longer lengths of legal texts with respect to texts
from other domains, and that MAUVE may be sensitive to texts of longer lengths.
Unfortunately due to time and computational resource constraints we were unable
to re-generate the legal texts and further explore this hypothesis. Generally we find
similar measures to those obtained in other works exploring text generation [127].

23The authors of this work are not experts in the legal domain.
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Domain MAUVE Frontier Integral

All 0.39 0.25
Reviews 0.57 0.17
Tweets 0.34 0.27
Legal 0.03 0.70
Wiki 0.66 0.14
News 0.74 0.12

Tab. 4.5.: MAUVE scores.

Finally, we present the results of a novel zero-shot dataset cartography technique
[2] inspired by data maps derived from training dynamics [161], as a way to further
understand the complexity of identifying MGT in real scenarios. These maps plot
data-points by taking into account a model’s confidence in the correct class and
variability in the prediction through time. Brighter points correspond to examples
that are easy-to-learn, with darker ones denoting hard-to-learn data-points, and
points in the middle of the spectrum being ambiguous. With this technique, we
get a better view of the complexity of the task and, specifically for our dataset, of
the domain-wise distributions of texts. Figure 4.5 shows data maps grouped by
domain for Subtask 1 in English. From here we further observe the differences
between the legal domain with respect to the rest: there is much less variability in
the confidence range between 0.4 and 0.6, which is not true for the other domains.
However, the remaining domains are similarly distributed, with larger variability in
the tails of confidence values. The same conclusions are found in the Spanish split
(see Appendix A).

4.4 Human Assesment

We performed a small-scale study to assess the difficulty of the Subtask 1 for human
annotators. The study consisted in asking human annotators to classify texts as
human or generated.24 Five annotators were involved: four Spanish native speakers
(SP) and one Italian native speaker (IT); all of them with C1-C2 proficiency level
in English. From these annotators, SP1 and SP4 are familiar with generated text
(they created the dataset and analysed hundreds of examples), while the others were
exposed to the task for the first time.

We provided the same 40 texts to each annotator, drawn from the test set of the
Subtask 1 both for English and Spanish. The texts were balanced in terms of classes

24The annotation interface and instructions are available at https://colab.research.google.com/
drive/1_zgW3k3DEV9Iv-wraH-DTqjm24pfT6lx
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(a) Legal. (b) News.

(c) Reviews. (d) Wiki-How.

(e) Tweets.

Fig. 4.5.: Data maps for Subtask 1 in English grouped by domain.
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Fig. 4.6.: Human performance in English (top) and Spanish (bottom). The grey dotted line
is the random baseline.

and domains: 20 texts were generated by LLMs and 20 were written by a human,
half of them were news and the other half were reviews. The generated texts were
only obtained from BLOOM models: 6 texts from BLOOM-1b, 6 texts from BLOOM-
3b1, and 8 texts from BLOOM-7b1. Figure 4.6 shows the Macro-F1 score of each
annotator in each domain.

For both languages, the average annotator performance is very similar, most annota-
tors are close to the random baseline. Regarding the domains, it seems more difficult
for humans to distinguish between human-authored and machine-generated news
rather than reviews. Most of the annotators perform worse than the random baseline
distinguishing texts from the news domain. On the contrary, humans are typically
better than the random baseline in the reviews domain, especially in English.

Language proficiency seems to play a role. IT1 shows better performance in English
than in Spanish, where they are not proficient. Despite how SP1 and SP4 are familiar
with generated texts, there is no significant difference between them and other
annotators.

The human annotators did not follow any systematic pattern to detect MGT. For
reviews, some mentioned that the generated reviews seemed generic, describing
many general aspects with short sentences. In contrast, human reviews focused on
few and more concrete aspects.
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4.5 System’s Overview

In this section, we briefly introduce the participants’ systems, describe the baselines
and evaluation metrics, and study the results of the shared task.

4.5.1 Submitted Approaches

The AuTexTification shared task received submissions from 36 teams, belonging to
30 different institutions and 18 different countries. All teams participated in the
English track of Subtask 1, with 23 teams also taking part in the Spanish track. For
Subtask 2, 19 teams participated in the English track and 14 in the Spanish track.
Teams were allowed to submit a maximum of 3 runs per subtask and language.
Overall, AuTexTification received a total of 175 runs, comprising 71 for the English
track of Subtask 1, 47 for the Spanish track, 33 for the English track of Subtask 2,
and 24 for the Spanish track. Outside of the competition scope, the AuTexTification
datasets have been used in NLP courses within academic institutions. We are aware
of at least 3 institutions,25 with 17 participating teams and 58 runs.

Following the trend in the Natural Language Processing (NLP) field, most teams
relied on pre-trained Transformer [169] models. The most used ones were BERT-
based models [39] like RoBERTa [100] and DeBERTa [69]. Also, domain-specific
and multilingual variants of BERT were frequent, including XLM-RoBERTa [27],
RemBERT [25], and Twhin-BERT [189]. A smaller set of participants included
generative models in their systems such as GPT-2 [134], Grover [186], and OPT
[187].

Most of the best performing approaches used ensembles of pre-trained models, as
well as combinations of lexical, stylometric or statistical features. In some cases,
participants fine-tuned their models using auto-train procedures and performed
hyper-parameter tuning. Some teams also included Convolutional Neural Networks
[91] or Long Short Term Memory (LSTM) Networks [70] as part of their systems.
Traditional machine learning models like Logistic Regression and Support Vector
Machines (SVM) [29] were also frequent among the participants. However, these
approaches generally performed worse than Transformer-based approaches.

There was also a great diversity in terms of features. Probabilistic token-level features
from open-source generative language models seem to play an important role in
the best performing approaches. Most of the participants employed contextual
representations from pre-trained models, either as features, or through end-to-end

25Universitat Politècnica de València, Aix-Marseille Université, and IMT Atlantique.
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finetuning. In addition to contextual representations, linguistic features including
lexical, structural, and discourse features were also frequent. Among the most
common linguistic features, we observed bag of word/char n-grams, counts of
personal pronouns, stopwords, punctuations, and POS tags. Some participants also
incorporated linguistic and factual knowledge directly in their models. Among these,
we found the inclusion of syntactic dependencies in pre-trained models through
contrastive learning, Wikipedia fact-checking, and native language identification.

The best ranked systems for each subtask ranged from complex ensembles of many
different models and features, to single generative models fine-tuned for the task. In
Subtask 1, both for English and Spanish, the best system was proposed by TALN-UPF.
This system relied on a bidirectional LSTM [148] model trained with a combination
of probabilistic token-level features from different GPT-2 versions, linguistic token-
level features such as word-frequencies or grammar errors, and text representations
from pre-trained encoders. Besides, TALN-UPF was the only team that considered a
cross-domain evaluation in the validation step, by performing cross-validation over
topically-split data after inferring the topics using Latent Dirichlet Allocation [15]. In
the Spanish track, the TALN-UPF system performed similar to the Lingüística_UCM
system, which was an SVM trained with a set of morphological, lexical, and discourse
features selected according linguistic expertise and human analysis.

In Subtask 2, both for English and Spanish, the three runs of the Drocks team
were the highest ranked ones. These systems were ensembles of five different
Transformer-based classifiers fine-tuned on the task. The best ensembles differed
for each language. For English, the best ensemble was an Error-Correcting Output
Codes [40] model trained using the concatenation of the classification probabilities
as features. For Spanish, the best ensemble was implemented with an SVM using
the average of the classification probabilities as features.

4.5.2 Baselines

We consider several baselines for each subtask and language. Namely, we include a
random baseline (Random), zero-shot (SB-ZS) and few-shot (SB-FS) approaches
based on text and label embedding similarities, a bag-of-words encoding with logistic
regression (BOW+LR), Low Dimensional Semantic Embeddings (LDSE), and fine-
tuned language specific transformers (Transformer), DeBERTaV3 [69]26 for English
and RoBERTa-BNE [50]27 for Spanish. These baselines consist in the following:

26https://huggingface.co/microsoft/deberta-v3-base
27https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne
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Random. The random baseline assuming class balance. Defined as 1
C where C is

the number of classes.

SB-ZS and SB-FS. Zero-shot and Few-Shot Symanto Brain API,28 a proprietary
Symanto solution optimized for highly efficient and scalable state-of-the-art zero-
shot and few-shot classification [110]. We verbalize labels for Subtask 1,29 but not
for Subtask 2 given the anonymity of the classes. For SB-FS we use 1024 shots.

BOW+LR. We encode the texts with bag of n-grams, using the top 5K word n-grams,
n ∈ {1, 2} and character n-grams, n ∈ {2, . . . , 6} following [129]. We train a Logistic
Regression model offered by scikit-learn [123] with default parameters on z-score
normalized and concatenated features.

LDSE. The Low Dimensionality Semantic Embedding (LDSE) model [136] represents
texts on the basis of the probability distribution of occurrence of their tokens in the
different classes. Using LDSE, we train an SVM classifier provided by scikit-learn
[123] with default parameters.

Transformer. We use the HuggingFace ecosystem [180] to fine-tune a pre-trained
Transformer with a randomly initialized classification head for 5 epochs and default
hyperparameters. We use a batch size of 32 texts for DeBERTaV3 and a batch size of
64 for RoBERTa-BNE.

4.5.3 Evaluation

The submissions for both subtasks are evaluated with the Macro-F1 score. Statistical
significance is computed through bootstrapping with replacement at a confidence
level of α = 0.95 with 1,000 resamples. Additionally, we measure precision and
recall scores, but do not consider these as official evaluation metrics for the tasks.
We only use them to carry out fine-grained analysis of the submitted systems.

4.6 Subtask 1: MGT Detection

For the MGT detection subtask, we received 71 submissions from 36 different teams
in English, and 47 submissions from 23 teams in Spanish. Tables 4.6 and 4.7 show
the top-3 performing teams, the weakest team, as well as the first team that beats
each baseline, both for English and Spanish.

28https://www.symanto.com/nlp-tools/symanto-brain/
29HUM: “This text has been written by a human.”

GEN: “This text has been automatically generated by a bot.”
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Rank Team Run Macro-F1

1 TALN-UPF HB_plus 80.91
2 TALN-UPF HB 74.16
3 CIC-IPN-CsCog run2 74.13
22 turquoise_titans run1 65.79
23 BOW+LR baseline 65.78
33 turing_testers run3 60.64
34 LDSE baseline 60.35
37 OD-21 run3 59.49
38 SB-FS baseline 59.44
51 swissnlp_team run2 57.20
52 Transformer baseline 57.10
69 UMZ run1 50.18
70 Random baseline 50.00
74 SB-ZS baseline 43.47
77 UAEMex run1 33.87

Tab. 4.6.: Ranking of Subtask 1 in English.

Rank Team Run Macro-F1

1 TALN-UPF HB_plus 70.77
2 Ling_UCM run1 70.60
3 Transformer baseline 68.52
20 GLPSI run3 63.90
21 LDSE baseline 63.58
25 turing_testers run1 62.77
26 BOW+LR baseline 62.40
39 bucharest run2 56.49
40 SB-FS baseline 56.05
46 ANLP run1 51.38
47 Random baseline 50.00
50 UAEMex run3 35.17
51 SB-ZS baseline 34.58
53 LKE_BUAP run3 31.60

Tab. 4.7.: Ranking of Subtask 1 in Spanish.
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Fig. 4.7.: Rank-ordered Macro-F1 with error bars for Subtask 1 in English (top) and Spanish
(bottom). Colored lines are baselines.

The best system was proposed by the TALN-UPF team, with 80.91 and 70.77 Macro-
F1 scores in English and Spanish. In English, the best team is significantly better
than the second-best ranked team. However, in Spanish there are no significant
differences between the two best teams and the best baseline. In Figure 4.7, we
illustrate the rank-ordered Macro-F1 scores for all the teams in both languages.

Many teams surpassed the best baseline in English by large margins, whereas for
Spanish only two teams were able to outperform it with small differences in Macro-
F1. Moreover, the performance of the top-11 ranked teams in English is higher than
the performance of the best team in Spanish. This could suggest that detecting
MGT and generalizing to new domains is easier in English than in Spanish, either
due to language idiosyncrasies or because of the larger availability and quality of
English NLP models. For both languages, we observe a linear relationship between
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Fig. 4.8.: Fine-grained plots for Subtask 1 in English (top) and Spanish (bottom).

the the rank-ordered Macro-F1 scores, with a small set of outliers in both tails.
This hints that, even though the resulting Macro-F1 scores in each language are in
different ranges, there is similar variability and difficulty in both languages. The
teams’ systems cover almost the entire Macro-F1 range in both languages, and, in
many cases, they are very similar (same Transformer-based models, similar linguistic
features, etc.). Therefore, one has to be careful when developing a MGT detector,
small changes could lead to large improvements or declines.

We also include fine-grained results per-domain and per-class in Figure 4.8. When
observing the domain-wise Macro-F1 scores in Figure 4.8a, we find that the systems
generalized better to reviews than to news, with a mean Macro-F1 below the random
baseline for the latter. Furthermore, both domains show long-tailed distributions,
revealing the variability in generalization capabilities of the systems. Concerning
class-wise F1 scores in Figure 4.8b, we find that the systems are better at classifying
generated text, and there is lower dispersion among the systems’ F1 scores for this
class than for the human class. From the precision-recall distributions depicted in
Figure 4.8c, we observe that systems are more biased towards predicting text to
be generated (high recall), often doing so incorrectly (low precision). We observe
the opposite for human texts, few predictions (low recall) but mostly correct (high
precision). All the conclusions above hold for both languages.

In Table 4.8 we present the examples with the largest number of correctly and
incorrectly predicted labels for Subtask 1. Here we see that two generated texts
with most fails were rather short, while the incorrectly classified texts from HUM are
longer and more intricate. Moreover, we find that it is easy for MGT detectors to
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Text Domain Label #Fails #Correct

Lo unico que la habitacion del segundo piso tenia humos y olia mal Reviews Generated 44 3

La Comisión Europea (CE), que había amenazado con un procedimiento de infracción por ver falta de
independencia en el proyecto normativo, vio en febrero con buenos ojos los cambios introducidos, pero
la vicepresidenta de la CE, Neelie Kroes, advierte ahora de que algunas preocupaciones comunitarias en
torno a la futura legislación no han sido abordadas y recalca que se adoptarán las medidas necesarias si los
problemas persisten cuando entre en vigor.

News Human 46 1

1. Nubank (Brasil): Nubank es una fintech brasileña que revolucionó el mercado financiero en Brasil al
ofrecer una tarjeta de crédito sin anualidad. En 2018, Nubank superó los US$1.000 millones de valoración
y se convirtió en el primer unicornio brasileño. 2. Rappi (Colombia): Rappi es una startup colombiana
de entrega de productos y servicios. La compañía fue fundada en 2015 y desde entonces ha crecido
rápidamente. En 2018, Rappi

News Generated 0 47

Peor imposible, con deciros q después de 30 min, nos fuimos sin comer Reviews Human 2 45

you have to listen to him in the new mix..it shines like no other!!!!! Reviews Generated 59 12

Police Scotland said her death was being treated as unexplained pending further inquiries. But officers
said there was nothing to suggest her death was suspicious and they were not looking for anyone else. Ms
Kocisova is understood to have lived and worked in the Stirling area for a number of years.

News Human 71 0

This is very durable. This is very easy to assemble. This is easy to install. This is a very good product. This is
a durable product. This is a good product. This is a product that will help you sleep better at night. This is a
good product. This is a great product. This is a product that is easy to install. This is a great product.

Reviews Generated 0 71

Certainly applies here. Chamber maid cleaner is held together by thin plastic strips that break easily. Never
really scraped all the coffee of the bottom anyway. Grind size selector is just a gimmick, much easier just to
grind until you get the grind size you desire by holding down a bottom and taking a peak. Take my advice
and go with a simple model.

Reviews Human 3 68

Tab. 4.8.: Examples with largest number of correct and incorrect predictions along all
systems in Subtask 1.

Rank Team Run Macro-F1

1 Drocks run3 62.50
2 Drocks run1 61.29
3 Drocks run2 61.27
4 ViDa run1 60.99
5 Transformer baseline 60.42
31 LKE_BUAP run1 45.62
32 LDSE baseline 44.56
33 turquoise_titans run2 43.37
34 BOW+LR baseline 39.98
35 UAEMex run2 33.19
36 SB-FS baseline 28.94
37 Random baseline 16.66
38 SB-ZS baseline 15.70
39 ANLP run1 14.61

Tab. 4.9.: Ranking of Subtask 2 in En-
glish.

Rank Team Run Macro-F1

1 Drocks run2 65.37
2 Drocks run3 64.72
3 Drocks run1 64.17
7 TALN-UPF Hybrid_plus 61.45
8 Transformer baseline 61.34
20 iimasPLN run1 51.43
21 LDSE baseline 45.46
22 BOW+LR baseline 45.31
25 UAEMex run2 33.78
26 SB-FS baseline 31.38
28 ANLP run1 17.93
29 Random baseline 16.66
30 SB-ZS baseline 16.23

Tab. 4.10.: Ranking of Subtask 2 in
Spanish.

correctly identify text to be generated when there is large amounts of structure
repetitions, as can be observed in the penultimate row of the table. However, in the
other correctly-predicted texts, we find it difficult to attest to why this is the case.
Subjectively, most appear to be difficult to assign to either class with high certainty.
Having found this observation, we carry out a more in-depth analysis of the texts
and the predictions.
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Fig. 4.9.: Rank-ordered Macro-F1 for Subtask 2 in English (top) and Spanish (bottom).
Colored lines are baselines.

4.7 Subtask 2: MGT Attribution

For the MGT Attribution subtask we received 33 submissions from 19 different teams
in English, and 24 submissions from 14 teams in Spanish. Tables 4.9 and 4.10 show
the top-3 performing teams, the weakest team, as well as the first team that beats
each baseline, both for English and Spanish. The best system was submitted by
team Drocks, obtaining 62.5 and 65.37 Macro-F1 scores for English and Spanish,
respectively. This is in contrast to the best scores of Subtask 1 nearing 80 and 70
Macro-F1, showing that in-domain MGT attribution is more difficult than out-of-
domain MGT detection. In this subtask, teams did not deviate significantly from
the baselines, and for both languages the relative ranking of baselines remained the
same, as opposed to Subtask 1. Rank ordered Macro-F1 scores for both languages
are presented in Figure 4.9. Few teams were able to surpass the best baselines,
with most submissions performing between the top-2 baseline scores. Similarly to
Subtask 1, we observe a linear relationship between rank and Macro-F1 with outliers
in the right tail, meaning that there is variability and difficulty in attributing MGT
irrespective of language. However, teams cover a smaller range of Macro-F1 scores,
suggesting there is less variability when attributing MGT than detecting it, when
compared to the variability in Subtask 1. In contrast to Subtask 1, teams generally
obtained better Macro-F1 scores in Spanish than English, but the differences were
marginal when compared to Subtask 1, which could be because of the randomness
of the learning procedures or due to a smaller number of participants in Subtask 2.
Generally, MGT attribution appears promising but limited, suggesting the need for
further research into new approaches or framings of the problem.
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Fig. 4.10.: Fine-grained plots for Subtask 2 in English (top) and Spanish (bottom). B- prefix
denotes BLOOM models and G- prefix denotes GPT models.

Fine-grained results for Subtask 2 per-domain and per-class are presented in 4.10.
Per-domain results (Figure 4.10a) show that attribution of generated tweets is much
more difficult that the remaining domains. For tweets, systems are unable to reach
50% Macro-F1, while for the other domains they surpass it by a large margin. We
additionally find many outliers toward lower scores, indicating the difficulty of the
task. Finally, most domains have similar distributions centered around different
medians, meaning that the variability of participating systems is maintained through
all five domains. We also present per-class results in Figure 4.10b, where we find
that it is easier to attribute generated text to BLOOM-1B1 and text-davinici-003.
Moreover we observe large variability for curie, while the other classes have narrower
distributions.

Additionally, we computed overall confusion matrices by taking the median at each
position of the confusion matrix from all the participant’s systems. Figure 4.10c
shows the results for English and Spanish. In both languages, the largest confusions
are across models within the same families, suggesting that it is easy to distinguish
generation models of different families. Besides, text-davinci-003 is the model with
less number of confusions, being different enough to be easily distinguished from
the other models.

This chapter included contents from our AuTexTification 2023 Shared Task overview.
For additional details, please refer to Sarvazyan et al. [145].
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5Generalization Capabilities of
MGT Detectors

5.1 Introduction

In Section 4.5 we found that most teams participating in the AuTexTification Shared
task submitted systems comprised of, or including, fine-tuned Transformer-based
LMs for detecting and attributing MGT. While in this shared task we evaluated their
capability to generalize to unseen domains, other forms of generalization were not
studied. Given the speed at which new and better LLMs are released to the public,
it is important for MGT detectors to be able to adapt to unseen LLMs of different
types and parameter scales. In this section, we describe the methodology, datasets,
experiments, and results involved in our analysis of the generalization capabilities of
MGT detectors across families and scales of text generation models.

5.2 Experimental Set-up

We frame the experiments to study the generalization of MGT detectors as binary
classification tasks. For cross-family generalization, we train detectors with human
text and MGT from a single family, then we evaluate them on detecting human
text and MGT from different families, one family at a time. Following the same
methodology, we also study the MGT detectors’ generalization across parameter
scales.

We use the AuTexTification Shared Task datasets from both Subtask 1: MGT detection
and Subtask 2: Model Attribution, leveraging it by fine-tuning Transformer-based
MGT detectors and studying their capabilities We use the MGT and the labels from
Subtask 2 by grouping them to obtain a training and test split per family. We add
human text from Subtask 1 to these splits, matching the amount of MGT, thus
obtaining our final training and test splits for each family. This way, we ensure
that all the domains are in the training and test splits, and our data is balanced
with respect to domains, classes (generated and human) and generators within
families (or scales) in both splits. The same procedure is carried out to obtain per-
scale training and test splits for scale-wise generalization. The final data statistics
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Split Family English Spanish
Train BLOOM 10,897 10,511

GPT 11,519 11,424
Test BLOOM 2,714 2,615

GPT 2,891 2,867
Tab. 5.1.: Family generalization data statistics.

Split Scale English Spanish
Train 1b 7,432 7,210

7b 7,509 7,345
175b 3,827 3,866

Test 1b 1,811 1,816
7b 1,931 1,882
175b 988 917

Tab. 5.2.: Scale generalization data statistics.

of the family and scale generalization splits are presented in Tables 5.1 and 5.2,
respectively.

For training our classifiers at each experiment, we employ three models: a language
specific model (DeBERTa [69] for English, and MarIA [49] for Spanish) a multilingual
model (XLM-RoBERTa [27]), and a small model from a family of generators used to
compile the AuTexTification dataset (BLOOM-560M [147]).30 We fine-tune these
models, with a randomly initialized classification head, in FP16 for 5 epochs using
a linearly decaying learning rate schedule starting at 5e-5. Finally, we evaluate
the models using class-wise and macro F1 scores. All the experiments have been
conducted using the HuggingFace ecosystem [181].

5.3 Generalizing to Unseen Model Families

To study cross-family generalization, we split the generated text into two groups:
GPT and BLOOM. We train MGT detectors with human-authored text and text from
one family, then evaluating on both families separately. The results are presented in
Tables 5.3 and 5.4 for English and Spanish, respectively.

In both languages we observe how all MGT detectors perform much better when
tested on the same family, reaching differences of 29 macro F1 with respect to

30For the sake of fairness, our generalization experiments exclude the BLOOM models originally used
to create the datasets. Likewise, we exclude GPT models given their limited transparency in the
offered fine-tuning methodologies which could lead to unfair comparisons against the chosen
classifiers.
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BLOOM GPT
Train Detector GEN HUM Mean GEN HUM Mean

BLOOM
BLOOM-560 93.70 93.92 93.81 59.32 75.81 67.57
DeBERTa 95.21 94.79 95.00 76.19 80.66 78.43
XLM-R 93.13 92.14 92.63 79.26 80.86 80.06

GPT
BLOOM-560 72.17 79.82 75.99 89.61 89.78 89.69
DeBERTa 85.61 85.05 85.33 89.94 87.82 88.88
XLM-R 82.40 82.04 82.22 89.52 87.22 88.37

Tab. 5.3.: F1 scores of the detectors for the generated (GEN) and human (HUM) classes
when trained and evaluated on BLOOM and GPT model families (English). Best
results in bold.

cross-family evaluation when training with BLOOM in Spanish. Overall, detectors
do not generalize well to other families.

In English, the language-specific detector (DeBERTa) outperforms the multilingual de-
tectors in most scenarios. This also holds in Spanish for in-family evaluation, whereas
in a cross-family setting the language-specific model, MarIA, lags behind XLM-R, with
BLOOM-560 again having the worst performance, meaning that language-specific
detectors are generally preferable.

In both languages BLOOM-560 obtains lower F1 scores in the generated class than
DeBERTa and XLM-R when trained with GPT and evaluated with BLOOM. Differences
in terms of F1 scores regarding the other detectors are generally large, with the
largest difference being of 13 points in English and 18 in Spanish. More research is
needed to determine whether family-specific detectors generalize well to their own
families. Nonetheless, from this experiment we conclude that BLOOM-560 does not
generalize well to its family.

In cross-family settings, and independently of the language, most detectors obtain
higher F1 scores on the human class than in the generated one, reaching 22
points of difference. This may be because the generated class contains MGT of
different quality levels from the same family, while human text quality is consistently
similar.

Finally, the training family of generators matters: cross-family generalization
depends on the training family of an MGT detector. For example, when training with
MGT from BLOOM and evaluating on GPT in English, all detectors obtain worse
results than in the opposite generalization direction. Interestingly, this behaviour is
reversed in Spanish, where detectors trained with BLOOM and evaluated on GPT
perform better. Thus, one must carefully choose the training families when
building datasets to train supervised detectors in order to generalize well to other
model families. Besides, this choice may be different for different languages.
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BLOOM GPT
Train Detector GEN HUM Mean GEN HUM mean

BLOOM
BLOOM-560 88.05 87.78 87.91 65.03 73.52 69.28
MarIA 96.25 96.29 96.27 58.95 75.91 67.43
XLM-R 91.74 90.32 91.03 73.93 76.29 75.11

GPT
BLOOM-560 52.68 73.91 63.30 90.69 91.12 90.91
MarIA 56.91 75.64 66.27 94.97 94.98 94.98
XLM-R 70.58 76.76 73.67 91.14 89.50 90.32

Tab. 5.4.: F1 scores of the detectors for the generated (GEN) and human (HUM) classes
when trained and evaluated on BLOOM and GPT model families (Spanish). Best
results in bold.

1b 7b 175b
Train Detector GEN HUM Mean GEN HUM Mean GEN HUM Mean

1b
BLOOM-560 89.69 90.04 89.89 85.22 86.45 85.84 76.37 83.43 79.90
DeBERTa 93.46 92.88 93.17 91.84 91.04 91.44 89.90 91.45 90.67
XLM-R 89.29 86.96 88.13 87.87 84.67 86.27 91.12 90.86 90.99

7b
BLOOM-560 87.49 88.25 87.87 86.02 86.72 86.37 79.16 84.75 81.96
DeBERTa 88.71 85.99 87.35 87.20 83.14 85.17 92.38 92.03 92.20
XLM-R 86.92 82.89 84.91 85.30 79.59 82.45 90.02 88.87 89.44

175b
BLOOM-560 56.14 74.47 65.30 64.47 77.36 70.92 91.52 91.97 91.75
DeBERTa 69.77 75.51 72.64 81.36 81.86 81.61 92.64 91.48 92.06
XLM-R 73.31 75.67 74.49 81.36 80.61 80.99 90.50 88.45 89.48

Tab. 5.5.: F1 scores of the detectors for the generated (GEN) and human (HUM) classes
when trained and evaluated on 1b, 7b and 175 parameter scales (English). Best
results in bold.

5.4 Generalizing to Unseen Parameter Scales

Similarly to the cross-family experiment, we train MGT detectors with human-
authored text and text from one parameter scale of models. In this case, given the
selection of models used to compile the AuTexTification datasets, we opt for three
groups: 1b, comprised of BLOOM-1b7 and babbage; 7b, consisting of BLOOM-7b1
and curie; and 175b which only includes text-davinci-003. This last group is only
comprised of GPT models given their popularity and the lack of APIs that provide
access to BLOOM-175b or other LLMs with similar parameter scales. We carry out
in-scale and cross-scale evaluation in English (Table 5.5) and Spanish (Table 5.6).

We observe that most cross-scale evaluations result in +80 macro F1, meaning that
in general, MGT detectors generalize well to other scales, sometimes performing
better than their in-scale counterparts as is the case of DeBERTa when evaluated
in the 7b scale after training with MGT from 1b-scaled models. However, in some
particular cases, we find bad generalization from very large scales to small ones.
For example, when training on MGT from the 175b scale, the cross-scale performance
is lower than in other scenarios, which can be due to this scale only including MGT
generated by GPT and not of the largest BLOOM model. Interestingly, when we
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1b 7b 175b
Train Detector GEN HUM Mean GEN HUM Mean GEN HUM Mean

1b
BLOOM-560 90.57 90.09 90.33 86.76 86.77 86.72 86.58 88.98 87.78
MarIA 94.13 94.25 94.19 90.90 91.54 91.22 83.33 87.50 85.42
XLM-R 87.85 84.35 86.10 86.67 82.62 84.64 91.58 91.18 91.38

7b
BLOOM-560 88.03 88.35 88.19 87.54 87.75 87.65 88.48 90.41 89.44
MarIA 91.75 92.00 91.88 92.52 92.54 92.53 93.43 94.20 93.82
XLM-R 85.61 80.24 82.92 84.64 78.37 81.51 90.16 88.69 89.43

175b
BLOOM-560 51.85 73.16 62.50 55.37 74.22 64.80 93.27 93.64 93.45
MarIA 53.77 74.23 64.00 64.16 77.27 70.71 96.29 96.30 96.29
XLM-R 73.45 75.17 74.31 79.97 78.88 79.42 90.74 88.80 89.77

Tab. 5.6.: F1 scores of the detectors for the generated (GEN) and human (HUM) classes
when trained and evaluated on 1b, 7b and 175 parameter scales (Spanish). Best
results in bold.

1b 7b 175b
Train True Labels GEN HUM GEN HUM GEN HUM

175b
GEN 75.16 78.31 75.05 83.27 71.75 78.24
HUM 77.90 77.96 78.06 76.81 78.99 77.25

Tab. 5.7.: Mean Flesch Reading Ease Scores [51] for the predictions of XLM-R trained using
the 175b data in English.

analyze this behaviour from the text readability and complexity viewpoint (see
Table 5.7), we observe that the readability of generated texts incorrectly classified
as human is generally similar to that of correctly classified human texts: they are
both easier to read. This is also in line with the training instances, where the
generated texts have a mean readability score of 72.13 in contrast to a 77.09 in
human-authored texts. In addition, the average number of difficult words31 is greater
in the human class. This signal is captured by some models: when testing in the 1b
and 175b scales, there are in average over 5% more difficult words in the predicted
human class. Note that, when evaluating in the 175b scale in a cross-scale scenario,
the detectors obtain reasonably good scores. In fact, it is possible to detect texts
generated by text-davinci-003 with +90 F1 using a training set comprised of text
generated by models of 1b parameters. As in our previous study, this shows that one
must carefully choose the LLMs’ scale when building datasets to train supervised
detectors in order to generalize well to other model scales.

Similarly to the cross-family experiment, we observe that language-specific detec-
tors perform better than multilingual ones. However, in contrast to the previous
experiment, for cross-scale generalization we find that models are typically not
biased towards the human class given that the F1 scores for each class are similar
in most cases; in fact the opposite is sometimes true, especially when training with
MGT from the 7b scale.

31Difficult words according to: https://github.com/textstat/textstat
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Finally, we find that BLOOM-560 does not generalize well when trained with the
175b scale in both English and Spanish, obtaining macro F1 scores of as much as 11
points lower than the best detector when evaluated on MGT from the 7b scale. This
could be due to BLOOM-560 being trained with MGT that is very different to the
distribution it had originally learned. Additionally, in English it obtains low results
when generalizing to the 175b scale.

In this work we detailed the findings of our analysis in the capabilities of general-
ization of MGT detectors to new model families and parameter scales. For more
information, we refer the reader to Sarvazyan et al. [146].
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6Attribution to Model Families and
Parameter Scales

6.1 Introduction

We have already motivated the need for model attribution in Section 1.1. However,
from the results of Subtask 2 in the AuTexTification Shared Task described in Section
4.7, we observed that attributing to each particular model can be a difficult problem.
This might be due to the vast space of LLM types and parameters scales, and as more
and more models are included in the label space, the task becomes much harder. In
this section, we frame the problem of MGT attribution as a multi-label classification
problem where models are trained to predict the model family and parameter scale
of a generator instead of attributing MGT to a specific generator. We study the
feasibility of this approach for attributing MGT to families and scales as a proxy to
the original task, reducing the dimensionality of the output space and thus making
the task simpler for MGT attributors to solve. This way, we separately identify both
the family and the scale of the MGT generator.

6.2 Experimental Set-up

We approach model family and parameter scale attribution as classification tasks
between families or scales. We exclude human-authored text to consider the scenario
where attribution is applied after a text has been identified as MGT. We employ the
same Transformer-based language models used for the generalization experiments
described in Chapter 5, fine-tuning them with the same parameters on the following
data.

To obtain the data for the experiments used to study the feasibility of attributing
to model families and parameter scales, we employ texts from the AuTexTification
2023 dataset (see Section 4.3.2). Specifically, given that this is an MGT attribution
task, we assume that the texts have been previously identified as MGT, and thus
only make use of data from Subtask 2, grouping its content by families or scales.
Moreover, given the lack of counterpart models of BLOOM-3B and text-davinci-003
in the other family, we exclude these models from the scale attribution experiments
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Train Test
GPT BLOOM GPT BLOOM

English 11,519 10,897 2,891 2,714
Spanish 11,424 10,511 2,867 2,615

Tab. 6.1.: Family attribution data statistics.

Train Test
1b 7b 1b 7b

English 7509 7432 1931 1811
Spanish 7345 7210 1882 1816
Tab. 6.2.: Scale attribution data statistics.

English Spanish
Attributor BLOOM GPT Mean Attributor BLOOM GPT Mean
BLOOM-560 90.55 91.23 90.89 BLOOM-560 91.25 92.46 91.86
DeBERTa 94.09 94.51 94.30 MarIA 94.77 95.25 95.01
XLM-R 93.97 93.97 93.97 XLM-R 95.10 95.48 95.29

Tab. 6.3.: F1 scores of attributors of MGT in English and Spanish in the BLOOM or GPT
families. Best results in bold.

to ensure the per-class data is not biased towards particular families. The final
dataset statistics are presented in Tables 6.1 and 6.2 for attributing to families and
scales, respectively.

6.3 Attributing to Model Families

We study the family attribution problem in English and Spanish by fine-tuning
Transformer-based language models to classify MGT into two classes, BLOOM and
GPT. The results are presented in Table 6.3, where we observe that attributors
slightly favor GPT texts, obtaining better F1 scores compared to the BLOOM class.
Additionally, BLOOM-560 does not perform on par with other attributors, espe-
cially when attributing text to its own family. It does not find a bias towards MGT of
its own family for attribution, which follows from what was observed in previous
experiments. Moreover, language-specific attributors are not necessarily better,
seeing as XLM-R performs on par with DeBERTa and MarIA. Given the observed
+90 macro F1 scores, we conclude that MGT can be feasibly attributed to model
families, thus reducing the space of possible outcomes.
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English Spanish
Attributor 1b 7b Mean Attributor 1b 7b Mean
BLOOM-560 56.47 60.59 58.53 BLOOM-560 59.90 57.56 58.73
DeBERTa 67.15 69.93 68.54 MarIA 70.42 72.40 71.41
XLM-R 65.23 0.00 32.61 XLM-R 65.87 0.00 32.93

Tab. 6.4.: F1 scores of attributors of MGT in English and Spanish in the 1b or 7b scales.
Best results in bold.

6.4 Attributing to Parameters Scales

We study cross-scale generalization in MGT attributors in English and Spanish by
fine-tuning attributors to classify MGT into two classes: 1b, comprised of MGT from
BLOOM-1b7 and babbage, and 7b which contains MGT generated by curie and
BLOOM-7b1. We exclude BLOOM-3b and GPT davinci since, in our experiment data,
they cannot be paired with other models from the other family in their respective
parameter scales. The results are shown in Table 6.4, where we observe lower scores
in comparison to the family attribution experiment.In this experiment, XLM-R always
predict the 1b scale. We hypothesize that this could be either due to overfitting or
some aspect that degenerates the training dynamics, such as the random seed or
learning rate scheduler. The best attributor is the language-specific MarIA, which
reaches 71 macro F1. MarIA obtains a similar F1 score both for both 1b and 7b
scales, suggesting that either (i) generators of 1b and 7b scales generate text of
similar quality, or (ii) they include MGT from different model families, meaning that
within each scale class the texts do not have many underlying similarities. Thus, we
conclude that, while not being as feasible as family attribution, scale attribution is
promising and has potential for high performance with further developments.

This chapter included contents from our paper where we analyse the feasibility of
MGT attribution in model families and parameter scales. For additional details,
please refer to Sarvazyan et al. [146].
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7Conclusions and Future Work

This work studies the tasks of detecting and attributing machine-generated text, ex-
ploring open problems such as (i) MGT detection in realistic multi-domain scenarios,
(ii) MGT attribution, and (iii) generalization of MGT detectors and attributors to
new text generation models.

The main goals of this work, presented in Section 1.3, were successfully reached.
Specifically, we compiled a multilingual, multi-domain, multi-style and multi-generator
dataset of human and generated text and used it to organize a shared task in the
fields of MGT detection and attribution in realistic scenarios (see detailed conclu-
sions in Section 7.1.1), we studied the generalization capabilities of MGT detectors
to new domains (see Section 7.1.1), as well as new model families and parameter
scales (see Section 7.1.2), and explored the feasibility of attributing MGT to groups
of text generation models (see Section 7.1.3). Importantly, the work derived from
this research resulted in two scientific papers, one invited seminar at a scientific
workshop, one organized shared task and one dataset (see Section 7.2).

In Chapter 1 we motivated the MGT detection and attribution tasks. In Chapters 2
and 3 we provided an overview of techniques for MGT generation and detection of
MGT. Afterwards, we illustrated the AuTexTification 2023 dataset and shared task
in Chapter 4, carrying out further experiments and analysis into the generalization
capabilities of MGT detectors in Chapter 5 while also exploring the feasibility of
attributing MGT to groups of text generation models in Chapter 6.

What follows is the conclusions of this work, where we detail how its objectives were
accomplished, the scientific contributions derived from this work, and promising
research lines to be explored in future endeavors.

7.1 Conclusions

7.1.1 AuTexTification 2023

In this work we compiled the AuTexTification 2023 dataset, a multilingual, multi-
domain, multi-style and multi-generator dataset of MGT and human authored text
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with various annotations, with the purpose of evaluating MGT detection systems
in a realistic setting. We compiled the dataset such that the MGT and human text
can be fairly compared by both being continuations of the same prefix, and carried
out extensive evaluations of the quality of the generations by themselves, with
respect to the prompts and the human text distribution. This dataset was compiled
successfully, having already been used in various NLP courses in important academic
institutions.

Moreover, we leveraged this dataset to organize the AuTexTification 2023 Shared
Task at IberLEF2023, which included two subtasks, (i) MGT detection in unseen
domains and (ii) MGT attribution. We extensively studied the submitted approaches
and the results, concluding that MGT detectors’ generalization capabilities to new
domains is promising, while multi-domain MGT attribution appears limited and
needs further research. With a total of 114 registered teams, 36 participating
teams, 175 submissions, and 20 teams that sent working notes, we consider the
AuTexTification 2023 Shared Task a success in promoting research in the fields of
MGT detection and attribution.

7.1.2 Generalization Capabilities of MGT Detectors to Model
Families and Parameter Scales

Having observed that most submissions in the AuTexTification 2023 Shared Task
included Transformer-based language models, we found it important to study their
generalization capabilities to unseen text generation models of different model
families and parameter scales. Specifically, we observed that (i) MGT detectors do
not generalize well to other families but do generalize well to unseen scales, (ii) that
language specific detectors should be preferred to multilingual ones, that (iii) the
training family or scale is important and might differ between languages, and that
(iv) detectors based on the same family as that of the training data typically perform
worse.

7.1.3 Feasibility of Model Family and Parameter Scale
Attribution

From the AuTexTification 2023 Shared Task we also found that MGT attribution
is generally limited in the way that is commonly framed. Instead, we propose a
new perspective where we separately attribute MGT to families and scales. With
this approach, we find that family attribution is feasible and easy, with all MGT
attributors consistently reaching Macro F1 scores above 90%. However, attributing
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MGT to scales appears to be the crux of the problem as most scale attributors are
unable to reach scores higher than 73% Macro F1.

7.2 Scientific Contributions

The various contributions of this work have been materialized in the several scientific
publications. As a result, one conference and one journal paper have been generated,
and one invited talk has been carried out in a scientific workshop. Below, we sum
up the scientific contributions.

The creation of the AuTexTification 2023 dataset and the organization of the AuTex-
Tification 2023 Shared Task resulted in the following journal paper:

• Sarvazyan, A. M., González, J., Franco-Salvador, M., Rangel, F., Chulvi, B., &
Rosso, P. (2023). Overview of AuTexTification at IberLEF 2023: Detection and
Attribution of Machine-Generated Text in Multiple Domains. In Procesamiento
del Lenguaje Natural, 71.

The experiments carried out to study model family and parameter scale generaliza-
tion of MGT detectors, as well as the feasibility of MGT attribution to model families
and parameter scales, resulted in the following proceedings paper:

• Sarvazyan, A. M., González, J., Rosso, P., & Franco-Salvador, M. (2023). Super-
vised Machine-Generated Text Detectors: Family and Scale Matters. (accepted) In
Proceedings of the Fourteenth Conference and Labs of the Evaluation Forum.

Moreover, the aforementioned research contributions have been presented in the
following seminar:

• Sarvazyan, A. M. AuTexTification 2023 and more: Detection and Attribution
of Machine-Generated Text in Multiple Domains. humain OU PaS humain
(hOUPSh) at Conférence en Recherche d’Information et Applications, Con-
férence sur le Traitement Automatique des Langues Naturelles (CORIA-TALN).
June 5, 2023.

7.3 Future Work

Various problems from the field of MGT detection and attribution, and their solutions,
have been studied in this work. While immediate future work consists in presenting
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the scientific papers resulting from this work in their respective conferences, there is
still large amounts of open and important problems to tackle in the field.

Future work can focus on carrying out a more extensive analysis of MGT corpora and
proposing more complex models that leverage specific information that identifies
MGT from human-authored text. An important direction for future work is to delve
deeper into the distinctive features that identify MGT from human-authored text.
This involves conducting detailed analyses to identify specific linguistic, semantic, or
syntactic patterns that are characteristic of MGT. We hope to leverage these features
and the gained insight to propose models that more accurately identify MGT.

Another important future endeavor consists in enhancing MGT detection gener-
alization to unseen domains, writing styles, and languages. Similarly, given the
speed at which LLMs are evolving and new models are being released, ensuring the
robustness of MGT detectors and attributors with respect to these advances is of
high importance, which may need the inclusion of techniques that allow for fast
adaptation of MGT detectors to new LLMs.

An important open problem in MGT detection and attribution is their robustness
towards adversarial attacks. Many types of adversarial techniques exist and can be
easily used to deceive these models, which is why future work should also involve
adversarial training strategies, countermeasures to known techniques.

Finally, we plan to train and deploy MGT detectors and attributors in real-world
scenarios. This involves ethical considerations such as to whom the false positives
may affect, as well as privacy concerns, meaning that the developed systems should
ideally be transparent and interpretable.
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AAdditional Dataset Plots

In the following sections we provide additional plots to further understand the
distributions of the texts in the AuTexTification 2023 dataset.

A.1 First Generation Efforts

Figure A.1 presents the resulting plots of z-score normalized evaluation metrics (i.e.
repetition, diversity, stop-word and symbol ratios, self-BLEU, perplexity) projected
to two dimensions with t-SNE for the first dataset using small models (see Section
4.3.3).
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Fig. A.1.: t-SNE plots for MGT in reviews using small models.
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A.2 Additional Data Maps

Here we present additional zero-shot data maps for various partitions of the AuTex-
Tification 2023 dataset. Figure A.2 shows data maps partitioned by training or test
split, as well as language. Additionally, figures A.3 and A.4 present maps for Subtask
1 partitioned by text generation model in English and Spanish, respectively. Finally,
figure A.5 illustrates data maps in Spanish grouped by domain.

(a) Train split in English. (b) Test split in English.

(c) Train split in Spanish. (d) Test split in Spanish.

Fig. A.2.: Data maps for Subtask 1 per split and language.
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(a) MGT generated by BLOOM-1B1. (b) MGT generated by BLOOM-3B.

(c) MGT generated by BLOOM-7B1. (d) MGT generated by babbage.

(e) MGT generated by curie. (f) MGT generated by davinci.

Fig. A.3.: Data maps for Subtask 1 in English with different generation models.
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(a) MGT generated by BLOOM-1B1. (b) MGT generated by BLOOM-3B.

(c) MGT generated by BLOOM-7B1. (d) MGT generated by babbage.

(e) MGT generated by curie. (f) MGT generated by davinci.

Fig. A.4.: Data maps for Subtask 1 in Spanish with different generation models.
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(a) Legal. (b) News.

(c) Reviews. (d) Wiki-How.

(e) Tweets.

Fig. A.5.: Data maps for Subtask 1 in Spanish grouped by domain.
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