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Abstract 
Atrial fibrosis plays a key role in the initiation and progression of atrial fibrillation (AF). Atrial fibrosis is typically identi-
fied by a peak-to-peak amplitude of bipolar electrograms (b-EGMs) lower than 0.5 mV, which may be considered as abla-
tion targets. Nevertheless, this approach disregards signal spatiotemporal information and b-EGM sensitivity to catheter 
orientation. To overcome these limitations, we propose the dominant-to-remaining eigenvalue dominance ratio (EIGDR) of 
unipolar electrograms (u-EGMs) within neighbor electrode cliques as a waveform dispersion measure, hypothesizing that it 
is correlated with the presence of fibrosis. A simulated 2D tissue with a fibrosis patch was used for validation. We computed 
EIGDR maps from both original and time-aligned u-EGMs, denoted as R and RA , respectively, also mapping the gain in 
eigenvalue concentration obtained by the alignment, ΔRA . The performance of each map in detecting fibrosis was evaluated 
in scenarios including noise and variable electrode-tissue distance. Best results were achieved by RA , reaching 94% detection 
accuracy, versus the 86% of b-EGMs voltage maps. The proposed strategy was also tested in real u-EGMs from fibrotic and 
non-fibrotic areas over 3D electroanatomical maps, supporting the ability of the EIGDRs as fibrosis markers, encouraging 
further studies to confirm their translation to clinical settings.

Keywords Atrial fibrosis · Atrial fibrillation (AF) · Bipolar electrograms (b-EGMs) · Eigenvalue dominance ratio 
(EIGDR) · Unipolar electrograms (u-EGMs)

1 Introduction

Atrial fibrosis represents a structural anomaly of the atrial 
myocardium [1]. It is characterized by an altered extracel-
lular matrix activity caused by fibroblasts [2], which alters 
the electrical conduction and excitability of the tissue. Fibro-
blasts activation and proliferation, as well as their secretion 
of extracellular matrix proteins, such as collagen, charac-
terize fibrotic tissue [3]. This structural remodeling mainly 
occurs during the reparative process to replace damaged 
myocardial parenchyma [4]. In addition to this replacement 
process, others, as reactive fibrosis to a trigger as inflam-
mation, have been recognized as responsible for fibrosis. 
This makes detection of fibrotic tissue even more difficult 
and suggests the need for more specific imaging tools and 
markers to detect and quantify fibrosis [5].

Atrial fibrosis has been observed to be correlated to atrial 
fibrillation (AF) [6]. Despite the fact that AF represents the 
most common cardiac arrhythmia, its trigger mechanisms 
are not yet fully understood [7] and its causal relationship 
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with atrial fibrosis is still challenging [1]. On the one hand, 
fibrosis-induced remodeling creates a substrate promoting 
AF [1, 6]; on the other hand, fibrosis can occur as a result of 
the electrical [1] as well as structural [4] atrial remodeling 
found in AF.

Atrial fibrosis is electrophysiologically characterized by 
low intracardiac electrograms (EGMs) amplitudes and con-
duction velocities [8], which may be measured with elec-
troanatomical mapping (EAM) systems [9]. These allow 
displaying 3D voltage and activation time maps over a 
reconstruction of cardiac chambers anatomy and visualizing 
catheter position, so as to guide ablation procedures and treat 
arrhythmias with minimum radiation exposition [10]. Based 
on several studies, consensus exists on the choice of 0.5 mV 
as the threshold value of bipolar EGMs (b-EGMs) peak-to-
peak amplitude to discriminate fibrotic areas in the atrium 
during sinus rhythm [11]. However, this procedure brings 
along several limitations. First of all, a peak-to-peak voltage 
measure disregards morphological and temporal information 
contained in the signal. Nevertheless, this reflects the pos-
sible presence of underlying abnormalities in the atria [12]. 
Secondly, bipolar voltage mapping may be influenced by 
other technical factors not related to the substrate, including 
the relative orientation between the recording electrode pair 
and wavefront propagation direction, electrode size, inter-
electrode distance and b-EGMs filtering [12]. Bipolar volt-
age is also affected by the tissue-electrode contact, whose 
maintenance may be challenging in anatomically difficult 
sites (e.g., the pulmonary veins). Third, the definition of 
low-voltage areas has not been subjected to a standardization 
procedure and the voltage threshold has never received an 
histological validation [12].

In recent years, more attention has been paid to the role 
of fibrotic tissue on the initiation and perpetuation of AF 
than on its effects on the morphology of the EGMs [13]. In 
this sense, not many intracardiac signal processing methods 
based on EGM features have been proposed to detect fibro-
sis. Some studies have revealed the relationship of EGM 
morphology and tissue alterations, including ablation lesion 
formation [14]. Others have introduced a method to charac-
terize the different fibrotic textures based on EGM fractiona-
tion due to the incidence of wavefront direction [15]. All 
these works have used in silico experiments for validation.

In this paper, we hypothesize that the waveform disper-
sion of neighbor unipolar EGMs (u-EGMs) is correlated 
with the presence of atrial fibrosis. Therefore, the aim of 
the work is to propose eigenvalue-based indices of wave-
form dispersion to identify fibrotic areas. They take into 
account the spatiotemporal relations of the u-EGM wave-
forms and overcome the limitations of the use of b-EGM 
voltage thresholding for the detection of fibrosis. Resulting 
maps, called eigenvalue dominance ratio (EIGDR) maps, 
were computed with a simulation setup, using two sizes of 

nearby electrode arrangements, referred as cliques (2× 2 and 
3 × 3 electrodes), and three catheter orientations with respect 
to the tissue preferential direction (0◦ , 30◦ and 45◦ ). The 
ability of each map was evaluated in detecting a fibrosis 
patch included in the simulated tissue. As a proof of concept, 
EIGDR values were also computed in clinical u-EGMs from 
patients, in four- and five-electrode cliques. They were cor-
related with the presence/absence of fibrosis based on late 
gadolinium enhancement-magnetic resonance imaging.

This paper is organized as follows: Section 2 presents the 
methodology and the datasets used for its validation. Sec-
tion 3 contains the obtained results, whereas Sections 4, 5 
and 6 include the discussion, limitations (with references to 
challenges and future perspectives) and conclusions of the 
work, respectively.

2  Methods

2.1  Atrial model

We simulated an atrial tissue slice of 4 × 4 cm by dividing 
it into adjacent square elements whose centers were sepa-
rated 0.1 mm. Within the tissue slice, a circular patch with a 
diameter of 2 cm was defined, whose center was at the center 
of the 2D tissue, as shown in Fig. 1(a). Inside the patch, a 
fully transmural (from endo- to epicardial layer) pattern of 
diffuse fibrosis was randomly defined following a uniform 
distribution. The Maleckar model for myofibroblasts [16] 
was assigned to 20% of the nodes within the circular area. 
Although the percentage of atrial fibrosis is very patient-
dependent, the density of 20% represents the threshold value 
between stage II and stage III according to the Utah classi-
fication [17] and therefore considered a realistic percentage 
for this study.

The cell model assigned to all the non-fibrotic nodes was 
a variant of the Courtemanche myocyte model [18] account-
ing for the atrial electrophysiological characteristics experi-
mentally observed in the left atrium (LA) and the persistent 
AF (cAF) induced remodeling [19]. This electrical remod-
eling was introduced through the variation of the maximum 
conductances of the transient outward potassium current 
(Ito) , the L-Type calcium current (ICaL) , the inward rectifier 
potassium current (IK1) , the ultrarapid outward potassium 
current (IKur) and the slow delayed rectifier potassium cur-
rent (IKs) (see Table 1), as in previous computational stud-
ies [19, 20]. Additionally, the diffusion tensor was adjusted 
to reproduce the conduction velocity in the LA, and was 
reduced by 30% in all elements of the patch with at least 
one fibroblast node [21], similarly to what was performed 
in [22].

Simulations were run in ELVIRA software [23]. The 
monodomain formulation was solved using the operator 
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splitting numerical scheme with a constant time step �t = 
0.01 ms and a spatial resolution �x = 0.1 mm. Recording 
electrodes were distributed over the simulated anatomy 
mimicking a L × L high-density multi-electrode array 
(MEA) (L = 15), where the inter-electrode distance was d = 
2 mm. The simulated electrode grid was located so that its 
central electrode corresponds to the center of both the tissue 
slice and the fibrotic patch, and was rotated by an angle Ψ , 
Ψ ∈ {0◦, 30◦, 45◦} , with respect to the tissue fiber direction. 
Fig. 1(b) shows the three MEA orientations over the simu-
lated tissue geometry. Two generic cliques of different sizes 
were considered in this work as depicted in Fig. 2(a) and 
(b), forming four and nine-electrode square arrangements, 
respectively. Each clique location is referred to the lower left 
electrode, indexed as (i, j), within the MEA. The rest of elec-
trodes in the clique are numbered from left to right and bot-
tom to top, thus corresponding to locations (i + Δi, j + Δj) , 
where Δi,Δj ∈ {0, 1} , ( i, j ∈ {1,⋯ , 14} ) for the 2 × 2 , and 
Δi,Δj ∈ {0, 1, 2} , ( i, j ∈ {1,⋯ , 13} ) for the 3 × 3 arrange-
ments, respectively.

2.2  Synthetic signals

Unipolar EGMs, ui,j(n) , were calculated as originated by the 
passage of the propagation wavefront by electrodes located 
at sites (i, j) of the MEA. We computed them in a volumetric 
tissue-blood model, assuming a temporal resolution of 1 ms, 
as done in [30]. First, extracellular potentials were obtained 
by an approximation of the bidomain formulation, consider-
ing the tissue immersed in a non-conductive bath. In order to 
reproduce fibrosis effects, inside the simulated fibrotic patch 
the single cardiomyocyte under cAF conditions was cou-
pled with a randomly variable number of fibroblasts within 
the patch. Fig. 3(a) shows the action potentials registered 
in two different cardiomyocytes from the mesh, one out-
side the fibrotic patch and the other inside the fibrotic patch, 
where it is coupled with two fibroblasts. Electrical remod-
eling induced by cAF produces a 55% reduction in duration 
measured at 90% repolarization (248 vs. 111 ms), in con-
cordance with experimental data [29]. Fibroblast coupling 
with cAF cardiomyocytes makes resting potential less nega-
tive (83 vs. 78 mV) and elongates the duration measured at 

90% repolarization (111 vs. 120 ms). Then, u-EGMs were 
solved in the entire domain by the governing equations for 
a solid volume conductor and its boundary conditions at the 
tissue-blood interface.

In order to take into account a realistic scenario, where 
the distance from the tissue may not be constant through the 
electrodes in the clique, we considered that the electrode-tis-
sue distance, �i,j , varies following a normal distribution with 
mean � = 1 mm and standard deviation �� = 0.1 mm. Two 
thousand different random configurations were simulated, 
where the distance of each electrode to the tissue was ran-
domly and independently chosen following that distribution.

Synthetic u-EGMs were computed with sampling fre-
quency of 1 kHz, duration of 0.5 s ( N = 500 samples), 
and including one single activation (depolarization plus 
repolarization).

Simulated signals were corrupted with noise excerpts 
obtained from real u-EGMs, as previously done in [8]. Two 
thousand different noise segments were extracted from u-EGMs 
recorded with a multi-electrode  PentaRay® catheter (Biosense-
Webster, Inc., Diamond Bar, CA, USA) at intervals with no 
recorded EGMs. All noise segments were normalized to have 
standard deviations �v ∈ {0.0, 5.8, 11.6, 23.2, 46.4} �V , cor-
r e s p o n d i n g  t o  p e a k- t o - p e a k  a m p l i t u d e s 
Vpp,v ∈ {0.0, 24.2, 48.4, 96.7, 193.5} �V . They are concordant 
with observed average power in unipolar recordings [31] and 
guarantee a homogeneous power level. Different realizations, 
indexed by q ∈ {1,⋯ , 2000} , of this recorded noise were ran-
domly added to each one of the two thousand realizations of the 
simulated u-EGMs ui,j(n) computed with a variable electrode-
tissue distance within the MEA, generating as a result noisy 
unipolar signals uq

i,j
(n) , i, j ∈ {1,⋯ , 15} , q ∈ {1,⋯ , 2000} . 

Noisy u-EGMs examples, in fibrotic and non-fibrotic tissue 
zones, are shown in Fig. 3(b) and (c), at two different electrode-
tissue distances, respectively, with noise level corresponding to 
�v = 46.4 �V.

2.3  Clinical data

Intracavitary u-EGMs recorded during sinus rhythm with a 
 PentaRay® catheter (Biosense-Webster, Inc., Diamond Bar, 
CA, USA) were used to evaluate performance of EIGDR 
approach with real signals. Clinical data were obtained 
from a patient with cAF, a slightly dilated LA (26 cm2 ), a 
left ventricular ejection fraction of 58% and treated with 
anticoagulation and flecainide, registered at the Hospital 
Clínic, Barcelona, Spain. The data acquisition protocol 
was reviewed and approved by the Hospital Clinic Ethical 
Committee (Ethics approval number: HCB/2019/0881). 
The patient was informed and signed the consent form. 
A total of 758 mapping points (or catheter sites) were 
acquired at the anterior, posterior, lateral and septal wall, 

Table 1  Variation of the maximum conductances g for several ionic 
channels used to reproduce atrial electrical remodeling under per-
sistent AF (cAF) conditions, accordingly to experimental stud-
ies reported in literature. As a comparison, g values have also been 
reported in control conditions

gto gCaL gK1 gKur gKs

Control 1.00 1.00 1.00 1.00 1.00
cAF 0.25 0.35 2.00 0.55 2.00
References [24] [25, 26] [27–29] [24] [24]

3093Medical & Biological Engineering & Computing (2022) 60:3091–3112



1 3

as well as the left atrial appendage and the pulmonary 
veins of the LA (left atrial regions) using the  CARTO® 3 
EAM system (Biosense-Webster, Inc., Diamond Bar, CA, 
USA), so as to reconstruct a real-time 3D anatomical map 
before the ablation procedure. Signals were acquired from 
the 20 poles distributed among the five branches of the 
catheter, Fig. 4, characterized by consecutive inter-elec-
trode spacings d, at each branch, of 2, 6, and 2 mm, result-
ing in 20 u-EGMs associated at each mapping point. In 
order to evaluate performance of EIGDR-based markers, 
38 catheter positions were selected by an operator-depend-
ent visual approach. Specifically, we visually identified 
and manually annotated nineteen points clearly assignable 
to fibrotic and another nineteen points to non-fibrotic areas 
on the anatomic map. In order to guide this decision, the 
corresponding magnetic resonance image (MRI) was used 
as reference.

Three of the catheter positions selected at fibrosis showed 
poor electrode-tissue contact for one or more splines of the 
catheter. In addition, mapping points located at borderline 
areas between fibrotic and healthy tissues over the MRI and/
or the bipolar voltage map, which showed bipolar amplitudes 
unhealthy (< 0.1 mV) or poor healthy (< 0.5 mV), have been 
excluded from the analysis.

EAM data and MRI were co-registered with the ADAS 
3D Medical imaging software (ADAS-3D, Barcelona, 
Spain), as shown in Fig. 5. That co-register was performed 
by manually selecting some landmarks (between six and ten) 
in specific areas (such as the pulmonary veins and the atrial 
appendage) of the meshes. In order to determine how patho-
logical the tissue is, the methodology described in [32] was 
used. Following the image intensity ratio (IIR) based thresh-
olding, a color-coded 3D mesh was automatically generated, 
showing in blue the healthy tissue (IIR<1.2) and in red the 
dense fibrosis (IIR>1.32) (Fig. 5).

The u-EGMs were acquired with a sampling frequency 
of 1 kHz during 2.5 s (2500 samples) and include several 
activations, each containing the atrial depolarization, fol-
lowed by the ventricular depolarization and repolarization. 
Unipolar signals were then high-pass filtered with 30 Hz 
cutoff frequency, using a third order Butterworth infinite 
impulse response filter, so as to reduce artefacts and empha-
size more rapid components. An example of filtered u-EGMs 
at two different mapping points marked on the anatomical 
3D mesh of the atrium is presented in Fig. 6, where the 
atrial activation was plotted. At each catheter position, 
u-EGMs were considered in the following five four-electrode 
cliques, according to the pole numbering in Fig. 4: (3,4,7,8), 
(7,8,11,12), (11,12,15,16), (15,16,19,20), (19,20,3,4) and 
the five-electrode clique (4,8,12,16,20), for their smaller 
inter-electrode spacing. As example, cliques (3,4,7,8) and 
(4,8,12,16,20) are depicted in Fig. 4.

2.4  Eigenvalue analysis

Unipolar signals in the clique can be compactly represented 
by the following N × K matrix, K ∈ {4, 9} , as in [33]:

where the k-th column, �k , contains the samples of the uni-
polar signal uk(n) , modeled later in Section 2.6:

We propose and assess EIGDR values from the clique 
u-EGMs in (1) to detect fibrosis. The N eigenvalues 
{�1,⋯ , �N} of the N × N intra-signal correlation matrix 
�u = E[�k�

T
k
] were obtained from the following correlation 

matrix estimate within each clique:

The matrix �u is the intra-signal sample correlation matrix, 
whose eigenvalues reflect the degree of morphological vari-
ability among the signals in the clique.

For each clique, the ratio R of the largest (i.e. dominant) 
eigenvalue �1 and the remaining ones was estimated:

By comparing the first eigenvalue to the sum of the others, 
we are able to quantify the u-EGM energy percentage which 
can be explained by the shape of the first eigenvector. The 
ratio R would be much higher than one if all u-EGMs were 
essentially identical to each other and all the waveforms 
can be explained with just the shape of the first eigenvector 
(i.e., low morphological variability). On the contrary, when 
waveform dispersion appears, the eigenvalues from �2 to �N 
become higher, thus reducing the ratio R.

2.5  Wave alignment

Eigenvalues of �̂u were computed from the original 
u-EGMs and after intra-clique time alignment, proposed 
to compensate the effect that different activation wavefront 
arrival times have on the EIGDR. In this case, unipolar 
signals were aligned according to Woody’s iterative pro-
cedure [34, 35]: 

1) at first l-th iteration, l = 0 , the relative time delay 𝜏k,0 
between each unipolar signal uk(n) and the u-EGM with 
the highest peak-to-peak amplitude within the clique 
umax(n) (assumed as initial reference signal) was esti-
mated by maximizing their cross-correlation: 

(1)� =
[
�1 ⋯ �K

]
,

(2)�k =
[
uk(0) ⋯ uk(N − 1)

]T
.

(3)�̂u =
1

K
��

T .

(4)R =
�1∑N

n=2
�n

.
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2) from the relative time delays, the average of the shifted 
signals uk(n − 𝜏k,0) within the clique was calculated: 

3) in each l-th iteration, l > 0 , the cross-correlation between 
each uk(n) and the average signal obtained in the pre-
vious iteration ūl−1(n) (assumed as updated reference 
signal) is maximized to find the updated relative time 
delays 𝜏k,l : 

 This process is repeated iteratively until the delay esti-
mates no longer change.

Eigenvalues of the intra-signal correlation matrix of the 
aligned u-EGMs were calculated in the same way as for their 
non-aligned version, thus leading to the formulation of the 
ratio RA (where the upper index denotes that the ratio comes 
from aligned u-EGMs within the clique) analogous to (4).

2.6  Unipolar signal modeling

The u-EGM signals within a clique located at (i, j) posi-
tion within the MEA are indexed as uk(n) , k ∈ {1,⋯ ,K} , 
K ∈ {4, 9} . Assuming a plane wave propagation, the dif-
ferent electrodes in a clique are activated at different times, 
and therefore u-EGMs in the clique uk(n) will be delayed 
versions among them, plus noise and non-homogeneous 
components. Therefore, they can be modeled, analogously 
to [36] for misaligned signal ensembles, as:

where:

• s(n) is the u-EGM activation signal component assumed 
to be space invariant in the case of a plane wave propaga-
tion and homogeneous tissue free of fibrosis. Its energy 
is denoted as Es.

• �k is the delay of the k-th u-EGM s(n − �k) with respect 
to a time reference within the clique, introduced later. 
Delays �k are zero-mean and characterized by their vari-
ance in the normal tissue �2

�
 . In fibrotic areas, the reduc-

tion in conduction velocity with respect to healthy tissue 

(5)𝜏k,0 = argmax
𝜏

N−1∑
n=0

uk(n − 𝜏) umax(n);

(6)ū0(n) =
1

K

K∑
k=1

uk
(
n − 𝜏k,0

)
;

(7)𝜏k,l = argmax
𝜏

N−1∑
n=0

uk(n − 𝜏) ūl−1(n).

(8)uk(n) = �ks(n − �k) + fk(n) + vk(n)

{
k = 1,⋯ ,K

n = 1,⋯ ,N
,

increases the variance of the �k up to �2�2
�
 , where the 

factor � > 1 in fibrosis and � = 1 in non-fibrotic tissue.
• �k is a parameter accounting for u-EGM amplitude reduction 

between fibrotic, 𝛼k < 1 , and healthy, �k = 1 , tissues. It is 
modeled as a random variable with mean � and variance �2

�
 

( � = 1 , �2
�
= 0 in healthy tissue; 𝛼 < 1 , 𝜎2

𝛼
> 0 in fibrosis).

• fk(n) is a zero-mean fibrotic signal component across the 
clique with variance �2

f
 . In healthy tissue fk(n) = 0.

• vk(n) is the zero-mean noise component at the k-th 
u-EGM, with variance �2

v
 , Gaussian, white and uncor-

related with �k and fk(n).

Four different scenarios for each uk(n) were considered in 
this study, as already proposed in [37], with/without fibro-
sis and with/without prior alignment. Their approximate 
theoretical eigenvalues and EIGDR were derived following 
parallel methodology to that used in [36] for repetitive signal 
ensemble alignment, as detailed below.

2.6.1  Prior alignment with no fibrosis

For perfectly aligned signals without fibrosis, i.e., 
uk(n) = s(n) + vk(n) , the intra-signal correlation matrix is 
given by:

where � is the N × N  identity matrix and data vector � , 
� =

[
s(0) ⋯ s(N − 1)

]T , is easily shown to be proportional 
to the first eigenvector of �u , whereas the remaining eigen-
vectors are chosen arbitrarily as long as they are orthogonal 
to the first. The eigenvalues are given by:

where Es = �
T
� is the signal energy. For real u-EGM, signal 

energy is much larger than noise energy, Es >> N𝜎2
v
 , and 

N >> 1 , resulting in an EIGDR of:

2.6.2  No prior alignment and no fibrosis

We now analyze the case of raw u-EGMs in the clique where 
misalignment of s(n) is assumed to be present in each k-
th u-EGM, uk(n) = s(n − �k) + vk(n) . Then, to estimate the 
eigenvalues we can approximate uk(n) , for small �k , as [36]:

(9)�u = ��
T
+ �2

v
�,

(10)�n =

{
Es + �2

v
n = 1

�2
v

n = 2,⋯ ,N,

(11)R
A
≈

Es

N�2
v

.

(12)uk(n) ≈ s(n) − �ks
�
(n) +

1

2
�2
k
s��(n) + vk(n),
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where s�(n) and s��(n) denote the first and second derivative 
of s(n), respectively. The intra-signal correlation matrix can 
be expressed as:

where �′ and �′′ are the vector counterparts of s�(n) and s��(n) , 
respectively. It can be shown that the eigenvalues of �u are 
approximated by [36]:

where Es� = �
�T
�
� is the derivative signal energy. The result-

ing EIGDR is approximated by:

Note that when �� = 0 (i.e., perfect alignment) this equation 
becomes equal to (11).

2.6.3  Prior alignment and fibrosis

When u-EGMs are first aligned in fibrosis zones, each of 
them can be modeled as uk(n) = �ks(n) + fk(n) + vk(n) . The 
correlation matrix results in:

and their corresponding eigenvalues are:

which lead to:

where the parameters used have already been introduced 
at the beginning of this section and upper A and lower F  
indices in RA

F
 denote that the calculations are obtained from 

intra-clique aligned u-EGMs in fibrotic tissue, respectively.

2.6.4  No prior alignment with fibrosis

When raw u-EGMs come from fibrotic areas, each of them 
can be modeled as uk(n) = �ks(n − �k) + fk(n) + vk(n) . In 
this case, the delay �k has larger standard deviation than in 

(13)�u ≈

(
��

T
+

�2
�

2
(��

��T
+ �

��
�
T
)

)
+ �2

�
�
�
�
�T
+ �2

v
�,

(14)�n ≈

⎧
⎪⎨⎪⎩

Es − �2
�
Es� + �2

v
n = 1

�2
�
Es� + �2

v
n = 2

�2
v

n = 3,⋯ ,N,

(15)R ≈
Es − �2

�
Es�

�2
�
Es� + N�2

v

.

(16)�u =

(
�
2
+ �2

�

)
��

T
+ �2

v
� + �2

f
�,

(17)�n ≈

{(
�
2
+ �2

�

)
Es + �2

v
+ �2

f
n = 1

�2
v
+ �2

f
n = 2,⋯ ,N,

(18)
R

A

F
≈

Es

N(�2
v
+�2

f
)(

�
2
+�2

�

)
,

non-fibrotic areas, with the extra delay controlled by a multi-
plicative factor � , thus resulting in the following correlation 
matrix:

which is similar to the case without fibrosis in (13) but with 
different proportionality factor and two different random 
components, corresponding to noise and fibrosis. The eigen-
values will similarly be approximated by:

The corresponding EIGDR is approximated by:

A summary of eigenvalues and the EIGDR are reported in 
Table 2 for the four scenarios.

Note that if the inter-signal correlation matrix, 
�

∙

u
= E[�(n)�T (n)] , with �(n) =

[
u1(n) ⋯ uK(n)

]T  , had 
been computed rather than the intra-signal correlation 
matrix �u , for the more general case with fibrosis and mis-
alignment, and following a derivation parallel to the one 
presented in [36], the eigenvalues would have resulted in:

When computing the EIGDRs for this matrix the results are 
approximately the same as for �u.

In practice, the matrix is estimated as:

rather than with the theoretical expectations. From these 
estimates we observe that matrix �̂∙

u
 is full rank while matrix 

�̂u (estimated as in (3)) is not ( N > K ), circumstance that 
does not represent a limitation since no matrix inversions 
are required. In addition, as shown in [33], for the data-
estimated autocorrelation matrices with N > K , �i =

N

K
�∙
i
 

( i ≤ K ) and �i = 0 ( i > K ), again showing equivalence of 
the EIGDR ratios for both matrices when estimated from the 

(19)

�u ≈(�
2
+ �2

�
)

[(
��

T
+

�2�2
�

2
(��

��T
+ �

��
�
T
)

)
+ �2�2

�
�
�
�
�T

]

+ �2

f
� + �2

v
�,

(20)

�n ≈

⎧
⎪⎨⎪⎩

�
�
2
+ �2

�

�
(Es − �2�2

�
Es� ) + �2

v
+ �2

f
n = 1�

�
2
+ �2

�

�
�2�2

�
Es� + �2

v
+ �2

f
n = 2

�2
v
+ �2

f
n = 3,⋯ ,N.

(21)
RF ≈

Es − �2�2
�
Es�

�2�2
�
Es� +

N(�2
v
+�2

f
)(

�
2
+�2

�

)
.

(22)

�∙
n
≈

⎧
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K

N

�
�
2
+ �2

�

�
(Es − �2�2

�
Es� ) + �2

v
+ �2

f
n = 1

K

N

�
�
2
+ �2

�

�
�2�2

�
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v
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n = 2
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f
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=

1

N
�

T
�,
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available data. Therefore just computational considerations 
can advise to use one or the other.

2.7  EIGDR‑based fibrosis markers

According to the previous model, three main differential 
effects on signal shape, amplitude and arrival times are 
expected to occur in fibrotic as compared to non-fibrotic 
tissue: 

1) higher morphology dispersion represented by the 
u-EGM signal component fk(n) and quantified by �2

f
;

2) lower and less homogeneous signal amplitudes 
represented by �k and quantified by 𝛼 < 1 and �2

�
 

((𝛼2
+ 𝜎2

𝛼
) < 1);

3) larger inter-signal misalignment within the clique as a 
result of slowed conduction and represented by delays �k 
with enlarged variance ( �2�2

�
 , 𝛽 > 1 ) relative to healthy 

tissue ( �2
�
).

In order to determine which ratio to use for discriminating 
F and NF tissues, we first compare the EIGDR computed 
with no prior alignment of u-EGMs and no fibrosis, R , with 
the case with fibrotic tissue, RF  , see Table 2. We observe 
that RF < R , since the numerator in RF  is smaller than in 
R as a result of � being larger than one, while the terms in 
denominator are larger, 𝛽2 > 1 , 𝜎2

f
> 0 and ( 𝛼2

+ 𝜎2
𝛼
) < 1 , as 

a combination of the three effects introduced by fibrosis. 
This result suggests the use of the ratio R , which becomes 
RF  in fibrosis, with a thresholding strategy to discriminate 
if the clique is at fibrotic or healthy tissue.

The same analysis can be done when comparing the 
EIGDR with prior alignment of u-EGMs and fibrosis, RA

F
 , 

with respect to its counterpart with no fibrosis, RA . In this 

case, only the terms 𝜎2
f
> 0 and ( 𝛼2

+ 𝜎2
𝛼
) < 1 are responsible 

of the difference, since �2
�
 has already been compensated for 

with alignment, resulting in RA

F
< R

A . This suggests that 
R

A may also be used as a thresholding strategy to discrimi-
nate fibrotic from healthy tissue.

In order to study which of the two options, R or RA , is 
more sensitive to fibrotic tissue characteristics, we analyze 
how the difference between R and RF  evolves by varying 
�2
�
 . For that purpose, we compute the ratio ΔRF  , which 

under the proposed signal model can be approximated by:

Its partial derivative with respect to �2
�
 is:

Typically 
(
1 − �2

(
�
2
+ �2

�

))
 > 0 in fibrosis since conduc-

tion velocity reduction is less prominent ( � ≈ 2 for high 
fibrosis, [38, 39]) than voltage attenuation ( � ≈ 0.3 [12]) and 
consequently the product 𝛽2𝛼2

< 1 . This results in 𝜕ΔRF

𝜕𝜎2
𝜏

< 0 , 
meaning that the lower the misalignment �2

�
 the larger ΔRF  , 

implying higher EIGDR differences between fibrotic, RF  , 
and healthy, R , tissue. This justifies the advantage of pre-
aligning u-EGMs in the cliques before EIGDR calculations, 
since the higher the misalignment �2

�
 , the lower ΔRF  and 

consequently the capacity of R to discriminate between 
fibrosis and non-fibrosis, and suggests that RA is better 
suited fibrosis marker than R.

(24)
ΔRF =

R

RF

≈

�2�2
�
Es� +

N(�2
v
+�2

f
)(

�
2
+�2

�

)

�2
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v

.

(25)
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��2
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−Es�N
(
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f
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v

(
1 − �2

(
�
2
+ �2

�

)))
(
�
2
+ �2

�

)(
�2
�
Es� + N�2

v

)2 .

Table 2  Signal models for non-aligned (NA) and aligned (A) u-EGMs at non-fibrotic (NF) and fibrotic (F) areas, with their respective eigenval-
ues �k and eigenvalue dominance ratios EIGDR

u-EGM model �n EIGDR

NA, NF uk(n) = s(n − �k) + vk(n)

�n ≈

⎧⎪⎨⎪⎩

(Es − �2
�
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v
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v
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2
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�
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2
v

A, NF uk(n) = s(n) + vk(n)
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{
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v
, n = 1

�2
v
, n = 2,⋯ ,N  

R
A
≈

Es

N�2
v

NA, F uk(n) = �ks(n − �k) + fk(n) + vk(n)
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Alternatively, we considered the ratio ΔRA of EIGDR 
computed from perfectly aligned u-EGMs with respect to 
misaligned original u-EGM signals, representing the gain in 
eigenvalue concentration produced by alignment:

This expression has been estimated for the more general case 
including fibrosis ( 𝜎2

f
> 0 ), so expressions RA

F
 and RF  are 

used. Nevertheless, it can certainly be computed at cliques 
on any tissue, fibrotic or non-fibrotic, and its theoretical 
value when no fibrosis is present can be retrieved from (26) 
just by making �f = 0 , �=1 , � = 1 , and �� = 0 . Sensitivity 
of ΔRA to fibrosis has been analyzed by deriving (26) with 
respect to the fibrosis-induced parameters. Therefore, deriv-
ing with respect to �2

f
 to see how ΔRA depends on the level 

of fibrosis, we obtain:

For small delays �k , Es ≫ 𝛽2𝜎2
𝜏
Es′ , this expression results in 

𝜕ΔRA

𝜕𝜎2
f

< 0 , implying that ΔRA gets reduced if the fibrotic 

component �2
f
 increases and suggesting the possibility of 

using ΔRA as a fibrosis marker, like R and RA . This behav-
ior is also corroborated by computing the derivative of ΔRA 
with respect to �2 , taking into account u-EGM amplitude 
reduction in fibrosis:

This expression results > 0 for small delays �k , confirming 
that the larger the fibrosis (i.e., the smaller �2 ), the smaller 
ΔR

A.
Nevertheless, under the same assumptions, the derivative 

of ΔRA with respect to �2 results in 𝜕ΔR
A

𝜕𝛽2
> 0:

meaning that the larger the reduction of velocity due to fibro-
sis (i.e., the higher � ), the greater ΔRA , thus showing an 
opposite effect.

However, as already said before, we expect that fibrosis 
effects on u-EGM amplitude and morphology, expressed by 
�
2 and �2

f
 , respectively, are much more marked than those on 

(26)
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)
,

conduction velocity given by �2 [40]. Therefore, we expect 
the index ΔRA to be reduced when fibrosis is more severe.

According to this analysis, three different EIGDR-based 
metrics revealed to be sensitive to the presence of fibrosis 
and therefore suitable to distinguish between fibrotic and non-
fibrotic areas: R , RA , which can be interpreted as measure-
ments of the shape homogeneity of the u-EGMs before and 
after time alignment, respectively, and the ratio between both, 
ΔR

A . Maps of R , RA and ΔRA were computed by process-
ing the complete MEA in the two clique sizes considered 
in the simulation study. Each map consists of color-coded 
pixels, representing EIGDR value at each clique. The 2 × 2 
configuration provides one EIGDR value for each square 
group of four electrodes with diagonal vertices at (i, j), and 
(i + 1, j + 1), i, j ∈ {1,⋯ , 14} , giving a total of 14 × 14 pixel 
maps for each proposed marker. The 3 × 3 clique provides one 
EIGDR value at each squared group of nine electrodes with 
diagonal vertices at (i, j) and (i + 2, j + 2) , i, j ∈ {1,⋯ , 13} , 
resulting in maps of 13 × 13 pixels, for R , RA and ΔRA.

2.8  EIGDR with variable electrode‑to‑tissue 
distance

When we introduce variable electrode-to-tissue distance, 
we need to modify the model by replacing s(n) with �ks(n) , 
being �k a random variable with mean � = 1 and variance 
�2
�
 indexing all the �i,j within the clique. Similar analysis as 

in previous subsections leads to obtain:

which just introduces a multiplying factor, (1 + �2
�
) , with 

respect to the ratios in (11) and (18), equal in both ratios, so 
preserving the fibrosis stratification value of RA biomarker. 
This occurs in contrast to b-EGM peak-to-peak marker, Vb

i,j
 , 

which is largely modified by the variable electrode-to-tissue 
distance, but a random way at each electrode, reducing its 
value as a stratification marker. Analogously:

which approximately result in the same multiplying factor 
(1 + �2

�
) with respect to ratios (15) and (21). Note that for small 

�� , N𝜎2
v
>> 𝜎2

𝜏
Es′ and then the approximation of a multiplying 

factor relating fixed with variable electrode-to-tissue distance 

(30)
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(31)R ≈

(Es − �2
�
Es� )(1 + �2

�
)

�2
�
Es� (1 + �2

�
) + N�2
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(32)
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holds. This again shows that R preserves the fibrotic stratifica-
tion value in variable electrode-to-tissue distance situations. 
The same analysis also applies to the ratio ΔRA.

Also note that in presence of more complex fibrillatory prop-
agation patterns, changes occurring in the u-EGM morphology 
from electrode to electrode can initially be thought as a planar 
wave propagating in different directions. This will also result in 
an extra k-dependent amplitude component into the sk(n − �k) 
signal in the model of (8), depending of the angle of the planar 
wave, and thus also evidence not to largely affect the EIGDR.

2.9  EIGDR in real data from  PentaRay®

Values of R , RA and ΔRA were also computed within the 
four- and five-electrode cliques considered at each map-
ping point acquired by the  PentaRay® catheter. In order to 
quantify the atrial activity related dispersion, an atrial depo-
larization window of 100 ms fixed length ( N = 100 ) was 
extracted from the last recorded activation at each recording 
site. Therefore, the proposed EIGDR-based markers were 
calculated using windowed signals in each clique, aligning 
them when required as explained in Section 2.5.

2.10  Voltage‑based fibrosis markers

We also considered bipolar voltage maps based on the peak-to-
peak amplitudes Vb- x

i,j
 and Vb- y

i,j
 of the b-EGMs in each of the 

two MEA directions, bx
i,j
(n) , i ∈ {1,⋯ , 14} , j ∈ {1,⋯ , 15} , 

and by
i,j
(n) , i ∈ {1,⋯ , 15} , j ∈ {1,⋯ , 14} , as well as on their 

max imum Vb- m
i,j

= max{Vb- x
i,j

,V
b- y

i,j
} ,  i ∈ {1,⋯ , 14} , 

j ∈ {1,⋯ , 14} . These peak-to-peak amplitude-based maps 
were considered and their performance for fibrosis detection 
were compared against EIGDR maps. Each color-coded pixel 
bipolar map presents the same resolution as 2 × 2 cliques 
EIGDR maps, providing 14 × 14 pixels when processing the 
whole MEA.

Regarding clinical data, for each mapping point we 
derived b-EGMs along the  PentaRay® catheter branches 
from filtered u-EGMs. Peak-to-peak amplitudes were com-
puted using atrial depolarization windows extracted from the 
last recorded activation of b-EGMs at each bipole.

2.11  Performance assessment for fibrosis detection

Both EIGDR and bipolar mapping strategies were estimated 
and tested for each noisy realization uq

i,j
(n) , i, j ∈ {1,⋯ , 15} , 

q ∈ {1,⋯ , 2000} considered in this study. For each map 
type, results are reported by aggregating the three different 
MEA orientations. This aggregated version represents a sce-
nario where the relative angle of the propagation direction 
with respect to the catheter was not known a priori, thus 
being more realistic.

In order to quantitatively evaluate the ability of the differ-
ent maps as markers for fibrosis detection, i.e. in discriminat-
ing pixels associated to the fibrotic patch from those related 
to non-fibrotic tissue, receiver operating characteristic (ROC) 
curves were used. Two ground-truth masks were created for 
that purpose, with the resolution of 14 × 14 and 13 × 13 maps, 
by labeling whether a clique (or an electrode pair in case of 
bipolar maps) lies within the fibrotic or the non-fibrotic area. 
In a first analysis, the 14 × 14 ground-truth mask was created 
by assigning value 1 if the four electrodes within a 2 × 2 clique 
lie in the fibrotic area, and value 0 if the four electrodes lie 
in the non-fibrotic area. In a similar way, the 13 × 13 ground-
truth mask was created by considering if the nine electrodes 
within a 3 × 3 clique fully lie or not in fibrotic/non-fibrotic tis-
sue. Cliques with some electrodes inside and some outside the 
fibrotic patch were not labeled and therefore discarded in the 
evaluation. The two ground-truth masks used in this study are 
shown in Fig. 7(a) and (b), for evaluating 14× 14 maps (both 
EIGDR and bipolar) and 13× 13 maps, respectively. Then, in a 
further analysis, two binary 14 × 14 and 13 × 13 ground-truth 
masks including those mixed cliques with electrodes inside and 
outside fibrosis region were considered for the evaluation. For 
that purpose, cliques whose distance between their central point 
and the center of the fibrotic patch was shorter than the radius 
of the patch were labeled as fibrotic. On the contrary, when this 
distance was longer than the radius, corresponding cliques were 
classified as non-fibrotic. For each EIGDR and bipolar mapping 
strategy, ROC curves were computed by varying the threshold 
for fibrosis identification, obtaining sensitivity and specificity 
in the detection of the fibrotic area [41]. In this context, true 
positive denotes the number of cliques correctly identified as 
fibrotic, false negative represents the number of missed cliques 
in the fibrotic area, true negative stands for the number of 
cliques correctly identified as non-fibrotic and false positive is 
the number of cliques incorrectly detected as fibrotic. The maxi-
mum detection accuracy (ACC ), defined as the highest number 
of correctly identified cliques (fibrosis or non-fibrosis) divided 
by the total number of assessed cliques, was used as a measure 
of the overall fibrosis detection ability of each map. Values of 
ACC , as well as of the threshold corresponding to ACC , were 
computed for each map aggregated version considered in this 
work. Averaged results over the noisy realizations were then 
computed and evaluated for performance measurements.

In the clinical data analysis, at each F and NF mapping 
point, median values of the three ratios R , RA and ΔRA 
were calculated over the six cliques considered. Analo-
gously, the median and maximum values, Vb and Vb-m , 
respectively, among the five peak-to-peak bipolar amplitudes 
computed along the catheter branches and associated with 
the bipoles closest to the its center ((3,4), (7,8), (11,12), 
(15,16) and (19,20), according to Fig. 4), were computed at 
each mapping point in fibrosis and healthy tissue. In order 
to compare markers between F and NF tissues, median and 
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interquartile range (IQR) over all the EIGDR-based indices 
and bipolar amplitudes were computed at both F and NF 
points, separately, as well as the p-values of the right-tailed 
Wilcoxon rank-sum test referring to the comparison of the 
metrics between the two areas. Finally, median and IQR of 
EIGDR indices and bipolar amplitudes were calculated over 
the six cliques and the five innermost bipoles, respectively, 
of all mapping points considered, at both F and NF areas, as 
well as their p-values referring to the global comparison of 
the metrics between those F and NF areas.

3  Results

3.1  Analysis of simulated data

An example of the mapping strategies (computed with 3 × 3 
cliques) for Ψ = 45◦ , variable electrode-to-tissue distance and 
without noise, is shown for EIGDR and bipolar maps at upper 
panels in Fig. 8(a) and (b), respectively. When noise is added 
at level of �v = 46.4 �V , results for one of the two thousand 
noisy realizations are presented at Fig. 8(c) and (d). In the 
lower panels, the fibrotic areas identified by using the thresh-
olds that maximize the ACC  are shown for each mapping strat-
egy. Blue (brown) color inside the circle encompassing fibrotic 
patch denotes false negative (true positive), while outside 
denotes true negative (false positive) detection, respectively.

We reported values of R , RA and ΔRA computed from 
noisy ( �v = 46.4 �V  ) u-EGMs in the non-fibrotic clique 
(i, j) = (3, 3) : R = 3.39 , RA

= 7.76 and ΔRA
= 2.29 , as well 

as in the fibrotic clique (i, j) = (8, 7) : R = 1.36 , RA
= 2.44 

and ΔRA
= 1.79 , which are consistent with derivations of 

the models presented in Section 2.7.
Results in this example illustrate that EIGDR maps performed 

from noise-free time-aligned u-EGMs, RA and ΔRA , plotted 
at central and rightmost columns in Fig. 8(a), respectively, pre-
sent fibrosis detection performance comparable to bipolar maps 
obtained as the maximum voltage of both MEA directions, Vb-m , 
shown at rightmost column in Fig. 8(b). However, when u-EGMs 
are affected by noise, EIGDR maps (upper row at Fig. 8(c)) are 
more robust than bipolar maps (upper row at Fig. 8(d)), being RA 
the one showing the best fibrosis discrimination performance.

ACC  values of all mapping strategies considered in this 
study are summarized in Table 3, assuming fixed or variable 
distance between MEA and tissue, and five different noise 
levels (reported as standard deviations �v and average peak-
to-peak amplitudes Vpp,v ). For each map, thresholds having 
these maximum detection accuracy values were also reported 
in Table 4, where they were given in voltage units in case 
of b-EGM amplitude-based maps. Both ACC  and threshold 
values were calculated and reported by aggregating the three 
catheter orientations with respect to the propagation direc-
tion. Despite this, bipolar voltage maps exhibit performance Ta
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strongly dependent on the relative orientation between 
MEA and propagation direction (e.g., ACC = 68.7% and 
ACC = 90.8% for Vb-x and Vb-y , respectively, for fixed cath-
eter-to-tissue distance and �v = 0.0 �V  ). For �v = 46.4 �V  , 
Vb-y and Vb-m are more affected by noise than EIGDR maps, 
both for fixed and variable electrode-to-tissue distance.

The selection of the thresholds for the EIGDR implies 
another challenge. This can be addressed by observing that 
values reached by RA at healthy tissue (11) can be obtained 
as the ratio between the estimated energy Ês and N times the 
estimate of the noise variance �̂�2

v
 , R̂

A
= Ês∕(N�̂�

2
v
) . The value 

of Ês can be estimated from the data (e.g., by averaging the 
energy of the u-EGMs in the clique), while the noise variance 
�̂�2
v
 can be estimated as the u-EGM signal variance in areas 

electrically silent. The threshold, T  , can be fixed to a value 
T = Ês∕(N�̂�

2
v
) − Δ , where Δ will control the trade-off between 

required sensitivity and specificity: small Δ will provide high 
sensitivity and low specificity, and the reverse for large Δ . Note 
that from results reported in this subsection for a non-fibrotic 
site such as (i, j) = (3, 3) with noise �v = 46.4�V , we measured 
R̂

A
= 7.76 , while the optimum threshold reported in Table 4 

for this noise level is 3.5, corresponding to a Δ̂ = 4.26 , which 
can be taken as a reference value. Similar analysis for the same 
noise level gives Δ values estimates of 1.7 for R and 0.39 for 
ΔR

A , as quantities to subtract to the estimates of R̂ and Δ̂RA 
at non-fibrotic areas to derive usable threshold values in real 
clinical settings. These estimates will require additionally an 
estimate of the �̂�𝜏 and Ês′ , see Eqs. (15) and (26), which can be 
computed, e.g., from the standard deviation of estimated delays 
in a clique and from the derivative of the aligned and averaged 
u-EGMs in the clique, respectively.

Bipolar voltage map Vb-m identifies the fibrotic area with 
an ACC  of 96.2% when distance between MEA and tissue is 
fixed and u-EGMs are not affected by noise ( �v = 0.0 �V  ). 
Nevertheless, this performance reduces to ACC = 92.5 ± 1.1% 
when the electrode-to-tissue distance is variable, and further 
when increasing noise level, reaching values 86.9±1.1% and 
86.1±1.2% for the highest noise level ( �v = 46.4 �V ), in case 
of fixed and variable electrode-to-tissue distance, respectively. 
On the other hand, RA performed with 3 × 3 cliques is more 
robust to the effect of variable distance than Vb-m , presenting 
ACC = 92.1% and ACC = 92.3 ± 0.8% for fixed and variable 
catheter-to-tissue distance, respectively. In addition, it achieves 
ACC = 94.2 ± 1.6% when �v = 46.4 �V , for both fixed and 
variable distance scenarios, being consistent with example in 
Fig. 8. The same behavior has been observed when studying the 
three MEA orientations separately. For the highest noise level 
under test, and with 3 × 3 cliques, RA achieves greater ACC  
values than Vb-m . In particular, RA reaches 95±2%, 95±3%, and 
95±3% for Ψ = 0◦ , 30◦ , and 45◦ , respectively, both with fixed 
and variable electrode-to-tissue distances, while Vb-m reaches 
88±2%, 89±2%, and 90±2% with fixed distance, and 87±2%, 
88±2% and 89 ±2%, with variable distance, for Ψ = 0◦ , 30◦ , Ta
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and 45◦ , respectively. If the evaluation is performed without 
exclusion of cliques which have electrodes inside and outside 
the fibrotic patch, RA still provides higher ACC  (83.0 ± 1.5%) 
than Vb-m (81.2 ± 1.21%), in the largest noise contamination 
and with variable electrode-to-tissue distance. Moreover, when 
u-EGMs are not affected by noise, ACC  goes from 80.2 % to 
80.1 ± 0.6 % for RA while ACC  reduces from 90.8 % to 87.2 

± 1.0 % for Vb-m , from fixed to variable electrode-to-tissue 
distance.

3.2  Analysis of clinical data

Table 5 shows the median values and IQR of the different biomark-
ers computed at nineteen mapping points at fibrotic (F) and other 

Table 5  Median values 
of EIGDR indices ( R,RA

andΔRA ) computed over the 
six cliques considered for the 
 PentaRay® catheter, median 
( Vb ) and maximum ( Vb-m ) 
bipolar amplitude computed 
over the five innermost 
electrode pairs along the splines 
of the catheter, at different 
mapping points, taken at fibrotic 
(F) and non-fibrotic (NF) 
areas, respectively. Median and 
interquartile range (IQR) were 
also performed among F and 
NF points, separately

* refers to the comparison of markers between F and NF areas

# Catheter site R R
A

ΔR
A Vb(mV) Vb-m(mV)

F 1 3.42 4.79 1.04 0.04 0.60
2 6.18 6.18 1.00 0.90 4.46
3 2.45 4.75 1.95 1.65 3.61
4 3.25 8.03 2.18 0.10 2.31
5 1.47 5.35 3.03 1.46 1.63
6 2.33 6.46 4.22 1.35 1.42
7 2.22 2.24 1.02 0.16 0.30
8 2.42 9.52 4.30 0.39 1.53
9 2.18 7.24 4.17 1.31 3.06
10 2.19 8.05 4.31 1.30 1.43
11 3.40 9.92 3.06 0.25 0.50
12 1.77 16.2 9.83 1.91 3.52
13 1.56 2.56 1.57 1.01 2.00
14 2.60 13.4 3.94 0.44 0.51
15 0.91 2.27 1.83 0.84 3.73
16 1.05 1.29 1.38 0.45 1.20
17 1.18 4.90 4.57 1.46 1.89
18 6.07 6.31 1.00 0.06 0.09
19 1.80 3.70 3.00 0.37 5.04
median/IQR 2.22/1.47 6.18/4.08 3.00/2.78 0.84/1.05 1.63/2.66

NF 1 4.54 8.08 2.44 1.42 2.06
2 1.47 15.4 12.4 3.45 7.93
3 2.33 6.46 2.61 1.15 1.72
4 3.63 7.33 1.81 0.22 0.80
5 2.06 4.62 1.66 1.36 4.51
6 2.29 7.51 3.29 0.99 2.51
7 1.51 16.5 9.97 6.90 10.2
8 1.92 9.69 5.03 0.24 1.43
9 1.65 6.51 3.14 0.88 1.39
10 2.69 14.1 4.90 0.46 0.84
11 2.45 4.75 1.95 1.65 3.61
12 2.70 5.10 1.86 0.86 2.03
13 2.95 6.29 1.75 0.14 0.39
14 4.31 16.5 2.96 0.21 1.54
15 2.19 7.61 3.54 0.25 1.36
16 3.17 6.72 1.76 1.10 1.78
17 2.72 6.11 1.80 1.05 4.02
18 2.23 12.5 4.03 0.67 2.20
19 2.61 5.89 2.22 0.27 1.20
median/IQR 2.45/0.80 7.33/5.62 2.61/2.09 0.88/1.05 1.72/2.09
p-value* 0.17 0.03 0.26 0.35 0.32
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nineteen at non-fibrotic (NF) areas. Two of them are depicted in 
Fig. 6. It can be observed that median values related to R and RA 
indices evaluated at NF tissue are greater than their counterparts at 
F points. When u-EGMs are not previously time aligned, R shows 
the following median [IQR] values: 2.45 [0.80] vs. 2.22 [1.47], at 
NF vs. F points, respectively. The same occurs when considering 
R

A (7.35 [5.62] vs. 6.18 [4.08]), which revealed to be significantly 
lower at F than at NF areas (Wilcoxon rank-sum test, p-value<0.05).

On the other hand, when considering each clique or bipolar 
measurement independently, as reported in Table 6, EIGDR mark-
ers based on the alignment of u-EGMs showed to be significantly 
greater at NF than their counterparts at F areas, assuming the fol-
lowing median [IQR] values: 7.42 [6.74] and 2.67 [3.25] vs. 5.85 
[5.62] and 2.17 [3.12] for RA and ΔRA at non-fibrotic and fibrotic 
tissue, respectively. These results are consistent with the theoreti-
cal model and overtake fibrosis discrimination performance of Vb 
(Wilcoxon rank-sum test, p-value<0.05).

4  Discussion

4.1  Clinical significance of the work

Detection of atrial fibrosis is capital for guiding catheter abla-
tion strategies in AF. The typical intra-procedural assessment 
of atrial fibrosis by means bipolar voltage thresholding pre-
sents well-established limitations related to catheter-wavefront 
orientation, catheter-tissue contact, electrodes size and inter-
electrode spacing, thus limiting its reliability as surrogate 
of fibrosis. Besides this, it is well-known that when using 

threshold-based approach, EGM morphology information 
and time relationship among adjacent electrodes are missing. 
Despite late gadolinium enhancement-magnetic resonance 
imaging represents the only non-invasive tool for atrial fibrosis 
diagnosis, its reproducibility remains under debate [42], as well 
as its utility in clinical settings [43].

In this work, we proposed u-EGMs eigenvalue dominance ratios 
(EIGDR) to quantify voltage waveform dispersion and investigated 
their performance as markers in discriminating fibrotic and non-
fibrotic areas, by using a 2D simulated tissue including diffuse fibro-
sis. The hypothesis behind this approach is that underlying fibrosis 
in the atrium is reflected not only in the reduction of the waveform 
amplitude but also in the increased inter-signal dispersion in cliques 
of nearby electrodes, and that this dispersion will be insensitive to 
electrode-to-tissue distance as opposite to b-EGM amplitudes.

4.2  Performance evaluation of fibrosis markers 
with simulated data

We analyzed maps computed from noise-free u-EGMs, as 
well as from u-EGMs corrupted by homogeneous noise 

Table 6  Median and interquartile range (IQR) of the EIGDR indices 
( R , RA and ΔRA ) computed individually on the six cliques of all 
catheter sites considered, and of bipolar amplitude values ( Vb ) com-
puted individually on the five innermost electrode pairs of all catheter 
sites, at fibrotic (F) and non-fibrotic (NF) areas

* refers to the comparison of markers between F and NF areas

R R
A

ΔR
A Vb (mV)

F median/IQR 2.14/2.13 5.85/5.62 2.17/3.12 0.55/1.26
NF median/IQR 2.43/2.34 7.42/6.74 2.67/3.25 0.80/1.24

p-value* 0.08 0.0004 0.01 0.16

Fig. 1  (a) Activation distribu-
tion at a particular time instant 
over the 2D tissue used in this 
work, including the fibrotic 
patch. Black arrows indicate 
propagation wavefront direction. 
(b) The three MEA orienta-
tions with respect to the tissue 
considered in this study: Ψ = 0◦ 
(leftmost), Ψ = 30◦ (middle) 
and Ψ = 45◦ (rightmost), where 
the red circle encompasses the 
fibrotic tissue area. It should be 
noted that representation in (a) 
refers to the relative orientation 
between tissue and propaga-
tion direction corresponding to 
Ψ = 0◦

(b)

(a)

4

resting tissue

stimulation edge

4

wavefront

Ψ = 0°

4

4

4

4

4

4
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levels. As a first step, the distance between each electrode 
of a square MEA and tissue was assumed to be fixed at 1 
mm. Then, in a further analysis, that distance was assumed 

to be variable following a normal distribution, so as to better 
approach the real situation where there is no guarantee of 
maintaining a perfect contact during the mapping.

Fig. 2  Arrangements of four (a) 
and nine (b) electrodes (2× 2 and 
3 × 3 cliques, respectively) from 
the MEA

(a)

(b)

4

4

2 × 2

3 × 3

Fig. 3  Upper panel (a): action 
potentials (APs) in persistent 
atrial fibrillation (cAF), reg-
istered in two different nodes 
from the simulation mesh: in 
a cardiomyocyte outside the 
fibrotic patch (light blue line) 
and in a cardiomyocyte inside 
the fibrotic patch coupled with 
two fibroblasts (orange line). In 
order to show the effect of the 
applied electrical remodeling, 
APs were also shown in control 
conditions, from different 
simulations not including elec-
trophysiological remodeling and 
not used in this work (yellow 
and purple lines, for uncoupled 
and coupled cardiomyocytes, 
respectively). Lower panel: 
Noisy unipolar EGMs uq

i,j
(n) 

( �v = 46.4 �V  ) recorded in 
non-fibrotic, (i, j) = (3, 3) , 
and fibrotic (i, j) = (8, 7) tis-
sue areas (blue and red line, 
respectively) when Ψ = 0◦ , at 
electrode-to-tissue distances of 
�3,3 = �8,7 = 0.8 mm (b) and 
�3,3 = �8,7 = 1.2 mm (c)

(a)

(b) (c)
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Our results show that reducing misalignment among 
u-EGMs within the clique improves fibrosis detection abil-
ity of the proposed EIGDR-based index. This is in agree-
ment with other studies where time alignment of b-EGMs 
has shown to be beneficial for electroanatomical mapping 
strategies robustness [8]. The index RA provides comparable 
fibrosis detection accuracy to the one of maximum bipolar 
voltage maps when u-EGMs are not affected by noise, and 
better when high noise levels are present ( �v ≥ 23.2 �V ), for 
both fixed and variable electrode-to-tissue distances.

Results obtained by considering the three MEA orien-
tations separately reinforce the consideration of RA as an 
index worth to be analyzed in extended studies with real 
recordings for discriminating between fibrotic and normal 
areas, also pointing out the larger impact of catheter orienta-
tion in bipolar amplitudes than in EIGDR metrics.

In addition, if the evaluation is performed without exclu-
sion of cliques which have electrodes inside and outside the 
fibrotic patch, similar conclusions, with reduced difference 
ranges, can be drawn. The ratio RA still shows higher ACC  in 
the largest noise contamination and with variable electrode-
to-tissue distance. Moreover, EIGDR-based markers reveal to 
be more robust to the effect of variable distance than bipolar 
maps, especially when u-EGMs are not affected by noise.

Regarding threshold values corresponding to the maxi-
mum fibrosis detection accuracy, our findings reveal that 
the thresholds needed to maximize accuracy of bipolar 
maps Vb-y and Vb-m are greater than the one typically used in 
clinical settings (0.5 �V  ), whereas Vb-x presents lower volt-
age threshold. This is explained by the fact that there is no 
projection of wavefront propagation along the x-axis of the 
MEA when propagation orientation is Ψ = 0◦.

4.3  Performance evaluation of fibrosis markers 
with clinical data

In the present study, we also tested the ability of the EIGDR-
based markers to characterize the fibrotic substrate consid-
ering different mapping points acquired with a  PentaRay® 

catheter within fibrotic and non-fibrotic areas over the LA 
anatomical map, using MRI as reference for that purpose.

The electrode clique organization, referred to a fixed structure 
catheter like the  AdvisorTM HD Grid, was extended to a flexible 
structure catheter like the  PentaRay®, where the inter-electrode 
spacing within the clique may vary at different acquisition 
points. Nevertheless, this does not represent a problem for the 
proposed method, as it is not dependent on electrode orientation.

Preliminary findings obtained from real u-EGMs in this 
paper reveal that the ratio based on time-aligned u-EGMs 
R

A is the only EIGDR-based marker between F and NF 
mapping points, also showing better discrimination power 
than bipolar amplitudes Vb and Vb-m typically used in clini-
cal settings. In addition, RA , together with ΔRA , proved to 
be the only indices capable to globally discriminate fibrosis 
from non-fibrotic tissue, regardless of the mapping points 
and cliques/bipoles considered at each of them.

21 3 4

5
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10

11

12

1314

1516

17

18
19

20

Fig. 4  The  PentaRay® catheter, where the 20 poles are highlighted. 
Two of the clique distributions considered around each catheter map-
ping point, with four (dashed blue line) and five (dashed orange line) 
electrodes, are also pointed out. This image was modified from the 
Biosense Webster catalog

Fig. 5  Posteroanterior (left) and 
anteroposterior (right) views 
of color-coded 3D mesh of 
MRI (showing dense fibrosis 
in red and healthy tissue in 
blue) generated by ADAS 3D 
co-registered with all EAM 
mapping points provided by 
CARTO 3 (gray). The 38 
mapping points selected over 
fibrotic and non-fibrotic areas 
to compute EIGDR and bipolar 
indices are highlighted in green 
and magenta, respectively

3105Medical & Biological Engineering & Computing (2022) 60:3091–3112



1 3

5  Limitations

Several limitations of this study need to be highlighted. First, 
we simulated a single scenario reproducing a simple propa-
gation pattern in a 2D atrial model, which largely simplifies 
the real 3D anatomical and electrophysiological situations.

Although a single plane wavefront that propagates in a 
homogeneous tissue lends itself well to approximating the 
propagation during pacing, the previous considerations do not 
allow us to extend quantitatively the results to other propaga-
tion patterns, such as circular waves, wave collisions, reentrant 
wave fronts, among others, and model conditions, including 
conduction anisotropy or patchy fibrosis. Nevertheless, even 

#2

#5

Fig. 6  3D reconstruction of the LA geometry (gray mesh) and corre-
sponding co-registered MRI, showing the different regional distribu-
tion patterns of gadolinium (red areas: latest contrast enhancement, 
blue areas: absence of latest contrast enhancement). In the geometri-
cal mesh, two of the mapping points acquired and considered in the 
analysis (point #5 at fibrosis, point #2 at non-fibrosis) are marked and 
color-coded according to their corresponding bipolar peak-to-peak 

amplitude. For each of them, the atrial activation windows extracted 
from the twenty filtered u-EGMs recorded with the  PentaRay® cath-
eter are also displayed. Note that not all displayed u-EGMs recorded 
at a particular catheter site belong to a clique, see Section  2.3, and 
therefore affect the EIGDR indices and bipolar amplitude computa-
tions

Fig. 7  (a) 14 × 14 and (b) 
13 × 13 ground-truth masks for 
evaluating fibrosis detection 
ability of maps performed with 
2 × 2 and 3 × 3 cliques, respec-
tively. Green squares represent 
the pixels corresponding to 
cliques with some electrodes 
inside and some outside the 
fibrotic patch, i.e. those cliques 
lying in the border separat-
ing the fibrotic patch from 
non-fibrotic tissue, which were 
excluded from the evaluation

(a) (b)
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if it is well-established that the underlying propagation pattern 
strongly influences EGMs morphology and their spatiotemporal 
information, we expect that it does not largely affect the local 
EIGDR computation. This is because we hypothesize that the 
correlation between the presence of fibrosis and the morphol-
ogy dispersion of signals in electrode cliques is well modeled 
by a waveform assumed to be locally plane and homogene-
ous, irrespective of the global waveform distribution across the 
complete tissue. For the same reasons, we considered that the 
EIGDR approach would not be largely affected by the shape 
and size of the fibrotic patch. Note that the proposed intra-
clique time alignment of the u-EGMs compensates the effect of 
different u-EGM arrival times on EIGDR. This leaves EIGDR 
to mostly represent spatial relationships differences among 
u-EGMs within each clique.

In this work, only the effect of broad-band noise affecting 
u-EGMs was considered, while specific periodic types of noise 
were not considered. It must be noted that far-field disturbances due 
to ventricular depolarization did not occur during atrial activation 
in sinus rhythm.

Lastly, results presented with real signals represent a proof 
of concept, but increased sample size need to be considered in 

order to elucidate whether the use of the EIGDR-based approach 
is advantageous for fibrosis detection in clinical settings.

6  Conclusions

In this paper we demonstrated that mapping strategies based 
on the EIGDR method are able to discriminate fibrotic from 
non-fibrotic tissue. In simulation, they attain comparable 
performance to map obtained by combining the b-EGMs 
amplitudes along the two directions of the MEA for low 
noise levels, when assuming both fixed and variable dis-
tance between the electrode grid and the tissue. Neverthe-
less, they outperform bipolar maps when higher noise levels 
are added. Moreover, performance of 3 × 3 electrode cliques 
outperforms the 2 × 2 cliques one and fibrosis detection 
benefits from the previous time alignment of u-EGMs. With 
clinical data, EIGDR approach showed promising results 
in discriminating fibrotic and non-fibrotic mapping points, 
especially when u-EGMs are previously aligned in time. 
Both scenarios studied lead to choose RA as EIGDR bio-
marker for fibrosis discrimination.

(a) (b)

(c) (d)

Fig. 8  Upper panels: maps of R , RA , ΔRA from 3 × 3 cliques and 
bipolar voltage maps Vb-x , Vb-y , Vb-m , for Ψ = 45◦ , performed assum-
ing a variable electrode-to-tissue distance and noise free ((a) and 

(b)) and noisy ((c) and (d), with noise level �v = 46.4 �V  ) u-EGMs. 
Lower panels: detected fibrotic areas (brown), using the thresholds 
that maximize detection accuracy of each map
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Appendix Table 7.

Table 7  List of acronyms and symbols

Acronyms Symbols

A aligned Ito transient outward potassium current
ACC maximum detection accuracy ICaL L-Type calcium current
AF atrial fibrillation IK1 inward rectifier potassium current
b-EGM bipolar electrogram IKur ultrarapid outward potassium current
cAF persistent atrial fibrillation IKs slow delayed rectifier potassium current
EAM electroanatomical mapping �t constant time step in the monodomain formulation
EGM electrogram �x spatial resolution in the monodomain formulation
EIGDR eigenvalue dominance ratio L number of electrodes in the MEA
F fibrotic d inter-electrode distance in MEA and  PentaRay® catheter
IIR image intensity ratio Ψ MEA-to-tissue rotating angle
IQR interquartile range (i, j) spatial coordinates for electrode location in the MEA
LA left atrium ui,j(n) u-EGM model
MEA multi-electrode array �i,j variable electrode-to-tissue distance in the MEA
MRI magnetic resonance image � mean of �i,j

NA non-aligned �� SD of �i,j

NF non-fibrotic N number of u-EGM samples
ROC receiver operating characteristic �v SD of noise recording
SD standard deviation Vpp,v

peak-to-peak amplitude of real noise recording

u-EGM unipolar electrogram q index for noise recording realization
u
q

i,j
(n) noisy u-EGM realization

K number of u-EGM signals in a clique
uk(n) k-th u-EGM signal in the clique
�k uk(n) samples vector
� u-EGMs samples matrix
�u intra-signal sample correlation matrix in the clique
�̂u

intra-signal sample correlation matrix estimate in the clique
�n eigenvalue of �̂u

R dominant-to-remaining eigenvalue ratio
umax(n) highest peak-to-peak amplitude u-EGM in the clique
ū(n) average u-EGM in the clique
s(n) u-EGM activation signal component
Es energy of s(n)
�k delay of the k-th u-EGM with respect to a time reference within the clique
�2�2

�
variance of �k ( � = 1 in non-fibrotic tissue; � > 1 in fibrotic tissue)

�k u-EGM amplitude factor ( �k = 1 in non-fibrotic tissue; 𝛼k < 1 in fibrotic tissue)
� mean of �k
�2
�

variance of �k
fk(n) zero-mean fibrotic signal component in uk(n)
�2

f
variance of fk(n)

vk(n) zero-mean Gaussian and white noise component at the k-th u-EGM
�2
v

variance of vk(n)

R
A EIGDR with prior alignment and no fibrosis

s�(n) first derivative of s(n)
s��(n) second derivative of s(n)
�
′ vector counterpart of s�(n)
�
′′ vector counterpart of s��(n)
RF EIGDR with no prior alignment and fibrosis
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Table 7  (continued)

Acronyms Symbols

�
∙

u
inter-signal correlation matrix in the clique

�̂
∙

u
inter-signal correlation matrix estimate in the clique

�∙
n eigenvalue of �̂∙

u

ΔRF gain in EIGDR by healthy tissue again fibrotic one, in a clique
ΔR

A gain in EIGDR produced by previous alignment in the clique
bx
i,j
(n) b-EGM along x direction of the MEA

b
y

i,j
(n) b-EGM along y direction of the MEA

Vb- x
i,j

peak-to-peak amplitude of bx
i,j
(n)

V
b- y

i,j
peak-to-peak amplitude of by

i,j
(n)

Vb- m
i,j maximum between Vb- x

i,j
 and Vb- y

i,j

Vb median value among all the bipolar amplitudes along the  PentaRay® catheter splines
Vb-m maximum value among all the bipolar amplitudes along the  PentaRay® catheter splines
�̂�2
v

estimated noisy recording variance
T threshold corresponding to ACC  value
Δ threshold offset from estimated EIGDR to control sensitivity to specificity performance
Δ̂ estimated Δ from simulations
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