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Abstract / Resum / Resumen

Abstract

Automatic Speech Recognition (ASR) is a very active natural language processing
task in the area of arti�cial intelligence, with many primary and secondary appli-
cations, such as automatic and computer-assisted subtitling, speech translation, and
voice dubbing, among others. In the last decade, this task has received a lot of
attention from major technology companies and research labs because of the large
performance improvements obtained by incorporating deep learning techniques. As a
result, general-purpose ASR systems, trained with large amounts of data, can exhibit
su�ciently good transcription quality in many, but not all, applications. Under very
speci�c application domains, characterized by lexical (particular argots and keywords,
e.g., particle physics, oncology, etc.), acoustic (e.g., far-�eld, reverberations, lossy au-
dio compression, etc.) and/or linguistic (e.g., local dialects, non-native speakers,
spontaneous speech, etc.) factors, general-purpose ASR systems often exhibit signif-
icant quality losses because of their lack of specialization. In this work we explore
e�cient domain adaptation techniques for hybrid general-purpose ASR systems un-
der the framework of the EU-funded research project Interact-Europe (EU4Health
Programme, project no. 101056995), with the aim of improving their transcription
qulity under the oncology (medical) domain.

Keywords: Automatic Speech Recognition; Domain Adaptation; Machine Learn-
ing.
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Resum

El reconeixement automàtic de la parla (Automatic Speech Recognition, ASR) és una
tasca de processament del llenguatge natural molt activa en l'àrea de la intel·ligència
arti�cial, amb moltes aplicacions primàries i secundàries, com el subtitulat automàtic
i assistit per ordinador, la traducció de veu, i el doblatge de veu, entre d'altres.
En l'última dècada, aquesta tasca ha rebut molta atenció per part de les principals
empreses tecnològiques i laboratoris de recerca a causa de les grans millores de rendi-
ment obtingudes en incorporar tècniques d'aprenentatge profund. Com a resultat, els
sistemes ASR de propòsit general, entrenats amb grans quantitats de dades, poden
exhibir una qualitat de transcripció su�cientment acurada en moltes aplicacions, però
no en totes. Sota dominis d'aplicació molt especí�cs, caracteritzats per factors lèxics
(argots i paraules clau particulars, p.e. física de partícules, oncologia, etc.), acústics
(p.e. camp llunyà, reverberacions, compressió d'àudio amb pèrdua, etc.) i/o lingüís-
tics (p.e. dialectes locals, parlants no nadius, parla espontània, etc.), els sistemes
ASR d'ús general solen mostrar pèrdues signi�catives de qualitat a causa de la seva
manca d'especialització. En aquest treball explorem tècniques e�cients d'adaptació
al domini per a sistemes ASR híbrids de propòsit general en anglès, en el marc del
projecte de recerca �nançat per la UE Interact-Europe (Programa EU4Health, pro-
jecte núm. 101056995), amb l'objectiu de millorar la seva qualitat de transcripció en
el domini (mèdic) oncològic.

Paraules clau: Reconeixement Automàtic de la Parla; Adaptació al domini;
Aprenentatge Automàtic.
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Resumen

El reconocimiento automático del habla (Automatic Speech Recognition, ASR) es
una tarea de procesamiento del lenguaje natural muy activa en el área de la inteligen-
cia arti�cial, con muchas aplicaciones primarias y secundarias, como el subtitulado
automático y asistido por ordenador, la traducción de voz, y el doblaje de voz, en-
tre otros. En la última década, esta tarea ha recibido mucha atención por parte
de las principales empresas tecnológicas y laboratorios de investigación a causa de
las grandes mejoras de rendimiento obtenidas al incorporar técnicas de aprendizaje
profundo. Como resultado, los sistemas ASR de propósito general, entrenados con
grandes cantidades de datos, pueden exhibir una calidad de transcripción su�ciente-
mente buena en muchas aplicaciones, pero no en todas. Bajo dominios de aplicación
muy especí�cos, caracterizados por factores léxicos (argots y palabras clave particu-
lares, p.e. física de partículas, oncología, etc.), acústicos (p.e., campo lejano, rever-
beraciones, compresión de audio con pérdida, etc.) y/o lingüísticos (p.e. dialectos
locales, hablantes no nativos, habla espontánea, etc.), los sistemas ASR de uso general
suelen mostrar pérdidas signi�cativas de calidad a causa de su carencia de especial-
ización. En este trabajo exploramos técnicas e�cientes de adaptación al dominio para
sistemas ASR híbridos de propósito general en inglés, en el marco del proyecto de
investigación �nanciado por la UE Interact-Europe (Programa EU4Health, proyecto
nº 101056995), con el objetivo de mejorar su calidad de transcripción en el dominio
(médico) oncológico.

Palabras clave: Reconocimiento Automático del Habla; Adaptación al dominio;
Aprendizaje Automático.
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Chapter 1

Introduction

This work studies and compares di�erent techniques for e�cient adaptation of hybrid
Automatic Speech Recognition (ASR) systems. This chapter introduces the motiva-
tion and the main objectives of the work, as well as the context necessary to properly
understand the details of the study.

1.1 Motivation

Nowadays, being able to understand and process people's speech is a key task in
continuing to facilitate access to information, and this is where ASR comes in, as it
allows computers to process information expressed in a way that is natural to humans.
This opens the door to di�erent technologies such as automatic captioning, recognition
of voice commands to an electronic device, analysis of the content of a spoken speech,
automatic translation or voice synthesis, among others. Thanks to the attention
this �eld has received in recent years from large companies and research groups, it
has been possible to develop general purpose ASR systems that achieve satisfactory
transcription quality in many applications, such as parliamentary debates or audio
books, achieving error rates similar to or lower than human error rates. Even so,
there are many applications that do not reach an acceptable quality for real use. This
is due to a lack of specialisation of the system, as it is not prepared to deal with
the problems that characterise this type of task: speci�c slang and jargon, problems
with audio quality or various linguistic problems, such as local dialects, spontaneous
speech or non-native speakers.

This points to the need for systems adapted to speci�c tasks and capable of max-
imising their accuracy. Moreover, the techniques to achieve this should be e�cient
and e�ective, i.e. they should be able to accomplish this purpose with reasonable
and a�ordable amounts of data and computational resources. In this work, di�erent
domain adaptation techniques are proposed and studied, motivated by the research
project �Interact-Europe - Innovative collaboration for Inter-specialty cancer training

1
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Chapter 1. Introduction

across Europe� 1, an 18-month project co-funded by the EU under the EU4Health
programme as part of Europe's Beating Cancer Plan 2, being the Machine Learning
and Language Processing 3 (MLLP) research group, integrated in the Valencian Insti-
tute for Research in Arti�cial Intelligence 4 (VRAIN) of the Universitat Politècnica
de València (UPV), one of the partners in the consortium.

Being a collaborative project with di�erent European countries involved, and fo-
cused on oncological medicine, it is a clear example of a task in which a domain-speci�c
system is necessary, as we �nd all the above-mentioned features in the content that
will need to be transcribed. As the role of the MLLP research group is, among oth-
ers, to develop transcription and machine translation systems to facilitate access to
di�erent languages, the adaptation of its general purpose English ASR system to the
project domain will be carried out in the present work.

1.2 Main objectives

The main objectives of this work are the following:

� To explore di�erent techniques and solutions for adapting hybrid systems in the
�eld of ASR.

� To generate in-domain Acoustic Models (AM) and Language Models (LM) for
hybrid ASR.

� To apply the developed system for transcribing educational sessions in the con-
text of the Interact-Europe project.

� Evaluate the performance of the hybrid ASR systems built.

� Compare the performance of these systems with a baseline, general-purpose
system to clarify the role of technological improvements.

1.3 Document structure

The rest of the document is organised as follows:

� Chapter 2, provides the reader with the theoretical and technological knowledge
necessary to understand the rest of the work.

� Chapter 3, describes the project in which this work is encapsulated, as well as
the data used to adapt the ASR system and the technological tools.

� Chapter 5 details the techniques that have led to the adaptation of the models
that will allow the construction of the �nal ASR system.

1https://www.europeancancer.org/eu-projects/impact/interact-europe
2https://health.ec.europa.eu/system/files/2022-02/eu_cancer-plan_en_0.pdf
3https://mllp.upv.es/
4https://vrain.upv.es/

2 DSIC, UPV
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� Chapter 6 reports the results of the evaluation for the di�erents systems built.

� Chapter 7 concludes with a brief analysis of the results, as well as ideas for
future work.

DSIC, UPV 3
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Chapter 2

Fundamentals of ASR

This chapter provides the theoretical background necessary to understand the work
described throughout the document. It is structured as follows: Section 2.1 is intended
to explain the basics of Automatic Speech Recognition (ASR). Section 2.2 covers some
basic topics about Neural Networks that will be used in the work. Section 2.3 gives a
basic overview of machine learning, as well as some of the techniques used. Once the
basic elements are known, Section 2.4 details the preprocessing that must be applied
to the raw data in order to train our models. Section 2.5 outlines the components
that make up a hybrid ASR system, the acoustic model and the language model. The
decoding of the hybrid system is then explained in Section 2.6. Section 2.7 explains the
di�erent metrics used to evaluate the above models are explained. Finally, Section 2.8
explores the state-of-the-art architectures and approaches.

2.1 Automatic Speech Recognition

ASR is the �eld of Machine Learning that studies the creation of automatic systems
with the capability of obtaining the most probable sequence of words that transcribes
a particular acoustic signal. This is, given a sequence of acoustic observations, x,
obtained from a feature extraction process over the acoustic signal, an ASR system
computes the sequence of words, ŵ, that best matches it. All this can be understood
from a statistical point of view, with two main approaches: �rst, using the posteriori
probability, this can be modelled as follows:

ŵ = argmax
w∈L∗

P (w|x) (2.1)

where L is the vocabulary of the system, and L∗ is the set of all the sentences that can
be constructed with this vocabulary. Traditionally the Bayes Theorem is applied to
the posteriori probability to decompose the model into two sub-models as seen below:

ŵ = argmax
w∈L∗

P (w|x) = argmax
w∈L∗

P (x|w) · P (w)

P (x)
= argmax

w∈L∗
P (x|w) · P (w) (2.2)

5
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Chapter 2. Fundamentals of ASR

where the computation of P (x) can be avoided as it is a constant quantity during
search. In this new equation we have two new terms, P (x|w), called the Acoustic
Model (AM), which calculates the probability that the sequence of words w generated
the sequence of acoustic vectors x, and P (w), known as Language Model (LM), which
estimates the probability that the sentence w was part of the language L.

Although there are modern approaches that directly model the Equation 2.1, the
traditional approach o�ers some advantages, most notably that we can train the
language model with text only, a very abundant resource and that, in the context of
adaptation, makes it easier to �nd in-domain data to adapt, since text only can provide
improvements. This results in a very robust, powerful and versatile component, which
makes a decisive contribution to improving the performance of ASR systems. It is
important to note that this work is based on the hybrid ASR approach, which adopts
this approximation.

2.2 Neural Networks for ASR

ASR works with temporal sequences, whose components are highly interdependent
internally. For example, in natural language production, word sequences have de-
pendencies of order greater than 1; in phonetic production, phoneme sequences also
show interdependence (it is not the same to pronounce a /k/ before an /a/ as before
an /e/, for example). By using recurrent neural networks (RNNs), it is possible to
exploit this contextual information thanks to their cyclic connections, since RNNs are
in essence, a type of neural network with direct cycles in their neurons, which give rise
to a structure of internal states or memory [48]. A RNN is a neural network that maps
from an input sequence space to an output space of sequences dynamically. That is,
the prediction of the output yt depends on the input xt, but also on the hidden state
of the system, ht, which is updated over time while the sequence is processed.

One of the RNN architectures that has generated most relevance is the Long Short-
Term Memory [18] (LSTM), which structure can be seen in Figure 2.1. The LSTM
cell is the basic unit, responsible of connecting past information with the current one.
This cell is characterised by three gates that control the �ow of information: the
input gate, which controls the information entering the cell, the output gate, which
controls the information leaving the cell, and the forgetting gate, which is responsible
for remembering or forgetting the previous information in the cell. Correctly com-
bined, they generate an output, C, which acts in a similar way to the memory of a
computer, and which allows a more or less distant context to be used. In addition to
providing a scenario where the output may depend on the near or far context only,
this architecture also improves the resistance to the vanishing gradient problem.

A logical evolution of LSTMs are Bidirectional-LSTMs [38] (BLSTMs), which
allow dependencies with future information, that is, they can analyse data in both
time directions at the same time. Basically it is two LSTM networks working at
the same time, each in one time direction, with their outputs typically concatenated
together. Figure 2.2 outlines the idea of a Bidirectional LSTM.

BLSTM networks have been a great improvement for ASR, but they are far from

6 DSIC, UPV
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Figure 2.1: Internal structure of an LSTM cell. Blue circles represent element-level
operations and rectangles a fully connected layer with a concrete activation function

(sigmoide or tanh). Two arrows merging together represent concatenation of data, while
their separation means that their content is sent to di�erent locations.
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←
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←
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←
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Figure 2.2: Representation of a Bi-directional LSTM..

perfect, since, for each time direction, they force a sequential processing of the in-
put data, so it is not possible to exploit the graphic cards' ability to parallelise the
computation. Despite this problem, language models based on LSTMs and acoustic
models based on BLSTMs have proven to be very successful [28].

Due to the sequentiality of data processing, an attempt was made to analyse the
input content and select only representative information for each state: the trend
of attention-based models has arrived [7], providing parallel analysis of the input

DSIC, UPV 7
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Chapter 2. Fundamentals of ASR

without the need of sequencial data processing. This leads us to the Transformer [43]
architecture. It is based on a encoder-decoder structure, whose parts are formed
by attention blocks and feed-forward networks. This proposal has three key aspects
that make it remarkable: �rst, non-sequentiality, in other words, it does not work
word by word but processes the whole sequence at the same time. Secondly, the self-
attention, which is nothing but attention computed on a concrete sequence to obtain
its representation. Self-attention is used to relate a pair of elements in a time that
is constant with respect to the relative distance of that elements. Finally, positional
embeddings, whose basic idea is to use learned weights that encode the information
related to a position of a speci�c token in the sentence. Thanks to the combination of
these ideas, especially positional embeddings, the recurrence of RNNs is replaced, and
a great parallelization of the computation is allowed and therefore a great increase
in speed. This also provides the ability to work with an extremely long, virtually
in�nite context, which has proven to give superior results in this type of scenario.
Thanks to its advantages and training friendliness, it has become the state-of-the-art
architecture in di�erent branches of speech technologies in recent years [33, 1], and
being successfully used to construct acoustic [46] and language [21] models.

2.3 Regularisation techniques

Machine learning is the �eld of pattern recognition that is dedicated to the study
and development of algorithms and techniques with the ability to generalise a type
of problem and learn to solve it autonomously. To generalise in this context is to
have the ability to act correctly on new, previously unseen data. Learning, on the
other hand, implies that the performance, measured in a particular way, of a task is
improved by using previous experience on that task [30].

The data used and the way a system is trained can have devastating e�ects on
its performance if not chosen carefully. One of the main problems that can occur is
over�tting: memorising training data. This occurs when the parameters of the trained
system are so closely adjusted to the training data that they become completely
senseless outside of the training set. In this way the model makes signi�cant errors in
processing data that was not in the training, and is not a useful model for its purpose.

There are many ways to combat over�tting during model training, helping the
�nal performance of the model. But some techniques such as training the model with
more (quality) data or using data augmentation may be more limited options when
performing in-domain adaptation, as in-domain data is not easy to �nd and data
augmentation can only be applied to a certain degree to spoken speech.

One technique that can be applied regardless of the data used is regularisation,
a method of avoiding over�tting when training a model by adding a penalty term to
the loss function. Concretely, we will talk about the L2 regularisation, which uses the
L2 distance as a penalty term, as we can see below:

Regularisation = Loss+ Penalty = Loss+ λ

N∑
i=1

w2
i (2.3)

8 DSIC, UPV
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2.4. Data preprocessing and feature extraction

where λ is a scale factor that allows us to vary the impact of the regularising term.
The goal is that weights have a value close to zero, but not zero, meaning that the
weight of each feature should have the minimum impact on the model. Therefore,
with high values of lambda, an under�tted model and a �at distribution of weights
will be obtained, while with very small values of lambda, the regularising term will
have no e�ect.

2.4 Data preprocessing and feature extraction

Before training ASR systems, it is necessary to preprocess the training data and to
extract the feature vectors, x ,that will feed the models. In ASR systems, acoustic
data, their transcriptions and, in the case of hybrid systems, monolingual text are
usually available.

First, we will discuss the preprocessing of text data. When dealing with text,
we usually perform a clean-up before using it in order to normalise the data. This
consists of removing special characters and punctuation marks, converting numbers
to text, etc. In short, leaving only the lowercase characters that make up the language
to be recognised.

On the other hand, when dealing with audio data, the �rst step is to obtain the
digital version of the original signal. This conversion is divided into two tasks: �rstly,
sampling must be performed, which consists of measuring the amplitude of the wave
at a particular instant of time. A minimum of two samples will be necessary for
each wave cycle (one for the positive part of the wave and one for the negative part).
The higher the number of samples, the higher the quality, but bearing in mind that
the maximum frequency we can measure is half of the sampling frequency (Nyquist
frequency [15]). For ASR, 16 KHZ samples are su�cient, since the main sounds of
human phonology are below the 8 KHZ spectrum. Secondly, it is necessary to quantify
the information by encoding the value of each measured amplitude, typically in 16-bit
integers.

Once the digital version of the waveform has been obtained, a series of time win-
dows (frames) are then generated from which the feature vectors will be extracted.
This is done because within the windows, we can assume that the signal is station-
ary (i.e. the statistical properties of the signal remain constant within it), contrary
to what happens, normally, in spoken speech. Three parameters have to be set in
these windows: the window size (in ms), the delay between a window and its adjacent
window (in ms), and the window shape. Figure 2.3 represents the process of gener-
ating several windows in order to extract feature vectors. For the shape, since the
rectangular window carves the audio abruptly, Hamming windows are normally used,
avoiding discontinuities. This is achieved by attenuating both sides of the window

DSIC, UPV 9



i
i

�mem� � 2023/7/26 � 15:59 � page 10 � #18 i
i

i
i

i
i

Chapter 2. Fundamentals of ASR

Figure 2.3: Windows of 10 ms, with Hamming shape and 10 ms o�set.

according to the formula:

w(n)Rectangular =

{
1 0 ≤ n ≤ L− 1

0 other
(2.4)

w(n)Hamming =

0.54− 0.46 cos
2πn

L
0 ≤ n ≤ L− 1

0 other
(2.5)

The next step is to extract the information from each window. A Discrete Fourier
Transform (DFT) is performed, which extracts the energy of the discrete-time signal
in di�erent frequency bands. This transform is de�ned as:

Xk =

N−1∑
n=0

xn · e−
2πi
N kn ∀k ∈ 0, . . . , N − 1, (2.6)

on i is the imaginary unit and e−
2πi
N is the N-th root of the unit. Typically, the Fast

Fourier Transform (FFT) algorithm is used to calculate the DFT. This implemen-
tation is very e�cient, but only works for values of N that are powers of 2. At this

10 DSIC, UPV
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2.5. Hybrid ASR

point we have, for each of the N frequency bands, a complex number representing the
magnitude and phase of the frequency of the original signal.

The human hearing does not perceive all frequency bands in the same way: it is
much more sensitive to low frequencies than to higher ones. For this reason, this per-
ception is modeled in order to signi�cantly improve the quality of speech recognition.
This can be achieved using the mel scale, that has the particularity of being able to
separate two sounds equidistant to the human hearing at the same number of mels.
The mel frequency can be computed as follows:

mel(f) = 1127 · ln(1 +
f

700
) (2.7)

With this is mind, it is possible to implement this idea with a Mel �lter bank [24],
resulting in a better resolution at low frequencies and lower resolution at higher fre-
quencies. The number of dimensions of the resulting vector is equal to the number
of �lters forming the bank. Figure 2.4 exempli�es a triangular �lter bank that im-
plements this idea. At the output of this step, we have the �lterbanks feature vec-

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency (Hz)

0.2

0.4

0.6

0.8

1.0
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pl

itu
de

Figure 2.4: Mel �lter bank consisting of 24 di�erent �lters. Each triangular �lter is
logarithmically spaced using the Mel scale.

tors that will be used to train the BLSTMs models. Traditionally an extra step is
made: the Discrete Cosine Transform (DCT) algorithm is applied and the samples
are normalised in order to minimise their di�erences. In this way, small di�erences
in pronunciation and loudness become less relevant, increasing the generalisability
of the model. The output of this preprocess is the MFCC (Mel Frequency Cepstral
Coe�cient) feature vectors, one for each frame.

2.5 Hybrid ASR

This section describes the basics of the hybrid approach to ASR, explaining the two
components that compose it: the acoustic model and the language model.

DSIC, UPV 11
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Chapter 2. Fundamentals of ASR

2.5.1 Acoustic Model

The acoustic model, P (x|w), is the component of the hybrid ASR approach that is
responsible for representing, by means of a probability, the relationship between the
acoustic signal and the most basic phonetic units of human pronunciation. These are
trained with acoustic data of transcribed (labelled) speech, either manually by humans
or automatically with a preexisting ASR system (self-learning or pseudo-labeling).

Traditionally, this component is modelled by Hidden Markov Models, M , which
can be formally de�ned as follows:

M = (Q,Σ, π, A,B) (2.8)

where Q is a �nite set of states, Σ is a �nite set of symbols that can be emitted (also
named alphabet), π is a vector of initial probabilities, A is a transition probability
matrix, which holds the probability of transitioning from state q into any state q′,
and B is an emission probability matrix, which holds the probabilities of emitting a
symbol xt in state qt at time instant t.

The acoustic models of hybrid ASR systems work over an inde�nite number of
time windows, which is why they are based on Hidden Markov Models (HMMs). An
HMM is a probabilistic model that serves to model time-dependent random processes,
such as the particular case of human phonology. Speci�cally, HMMs are used to model
phonemes and even triphonemes (phonemes with context). They are based on the
two Markov assumptions: �rst, the probability that, at instant t, the model is in a
state qt, only depends on the state qt−1. Moreover, the probabilities of transitioning
from one state to another are stationary in time, i.e. they are independent of which
instant t they occur in. Second, the emission probability of an observation xt depends
only on the state, qt, in which the observation occurs and no other prior observation
or emission. That is:

P (xt|q1, . . . , qt, . . . , qT , x1, . . . , xt, . . . , xT ) = P (xt|qt) (2.9)

Figure 2.5 shows the general structure of an HMM as explained above.

B b1 b2 b3 E
π1 A1,2 A2,3 A3,E

A1,1 A2,2 A3,3

Figure 2.5: Representation of an HMM. We can see the three states b1, b2 and b3 that
represent the beginning, the central part and the end of the phoneme. The Initial and

Final states are also present, which indicate when the recognition of the phonetic unit has
started and �nished.

Therefore, the probability that the HMM associated with a word w generates the

12 DSIC, UPV



i
i

�mem� � 2023/7/26 � 15:59 � page 13 � #21 i
i

i
i

i
i

2.5. Hybrid ASR

acoustic sequence x is:

P (x|w) =
∑
q∈Q

|q|∏
t=1

Pw(qt|qt−1)Pw(xt|qt) (2.10)

Where P (qt|qt−1) is the probability of transiting from state qt−1 into state qt, and
P (xt|qt) is the probability of emission of vector xt being in state qt. This emission
probability has traditionally been modeled with Gaussian Mixtures (GMMs), trained
with the Expectation-Maximization (EM) algorithm. HMMs are actually used to
model triphonemes, which are concatenated to model words. They do this by using
information provided by phonetic pronunciation dictionaries (lexicons). The problem
with this approach is that GMMs assume that the data follow a Gaussian distribution,
which may not be true, so new approaches were proposed that replace GMMs with
neural networks, since they make no assumptions about the nature of the data, which
should lead to more accurate and robust models. To achieve this, the Bayes theorem
is applied to the emission probabilities of Equation 2.10 as follows:

P (xt|qt) =
P (xt)P (qt|xt)

P (qt)
≈ P (qt|xt)

P (qt)
(2.11)

This allows us to use the discriminative power of neural networks to model P (xt|xt)
with a training set, while P (qt) is obtained by normalising the counts of each state
qt observed during training. P (xt), although complex to compute, can be ignored
as it will be the same value for all cases, since we are maximising w according to
Equation 2.2. This approaches proposed to use DNN-HMMs as an acoustic model,
being in charge of modelling P(x|w), and improving considerably the results [17]. This
was followed by approaches based on recurrent networks [14], especially those using
BLSTMs. This is what is known as the hybrid approach, and it is the one that will
be used during the present work, with an acoustic model based on BLSTM-HMMs.

2.5.2 Language Model

For its part, the Language Model, P (w), is the component of the hybrid ASR sys-
tem that represents the language structure itself. In other words, it calculates the
probability that a word, wy, appears given a prior history w1, w2, . . . , wy−1. The fact
that language models are trained on monolingual text data (very abundant and easily
accessible), allows us to train robust and powerful models. In fact, this is the main
reason why it is possible to opt for a hybrid approach and still be able to compete
against other state-of-the-art approaches.

There are di�erent ways of dealing with language modelling. Traditionally, the
statistical approach based on counts has been used, represented by n-gram models:
contiguous sequences of n words which are usually referred to by the number of words
(unigram, bigram, trigram, etc.). The n-gram models allow to approximate P (w) as
the probability of a word, w, given a history hi = w1w2 . . . wi−1 of previous words;

DSIC, UPV 13
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Chapter 2. Fundamentals of ASR

this can be expressed with the conditional probability as follows:

P (w) ≈
I+1∏
i=1

P (wi|wi−1max(i−n+1, 0)) (2.12)

where I is the size of w and n the order of the n-gram used. wi+ji represents the
sequence of words (wi, wi+1, . . . , wj) ∈ w, and the special states w0 and wI + 1, that
represent the tokens for Beginning of sentence (BoS) and End of Sentence (EoF).
Following this idea, a third-order n-gram, or trigram, allows the contextualisation of
only up to two preceding words, while a 4-gram would allow the use of the three
preceding words.

Since the not so distant renaissance of neural networks, approaches based on re-
current networks [6] and transformers [45] have been used, achieving signi�cantly
better results than n-grams. In this work, transformer model has been used as a
starting point for the adaptation, and di�erent n-gram models have been used in the
adaptations.

2.6 Hybrid Decoding

Decoding is the stage in which both acoustic and language models are combined to
�nd the most probable word sequence for the given acoustic sample according to the
decomposed version of Equation 2.2:

ŵ = argmax
w∈L∗

∑
q∈Q

|q|∏
t=1

(
Pw(qt|qt−1)

P (qt|xt)
P (qt)β

)
· P (w)α (2.13)

where α and β are scale factors that help to combine both models.
To do so, a directed multigraph is generated with all the words of the vocabulary,

where each node is a phoneme of the word. A simpli�cation of this structure can be
seen in Figure 2.6.

It should be noted that the search space is in any case very large, since all words in
the system's vocabulary are reachable from any history. Moreover, during decoding,
these decisions are made at frame scale. This mechanism compromises the latency of
the system and may not be suitable for real-time ASR tasks.

A partial solution is to apply beam-search-like heuristics combined with Viterbi's
algorithm, so only a subset of the most probable hypotheses is kept at each instant.
But there is another drawback: a discarded hypothesis may actually be more accurate
than one that is maintained, since during the search, only the acoustic model's opinion
is taken into account, while the language model only contributes its knowledge when
the decoding process transitions from a phoneme state to a word state. Traditionally
this has been solved by means of two step decoding, but in [23], it is proposed the
use of static look-ahead tables, a recursive algorithm that, from the search leafs (all
the words in the vocabulary), assigns in each state the maximum probability that can
be reached from it, according to the language model. In this way, during the search,

14 DSIC, UPV
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H

b r ay t brite

ih t ih sh british

k ay r ow cairo

Figure 2.6: Example of a search graph capable of recognizing a word. For simplicity, a
vocabulary of only three words is considered: "brite", "british" and "cairo". The initial
state, H, denotes the current history. Speci�cally, the arrows indicate the exact instant at
which the probability of a word, which involves making an explicit query to the LM; e.g.

"cairo", is calculated, given the history, P (cairo|H).

when there is a bifurcation, it is only necessary to subtract in the current state the
current maximum probability of the LM and add the maximum achievable for each
path. In this way, during the search, all hypotheses also have information provided
by the language model and the number of queries made to it is drastically reduced.
These improvements are implemented in the general purpose system, allowing for
streaming decoding.

2.7 Evaluation of ASR systems

ASR systems are evaluated objectively by the Word Error Rate (WER), which is
de�ned as the minimum distance between the transcriptions obtained by the system
and the original ones, using the data from the development and test. This metric is
similar to the Levenshtein distance: it allows word-scale insertions, substitutions and
deletions. It is de�ned as:

WER =
I +D + S

R
· 100 (2.14)

where I, D, and S are, respectively, the number of insertions, substitutions and
deletions needed to make our transcription identical to the original, and R is the
total number of words in the reference. The WER can be understood, intuitively,
as the percentage of words in the automatic transcription that must be corrected to
obtain the correct reference transcription.

There are additional important metrics, as the components of a hybrid system are
trained and optimised separately, and therefore require speci�c metrics. In the case
of the acoustic model, they are trained by minimising the Frame Error Rate (FER),
which is de�ned as the number of incorrectly classi�ed frames divided by the total
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Chapter 2. Fundamentals of ASR

number of frames analysed:

FER =
Fincorrect

Ftotal

(2.15)

On the other hand, language models are optimised by minimising the perplexity
(PPL) over the development set. We can de�ne the perplexity over a sequence of
words w = w1...wn as:

PPL(w) = 2−
1
n logP (w) (2.16)

where − 1
n logP (w) is an approximation of the cross-entropy as far as the sequence of

words is reasonably long. The perplexity can be understood, in a simple way, as an
estimation of the number of words that can follow our current sequence, so a smaller
number implies smaller and faster searches.

2.8 Other approaches

Today, large companies and economically well supported research groups that can
a�ord to train on massive amounts of data are leading the way in terms of cutting-
edge systems in the world of Natural Language Processing. Several advances have
been made in the �eld of ASR that try to �x di�erent existing subproblems, such as
latency, training with few samples or the possibility of multi-language models.

For example, with the introduction of Enformer [39], a new architecture of attention-
based acoustic models is proposed, where the context size of the audio samples is
reduced to decrease the computational costs of self-attention, and allowing real-time
recognition with state-of-the-art results. Other approaches, like wav2vec [37, 2], in-
troduce a contrastive loss function and improvements related to data representation,
allowing to distinguish a future audio sample from a false positive, and obtaining
good model adaptations with very few hours of acoustic data. There are also large
language models, trained with immense amounts of hours, which allow models such
as Whisper [34] to acquire large generalisation capabilities in di�erent �elds and do-
mains, or like the recent USM [49], which goes for a multilingual model, trained with
millions of hours of audio from di�erent languages and then adapted to low-resource
languages. Finally, we emphasise the approach of [26], which proposes transcription
correction systems based on ideas from the �eld of machine translation, where we
have an encoder in charge of �nding errors and a decoder that corrects them.
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Project description, data
and tools

This chapter puts into context the project and data in which this work has been
carried out, as well as the tools used to train and adapt acoustic and language the
models. First, Section 3.1 describes the Interact-Europe project. In Section 3.2, the
dataset used to perform the domain adaptation will be introduced. Finally, Section 3.3
gives details on the software tools used to develop ASR systems.

3.1 Interact-Europe

The good teamwork of di�erent professionals from various disciplines in cancer man-
agement leads to better patient outcomes, but in many parts of the European Union
our professionals may not be well versed in these matters. In fact, their education and
training is mostly technically oriented and does not prepare them for this multidis-
ciplinary care. There are some training programmes for cancer care specialties that
have achieved a minimum of cooperation and mutual understanding between cancer
professionals from di�erent areas, but there is a need to take this cooperation beyond
that.

The European project Interact-Europe [19] is committed to a patient-centred ap-
proach in order to improve the quality of cancer care by promoting multidisciplinary
and multiprofessional teamwork. It aims to promote the basis of knowledge and un-
derstanding that the di�erent professions involved have of each other, and will address
the inequalities linked to cancer. For this reason, di�erent professional organisations
associated with the project will develop an inter-specialty training programme tar-
geted at clinical oncology, surgery and radiology, including nursing services.

The project will also lay out the foundations of trainees and cancer centres re-
cruitment to the programme, ensuring a strong understanding of their needs and
their readiness for the later delivery of the programme. Elements of the training
curriculum will be translated into technology-enhanced learning scenarios, to ensure
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Chapter 3. Project description, data and tools

wide access to such training tools across the European Union. Finally, communication
actions will ensure broad awareness of the programme to allow uptake of the project's
recommendations by the cancer care community. The inclusion of representatives
from the whole European cancer community in the consortium will allow for the de-
velopment of a targeted and e�cient multidisciplinary programme and production of
recommendations to foster interdisciplinary cancer care across the European Union.

As the main idea of the project is to create an international curriculum for oncol-
ogy experts in the European Union, specialists from di�erent hospitals would agree
on a number of subjects to be addressed and a series of videoconferences would be
held on these topics. These videoconferences and symposiums need to be adapted to
di�erent territories and languages, and although the project's vehicular language is
English, not all professionals are native speakers of this language or are �uent in it.
For this reason, it is necessary to carry out automatic speech recognition, as well as its
subsequent translation into di�erent European languages. Automatic speech recogni-
tion adapted to the oncology domain and automatic translation of the transcriptions
into other European languages are the responsibilities of the MLLP research group in
this project.

3.2 e-ESO dataset

One of the project partners, the European School of Oncology 1 (ESO), has a video-
conferencing platform on oncology. It has provided the consortium with a representa-
tive set of these lectures, some of them with manual transcripts and/or slides. Table
1 shows the statistics that summarise the data provided.

The shared repository had a total of 234 e-sessions (videos), with a length of
approximately 176h of video, dealing with more or less technical oncology topics.

An analysis of the downloaded data showed that many of the videos did not
include manual transcriptions. This can be seen in Table 3.1, which shows a detailed
explanation of the available data.

Table 3.1: Complete distribution of data. "V" stands for videos, "S" for Slides and "T"
for manual transcriptions. A sum indicates that both data are available, so "V + S"

denotes videos that have slides.

Videos Hours
V 140 (60%) 94.9 (54%)
V + S 1 (0%) 0.8 (1%)
V + T 56 (23%) 41.8 (23%)
V + T + S 47 (17%) 38.5 (22%)
Total 234 (100%) 176 (100%)

Based on these data, we have generated two in-domain corpora: one of speech
data for acoustic model adaptation, and the other of textual data for language model

1https://www.eso.net/
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adaptation. On the one hand, the speech corpus comprises the whole set of the
103 videos with manual transcriptions; while the textual corpus uses the manual
transcriptions extracted from the 103 videos, as well as from the available slides of
40 videos. Three possible sets will be considered for the textual dataset: transcripts,
slides and transcripts + slides.

Therefore, the �nal dataset is made up of 73h of video for Train, and two sets with
3.5h and 3.8h of speech for Dev and Test, respectively. It is important to emphasize
that not all the data used have slides, obtaining a representative sample of what could
be found in a real-life scenario. In both Dev and Test sets there is only one session
without slides. An analysis of the transcripted text has been carried out. Table 3.2
summarizes basic raw statistics of the speech dataset, with which the AM will be
adapted: �rst, the number of videos in each set, and the total duration of these
videos, in hours. The size of vocabulary is the number of di�erent words. Finally, the
running words (RW), are the total number of words in the reference transcription.
Equivalent information for the text corpus, used to train the adapted LM, can be
found in Table 3.3.

Table 3.2: Raw statistics of the eESO speech corpus. |V | stands for vocabulary size, while
RW are the Running Words.

# Sessions Duration (h) |V| RW
Train 93 73.0 30.0K 2.2M
Dev 5 3.5 2.8K 27.4K
Test 5 3.8 3.3K 31.2K

Table 3.3: Raw statistics of the eESO text subcorpus, with useful information for
Transcriptions (T), Slides (S) and the sum of both resources (T+S). |V | stands for

vocabulary size, while RW are the Running Words.

T S T+S
|V| RW |V| RW |V| RW

Train 30.0K 2.2M 20.2K 0.4M 37.4K 2.6M
Dev 2.8K 27.4K 2.4K 10.1K 2.8K 37.5K
Test 3.3K 31.2K 2.6K 21.1K 3.3K 52.3K

It is important to emphasise that this is an adaptation to the oncologic domain and
that the samples have a high variance in terms of quality and complexity: there are
many di�erent speakers in the dataset, as well as videos with more than one speaker
and spontaneous speech. Besides that, most of the recordings use low-quality micro-
phones and have complicated sound conditions (reverberation, echo, etc.), making it
a potentially complex dataset.
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3.3 Tools

For the construction and development of the models and systems of this work, di�er-
ent software tools have been used, as well as multiple scripts to automate the tasks
performed. Among them, we highlight:

Firstly, the TransLectures-UPV toolkit [8] (TLK) is a toolkit that provides a set of
tools and libraries for the development of hybrid ASR systems. This software has been
developed by the MLLP research group of the UPV, initially for the TransLectures [40]
project, and has evolved over time to add the di�erent advances in hybrid ASR
technology. Among others, it has been used to preprocess the acoustic data and
extract the features from the data. It has been used to perform the data alignments,
as well as to create the static look-ahead tables that will be used later in the decoding,
where the tool is also used.

Secondly, TensorFlow [41] is an open source library developed by the Google Brain
team for deep and machine learning tasks. The internal way of working is simple, as it
uses high-level directives in the form of order graphs to represent complex algorithms
and architectures. Throughout the work, TensorFlow has been used to train BLSTM-
HMM acoustic models, as TLK works on top of TensorFlow when working with neural
networks.

As for KenML [16], it is an open-source toolkit developed by Kenneth Hea�eld
and consists of a set of compiled tools for ASR, which have been used to train n-gram
models of di�erent order and to calculate the perplexities of the developed language
models.

Finally, Fairseq [12] is a sequence modelling toolkit, developed by Facebook AI
Research, that allows working with di�erent problems related to speech technologies.
In our case, it can be used for the construction of transformer language models, such
as the one in the system to be adapted.
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Baseline System

This chapter gives details on the MLLP's English general-purpose ASR system, built
under the framework of previous research projects. It will be considered the baseline
in all experiments, allowing us to assess the contribution of the di�erent adaptation
techniques in this work.

4.1 Baseline ASR System

The baseline system is a general-purpose hybrid English ASR system whose acous-
tic model has a BLSTM-HMM structure, while the language model is a transformer
model. The BLSTM that constitutes the AM is composed of eight bidirectional hid-
den layers of 512 neurons per layer and direction, as well as a bottleneck layer with
200 neurons before the output layer. It uses a 50-frame window to work with back-
propagation through time. In addition, SpecAugment, a data augmentation technique
based on masking frequencies to reduce over�tting, has been used. This model has
been trained with approximately 6000 hours of acoustic data 4.1. The training of the
AM has been performed using cross-entropy, as well as frame-level alignments, with
a total of 16K senones.

The Transformer LM uses 24 layers, which, like the embedding, has 768 neurons
each, 12 attention heads are used and, �nally, an FFN layer of 4096 neurons. A 4-
gram model was trained, but was never used in production; despite this, it was used
to build a pruned version of itself, used as static look-ahead tables during decoding,
as well as in the adaptation techniques proposed in this work. The n-gram model was
trained on a set of texts from di�erent sources 4.2, with a sum of 1.2G sentences for
a total of 17.9G words. The Transformer LM was trained on a subset of the previous
one, with 1G words. A remarkable feature is that thanks to the work done in [22],
the LM transformer can operate in streaming with very little loss of quality, which
allows the ASR system to do so as well.

Taking into account the baseline ASR system, an analysis of the eESO corpus,
explained in detail in Section 3.2, has been carried out in order to understand the
potential margin of improvement that a domain adaptation could o�er, as well as to
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Table 4.1: Transcribed out-domain English acoustic corpora used to train out-domain
English acoustic models.

Corpus Length (hours)
Internal: user-generated content 1,538
Internal: parliamentary 1,008
Librispeech[32] 960
Internal: TV and entertainment 515
Must-C[9] 503
TED-Lium[35] 369
How2[36] 301
Internal: educational 218
SWC[4] 128
VoxForge[44] 120
CHIME[3] 111
AMI[5] 96
Europarl-ST[20] 91
VCTK[47] 44
ELFA[10] 38
OVERALL 6,040

Table 4.2: Out-domain English text corpora used to train out-domain English language
models, where K=103, M=106 and G=109.

Corpus Sentences Words
Internal: news 816.7 M 12.2 G
Wikipedia[11] 149.9 M 2.3 G
Opensubtitles[27] 191.4 M 1.1 G
Librispeech[32] 40.7 M 813.0 M
Giga[42] 22.5 M 616.8 M
Internal: mixed data 22.5 M 314.8 M
UN[50] 11.4M 308.3 M
Internal: educational 5.0 M 98.6 M
Internal: parliamentary 3.8 M 68.2 M
Europarl[25] 1.3 M 33.5 M
News Commentary[42] 532.5 K 11.6 M
OVERALL 1.3 G 17.9 G

estimate the de�ciencies of the model. Table 4.3 provides an overview of the results
obtained from this analysis of the acoustic dataset (manual transcriptions of audio
data): �rst, the running words (RW) and the size of vocabulary are remembered, as
the remaining metrics depend on them. Then we have the out of vocabulary (OOV)
words, that is, the number of unique words in each set that are not in the vocabulary
of the baseline system. Finally, the running OOV, ROOVs, are the total occurrences
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4.1. Baseline ASR System

of OOV words.

Table 4.3: Statistics of the eESO acoustic dataset. |V | stands for vocabulary size, RW are
the Running Words, and OOV are the Out-of-vocabulary words.

|V| OOVs RW ROOVs
Train 30K 8.6K (28%) 2.15M 33.5K (2%)
Dev 2.8K 0.2K ( 7%) 27.4K 0.3K (1%)
Test 3.3K 0.2K ( 6%) 31.2K 0.5K (2%)

After this, the corresponding evaluation of the language model of the baseline
system has been carried out: First, a calculation of the perplexities of the Transformer
LM on the Dev and Test sets has been performed, where perplexities of 143 and 140,
respectively, have been obtained. These values will serve as a reference point as to
whether or not the language models that will be trained should be improved, where
a certain correlation with the WER of each system is expected.

Subsequently, the evaluation of the system was performed on both sets, obtaining
a WER of 18.1% in development and 16.1% in test. Our goal will be to improve these
results by applying domain adaptation techniques to the baseline AM and LMs using
the in-domain data described in Section 3.2. Our goal will be, therefore, to improve
these results with the di�erent hybrid models trained with the selected data.
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Chapter 5

Adaptation Techniques

As discussed in Section 1, adaptation to the oncology domain of the MLLP's general-
purpose English ASR System is key for the success of the Interact-Europe project.
For this purpose, di�erent techniques are explored to adapt both the acoustic and lan-
guage model. In addition, the possibility of adapting both models at video level has
also been explored. This chapter describes the di�erent procedures and techniques
used to adapt the acoustic and language models that compose a hybrid ASR system.
Section 5.1 describes the di�erent techniques used to adapt the Acoustic Model, while
the equivalent with the language model is explained in Section 5.2. Section 5.3 dis-
cusses video-level adaptation techniques for both the acoustic and language models.

5.1 Acoustic Model Adaptation Techniques

This section describes the di�erent techniques and approaches used to perform the
domain adaptation of the Acoustic Model, P (qt|xt) (Eq. 2.11).

5.1.1 Fine-tuning

Fine-tuning is a transfer-learning technique that consists of using a previously trained
model, with out-of-domain data, to continue training it but now with data from a
particular domain. The idea is that the �ne-tuned model loses some generalisation
in exchange for being better at the new task. In practice, this consists of performing
a similar training to the previous one, except that the initial weights of the model
will not be random, but the weights of the baseline acoustic model. One of the
particularities of this training is that, as the weights are already initialised and we
only want to make small adjustments, a small learning rate has to be used, a couple
of orders of magnitude smaller than in training.
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Chapter 5. Adaptation Techniques

5.1.2 L2 Regularisation

It consists on adding L2 regularisation to the loss function. As the aim of �ne-tuning
is not to deviate too much from the weights of the baseline acoustic model, the L2
distance is calculated on the initial weights of the pre-trained model. This is intended
to accept only variations that have a high positive impact on the accuracy of the
network, without needing to vary the weights too much, which already keep a good
interpretation of the data and their relationships.

5.1.3 Linear Transformation

Motivated by the idea of adapting networks through transformations [31] and taking
advantage of the existence of a bottleneck layer, it is proposed to learn a 200·200 linear
transformation on the bottleneck. This training involves learning very few additional
parameters. Therefore, we propose to explore the use of a linear transformation and
to use a non-linear transformation, i.e. to add a non-linear ReLU transformation on
the output of the linear transformation. This idea is outlined in Figure 5.1.

Output

BLSTM

Output

BLSTM

+

Figure 5.1: Before and after of the same network with a linear transformation added at
the end.

5.1.4 Output layer training

We also studied the e�ect of training only the output layer. As few acoustic data
were available and a �ne-tuning is performed on the whole model, this could result
in a model with new weights that are well adapted to the training data, but do not
generalise well enough. To avoid this over�tting, we freeze all those layers already
containing a good representation of the English language and only train the layer
that classi�es into the di�erent senonas. In short, the network is trained with the
domain-exclusive data, but only updating the weights of the output layer at each
iteration.

5.2 Language Model Adaptation Techniques

Moreover, this section explains the techniques used to adapt the Language Model,
P (w) (Eq. 2.2). The language model [29] is transformer model, but there is also a
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5.3. Adaptation Techniques at video level

4-gram model that never went into production. This, together with the larger amount
of training data available, o�ers a wide range of possibilities to adapt the LM. We
focused on exploring n-gram adaptation techniques, that is, we worked on adapting
the 4-gram of the baseline system, which was not used in production, and then we
interpolated it with the TLM of the baseline system. Adaptation of the TLM has
been contemplated but not implemented due to limited in-domain data.

For each of the experiments considered, the following work was done: �rst, a
unigram model was trained in order to limit the size of the vocabulary in case it was
too large. The vocabulary was small enough to not require modi�cation, being 29.9K
unique words in the case of using the manual transcriptions, 20.0K when using the
slides and 37.4K unique words when using both sources combined.

Next, the 4-gram models have been trained at subset level (transcriptions, slides
and trans+slides), performing a small pruning of the tokens that do not appear at
least once. Finally, super-pruned versions of these models have been generated, so
they can be used as static look-ahead tables during the decoding process. The trained
n-gram models have been individually interpolated with the much larger and more
robust n-gram model of the baseline system, resulting in three domain-adapted n-
gram models. This interpolation, as well as the following ones, has been performed
using an implementation of the MLLP group of the Maximum-Expectation (EM)
algorithm. Finally, the new 4-gram model is interpolated with the TLM model of the
baseline system.

5.3 Adaptation Techniques at video level

An interesting approach is to make an adaptation at video level. This approach relies
on using only the data associated with a sample (video), instead of the whole domain
dataset. An attractive aspect of these techniques is that, whilst they can be used as
an alternative to domain adaptation, they can also be used as a complement, as we
will see below.

In order to adapt the language model to the video level, it would be interesting
to use automatic transcriptions, but it is true that in a real use case we would not
have them, so we propose to use only the slides, which could be available beforehand
even in the case of streaming scenarios. With this premise, we train small n-gram
models, one for each video to be recognised, using the slides of the same video. We
then interpolate them with the baseline model transformer.

To work with the acoustic model, it is necessary to have previous transcriptions,
being this technique especially useful in the case of o�ine speech recognition. It
consists of �ne-tuning the acoustic model, as explained above, but using only the
acoustic data from the video itself. This may be reminiscent of MLLR adaptation
techniques used in Gaussian-based models [13]. To complete the hybrid system, the
language model of the system with which the transcriptions have been obtained is
normally used.

These two techniques can be perfectly combined by �rst training an adapted lan-
guage model. With it, we would obtain the necessary transcriptions and alignment
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Chapter 5. Adaptation Techniques

to be able to train the adapted acoustic model. Finally, both models, adapted to the
same video, would be combined to obtain the �nal system.

28 DSIC, UPV



i
i

�mem� � 2023/7/26 � 15:59 � page 29 � #37 i
i

i
i

i
i

Chapter 6

Experimentation and
evaluation

This chapter presents technical and experimental aspects of the adaptation and op-
timisation of the English ASR System presented in Section 4, as well as the results
and metrics obtained in each step. Section 6.1 describes the preprocessing carried out
on the data. Section 6.2 provides details on the construction and optimisation of a
hybrid ASR system. Section 6.3 details the training and experiments carried out to
adapt the baseline system to the oncology domain. Finally, Section 6.4 explains the
experiments carried out on video-level adaptation.

6.1 Data preprocessing

Section 3.2 described the data used to adapt and optimise the models developed
throughout this work. However, they need to be homogenised and normalised before
they can be used. The steps followed to achieve this preprocessing are conceptually
described in Section 2.4.

First of all, the acoustic data have been preprocessed, which require speci�c char-
acteristics: to be in 16-bit little endian WAV format, single-channel and with a sample
rate of 16 KHz. Filterbank feature vectors are then obtained, which are banks of 85
�lters, without any derivates, resulting in 85-component feature vectors that will be
used to retrain the BLSTM models. Normally, this is where the preprocessing of the
acoustic data �nishes, however, in our case an average normalisation is applied, not
at the sample level, but by applying a sliding window. This allows the system to be
used in streaming if necessary [22].

The next step is to preprocess the existing manual transcripts and slides. Firstly,
the text from the presentations and manual transcripts was extracted to have it in
plain text. Secondly, we removed all punctuation marks, and converted the text to
lower case and numbers to text, among others.
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Chapter 6. Experimentation and evaluation

6.2 Construction and optimization of hybrid ASR

systems

Having trained acoustic and language models, we integrate them under a single system
that performs the hybrid decoding. In our case, the systems will be �nally constituted
by executing the TLK decoder through the tLtask-recognise tool, which receives
as arguments the acoustic and language models to be used, the corresponding static
lookahead tables and the feature vectors of the samples to be recognized.

This model combination is governed by a set of hyperparameters, whose values
are typically those that minimize WER over the in-domain development set. Some
critical parameters are: First, the Grammar Scale Factor (GSF), which scales the
weight of the language model with respect to the acoustic model during decoding, and
the Prior Scale Factor (PSF), which weights the a priori probabilities, P (qt) 2.11,
of the HMMs. In practice, the e�ect of GSF and PSF has been studied, as they
have a high impact on the �nal system and are highly dependent on the models
involved. Finally, remember that these hyperparameters are always optimised on the
Development set, applying the best values obtained in Test.

6.3 Assessment of domain adaptation techniques

This section explores the di�erent domain adaptation techniques outlined in Sec-
tions 5.1 and Section 5.2, which aim to train di�erent acoustic and language models
and then combine them to obtain a hybrid system adapted to the oncology domain.

6.3.1 Acoustic Model Adaptation

In this section we study the e�ects of the di�erent AM adaptation techniques de-
scribed in Section 5.1, on the performance of hybrid ASR systems that combine the
resulting adapted AMs with the baseline LMs, both sourced from the baseline ASR
system described in Chapter 4. As adaptation data, we used the e-ESO speech corpus
described in Section 3.2. But, before starting with the training of acoustic models, it
is necessary to align the data that will be used to provide the BLSTM model. This
is achieved by means of the tLtask-align tool which, for each training sample, gen-
erates a �le with the information on which senones are associated with each frame
(feature vector). The baseline model explained above has been used to perform the
alignment, this will allow us to obtain good results despite having little data available.

6.3.1.1 From scratch

First we perform a control training, where we train a model from scratch with the
same topology as the original, but only with the data available for adaptation, the
73h of our training set. The model is made up of 8 BLSTM layers, each with 1024
neurons (512 for each temporal sense), a bottleneck layer of 200 neurons and �nally
the output layer, with 16132 neurons, as many as we have senones. This �rst training

30 DSIC, UPV



i
i

�mem� � 2023/7/26 � 15:59 � page 31 � #39 i
i

i
i

i
i

6.3. Assessment of domain adaptation techniques

0 3 6 9 12 15 18 21 24 27
Epoch

50

55

60

65

70

Va
lid

at
io

n 
Er

ro
r (

FE
R%

)

0 5 10 15 20 25
Epoch

25

30

35

40

45

50

55

60

W
ER

 (%
)

Figure 6.1: FER and WER computed on the development set in function of the epoch
number for the system composed of the in-domain acoustic model trained from scratch and

the language model.

took around 46 hours using a GeForce GTX 1080Ti which, over 29 epochs, obtained a
minimum validation error (FER) of 49.8% over the development set. The best model
was obtained by using values of GSF=10 and PSF=0.6, giving a WER of 22.3% in
Dev set. Figure 6.1 shows the evolution of the FER and WER as a function of the
epochs.

6.3.1.2 Fine-tuning

Then, we performed a �ne-tuning of the baseline acoustic model, so again we repeated
the same network topology, but we used a small learning rate of 2.25e-5. The training
was performed in parallel to the previous one, on a similar machine having the same
graphics card; it was decided to pause it after 46h, having completed 36 epochs and
achieving a minimum validation error of 36.7% in epoch 8, as seen in the Figure 6.3.
A very oscillating pattern is observed, although it seems to converge over time. This
may be due to the value of the learning rate, which could be too high. In spite
of this, quite adequate values have been obtained when compared with the rest of
the techniques studied. This approach achieves a minimum WER in Development of
15.4% in Development, with the hyperparameters set to 10 for GSF and 0.8 for PSF.

6.3.1.3 L2 Regularisation

Following this, and as an approach to re�ne the results of the previous �ne-tuned
model, more models were trained but applying L2 regularisation over the initial
weights of the AM. As explained in Section 2.3, the L2 regularisation is weighted
by an λ factor, which has a strong impact on the result. For this reason, the acoustic
model's behaviour has been studied by varying this value, carrying out training for
the values of λ = {0.01, 0.1, 0.5, 1.0, 10.0}. For the sake of brevity, the pink curve of
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Chapter 6. Experimentation and evaluation

Figure 6.3 shows the variation of the FER for the value of λ = 0.1, the rest curves
of this experiments have a similar behaviour. It can be seen that the minimum value
obtained is 36.2% at epoch 5. During training, in addition to having oscillating FER
values, they do not seem to converge to any result, perhaps due to the small amount
of acoustic data used, which also have a series of complex acoustic conditions. Even
so, the results obtained during decoding were 14.7% WER for the dev set, with a GSF
of 10 and a PSF of 0.8. In Figure 6.2 we can observe the variation of the WER as a
function of the epochs when using di�erent values of lambda during regularisation.
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Figure 6.2: We found the WER as a function of epochs for each system resulting from
combining the LM of the Baseline System with each of the trained AMs with di�erent

values of lambda.

6.3.1.4 Linear Transformation

Thereafter, we start experimenting with the models resulting from freezing parts
of the original network, starting with those that replace the bottleneck layer with a
linear transformation. With this idea in mind, two acoustic models have been trained,
the �rst one using the linear transformation described above, the second one being
the same as the previous one but but adding a non-linear ReLU transformation to
the output of the linear transformation. The yellow curve in Figure 6.3 show the
evolution of the FER for the model with the linear transformation, while the maroon
one shows the same for the model that adds the ReLU one. It can be seen that the
ReLU activation function achieves a smoother convergence, but converges to worse
quality values. The best results achieved were a validation error of 39.6% at epoch
32 for the �rst experiment, while the experiment using the ReLU obtained 50.8% at
epoch 23. In both cases the hyperparameters that con�gured the best system were
GSF=8 and PSF=0.8. Combining the linear transformation model with the LM of
the baseline system yielded a WER of 18.1% in Dev, while the system using the ReLU
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6.3. Assessment of domain adaptation techniques

transformation obtained WERs of 19.4%.

6.3.1.5 Output Layer

Finally, we experimented with the model trained by freezing the entire network except
the output layer; throughout the section and for simplicity, we will refer to it as the
Output Layer Model (OLM). The results of the training can be seen in the green curve
of Figure 6.3. Although it takes several iterations, the model seems to converge, but
a lot of oscillation is observed, in future experiments it would be interesting to try
other learning rate values. However, this results in a minimum FER value of 37.5% in
the 40th epoch. During decoding, the best model has been achieved for a value of 12
in GSF and 0.6 for PSF, with a �nal WER of 15.3% in Development. The evolution
of the WER in terms of the epochs can be seen in the Figure 6.4, as well as for the
other models trained.
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Figure 6.3: FER obtained per epoch in the development set when training the di�erent
models.

6.3.2 Summary and results on the test set

The di�erent results obtained from the experiments carried out in this section can be
found in Table 6.1, including the results in the Test set for each of the approaches
studied. As can be seen, approximations based on adding a linear transformation do
not seem to obtain good results, as well as training from scratch, probably because of
the limited data available (remember that the acoustic model of the Baseline system
has been trained with 6000h of audio).

Regarding the �ne-tuned model, it has obtained very good results, 2.9 absolute
points in Dev with respect to the Baseline system (15.8% of relative improvement).
Finally, the techniques of regularisation and training the last layer only, have proved
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Figure 6.4: We found the WER as a function of the epochs for each best system resulting
from applying the best acoustic model obtained with each of the �tting techniques and the

LM of the Baseline System.

to be the best for this case, having a very similar performance. Although in Test the
OLM has obtained better results than the L2 Regularisation, we will keep the latter,
based on the results obtained in the development set. With the L2 regularisation
model, relative improvements in the 6.2-19.7% range have been obtained, followed
closely by the OLM, which has obtained relative improvements between 12.4-16.4%.

Table 6.1: Results of combining the trained acoustic model with the baseline LM.

eESO
Dev Test

Baseline 18.3 16.1
From scratch 22.3 22.8
Fine-tuning 15.4 15.5
L2 Regularization 14.7 15.1
Linear Transformation 18.1 15.7
Linear Transfor. ReLU 19.4 17.4
OLM 15.3 14.1

6.3.3 Language Model Adaptation

This section is devoted to studying how di�erent language models trained with the
Baseline System acoustic model behave. As explained in Section 2.7, when comparing
language models, perplexity is a important measure of how good a system could be,
which is why the perplexity of the baseline system will be used as reference in the
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6.3. Assessment of domain adaptation techniques

rest of the experiments.
We intend to perform the adaptation of the language model and two main data

sources are available: manual transcriptions and slides. This allows di�erent experi-
ments to be carried out, observing how much the di�erent data sets can contribute.
This way, three di�erent trainings of the N-gram model have been carried out: the
�rst using the transcriptions, the second using the slides and the third combining
both sets.

After training the 4-gram models as explained in Section 5.2, their perplexities
have been calculated, to get a sense of how much they should contribute to the
�nal system. Each of the developed models was then combined with the Baseline
System Acoustic Model and the decoding was performed. In this section it has only
been necessary to explore the GSF, as the PSF hyperparameter a�ects the acoustic
model, which, being from the Baseline System, was already optimised when it was
created. After conducting the experiments, the best system was the one resulting
from combining the language model trained with transcripts interpolated with the
TLM, with results of 16.4% in Dev and 13.7% in Test, but closely followed by the
LM trained with transcripts and slides interpolated with the TLM, whose results
were 16.5% in Dev and 14.0% in Test. Table 6.2 summarises the perplexities of each
interpolated model trained in this section for both Dev and Test sets, as well as the
resulting WER when combined with the AM of the Baseline System. Recall that the
LM of the baseline system consists of a transformer model only.

Table 6.2: Perplexity of the di�erent trained language models, as well as the results when
combined with the AM of the Baseline System.

Dev Test
PPL WER PPL WER

Baseline (OOD TLM) 142 18.3 140 16.1
IDtransc Ng 136 18.5 139 15.9
+ OOD TLM 94 16.4 94 13.7
IDslides Ng 233 20.2 246 16.8
+ OOD TLM 116 17.3 117 14.4
IDall Ng 141 18.1 143 15.3
+ OOD TLM 95 16.5 94 14.0

It can be seen that the language models that are an interpolation are much more
accurate than those that only use count models, despite the fact that the latter do not
have bad performance. Analysing the results, it seems that the slide data contribute
with noise rather than help, so perhaps a di�erent pre-processing of the data should
be carried out, or this data should be omitted.

6.3.4 Combination of adapted acoustic and language models

After carrying out these experiments, the combinations of the adapted acoustic model
using L2 regularisation with the di�erent adapted language models have been carried
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Chapter 6. Experimentation and evaluation

out, thus obtaining di�erent �nal models adapted to the domain, from which the best
one will be chosen.

When performing the combination, it is necessary to re-optimise the hyperparam-
eters; after this, the best results were obtained for a PSF of 0.8 for all the models,
and a GSF of 12 for the model trained with transcriptions and its interpolation with
the TLM; for the rest of the models, the best GSF value was 14. Table 6.3 shows the
�nal results obtained for each system studied. The quality of the systems resulting
from combining both adapted models has been much better than compared to the
Baseline System, being the best the one resulting from combining the adapted AM
with the LM trained with transcriptions only interpolated with the TLM. This system
has obtained 4.8 points of absolute improvement over the Baseline System in Dev and
3.1 in Test.

Table 6.3: Results of combining the trained acoustic model with L2 regularisation with
the di�erent language models generated.

eESO
Dev Test

Baseline (OOD TLM) 18.3 16.1
IDtransc Ng 15.5 14.9
+ OOD TLM 13.5 13.0
IDslides Ng 16.1 15.1
+ OOD TLM 14.0 13.4
IDall Ng 15.1 14.4
+ OOD TLM 13.7 13.2

6.4 Video Level Adaptation

Now we have an adapted system that improves the performance of the original in a
speci�c domain. We then explored the possibilities o�ered by the adaptation of this
new system at the video level. In this section we will use the best system resulting
from combining the best adapted models from Section 5.1 and Section 5.2. We have
used the acoustic model with L2 regularisation and transformer interpolation and the
4-gram model trained with transcriptions as the language model; from now on we
will refer to it as the Adapted System. As the objective is video-level adaptation,
only the Development and Test sets have been used in these experiments, to conduct
experimentation and to con�rm or refute the hypotheses, respectively.

6.4.1 Language Model video level Adaptation

We will now detail the steps taken to build and evaluate the adapted language models
at the video level using their slides as training data. First, we trained an n-gram
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6.4. Video Level Adaptation

model for each video with their own slides1 as training data. The procedure is similar
to the one followed in Section 6.3.3, but with small changes: Both alignment and
training have been performed at the video level, in order to obtain the initial 4-gram
models. These models have been interpolated, individually, with the 4-gram model
of the Adapted System, and �nally, with the transformer of the baseline system, as
it has proved to be the best combination. To obtain this �nal interpolation with the
Transformer LM, we have used the EM algorithm again with the perplexities of the
development videos to obtain the "average" weights to be used by the interpolation,
these weights have been 0.25 for the n-gram models and 0.75 for the TLM.; for the
test set these weights have been used directly, as for any future video with slides.

In order to make the fairest comparison possible with respect to the previous
systems, the videos that do not have slides have been recognised using the Adapted
System, as would occur in a real use case when there are no slides for adaptation. With
this consideration, we combined the language models with the acoustic model of the
Adapted System, and performed the recognition on each individual video, obtaining
WER values of 13.5% in the Dev set and 12.9% in the Test set. If we compare this
results with the ones in Table 6.3, no signi�cant improvement is observed

6.4.2 Acoustic Model video level Adaptation

We continue with the experiments at the video level, now with the acoustic model.
To do this, we repeated the same procedure as for the domain adaptation, but we
only used the �ne-tuning technique with L2 regularisation and its own transcriptions,
generating a unique acoustic model for each video treated. The resulting acoustic
models were combined with the Adapted System Language Model and then the de-
coding was performed, obtaining a WER in development of 12.1, and in test of 11.9,
dropping one absolute point from the previous results.

Finally, both models trained at the video level were combined, as described in
Section 5.3. Recall again, that there is one video in each set that has no slides, so it
could not be adapted at the video level by this procedure; the strategy of recognising
the remaining video with the Adapted System has been followed again. In this way,
WERs of 12.0% in Development and 11.9% in Test were achieved, being, casually, the
same as in the case of the adaptation of the acoustic model to the video level. The
relative improvement over the adapted system was in the range of 7.8-10.4%, while
the improvement respect the baseline system was between 32.8% and 38.6%. As there
is a dependence on the results obtained from the model that is adapted at the slide
level, and this does not obtain great results, it was expected that these combined
systems would not outperform the others.

We conclude that the adapted system has obtained very competitive results and
that, unlike the Video Level Adapted System, it can be used in a streaming setup
without losing much performance.

1Note that there is a video in each set of Dev and Test that has no slides available, so no video-level
model has been trained for these cases.
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Chapter 7

Conclusions

In this work we have discussed possible domain adaptation techniques for hybrid ASR
systems in the framework of the Interact-Europe project. To achieve this, advanced
and highly specialised software tools have been used, as well as a small training
set of 73h of oncological content, manually transcribed, with a total of 2.2 million
words. The trained acoustic and language models have been combined with each
other, forming hybrid ASR systems adapted to the domain. Furthermore, system
adaptations have been made at the video level based on the previously adapted system,
further improving performance.

With regard to the adaptation techniques used on the acoustic model, we can
conclude that both the use of L2 regularisation on the initial weights and the training
of only the last layer of the network have allowed us to deal satisfactorily with the
over�tting that usually occurs with this type of training. With respect to the adapted
language models, it is important to emphasise the importance of the quality of the
data used, since, as has been observed, better results are not always obtained by
having more task-related data, as these may introduce noise into the training.

The best adapted system built, the one which combines the trained acoustic model
with �ne-tuning and L2 regularisation and the language model resulting from interpo-
lating the LM Transformer and the 4-gram model trained with the transcriptions, has
obtained an absolute improvement over the Baseline System of 4.8 points in Dev and
3.1 in Test, that is, between 19.3% and 26.2% relative improvement. These are good
results, and even more so if we remember that it is a system suitable for streaming
environments.

As far as video adaptation is concerned, it has achieved very good relative improve-
ments of between 32.8% and 38.6% over the baseline system, showing an improvement
over the adapted system of 7.8-10.4%, which are satisfactory results.

This work has left the way clear for much future work:

� Variations of AM training based on freezing and thawing parts of the net with
training in between.

� Adaptation of the LM Transformer, where techniques similar to those used in
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Chapter 7. Conclusions

acoustic BLSTM could be tested.

� Use more data, opening the door to being able to use unsupervised data and
explore the impact it would have.

� To carry out more experiments with alternative preprocessing, as well as with
other domains, in order to corroborate the results.

� Study the impact of adaptation at the video level by applying the baseline model
directly.
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APPENDIX

SUSTAINABLE DEVELOPMENT GOALS

Degree to which the work relates to the Sustainable Development Goals (SDGs).

Sustainable development goals High Medium Low Not

applicable

SDG 1. No poverty. X

SDG 2. Zero hunger. X

SDG 3. Good health and well-being. X

SDG 4. Quality education. X

SDG 5. Gender equality. X

SDG 6. Clean water and sanitation. X

SDG 7. Affordable and clean energy. X

SDG 8. Decent work and economic growth. X

SDG 9. Industry, innovation and Infrastructure. X

SDG 10. Reduced Inequality. X

SDG 11. Sustainable cities and communities. X

SDG 12. Responsible consumption and production. X

SDG 13. Climate action. X

SDG 14. Life below water. X

SDG 15. Life on land. X

SDG 16. Peace and justice strong institutions. X

SDG 17. Partnerships to achieve the goal. X
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Reflexion on the relation of the TFG/TFM with the SDGs and with the most related SDG(s).

This work is in line with the Renewable Goals. In particular, with SDG 3 “Good health and well-
being” which aims to “Ensure healthy lives and promote well-being for all at all ages” and with
SDG 4 “Quality education” which aims to “Ensure inclusive, equitable and quality education”.
Within SDG 3, the most related targets to this work are:

� 3.C Substantially increase health financing and the recruitment, development, training and
retention of the health workforce in developing countries, especially in least developed coun-
tries and small island developing States.

� 3.D Strengthen the capacity of all countries, in particular developing countries, for early
warning, risk reduction and management of national and global health risks.

Within SDG 4, the most related targets to this work are:

� 4.3 By 2030, ensure equal access for all women and men to affordable and quality technical,
vocational and tertiary education, including university.

� 4.4 By 2030, substantially increase the number of youth and adults who have relevant skills,
including technical and vocational skills, for employment, decent jobs and entrepreneurship.

This work contributes to increasing health financing and the recruitment, development and train-
ing in countries that do not have state-of-the-art knowledge and treatment in cancer medicine(target
3.C), and will enable cancer professionals to provide higher quality care to patients, thereby re-
ducing national health risks (target 3.D).
This work contributes to increasing accessibility to educational resources for oncology profession-
als (target 4.3), aside from those whose acces to educational and formation resources requires
them to learn and master a foreign language (target 4.4).

ETS Enginyeria Informàtica
Camı́ de Vera, s/n, 46022, Vaència
T +34 963 877 210
F +34 963 877 219
etsinf@upvnet.upv.es - www.inf.upv.es
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