

Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

Finding music's latent dimensions with
Variational Autoencoders

Trabajo Fin de Grado

Grado en Ingeniería Informática

Autor: Joan Coll Alonso

Tutor: Jon Ander Gómez Adrian

Tutor externo: Georg Groh

2022

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Finding Music’s Latent Dimensions with
Variational Autoencoders

Joan Coll Alonso

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Finding Music’s Latent Dimensions with
Variational Autoencoders

Auffinden der latenten Dimensionen von
Musik mit Variational Autoencoders

Author: Joan Coll Alonso
Supervisor: Apl. Prof. Dr. Georg Groh
Advisor: Jon Ander Gómez Adrián, PhD
Submission Date: August 16, 2023

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, August 16, 2023 Joan Coll Alonso

Acknowledgments

First of all, I would like to thank both of my supervisors, Professor Groh and Associate
Professor Jon Ander Gómez. To Professor Groh I owe the idea and basis of this project
and the guidance necessary to carry it out. To Associate Professor Jon Ander Gómez I
owe his mentorship, advice and assistance for the past four years.

Secondly, I would like to thank my parents, Salvador and Marina, for all their support
through difficult times. For having the necessary patience to deal with me and always
wanting the best for me. I would like to thank my brother, Salva, for always putting
a smile on my face when I need it the most and for providing motivation and energy
when nothing seems to be working. I would like to thank my grandfather Juan for those
much needed conversations in between hours of working in the project. I am happy to
have such a wonderful family.

I would like to thank in a special way my girlfriend, Tianyu, for putting up with me
every day. For providing priceless advice about things that I completely missed. For her
relentless affection and her special way of cheering me up, that no one else can do. But
most importantly, for being my place where I take shelter during a storm and for the
(almost) blind trust she puts in me. I am forever thankful for having you by my side,
always.

Finally, I would like to thank myself. For pushing through the hardest times, with the
support of those around me. For not giving up once during the past four years, with
their up and downs. For being a person I can (most times) coexist with.

I am thankful for the present and I look forward to the future.

Abstract

With the recent advancements in the field of artificial intelligence, multiple applications
of it have been developed and studied for music. From genre classification to perfor-
mance interaction, there are many areas of interest that result from the combination of
these two fields.

In this work, we are particularly interested in discovering and analyzing music’s
latent dimensions making use of the latest technology available. We will introduce the
topic, present a thorough literature review, introduce the considered models, present
the underlying technology we base our work off in a detailed way, explain our planned
methodology and experiments, discuss the obtained results and draw conclusions and
possible lines of future work.

Although both VAE and BERT were considered, BERT was deemed as the better
option given that music is sequential data. t-SNE was chosen as the dimensionality
reduction technique and k-means as the clustering method. BERT provided numerical
data for every musical piece analyzed, whose dimensions we reduced with t-SNE and
on which we performed clustering with k-means to analyze the resulting representation.
We found an optimal value of k for which the different clusters could be explained, thus
proving BERT understands music according to some latent parameters.

vii

Kurzfassung

Mit den jüngsten Fortschritten auf dem Gebiet der künstlichen Intelligenz, wurden
zahlreiche Anwendungen für die Musik entwickelt und untersucht. Von der Genreklassi-
fizierung bis hin zur Interaktion bei der Aufführung gibt es viele Bereiche von Interesse,
die sich aus der Kombination dieser beiden Gebiete ergeben.

In dieser Arbeit sind wir besonders an der Entdeckung und Analyse von die latenten
Dimensionen der Musik zu entdecken und zu analysieren, indem wir die neueste ver-
fügbare Technologie nutzen. Wir werden in das Thema einführen, einen gründlichen
Literaturüberblick geben, die in Frage kommenden Modelle vorstellen, die zugrunde-
liegende Technologie, auf die wir unsere Arbeit stützen Wir stellen die unserer Arbeit
zugrundeliegende Technologie detailliert vor, erläutern unsere geplante Methodik und
unsere Experimente, diskutieren die erzielten Ergebnisse und ziehen Schlussfolgerungen
sowie mögliche Ansätze für zukünftige Arbeiten.

Obwohl sowohl VAE als auch BERT in Betracht gezogen wurden, wurde BERT als die
bessere Option angesehen da es sich bei Musik um sequenzielle Daten handelt. t-SNE
wurde als Dimensionalitätsreduktion und k-means als Clustermethode gewählt. BERT
lieferte numerische Daten für jedes analysierte Musikstück, dessen Dimensionen wir
mit t-SNE reduzierten und auf Clustering mit k-means durchgeführt haben, um die
resultierende Darstellung zu analysieren. Wir fanden einen optimalen Wert von k, für
den die verschiedenen Cluster erklärt werden konnten, und bewiesen damit, dass BERT
Musik anhand einiger latenter Parameter versteht.

ix

Contents

Acknowledgments v

Abstract vii

Kurzfassung ix

1 Introduction 1
1.1 Machine Learning and Music . 1
1.2 Latent Spaces . 2

2 State of the art 3
2.1 Machine Learning . 3
2.2 Latent Space Exploration . 7
2.3 Variational Autoencoders . 10
2.4 Machine Learning Models . 13

3 Model Introduction 17
3.1 Comparative: VAEs and Transformers . 17
3.2 Variational Autoencoders and Transformers in MIDI Music Language

Processing . 18
3.3 Application of Transformers in Music Processing 19
3.4 Application of BERT in Music Processing 20
3.5 Application of Midi-BERT in Music Processing 21

4 Methodology 25
4.1 Background . 25
4.2 Research Strategy . 27

5 Results 29
5.1 MIDIBERT models Hidden States Analysis on MIDI Files 29
5.2 t-SNE Analysis of Hidden States of a MIDI File Data Set 30
5.3 K-means Analysis of Hidden States of a MIDI File Data Set 35
5.4 Analysis of results . 40

6 Conclusions 45

7 General Addenda 47

List of Figures 57

xi

Contents

List of Tables 59

xii

1 Introduction

Music has been a central aspect of human culture for millennia. All around the world, all
kinds of civilizations have developed their own music with different pitches, instruments,
rhythms and styles. Whether it was used in a divine and ritualistic setting or for different
celebrations, everybody was surrounded by music. In the later centuries, and especially
in Western culture, the act of music creation has been surrounded by a mystic and
mysterious aura, that has cast some of these qualities into music itself. Only the highly
trained are able to really analyze and bring out the characteristics of a music piece.
However, in this work, we do not focus on human understanding of music but on
computer understanding.

While there are many kinds of music and many different genres, we will generally say
that music is a story told with sounds. These sounds can be stored in multiple ways: in
a measurement of frequency captured by a microphone or in a symbolic representation.
Most of the work done in computer science towards music makes use of the first storage
method, while there is not as much research done on symbolic representations. While it
is true that an audio representation of a music piece captures more nuances and details
about its performance, it is also true that symbolic representations are handled in a
less complex way. Symbolic representations allow us to easily obtain features about
the piece, eliminate performance variability and simplify comparison between different
pieces.

With the surge of Natural Language Processing models in recent years, like GPT from
OpenAI or BERT from Google, it is clear that the Artificial Intelligence paradigm is
expanding. These models are able to learn not only the meaning of words but also
their meaning with context. The context in music is vital. The same note with the same
pitch played by the same instrument with the same volume can feel very different in
different parts of the piece or just depending on which notes are played around it or at
the same time. As the purpose of this work is to analyze and understand music’s latent
dimensions, models that are able to learn with context seem to be the perfect choice.

1.1 Machine Learning and Music

Machine learning (ML) is a branch of artificial intelligence (AI) that allows computers to
learn without being explicitly programmed. Methods like regression, dimensionality
reduction, or clustering, or areas like Neural Networks and Deep Learning all fall under
ML. ML algorithms can be used to identify patterns in data and make predictions. In
the field of music, ML has been used for a variety of tasks; some of these tasks are music
generation, music recommendation and music analysis.

These areas of applications can be put together to aid composers and musicians,

1

1 Introduction

generate music similar to already existing ones, improve recommendation algorithms or
even interact with a performance. Research in this area can impact different groups, like
musicians, producers and even fans. That is why the application of ML in music has a
lot of potential in different areas.

1.2 Latent Spaces

Latent spaces are sets of dimensions that are not directly observed but rather are inferred
from the data itself. It can be interpreted as the "underlying structure of the data" and has
many different uses. Latent spaces are a result of performing dimensionality reduction.

Latent spaces can be used to perform a variety of tasks in machine learning, like
classification or clustering. Note that the techniques can be applied without the use of
latent spaces, but using them will generally improve the results. This is because latent
spaces capture the underlying structure of the data and are able to extract non-trivial
features that can be relevant to these tasks.

Given the nature of latent spaces, capturing features that escape the human eye, its
application to music is very interesting. Latent space enables the extraction of essential
features and patterns from audio signals or symbolic data, such as rhythm, harmony,
and melody, without requiring explicit labels or annotations. Moreover, latent space
facilitates the creation of continuous representations for musical attributes, enabling
smooth interpolations between genres or styles We aim to open new perspectives, find
different relations between pieces and enhance comprehension.

2

2 State of the art

During the development of this thesis, a significant amount of reading and research
was undertaken in the field of machine learning applied to the domain of music, with a
specific focus on studying latent spaces and the use of Variational Autoencoders (VAE)
and transformers in music.

The process of searching and selecting articles was meticulous and rigorous, ensuring
the inclusion of relevant and high-quality works in this literature review. Additionally,
a thorough review and analysis of each selected article was conducted to gain a deep
understanding of the approaches, methods, and outcomes achieved in each of them. This
allowed the identification of trends, significant advancements, and areas of opportunity
in the field, significantly enriching this work and providing a solid theoretical foundation
for the research.

The final result is a comprehensive and rigorous compilation of existing literature,
showcasing the knowledge gained. We are convinced that this research will be a valuable
contribution to the field, and its findings may prove beneficial for future studies and
investigations in this interdisciplinary domain.

This literature review has been subdivided in the following way: machine learning
-in its general meaning- applied to music, findings regarding latent spaces in music and
finally the usage of VAE -a specific model- in music. The last section is dedicated to the
introduction of VAE and transformer models.

2.1 Machine Learning

Machine learning has revolutionized the music industry, playing a pivotal role in music
classification by distinguishing and categorizing various genres. Its importance lies in
its ability to automate and optimize the process of genre identification, saving time and
effort for musicians, producers, and music platforms alike.

Traditionally, genre classification relied on subjective human judgment, leading to
inconsistencies and biases. However, machine learning algorithms, through the analysis
of massive music datasets, can learn intricate patterns and features that define each
genre, leading to more accurate and objective classifications.

Moreover, the applications of machine learning in music extend beyond just genre
classification. With the advent of deep learning techniques, music generation and rec-
ommendation systems have emerged, allowing for the creation of original compositions
based on learned patterns from existing songs. These generative models hold tremen-
dous potential for expanding the boundaries of musical creativity and introducing
innovative sounds to the industry.

Considering the significance of this topic, we will now provide an overview of the

3

2 State of the art

prior research conducted, focusing on the most compelling articles that delve into this
subject.

Ndou et al. [1] research provides a comparative study of genre classification perfor-
mance between deep-learning and traditional machine-learning models. Furthermore, it
investigates the performance of machine-learning models implemented on three-second
duration features, compared to those implemented on thirty-second duration features.

The categories of features utilized for automatic genre classification are introduced,
and the Information Gain Ranking algorithm is employed to identify the most influential
features for accurate music piece classification. Subsequently, machine-learning models
and Convolutional Neural Network (CNN) are trained and tested on ten GTZAN dataset
genres.

The GTZAN dataset contains ten music genres, each having 100 audio clips, with
each clip lasting 30 seconds in .wav format sampled at 22050Hz, 16-bit.

The k-Nearest Neighbours (kNN) model exhibits the highest classification accuracy
of 92.69% with three-second duration input features. The research aims to achieve
automatic music genre classification using both deep-learning and traditional machine-
learning models. A comprehensive literature review substantiates the capabilities of
these classifiers and serves as a benchmark for comparing the research findings.

The findings highlight the superiority of three-second duration input features, which
yield higher accuracy and more extensive training data, resulting in improved perfor-
mance compared to thirty-second duration input features. Notably, the kNN achieves
outstanding accuracy with a relatively short training time of 78 milliseconds, outper-
forming related literature due to the robust feature set.

Moreover, Linear Logistic Regression and Support Vector Machines (SVM) demon-
strate noteworthy performances, achieving accuracies of 81.00% and 80.80%, respectively.
In contrast, the Convolutional Neural Network (CNN) implementations in this research
display relatively lower accuracy, with the most accurate CNN implementation reaching
72.40%.

This study demonstrates the feasibility of automatic music genre classification, with
traditional machine-learning models exhibiting superior performance compared to deep-
learning approaches. The results pave the way for further advancements in the field of
music genre classification, benefiting various music-related applications and industries.

Bahuleyan [2] conducts a comparison of the performance of two classes of models in
the challenging task of categorizing music files based on their genre within the domain
of music information retrieval (MIR). The first approach involves deep learning, where
a Convolutional Neural Network (CNN) model is trained end-to-end to predict the
genre label of an audio signal using its spectrogram. The second approach utilizes hand-
crafted features from both the time domain and frequency domain. Four traditional
machine-learning classifiers are trained with these features, and their performance is
compared. The features that contribute the most to this classification task are identified
using the Information Gain Ranking algorithm. The experiments are conducted on the
Audioset dataset, and an AUC value of 0.894 is reported for an ensemble classifier that
combines the two proposed approaches.

Four machine-learning classifiers are adopted in this study. Logistic Regression

4

2.1 Machine Learning

(LR) is implemented as a one-vs-rest method, where separate binary classifiers are
trained, and the class with the highest probability among the classifiers is chosen as
the predicted class during test time. Random Forest (RF) is an ensemble learner that
combines predictions from a pre-specified number of decision trees using bootstrap
aggregation (bagging) and random subsets of features. Gradient Boosting (XGB) is
another ensemble classifier that combines weak learners in a sequential manner using
forward stagewise additive modeling. Support Vector Machines (SVM) transform the
input data into a high-dimensional space using a radial basis function (RBF) kernel for
non-linear problems and are also implemented as a one-vs-rest classification task.

The CNN model based on VGG-16, which uses only the spectrogram to predict
the music genre, performs the best among the models studied. The transfer learning
and fine-tuning settings show no significant difference in performance. The baseline
feed-forward neural network that uses the unrolled pixel values from the spectrogram
performs poorly, highlighting the significant improvement that CNNs offer for image
classification tasks. Among the models using manually crafted features, the Logistic
Regression model has the least performance, as expected due to its linear nature. SVMs
outperform Random Forests in terms of accuracy, but the XGB version of the Gradient
Boosting algorithm performs the best among the feature-engineered methods.

Silla et al. [3] present a non-conventional approach to address the automatic music
genre classification problem. The proposed method employs multiple feature vectors
and a pattern recognition ensemble approach based on space and time decomposition
schemes. Despite being a multi-class problem, the task is accomplished using a set
of binary classifiers whose results are merged to obtain the final music genre label,
employing space decomposition. The music segments are also decomposed into time
segments from the beginning, middle, and end parts of the original music signal,
utilizing time decomposition. Classical machine learning algorithms, such as Naïve-
Bayes, Decision Trees, k Nearest-Neighbors, Support Vector Machines, and Multi-Layer
Perceptron Neural Nets, are employed for training.

Experiments are conducted on the Latin Music Database, which contains 3,160 music
pieces categorized into ten musical genres. The results show that the proposed ensemble
approach outperforms global and individual segment classifiers in most cases. Experi-
ments related to feature selection using the genetic algorithm paradigm reveal that the
most important features for the classification task vary according to their origin in the
music signal.

The paper evaluates the effect of using the ensemble approach in the music genre
classification problem, where individual classifiers are applied to a special decomposition
of the music signal encompassing both space and time dimensions. Space decomposition
strategies based on the One-Against-All and Round-Robin approaches are used, along
with features extracted from different time segments. Multiple feature vectors and
component classifiers are employed in each music part, and a combination procedure
produces the final class label for the music.

The research conducted in the article [4] compares different classification models and
introduces a novel Convolutional Neural Network (CNN) model, outperforming previ-
ous approaches. The models are trained and compared on the GTZAN dataset, which

5

2 State of the art

consists of audio files from various genres, with some models trained on spectrogram
representations.

Audio features relevant to solving the classification problem are extracted, comprising
Time Domain Features and Frequency Domain Features. These features are used as
inputs to the CNN model, where the training images (spectrogram slices) pass through a
four-layer convolution neural network to extract relevant features. The extracted features
then go through a second sub-network for classification, a fully connected network
containing two fully connected layers. A dense layer is utilized to predict the genre of
the audio.

The proposed model uses various inputs, including audio Mel spectrogram and sound
file characteristics stored in ANN, SVM, MLP, and Decision Tree csv archives, achieving
an accuracy of 91%, comparable to human understanding of genre classification with
the highest accuracy. While some music styles are easily distinguishable, others, such as
country and rock genres, might be confused with other styles. Traditional and blues
genres are more readily identified.

The proposed research work enhances music genre classification using the GTZAN
dataset and demonstrates the effectiveness of the CNN model and other classifiers in
achieving accurate genre classification results.

Qi et al. [5] explore and identify a more effective machine learning algorithm for
predicting the genre of songs compared to existing models. Multiple classification
models were constructed and trained using the Free Music Archive (FMA) dataset. The
performances of these models were compared, and their prediction accuracies were
recorded. Some of these models were trained on the mel-spectrograms of the songs
along with their audio features, while others were solely trained on the spectrograms.

The subset of the Free Music Archive dataset used for evaluation, known as fma_small,
comprises a balanced collection of 8000 songs categorized into eight genres. The dataset
offers 30-second audio segments with pre-computed features, along with track-level
and user-level metadata, tags, and free-form text. Variants of the FMA dataset, such
as fma_medium, fma_large, and fma_full, are also available, each containing varying
numbers of tracks and genres.

Among the models tested, a convolutional neural network (CNN) using only the
spectrograms as the dataset exhibited the highest accuracy. The CNN model using only
spectrogram input achieved a test accuracy of 88.54%, outperforming the CRNN and
CNN-RNN models, which had more complex designs but lower accuracies, possibly
due to the limited dataset size. Models that used handcrafted features, such as Logistic
Regression (LR) and simple Artificial Neural Network (ANN), exhibited comparatively
lower accuracy than the CNN model.

In this study, image-based classification demonstrated superior performance compared
to feature-based classification.

The study by Elbir et al. [6] focuses on the extraction and utilization of various
acoustic features from music for the purpose of music genre classification and recom-
mendation. The selected features include zero-crossing rate, spectral centroid, spectral
contrast, spectral bandwidth, spectral roll-off, and Mel-frequency Cepstral Coefficients-
MFCC. Among the deep learning methods, Convolutional Neural Network-CNN has

6

2.2 Latent Space Exploration

been employed due to its effectiveness. The CNN is applied by transforming the up-
loaded song’s spectrogram through Short Time Fourier Transform (STFT), utilizing
the output of a dense layer as a feature vector for music genre classification and song
similarity calculation.

The results indicate that SVM outperformed other methods in classification, and
variations in window size and type had minimal impact on performance. MFCC had
a more significant effect on classification performance compared to other methods.
Despite the use of deep learning methods, no significant performance difference was
observed in music genre classification, with SVM achieving higher success than the
CNN algorithm. Regarding music recommendations, the study proposes recommending
songs by genre as a solution to the challenge of the lack of objective metrics for music
recommendation.

In this section of the literature review, aimed at reviewing previous work that applied
Machine Learning to music, all works treat the domain of genre classification, partic-
ularly in audio-based representations. Different approaches are presented, with more
traditional and more recent techniques and different ways of treating data.

2.2 Latent Space Exploration

During the comprehensive search and exploration of the literature, a notable collection
of scholarly papers and research works has been identified, all of which delve into the
intriguing and fruitful connection between latent spaces and the domain of music. These
academic publications provide valuable insights, methodologies, and findings, shedding
light on the utilization of latent spaces as a fundamental framework for representing,
modeling, and analyzing musical data.

Roberts et al. [7] introduce interfaces that allow users to explore low-dimensional
control spaces for high-dimensional note sequences, providing a simple 2-D grid for
composing melodies or drum beats. The interface for musical creation in this system
consists of a 2-D control surface called the palette, which is combined with four user-
defined basis points (the corners). The MusicVAE sequencer allows users to record MIDI
or audio externally, or to download a MIDI file containing a particular sequence to use
as part of an arrangement. Users can also use the "draw" tool to define a 1-D curve
within the palette, which the puck will then move through at a rate the user controls.

To make this system accessible to a wide range of users, the researchers have curated
a set of original sounds ahead of time and synthesized all of their interpolated latent
representations, rather than generating sounds on demand. This is because the NSynth
model used in this system is extremely computationally expensive (~30 minutes of GPU
synthesis to generate four seconds of audio). Additionally, machine learning techniques
can learn the shape of low-dimensional manifolds from data, allowing us to avoid
heuristics and hand-tuned features, along with the biases and preconceptions about the
data that would normally accompany those.

This work exemplifies how machine learning can serve as the foundation for creative
musical tools, challenging the traditional view of machine learning solely as a means for
outsourcing discriminative tasks. Instead, it points towards the promising direction of

7

2 State of the art

using machine learning, particularly latent space representations, to create UI mappings
that offer music creators novel and compelling creativity-supporting tools.

Shen et al. [8] explore the use of deep learning models for generating compact and
effective numerical representations of traditional Chinese music data. Traditionally,
handcrafted features have been employed for such tasks, but the potential of deep
learning models, particularly autoencoders, in extracting latent representations is gaining
popularity. However, in the context of music information retrieval (MIR), especially with
regard to incorporating visualization, limited attention has been given to this area.

To address this gap, the researchers propose a visual analysis system that utilizes
autoencoders to facilitate the analysis and exploration of traditional Chinese music.
Due to the scarcity of appropriate traditional Chinese music data, a labeled dataset
is constructed from a collection of pre-recorded audio files, which are then converted
into spectrograms. The system takes music features learned from two deep learning
models: a fully-connected autoencoder for note latent vectors and a Long Short-Term
Memory (LSTM) autoencoder for segment latent vectors. Interactive selection, similarity
calculation, clustering, and listening are performed using the encoded data’s latent
representations, allowing the system to identify essential music elements and lay the
groundwork for further analysis and retrieval of Chinese music.

The spectrogram is chosen as the initial representation of music, containing both
frequency and amplitude information of the music signals. To extract more compact
features, two neural network models, the fully-connected autoencoder, and the LSTM
Autoencoder are used. The autoencoders’ latent spaces are employed to generate music
features, which are then subjected to visual analysis in the music latent space.

Roberts et al. in [9], proposes a solution to the use of VAE in sequential data. The
VAE has shown promise in generating semantically meaningful latent representations
for natural data. However, its application to sequential data has been limited, and
existing recurrent VAE models face challenges in modeling sequences with long-term
structure. To address this issue, this work studies a hierarchical decoder, which first
outputs embeddings for subsequences of the input and then uses these embeddings to
independently generate each subsequence. This architecture encourages the model to
effectively utilize its latent code, thus mitigating the "posterior collapse" problem that is
commonly encountered in recurrent VAEs.

The experiments conducted to evaluate the performance of MusicVAE in modeling
long-term structure in music are divided into two parts: quantitative evaluation and
qualitative evaluation.

In the quantitative evaluation, the authors compare the performance of MusicVAE to
a "flat" baseline model on three tasks: reconstruction, sampling, and interpolation. They
use two datasets of symbolic music: the JSB Chorales dataset and the Piano-MIDI.de
dataset. The results show that MusicVAE outperforms the baseline model on all three
tasks, with statistically significant differences in most cases.

In the qualitative evaluation, the authors conduct a listening test to evaluate the
musical quality of the generated samples. They use three hierarchical models and one
flat model to generate samples, and they also include samples from the real dataset.
The results show that participants rated samples from the hierarchical models as more

8

2.2 Latent Space Exploration

musical than samples from the corresponding flat models or the real dataset. There was
no significant difference between samples from the hierarchical models and the real
dataset.

The experiments demonstrate that MusicVAE is a powerful model for learning long-
term structure in music, and it outperforms existing models on a variety of tasks.

The study of Pati and Lerch [10] introduces a novel latent space regularization
technique to enhance the interpretability of deep generative models for music. The
proposed approach allows users to encode musically meaningful attributes along specific
dimensions of the latent space, enabling them to exercise explicit control over these
attributes during inference. By structuring the latent space with musically relevant
attributes, this technique offers an intuitive way to design musical interfaces that facilitate
creative workflows.

To assess the effectiveness of the proposed method, experiments were conducted
using hierarchical VAE models trained on a dataset of monophonic folk melodies. The
regularization technique was applied to two attributes: rhythmic complexity and pitch
range. The results demonstrate that the regularized models show a clear ordering of
attributes along their respective dimensions in the latent space, while the baseline model
lacks such structure.

Furthermore, attribute surface maps obtained by decoding latent vectors on a two-
dimensional plane of the latent space reveal a similar structure, with attribute values
monotonically ordered along the corresponding regularized dimensions. The model
evaluation using an interpretability metric indicates that the regularized models achieve
higher scores compared to the baseline, demonstrating the effectiveness of the proposed
method.

This study provides evidence that the proposed latent space regularization technique
enables the encoding of selected musical attributes and offers users more intuitive
control over the generated music. The simplicity of the regularization loss computation
and the absence of hyperparameter tuning make this approach promising for practical
applications.

Yang et al. work in [11] introduces an explicitly constrained conditional variational
autoencoder (EC2-VAE) as an effective solution to address the challenges of analogy-
making in computer-generated music. The process of analogy involves partially transfer-
ring high-level music abstractions, such as pitch and rhythm representations and their
relationships, from one music piece to another. However, this procedure requires the
disentanglement of music representations, which is straightforward for musicians but
non-trivial for computers. Three sub-problems arise: extracting latent representations
from the observation, disentangling the representations to ensure unique semantic
interpretation, and mapping of the disentangled representations back to actual music.

The proposed EC2-VAE offers a unified solution to all three sub-problems. It dis-
entangles the pitch and rhythm representations of 8-beat music clips conditioned on
chords, enabling the generation of music analogies with altered pitch contours, rhythm
patterns, and chord progressions. The disentanglement is explicitly coded, allowing
specific latent dimensions to represent distinct semantic factors in the model structure.
Moreover, it preserves the intrinsic relationship between representations and does not

9

2 State of the art

sacrifice much of the reconstruction process. The EC2-VAE learns to make analogies
without requiring analogous examples during the training phase.

To evaluate the proposed method, objective measurements and a subjective survey
were conducted. The results showed significant improvement over baselines in terms
of creativity and musicality. The proposed model demonstrated the ability to gener-
ate interesting and analogous musical versions of existing music through analogical
reasoning.

In this section of the state of art, dedicated to the application of latent spaces to the
musical domain, the different works are much more diverse. This portrays the versatility
of the latent space concept and the many different ways it can be made use of.

2.3 Variational Autoencoders

In the field of artificial intelligence, VAE, or Variational Autoencoder, is an architecture
of artificial neural networks used for unsupervised learning and data generation. It is
a variant of the traditional autoencoder, which is a type of neural network that learns
to compress data into a lower-dimensional space and then decompress it to obtain a
reconstruction close to the original data.

The main difference between VAE compared to the conventional autoencoder is in
how it approaches the encoding and decoding process. Instead of using a deterministic
encoder, VAE employs a probabilistic encoder that maps the input data to a probability
distribution in the latent space. This distribution can be interpreted as a continuous and
distributed representation of the data, enabling greater flexibility and generalization in
the generation process.

VAE is trained using the concept of inference and generation. During the training
phase, the model attempts to learn the distributions that best describe the input data and
then uses optimization techniques to minimize the discrepancy between the distribution
of the real data and the distribution generated by the model. Once trained, VAE can
generate new data samples by randomly sampling from the latent space and decoding
these sample points to produce synthetic data resembling the original input data.

This ability to generate new data and perform smooth interpolations in the latent space
makes VAE useful for tasks of generation and creative exploration in artificial intelligence.
It has been successfully applied in various areas, such as image generation, music, text,
and other types of data, and has proven to be a powerful tool for unsupervised learning
and high-dimensional data generation.

Research works on this matter have predominantly focused on monophonic music,
while the polyphonic counterpart, characterized by richer modality and more complex
musical structures, remains relatively unexplored in the context of music representation
learning.

Wang et al. [12] propose a novel extension of VAE called "PianoTreeVAE," which in-
troduces a tree-structured architecture to specifically cater to polyphonic music learning.

The experiments conducted in this study demonstrate the efficacy of PianoTreeVAE
in multiple aspects: (i) producing semantically meaningful latent codes for polyphonic
music segments; (ii) achieving more satisfactory reconstruction results along with decent

10

2.3 Variational Autoencoders

geometry learning in the latent space; and (iii) showcasing the model’s benefits for a
variety of downstream music generation tasks.

The objective evaluation involves comparing different models based on their re-
construction accuracy of pitch onsets and note duration, which are commonly used
measurements in music information retrieval tasks.

The results show that PianoTreeVAE, with its design incorporating both the music
data structure and model architecture, along with sparsity and hierarchical priors,
outperforms other approaches in terms of reconstruction, interpolation, downstream
generation, and overall model interpretability.

Brunner at al. [13] introduce MIDI-VAE, a neural network model based on Variational
Autoencoders, designed to handle polyphonic music with multiple instrument tracks
while capturing the dynamics of music through note durations and velocities.

The model uses parallel Variational Autoencoders with a shared latent space and an
additional style classifier, which encodes style information in the shared latent space,
facilitating style manipulation.

The model is evaluated using separate style validation classifiers and can interpolate
between short music pieces, create medleys, and generate mixtures of entire songs with
smooth transitions in pitch, dynamics, and instrumentation. MIDI-VAE operates on
symbolic music representations extracted from MIDI files, extending the standard piano
roll representation of note pitches with velocity and instrument rolls to effectively model
MIDI data.

MIDI-VAE demonstrates its effectiveness in style transfer through smooth interpola-
tions between bars, enabling the generation of medleys and mixtures with harmonic
bridges between pieces. The proposed model outperforms existing approaches by
incorporating both dynamics and instrumentation of music.

Jiang et al. in [14] aimed to address the desired properties of structure awareness
and interpretability in music generation algorithms. To achieve these goals simultane-
ously, they introduced the Transformer Variational AutoEncoder (VAE), a hierarchical
model that combines two recent breakthroughs in deep music generation: the Music
Transformer and Deep Music Analogy.

The Music Transformer learns long-term dependencies in music using an attention
mechanism, while Deep Music Analogy focuses on interpretability by employing a
disentangled conditional-VAE. The Transformer VAE demonstrated the ability to learn
a context-sensitive hierarchical representation, with local representations serving as
context and dependencies among them forming the global structure.

Experimental results showed that the Transformer VAE achieved satisfactory recon-
structions for phrase-level music and successfully transferred melodic and rhythmic
contexts from one phrase to another. This allowed for context transfer, enabling the
model to generate music in the style and flow of another piece.

Yang et al [15] propose a novel method termed "disentanglement by augmentation"
that enables the inspection of pitch and rhythm interpretations within the latent represen-
tations. By leveraging interpretable representations, they design an intuitive graphical
user interface to empower users in directing the music creation process through the
manipulation of pitch contours and rhythmic complexity.

11

2 State of the art

The investigation focuses on a compressed MusicVAE model, revealing that the latent
space can be disentangled, with certain dimensions associated with pitch changes and
others linked to rhythm changes. By adjusting values in these selected dimensions,
the average pitch and rhythm complexity can be modulated, or music clips can be
interpolated based on pitch or rhythm separately.

However, the proposed method has certain limitations. First, it is incapable of
determining the consequences of more complex operations on the latent representation.
Additionally, the inspection process relies on manual disentanglement, suggesting the
potential for future research to design an automatic disentangling model for music.

The current landscape of multi-track symbolic music generation predominantly relies
on Convolutional Neural Networks (CNNs) due to the additional dimension of tracks
in the data representation, rendering Recurrent Neural Network (RNN)-based models
unsuitable for this task.

Liang et al [16] explore the problem of multi-track symbolic music generation being
unattainable using RNN-based generation models.

A multi-modal fusion generation model is proposed employing a layered VAE archi-
tecture. This model is divided into two major modules, namely BVAE and MFG-VAE.
The BVAE, a RNN-based VRAE, enhances the performance of BMuseGAN by transform-
ing the binarization problem into a multi-label classification problem. This addresses
the challenge faced in differentiating the refinement step in the original scheme and
the difficulty in gradient descent within BMuseGAN. The underlying BVAE model is
independent for processing distinct track data. The upper model MFG-VAE adopts the
multi-modal fusion-generation VAE architecture.

The encoder serves as the multi-modal fusion network, while the decoder functions
as the multi-modal generation network. Through the fusion/generation of the latent
vector generated by the underlying BVAE, the entire model can generate multi-track
symbolic music.

Cifka et al [17] present a novel method for one-shot instrument timbre transfer,
based on an extension of the vector-quantized variational autoencoder (VQ-VAE) and
a simple self-supervised learning strategy to obtain disentangled representations of
timbre and pitch. The method is evaluated using objective metrics and demonstrates
superior performance compared to selected baselines. The contributions of this work
can be summarized in three aspects: (i) introducing the first neural model for one-
shot instrument timbre transfer, utilizing mutually disentangled pitch and timbre
representations learned in a self-supervised manner without annotations; (ii) training
and testing the model on a dataset containing single, possibly polyphonic instrument
recordings; (iii) the data-driven approach to disentanglement can be extended to other
music transformation tasks, such as arrangement or composition style transfer.

2.4 Machine Learning Models

Variational Autoencoders (VAEs) and transformers are two revolutionary models in
the field of machine learning that have transformed the way we approach various data
processing tasks. Both models have shown great potential and have been widely used in

12

2.4 Machine Learning Models

applications such as natural language processing and content generation.
Variational Autoencoders (VAEs) are a class of generative models that have been highly

successful in generating data from latent distributions. The fundamental idea behind
VAEs is to use variational inference theory to learn the latent distribution of data and, in
turn, generate samples from that distribution. VAEs have been successfully applied in
various tasks such as image generation and speech synthesis and have demonstrated
their ability to generate realistic and high-quality data.

On the other hand, transformers, are a type of deep learning model architecture
based on the attention mechanism. Transformers have particularly excelled in sequence
processing and have overcome the limitations of traditional recurrent models in capturing
long-term dependencies. The architecture of Transformers allows for parallel processing
of sequences, making them highly efficient and suitable for tasks involving large volumes
of data.

In this section, we will focus on explaining in detail the fundamental concepts of
Variational Autoencoders and transformers, analysing their respective architectures and
key mechanisms. Additionally, we will discuss the advantages and applications of
each model in various areas, highlighting how they have significantly impacted natural
language processing and other machine learning tasks.

As we explore and understand these models, we hope to provide a clear and compre-
hensive insight into their capabilities and how they have opened new possibilities for the
development of intelligent systems and practical applications in artificial intelligence.

Variational Autoencoders (VAEs). In this section, we present a detailed review of
VAEs, describe their structure, functioning, and applications in different domains, and
analyse their advantages and limitations.

1. Introduction. VAEs are a type of generative model that belongs to the family
of Deep Neural Networks (DNNs). They were initially proposed by Kingma
and Welling in 2013 as an extension of traditional Autoencoders, with the aim
of learning a latent representation of high-dimensional data and performing the
generation of novel samples.

2. Structure and operation. VAEs consist of two main components: the encoder and
the decoder. The encoder takes a sample of high-dimensional data and maps
it to a probability distribution in the latent space. This distribution is typically
characterized by a mean and a variance. Next, a technique called stochastic
sampling is used to generate a random latent sample from this distribution.
Finally, the decoder takes the generated latent sample and reconstructs it in the
original data space.

3. Advantages. Firstly, VAEs excel in learning meaningful latent representations of
the data, allowing the model to capture relevant information in a compact and
structured manner. This enhances tasks like classification, generation, and style
transfer. Secondly, VAEs are capable of generating novel samples within the origi-
nal data space. The continuous distribution of the latent space enables stochastic
sampling, facilitating the exploration of different regions and the generation of
samples not present in the training set. This attribute makes VAEs particularly

13

2 State of the art

valuable for creative generation applications, including music, image, and text
generation.

4. Applications. VAEs have demonstrated success in a wide range of applications,
including generating realistic images, modeling chemical molecules, music gen-
eration, and coherent text creation. They have also been used in style transfer
problems, where data generation is performed while maintaining certain specific
attributes while manipulating others.

Transformers. In this section, we describe the transformer architecture, its key
components, and the principles that underline its success. Additionally, we discuss the
advantages and applications of the transformer in various tasks, including language
translation, text generation, and image processing.

1. Introduction. The transformer model was developed as a response to the limi-
tations of traditional RNNs, which struggle with parallelization and capturing
long-range dependencies due to their sequential nature. The transformer model’s
introduction marked a significant milestone in the domain of machine translation
and quickly found applications in various other tasks as well.

2. Transformer architecture. The transformer model comprises two key components:
the encoder and the decoder. Each component consists of multiple layers, and
these layers are built around the self-attention mechanism. Self-attention allows the
model to weigh the importance of different positions in the input sequence when
generating each output, enabling it to effectively capture long-range dependencies
and maintain contextual coherence. Unlike RNNs, which process sequential data
one step at a time, self-attention allows the Transformer to process all words in the
sequence simultaneously, making it highly parallelizable and efficient.

3. Positional encoding. Since the transformer model does not inherently capture the
sequential nature of the input, positional encoding is introduced to inject positional
information into the input embeddings. Positional encoding enables the model to
understand the order and position of words in the sequence, which is crucial for
maintaining the contextual meaning of the input.

4. Advantages and applications. The transformer’s ability to efficiently handle long-
range dependencies and capture contextual information has led to its success in
various natural language processing tasks. It has achieved state-of-the-art results
in machine translation, language modeling, text generation, sentiment analysis,
and question-answering tasks. Additionally, the Transformer has also found
applications beyond NLP, such as image captioning and speech recognition.

To sum up, Variational Autoencoders are a powerful tool in deep learning, especially
when it comes to learning latent representations and data generation. However, they also
face challenges like computational complexity or the difficulty in evaluating the quality
of generated samples. On the other hand, the transformer model has revolutionized the
field of natural language processing. Its innovative self-attention mechanism, parallel

14

2.4 Machine Learning Models

processing capabilities, and efficient handling of long-range dependencies have made it
a preferred choice for a wide range of applications.

The research paper "All You Need is Attention", [18], holds significant importance in
the field of natural language processing and machine learning due to its groundbreaking
introduction of the Transformer model architecture. Published by Vaswani et al. in 2017,
this paper presented a novel self-attention mechanism that revolutionized language
modeling and sequence-to-sequence tasks. The transformer’s attention mechanism
allowed for more efficient parallelization and reduced the reliance on recurrent neural
networks (RNNs), thereby overcoming the limitations of sequential processing. It
also facilitated better learning and understanding of patterns in language, enabling
substantial improvements in machine translation, language generation, and other natural
language processing tasks.

Moreover, the Transformer’s parallelization capabilities significantly accelerated model
training, leading to more efficient and scalable language models. Its wide adoption
and contributions to transfer learning has also spurred advancements in other domains
beyond natural language processing, such as computer vision and audio processing.

15

3 Model Introduction

3.1 Comparative: VAEs and Transformers

This chapter presents an in-depth and comprehensive comparison between two promi-
nent machine learning models, Variational Autoencoders (VAEs) and Transformers,
summarized in Section 2.4. We aim to highlight the advantages of transformers and
the limitations of VAEs. We discuss the fundamental concepts, architectures, and key
mechanisms of both models, exploring their applications in different domains. Through
this analysis, we explain why transformers have gained popularity over VAEs in various
tasks and provide insights into the potential areas of transformer adoption.

As stated in Chapter 2 Machine learning has witnessed significant advancements with
the emergence of novel models, including VAEs and transformers. VAEs are generative
models that have proven successful in generating data from latent representations, while
transformers have revolutionized natural language processing and sequence modeling
tasks.

Variational Autoencoders (VAEs) are probabilistic generative models designed to
learn a latent representation of data through an encoder-decoder architecture. VAEs
optimize the lower bound of the log-likelihood to infer the latent variables and generate
new data samples. While VAEs have shown promise in image generation and data
compression, they come with certain drawbacks:

• Inherent latent space constraints: VAEs often suffer from limited representation
power due to the smoothness assumption of the latent space, which may lead to
blurry or unrealistic sample generations.

• Mode collapse: VAEs are prone to mode collapse, wherein the model generates
samples concentrated around a few dominant modes, limiting the diversity of
generated data.

• Difficulty in capturing long-term dependencies: VAEs struggle to capture long-
range dependencies in sequential data, hindering their performance in tasks
involving complex sequential patterns.

Transformers, on the other hand, are based on the self-attention mechanism and
have proven to be highly effective in various natural language processing tasks and
sequence modeling. Transformers employ an attention mechanism to process sequences
in parallel, enabling efficient processing of long-range dependencies. The key advantages
of transformers are as follows:

• Parallelism: transformers can process sequences in parallel, leading to faster
training and inference times, making them highly scalable for large datasets.

17

3 Model Introduction

• Global context awareness: the attention mechanism allows transformers to capture
long-range dependencies in sequential data, facilitating better context understand-
ing and more coherent generation.

• Multi-modal processing: transformers can handle multiple modalities of data,
such as text and images, in a unified manner, enabling more versatile applications.

To sum up, the superior capabilities of transformers in handling long-range depen-
dencies, generating coherent sequences, and processing multiple modalities make them
the preferred choice for various machine learning tasks.

3.2 Variational Autoencoders and Transformers in MIDI Music
Language Processing

This section presents a comparative study of Variational Autoencoders (VAEs) and
Transformers in the context of processing musical language for MIDI music representa-
tion. We present the fundamental concepts, architectures, and key mechanisms of both
models, evaluating their applications in the domain of MIDI music generation and un-
derstanding. MIDI music, represented as sequential data, poses unique challenges that
require models capable of capturing long-range dependencies and generating coherent
musical sequences. Through this analysis, we highlight the advantages of transformers
over VAEs in handling long-range dependencies, generating coherent musical sequences,
and supporting multi-modal processing, making them a superior choice for MIDI music
language processing.

Variational Autoencoders (VAEs) as MIDI Music Language Processing have been
applied to music generation tasks, including MIDI music. They offer the ability to learn a
latent representation of MIDI data and generate novel sequences based on learned priors.
However, VAEs encounter certain challenges in the context of MIDI music processing:

• Latent Space Constraints: VAEs may suffer from a limited representation of
complex musical patterns due to the smoothness assumption in the latent space,
leading to less expressive and coherent musical sequences.

• Model Collapse: Like other applications, VAEs in MIDI music generation may
experience model collapse, limiting the diversity of generated musical phrases.

• Long-Term Dependency Handling: Capturing long-term dependencies in MIDI
music is essential for generating musically meaningful compositions, but VAEs
may struggle in this regard.

Transformers as MIDI Music Language Processing. Transformers have shown ex-
ceptional capabilities in natural language processing tasks and have been successfully
extended to handle sequential data such as MIDI music representation. The advantages
of using Transformers in MIDI music language processing are as follows:

18

3.3 Application of Transformers in Music Processing

• Global Context Awareness: Transformers’ self-attention mechanism enables the
model to capture long-range dependencies in musical sequences, allowing for
better context understanding and coherent composition.

• Parallel Processing: Transformers process MIDI music sequences in parallel, sig-
nificantly reducing training and inference times, making them suitable for large
MIDI datasets.

• Multi-Modal Processing: Transformers can handle multiple modalities of MIDI
data, such as pitch, duration, and velocity, in a unified manner, supporting multi-
instrument compositions and versatile MIDI music applications.

In MIDI music language processing, transformers offer significant advantages over
VAEs. Their ability to capture long-term dependencies, generate coherent and expressive
musical sequences, and support multi-modal processing makes them well-suited for
complex MIDI music generation tasks. The parallel processing capability of transformers
enables efficient handling of large MIDI datasets, making them scalable for real-world
applications. In contrast, the limitations of VAEs in handling long-range dependencies
and mode collapse make them less ideal for MIDI music language processing.

Transformers have achieved state-of-the-art performance in various natural language
processing tasks, such as language modeling and machine translation. Their success
in these tasks indicates their potential for handling sequential data effectively. Recent
studies have demonstrated the application of transformers in music generation tasks,
with impressive results in generating expressive and coherent music [19, 7].

To sum up, the choice of transformers over VAEs for MIDI music language processing
is justified by their ability to handle long-range dependencies, generate coherent musical
sequences, and support multi-modal processing. Transformers have shown promising
results in music generation tasks and have become a prominent choice for processing se-
quential data. Leveraging their global context awareness and self-attention mechanisms,
transformers offer a robust and powerful approach for generating musically meaningful
and expressive MIDI compositions.

3.3 Application of Transformers in Music Processing

This section explores the use of transformers in music processing, highlighting their
applications and advantages in the musical domain. A research review is conducted,
and relevant examples are presented to showcase how transformers have been employed
in music generation, AI-assisted composition, and audio quality enhancement.

As stated in Section 3.2, music processing has witnessed significant advancements
through the adoption of artificial intelligence techniques. Among these techniques,
transformers have proven to be a powerful tool in tasks related to music. They have been
effectively adapted to work with music sequences, enabling analysis and generation of
musical content.

Processing music sequences with transformers. Relevant uses of transformers in music
processing, as reference

19

3 Model Introduction

The introduction of the transformer architecture [18] and its application in natural
language processing tasks highlighted its ability to handle sequences. This characteristic
is essential for its utilization in the musical domain, where sequences represent aspects
such as melodies, chords, and rhythms. As a consequence, transformed have been
applied to various applications in music:

• Music Generation. Dhariwal et al. [20] present a relevant example of how Trans-
formers have been used for generating original music. They mention the use of
the GPT-2 architecture in polyphonic music generation and realistic improvisation.
This approach has enabled the production of creative music through generative
models.

• AI-Assisted Composition. The article also highlights the use of transformers in AI-
assisted music composition [20]. These models can propose musical arrangements
and specific styles, facilitating the exploration of new ideas and approaches in
composition.

• Audio Quality Enhancement.Transformers have been also used to improve the
quality of music recordings through noise reduction techniques and signal re-
construction [21, 22]. This has contributed to the preservation and restoration of
musical heritage.

In summary, the use of transformers in music processing has led to significant
advancements in various areas, such as music generation, AI-assisted composition, and
audio quality enhancement. As research in artificial intelligence continues to progress,
transformers are expected to remain a valuable tool for the evolution and appreciation
of music.

3.4 Application of BERT in Music Processing

This section delves into the utilization of Bidirectional Encoder Representations from
Transformers (BERT) in the field of music processing [23]. By conducting a comprehen-
sive literature review, the section explores the various ways BERT has been employed
to address music-related tasks, including music recommendation, mood analysis, and
music generation. Additionally, the section sheds light on the potential benefits and
challenges associated with incorporating BERT into music processing pipelines.

With the advent of natural language processing (NLP) models like BERT, the domain
of music processing has witnessed a paradigm shift. BERT, a transformer-based neural
network architecture, has demonstrated exceptional performance in capturing context
and semantics from sequential data, which has been found applicable in various areas
beyond NLP, including music processing.

BERT, as introduced in [23], is a pre-trained model that utilizes a bidirectional ap-
proach to comprehend the context of words in a sentence. This unique ability to capture
context makes BERT suitable for music processing tasks, where sequential patterns play
a significant role. In the context of music, BERT can analyse and interpret sequential

20

3.5 Application of Midi-BERT in Music Processing

musical elements, such as notes, chords, and rhythms, enhancing the understanding
and processing of musical data.

• Applications of BERT in Music Processing.

– Music Recommendation. Various research jobs ([24, 25, 26]) present a com-
pelling application of BERT in music recommendation. By leveraging its
contextual comprehension capabilities, BERT can effectively capture user
preferences and interpret music features, leading to more accurate and per-
sonalized music recommendations.

– Mood Analysis in Music. Choi et al ([27]) illustrate how BERT has been
used for mood analysis in music. By analyzing lyrics and music features,
BERT can effectively identify the emotional content of songs, facilitating the
categorization of music based on moods and sentiments.

– Music Generation. Research done by Hawthorne et al ([28]) explores the
use of BERT in music generation. By training the model on large-scale
music datasets, BERT can generate novel musical sequences with coherent
structures, showcasing its potential as a creative tool for composers and music
enthusiasts.

• Benefits and Challenges. BERT’s strength lies in its ability to capture rich contextual
information, leading to enhanced performance in music-related tasks. However,
the large model size and computational requirements of BERT present challenges
in real-time applications and resource-constrained environments [29].

In conclusion, the application of BERT in music processing holds tremendous potential
to revolutionize various music-related tasks. Its success in music recommendation, mood
analysis, and music generation showcases the versatility and efficacy of this NLP model
in a music context. However, addressing computational challenges will be vital to fully
harness BERT’s capabilities and ensure its seamless integration into music processing
pipelines. For this reason, we have considered the application of BERT-based models as
a promising area of research.

3.5 Application of Midi-BERT in Music Processing

This section explores the adaptation of Midi-BERT, a specialized variant of the Bidi-
rectional Encoder Representations from Transformers (BERT), for music-related tasks.
Through an extensive literature review, the current thesis part investigates the architec-
ture and capabilities of Midi-BERT, focusing on its applications in music understanding,
composition, and generation. Additionally, this thesis part discusses the potential impact
of Midi-BERT on the field of music processing and its implications for future research.
With the growing interest in applying natural language processing (NLP) models to
music, Midi-BERT emerges as a promising approach tailored specifically for music data.

Derived from the original BERT architecture, Midi-BERT is designed to understand
and process music sequences represented in the Musical Instrument Digital Interface
(MIDI) format.

21

3 Model Introduction

In this context, the application of Midi-BERT allows for the identification and analysis
of musical elements relevant to genre characterization, such as rhythmic patterns,
harmonic structures, and the use of specific instruments. Prior work has demonstrated
the potential of Midi-BERT in classifying and labeling musical pieces based on their
specific genres [29, 30, 31].

This adaptation of BERT to the task of genre analysis in music represents a significant
advancement in the field of computational music, providing new opportunities for
studying and understanding the distinctive characteristics that define different musical
genres. The current section delves into the applications and potential benefits of Midi-
BERT in various music-related tasks.

Relatively little research has been done on music understanding technology for music
in symbolic formats such as MusicXML and MIDI. The job by Chou et al [30] provides
detailed insights into the implementation of Midi-BERT, where the model’s bidirectional
attention mechanism is adapted to capture the sequential patterns and hierarchical
structures inherent in MIDI data. This transformation enables Midi-BERT to encode
musical sequences more effectively and enhance its understanding of music elements,
such as notes, chords, and tempo. Several promising applications of the model include
the application of Midi-BERT in music understanding tasks, music composition and
music generation:

• By training Midi-BERT on large-scale music datasets, the model can capture
complex relationships between musical events, facilitating tasks like music seg-
mentation, instrument recognition, and phrase analysis. This use of Midi-BERT
in music understanding tasks lays the groundwork for more sophisticated music
analysis and interpretation.

• By fine-tuning the model on music composition datasets, Midi-BERT can generate
harmonious and coherent musical sequences based on input criteria. This appli-
cation empowers composers and musicians with a creative tool to explore novel
musical ideas and facilitate the composition process.

• By leveraging its hierarchical attention mechanism, Midi-BERT can generate realis-
tic and expressive music sequences, offering potential applications in automatic
music composition and creative content generation.

The potential impact of Midi-BERT on the field of music processing is huge. As
stated by Zhu et al [31], the adaptation of BERT for music opens new research avenues
in improving music understanding, analysis, and creative expression. Moreover, this
adaptation paves the way for developing more sophisticated music AI systems that can
interact with musicians and audiences in novel ways.

To conclude, the adaptation of Midi-BERT for music presents a significant advance-
ment in the field of music processing. With its specialized architecture tailored for
MIDI data, Midi-BERT demonstrates promising capabilities in music understanding,
composition, and generation. The successful application of Midi-BERT opens exciting
possibilities for enhancing music-related tasks and inspires further research to unlock
the full potential of this NLP-based model in the realm of music.

22

4 Methodology

In this chapter, we present the procedure followed for the research undertaken in this
study. Firstly, in Section 4.1 we provide a comprehensive exposition of the primary
works that have served as sources of inspiration for our investigation. By presenting a
coherent narrative of the foundational papers and our original research, we aim to offer
a comprehensive understanding of the scholarly endeavors that have shaped the course
of this study. Secondly, in Section 4.2 we delve into a detailed account of the process
followed in conducting the research conducted in this thesis.

4.1 Background

This section is devoted to providing a detailed explanation of the primary article upon
which we have grounded our research: the paper MIDIBERT-Piano: Large-scale Pre-
training for Symbolic Music Understanding [30].

This paper presents an empirical study that employs PTMs for symbolic-domain
music understanding tasks. Inspired by the trend of treating MIDI music as a "language"
in deep generative models, a transformer-based network is pre-trained using a self-
supervised training strategy called "mask language modeling" (MLM), widely used
in BERT-like PTMs in NLP. Despite BERT’s fame, only two publications are known to
employ BERT-like PTMs for symbolic music classification. The PTM is evaluated on
four music understanding tasks, including note-level classification tasks like melody
extraction and velocity prediction, as well as sequence-level classification tasks like
composer classification and emotion classification. The study employs a total of five
datasets to conduct the evaluation and analysis.

The Datasets section describes five publicly available datasets used in the study, con-
sisting of classical and pop music pieces in MIDI format. These datasets were used to
pre-train the MIDIBERT-Piano model and evaluate its performance on four downstream
symbolic music understanding tasks. The section provides important statistics of the
datasets and details on their composition. Additionally, links to the datasets and pre-
trained and fine-tuned models are provided for reproducibility purposes. These datasets
were used to pre-train the MIDIBERT-Piano model and evaluate its performance on four
downstream symbolic music understanding tasks. The section provides important statis-
tics of the datasets and details on their composition. Additionally, links to the datasets
and pre-trained and fine-tuned models are provided for reproducibility purposes.

The results show that MIDIBERT-Piano consistently outperforms the Bi-LSTM or
Bi-LSTM-Attn baselines in all tasks, regardless of whether the representation is REMI or
CP. When combining MIDIBERT-Piano with CP, denoted as MIDIBERT-Piano+CP, the
best results are obtained for all tasks. Additionally, MIDIBERT-Piano+CP outperforms

23

4 Methodology

Bi-LSTM+CP with only 1 or 2 epochs of fine-tuning, highlighting the strength of pre-
trained models in symbolic-domain music understanding tasks. Moreover, the CP token
representation generally outperforms the REMI representation across different tasks
for both baseline models and PTM-based models. This observation underscores the
importance of token representation for music applications.

The evaluation of the models focuses on melody extraction, velocity prediction,
composer classification, and emotion classification tasks. In the melody extraction
task, the proposed model exhibits significant improvement compared to the baseline,
achieving an accuracy boost of almost 8%. In a simplified binary classification problem
of "melody vs. non-melody," our model’s accuracy increases further to 97.09%. When
compared to the skyline algorithm, known for its limitations in distinguishing between
melody and bridge, the model performs favorably.

For the velocity classification task, the accuracy is relatively low due to the subjective
nature of velocity and class imbalance. Bi-LSTM tends to classify most notes into the
most popular class, "f," and MIDIBERT-Piano shows improved performance but faces
challenges in predicting the lowest dynamics, "p" and "pp."

In composer classification, MIDIBERT-Piano significantly outperforms Bi-LSTM-Attn,
achieving the highest accuracy. Additionally, a considerable performance gap is observed
between REMI and CP representations for this task.

For the emotion classification task, MIDIBERT-Piano also outperforms Bi-LSTM-
Attn by a substantial margin in both REMI and CP representations. Although both
representations perform well in distinguishing between high arousal and low arousal
pieces, they struggle to differentiate along the valence axis.

Ablation studies are conducted to gain insights into the effect of different design
choices. These studies include evaluating the model without pre-trained parameters,
exploring partial freezing during fine-tuning, and assessing the impact of different
pre-training data. The results suggest that pre-training plays a vital role in achieving
high accuracy, and partial freezing during fine-tuning leads to a drop in performance.
Additionally, the choice of pre-training data affects the composer classification task
significantly while having a less pronounced effect on melody extraction and emotion
classification tasks.

Overall, the study demonstrates the effectiveness and advantages of MIDIBERT-
Piano+CP in symbolic-domain music understanding tasks, establishing it as a strong
candidate for further research and application in this field.

The decision to base our implementation and experiments in this thesis on the work
presented in the referenced paper is justified by several compelling factors. Firstly,
the paper introduces MIDIBERT-Piano, which is among the pioneering large-scale pre-
trained models specifically designed for musical data in the MIDI format. By employing
five publicly available polyphonic piano MIDI datasets for BERT-like masking-based pre-
training, the authors have laid a strong foundation for symbolic music understanding
tasks.

The paper’s evaluation encompasses four challenging downstream tasks in symbolic
music analysis, most of which involve fewer than 1,000 labeled MIDI pieces. Despite
the limited labeled data, the experiments demonstrate the efficacy of pre-training for

24

4.2 Research Strategy

both note-level and sequence-level classification tasks. The promising results validate
the potential of pre-trained models in tackling symbolic-domain music understanding,
making it an ideal starting point for our research.

Additionally, the availability of public-domain polyphonic piano MIDI datasets and
the open-source nature of the paper’s implementation facilitates reproducibility and
enables us to build upon the established benchmarks. Leveraging the pre-trained
model and openly shared resources allow us to verify the reported results, extend the
experiments, and explore various avenues for improvement and novel applications.

In addition, the authors acknowledge that their work can be extended in multiple
ways, indicating potential research directions and avenues for future exploration. By
building upon this foundational work, we have the opportunity to contribute to the
advancement of the field and explore new possibilities in symbolic music understanding.

In conclusion, the comprehensive evaluation, the effectiveness of pre-training demon-
strated in challenging tasks with limited labeled data, and the availability of resources
and potential for extension make the referenced paper an ideal choice as the basis for
our implementation and experimentation in this thesis. By leveraging MIDIBERT-Piano
and its publicly available resources, we aim to make meaningful contributions to the
field of computational music analysis and further the understanding of symbolic music
data.

4.2 Research Strategy

The objective of this work, as stated previously, is to analyze music’s latent dimensions.
For this purpose, we have employed the Piano MIDI dataset and the MIDIBERT model
explained above. In this section, the dataset will be presented and the intended steps to
follow will be explained.

The Piano MIDI dataset is a dataset composed of 295 .mid files. It is comprised
solely of classical works for piano. It features compositions from the Baroque era, like
some of Bach’s works, the Classical era, like Haydn and Mozart, the Romanticism era,
like Beethoven or Mendelssohn, and also works classified as "nationalist" like those by
Albéniz or Mussorgsky. All files can be listened to on the dataset’s website. As indicated
on the website, the pieces are developed at a digital piano by means of a sequencer on
MIDI base and then converted to audio formats. Some scores and audio files, showing
the scores during playing are available. The full list of pieces is shown in Table 7.1 in
the General Adenda chapter.

The dataset employs MIDI format 0. It is one of the three standard formats used to
store MIDI data. In this format, all the MIDI data, including note events, control mes-
sages, and tempo information, are combined into a single track, making it simpler and
more compact compared to other formats. All the musical events are time-stamped based
on the global timing resolution, specified in the header. It is suitable for compositions
that do not require multitrack structures.

Other datasets were considered, comprised of more modern works like pop music,
jazz, or even videogame music. However, it was determined that the dataset used had
the perfect size for the hardware constraints faced, and classical music within itself

25

4 Methodology

provided enough variability for a non-trivial result.
The general approach is as follows. Obtain a numeric representation of each music

piece employing MIDIBERT. Afterward, a dimensionality-reduction method must be
employed on the dataset as a whole to proceed to clustering.

t-SNE (t-distributed Stochastic Neighbor Embedding) was chosen for reducing dimen-
sions. t-SNE is a non-linear dimensionality reduction technique that is often used for
visualizing high-dimensional data [32]. It is a popular choice for visualization because
it can preserve the local structure of the data, meaning that points that are close to-
gether in the high-dimensional space will also be close together in the low-dimensional
space. This makes it easier to see patterns and relationships in the data. PCA was
also considered as a way to reduce dimensions. However, PCA can only handle linear
data and provides a slightly worse performance than t-SNE regarding preserving local
structure and managing outliers. It is important to take into account also that t-SNE is
computationally more expensive than PCA, and it can be slow to run on large datasets.
t-SNE requires as well a bit of hyperparameter tuning, while PCA does not.

We are interested in finding out commonalities among our data observations. One
way to determine that commonality or similarity is through a measure of distance
among the data points. The shorter the distance, the more similar the observations are.
For that purpose, we selected k-means clustering, which tries to minimize the distances
between the observations that belong to a cluster and maximize the distance between
the different clusters.

Right before clustering, a significant sample of the dataset is randomly taken for
manual annotation of different features. This control group is used for two reasons. The
first reason is to make sure, besides visually, that the clustering is indeed taking place
correctly. The second reason is to delve into the model’s categorization of the pieces
provided and understand how they are grouped by t-SNE. Finally, conclusions are to be
extracted from the findings obtained.

26

5 Results

In this chapter, we will follow the steps mentioned at the end of Section 4, explaining
how they took place and what modifications, if any, were necessary for the correct
carrying out of the work.

5.1 MIDIBERT models Hidden States Analysis on MIDI Files

The first step was to adapt the MidiBERT-Piano code to fit our needs. The authors
provided code to train the model on compressed data. Since no training was planned
for this work, this code was not used. However, the authors did provide a file to
perform melody segmentation in a single MIDI file. Since our dataset is not massive
and evaluation on single files was needed, the code used for this project was based
on the code mentioned. The code was modified so that it would only perform the
forward, reshape the hidden states so one was associated with each token, and t-SNE
was performed on them.

The size of the MIDI-adapted BERT used is 12 layers and 768 hidden states. Each token
forward passed through the model generates a vector of 768 values. Since a maximum
sequence of 512 tokens was used, as indicated in Section 4.1, for each batch in the input,
we obtained a vector of 512 times 768 values. In addition, since MidiBERT-Piano showed
CP tokenization was superior in all tasks, the same one was used in this work. Our
smaller MIDI files were made up of 2 or 3 batches, while the biggest ones took as many
as 17 batches. This meant that we had as much as 17 × 512 × 768 = 6.6 × 106 floating
point values. Working one vector or one .csv file of this size is more than manageable.
However, working with almost 300 of them would go over the hardware constraints.
That is why a decision was made to apply a dimensionality reduction step to each piece.

Before processing all files, a model checkpoint was needed. The authors of the original
paper provided checkpoints to the pre-trained model and four finetuned models as
follows. These four finetuned models were trained with some sort of classifier employing
BERT’s output. The four tasks, as mentioned previously, are emotion and composer,
which perform a sequence-level based classification of pieces, and velocity and melody,
which operate at note-level segmentation.

Figures 5.1 and 5.2 show hidden state analysis of two reference MIDI pieces from
the data set with different models integrated in MIDIBERT: Beethoven Sonata No. 5 C
minor, Opus 10/1 (1798), first movement and Mozart Sonata No. 8 D major, KV 311
(1777), first movement. The experiments are performed using the default perplexity
value of 30 (Figures 5.1(e) and 5.2(e), which gives a good sense of the global geometry
in the experiments [32].

The diagrams show a similar distribution of points that forms small clusters of up to

27

5 Results

several tens of members. Comparable results were obtained for all the files in the data
set. Although the plots for all the models are comparable, the diagrams for the Emotion
model are the ones that show the clearest distribution of points in groups, which points
to considering Emotion the most appropriate model for analyzing the hidden states
obtained when applying the model to an unknown MIDI file.

Of course, finetuning of t-SNE had to also be done. t-SNE takes as input, apart
from the data whose dimensions are wished to reduce, perplexity and random state
value parameters. t-SNE relies on several parameter settings, perplexity being the most
significant on t-SNE performance. Perplexity provides an indication of how to balance
attention between local and global aspects of data. This parameter represents an
estimation of the number of close neighbors each point has. For result replication, value
32 was passed in as random state.

To validate the initial perplexity value of 30, additional experiments were conducted
to test different settings, in particular 3, 5, 30 and 50. Figures 5.3 and 5.4 show our
results for Beethoven’s and Mozart’s pieces presented above. The diagrams for the lower
values of perplexity (Figures 5.3(a,b) and 5.4(a,b) for perplexity 3 and 5, respectively)
show a single cloud of points that are evenly distributed, not providing meaningful
information. In contrast, higher values of perplexity (Figures 5.3(c,d) and 5.4(c,d) for
perplexity 30 and 50, respectively) show a cloud of well-defined clusters of various sizes.
Similar results were obtained for the rest of the files in the data set.

The plots generated with perplexity 30, which is the default t-SNE setting and the
basic recommendation by the authors of the t-SNE technique [32], provide the most
meaningful results, and very similar to those with perplexity 50. This fact suggested that
choosing perplexity 30 for analyzing MIDI files would be the most promising research
path. As a consequence, we fixed perplexity 30 for analyzing hidden states of MIDI
files. All results shown in the rest of the document are obtained with that setting when
applied to hidden states of MIDI files processed by the MIDIBERT model.

Let us briefly summarize the process up to this point. Each file is forward passed
individually through BERT, obtaining a 3-dimensional representation as follows: (n
batches, 512, 768). This representation is reshaped so that each token is associated with
one set of hidden states: (number_o f _batches × 512, 768). Then, t-SNE is performed,
obtaining embedded data of size (number_o f _batches × 512, 2). Finally, this data is
saved in a csv file for future use.

5.2 t-SNE Analysis of Hidden States of a MIDI File Data Set

For the next step, a Python script was composed. This script finds the largest number
of points for any of the files. In our case, it was 8704 points. Please note that we
are working with multiples of 512, so this corresponds to a musical piece that had to
be divided into 17 batches. Then, all smaller sizes were padded with zeros so that
dimensions were matched to perform t-SNE again. Since the 3D vector now was of
size (number_o f _MIDIs, 8704, 2), in order for it to be accepted by t-SNE (requiring
two-dimensional data), the vector was reshaped as (number_o f _MIDIs, 8704 × 2) so
that each point in t-SNE accounted for one and only one piece of music.

28

5.2 t-SNE Analysis of Hidden States of a MIDI File Data Set

(a) Pretrain model (b) Melody model (c) Velocity model (d) Composer model

(e) Emotion model

Figure 5.1: t-SNE analysis of hidden states for Beethoven Sonata No. 5 C minor, Opus
10/1 (1798), first movement

29

5 Results

(a) Pretrain model (b) Melody model (c) Velocity model (d) Composer model

(e) Emotion model

Figure 5.2: t-SNE analysis of hidden states for Mozart Sonata No. 8 D major, KV 311
(1777), first movement

30

5.2 t-SNE Analysis of Hidden States of a MIDI File Data Set

(a) Perplexity = 3 (b) Perplexity = 5

(c) Perplexity = 30 (d) Perplexity = 50

Figure 5.3: t-SNE analysis of hidden states for various settings of perplexity parameter.
Beethoven Sonata No. 5 C minor, Opus 10/1 (1798), first movement

31

5 Results

(a) Perplexity = 3 (b) Perplexity = 5

(c) Perplexity = 30 (d) Perplexity = 50

Figure 5.4: t-SNE analysis of hidden states for various settings of perplexity parameter.
Mozart Sonata No. 8 D major, KV 311 (1777), first movement

32

5.3 K-means Analysis of Hidden States of a MIDI File Data Set

Following the same steps as before, a good perplexity value had to be found. Values
of 3, 5, 30 and 50 were tested, as shown in 5.5. However, some outliers appeared. In the
plots for perplexity 3 and 5, they can be seen clearly, evenly spread out surrounding
the rest of the points. In the plots for perplexity 30 and 50, they can be seen as the few
points below the concentrated group of points. It is important to notice that different
values of perplexity generate different amounts of outliers. As a first measure, the
largest size allowed was set to 3000 points, with no difference in the observed plots.
Finally, the outliers shown in the perplexity 3 plot were removed in order to ensure a
meaningful result, and t-SNE was conducted again. The removed files are indicated in
7.1, for reference.

Again t-SNE’s perplexity had to be tuned. The same values as before were tried, and
the results are shown in 5.6. Surprisingly, this time around, the best value was deemed
to be 3, under the lower limit of the recommended values to try. Values of 5 and 30
still produced outliers, while the central group of points seemed to have no patterns
whatsoever. There were no outliers for perplexity 50, but the points were spread out in
some even manner. For this reason, the value of 3 was validated as the one to use. One
reason for this behavior could be the application of t-SNE twice on the same set of data.
Firstly, on each file and, secondly, on all the files together.

5.3 K-means Analysis of Hidden States of a MIDI File Data Set

As we explained before, the next step comprised selecting random samples that repre-
sented the data for later analysis. Since 271 files remained after removing the outliers,
25 random files, accounting for a bit under 10%, were sampled before performing the
clustering. Those files were researched and manually annotated according to their full
name, composer, year of composition (where there was a doubt or a period of time, the
later year was selected), key and dissonance ratio, as shown in 5.1 and 5.2.

As a representation of the general character or a piece of music, the dissonance ratio
was selected. The dissonance ratio is computed as the time dissonant intervals are
played divided by the time consonant intervals are played. Dissonance ratio has been
calculated on MIDI files by jSymbolic [33]. This tool was taken into account in earlier
stages of the thesis’s development but was finally not selected for the final iteration.
However, it provides a fast and simple way of calculating meaningful features of MIDI
files. Tests were made, and this ratio provided distinct values for different pieces. As
shown in 5.2, most pieces have a value between 0.1 and 0.3, however, some of them go
as high as 0.6.

Finally, clustering was performed on the resulting data. Consider that this data is the
result of performing t-SNE on each file with perplexity of 30, padding with zeros to fit
the larger vectors and performing t-SNE again on all files with perplexity 3. k-means
requires the number of clusters to be found a priori. Figure 5.7 and Figure 5.8 show the
results of applying k-means clustering for cluster sizes ranging from 2 to 9.

Unlike in supervised learning, where we possess a definitive reference for assessing
the model’s effectiveness, clustering analysis lacks a definitive evaluation metric that can
be employed to assess the results yielded by various clustering algorithms. Additionally,

33

5 Results

(a) Perplexity = 3 (b) Perplexity = 5

(c) Perplexity = 30 (d) Perplexity = 50

Figure 5.5: t-SNE analysis of hidden states for various settings of perplexity parameter.
Full data set

34

5.3 K-means Analysis of Hidden States of a MIDI File Data Set

(a) Perplexity = 3 (b) Perplexity = 5

(c) Perplexity = 30 (d) Perplexity = 50

Figure 5.6: t-SNE analysis of hidden states for various settings of perplexity parameter.
Full data set where outlier points are deprecated

35

5 Results

(a) 2 clusters (b) 3 clusters

(c) 4 clusters (d) 5 clusters

Figure 5.7: k-Means analysis for 2 to 5 clusters

36

5.3 K-means Analysis of Hidden States of a MIDI File Data Set

(a) 6 clusters (b) 7 clusters

(c) 8 clusters (d) 9 clusters

Figure 5.8: k-Means analysis for 6 to 9 clusters

37

5 Results

because k-means necessitates the manual specification of the number of clusters (k)
and doesn’t learn this value from the data, determining the optimal cluster count is
inherently ambiguous for any given problem.

The elbow method is a technique to determine the optimal number of clusters (k) in
k-means clustering. It plots the sum of squared distance for different values of k and
looks for the point where the curve bends sharply, like an elbow. This point indicates
that adding more clusters does not improve the model significantly.

Figure 5.9 shows a graph of the sum of squared distance versus the number of clusters
for our data. The figure does not show a clear elbow. The curve experiences a steep
decrease for 2 clusters and a transition of decreasing gradient until 4 clusters. For a
higher number of clusters, the curve is monotonically decreasing and starts flattening
out. From this data, values of k in the range from 2 to 5 seem the most appropriate.

Figure 5.9: Elbow method visualization.

5.4 Analysis of results

The last step in this project is to locate the sampled data (listed in Table 5.1 and Table
5.2) on the clustered plots and review the results. In the appendix, we provide Table 7.2
which contains the assigned group for every piece for every number of clusters. In this
table, we have highlighted in red color the members of the control group mentioned
above. Now, an analysis of each number of clusters from 2 to 5 will be conducted using
the annotated sample.

For two clusters, our control group is balanced. We find 13 samples in group 0 and 12

38

5.4 Analysis of results

in group 1. The average dissonance ratio for group 0 is 0.24, while the ratio for group
1 is 0.27. However, the piece with the most dissonance ratio Pictures at an exhibition -
Samuel Goldenberg and Schmuyle is classified in group 0. The second and third with the
highest dissonance ratio, Schumann Op. 15 - Blindman’s Buff and Pictures at an exhibition
- Bydlo. The average year of composition for group 1 is 22 years earlier than that of
group 0 (1828 against 1850). However, the most recent piece, Brahms Op. 116 No. 2,
composed in 1892, is classified in group 1. For the most repeated composer, 3 out of 5 of
Chopin’s works are classified in group 0 and 2 in group 1. However, both of Beethoven’s
works are classified in the same group, and the same is true for Schubert. The rest of
the repeating composers have their works classified as different groups. In our control
group, there are 11 major keys and 14 minor keys. The 11 major keys are classified 7 in
group 0 and 4 in group 1. This means that 6 pieces in minor keys are classified in group
0 and 8 are classified in group 1. As evidenced by the analysis, there seem to be no clear
criteria for the classification of two clusters. As such, this value for k is deemed as too
small.

For three clusters, we find 9 pieces classified as Group 0, 4 as Group 1 and 12 as
Group 2. It is not very balanced. Group 0 possesses an average dissonance ratio of 0.27,
Group 1 of 0.18 and Group 2 of 0.27. Group 1 seems to group those pieces with higher
consonance. Group 0 has an average year of composition of 1847, Group 1 of 1855 and
Group 2 of 1828. Group 2 seems to generally retain works of earlier composition, while
still taking the latest work from 1892. Chopin’s works are distributed between Group 0
and Group 2. Beethoven’s are both in the same group, same as Schubert’s. The rest of
repeating composers are again split between groups. Out of the 11 major keys we find
now 5 in Group 0, 2 in Group 1 and 4 in Group 2. Meaning that out of the 14 minor keys
we find 4 in Group 0, 2 in Group 1 and 8 in group 2. Upon a more general inspection
of the clusters, for our control group, former Group 1 has remained stable and become
Group 2. Former Group 0 has been divided into Group 0 and new Group 1. This split
seems to shed more light on the distribution of pieces, since dissonance ratio seems to
have split into Group 0 and Group 1. However, it is still not enough to understand the
categorization of pieces.

For four clusters, we find 8 pieces classified as Group 0, 3 as Group 1, 4 as Group
2 and 10 as Group 3. The average dissonance ratio for Group 0 is 0.27, for Group 1 is
0.2, for Group 2 is 0.26 and for Group 3 is 0.25. This measurement seems to have been
stabilized between most groups, while Group 1 possesses the lowest value. The average
composition year is 1843 for Group 0, 1860 for Group 1, 1769 for Group 2 and 1841 for
Group 3. Cluster 2 groups the earliest works with a big margin. Chopin’s works are
distributed between Group 0 and Group 3. Surprisingly, Beethoven’s works have split,
while Schubert’s have remained in the same group. The rest of repeating composers
remain split. Out of the 11 major keys, we find now only 2 in Group 0, 1 in Group 1, 2 in
Group 2 and 6 in Group 3. Out of the 14 minor keys, we find 6 in Group 0, 2 in Group
1, 2 in Group 2 and 4 in Group 3. In this split we clearly have Group 1 with the least
dissonance ratio, Group 2 with the earliest works, Group 0 with most minor keys and
Group 3 with most major keys. Upon a more general evaluation, all former members of
Group 0 have become Group 3, with the addition of one coming from former Group

39

5 Results

1, remerging in some way. All other members from former Group 1 have remained as
Group 1. 8 of the former members of Group 2 have become Group 0, while the other 4
have remained Group 2.

For five clusters, we find 2 pieces in Group 0, 8 in Group 1, 8 in Group 2, 4 in Group
3 and 3 in Group 4. The average dissonance ratio for Group 0 is 0.24, for Group 1 is
0.27, for Group 2 is 0.28, for Group 3 is 0.26 and for Group 4 is 0.14. Group 4 reunites
those pieces with more consonance, while it is spread out evenly in other groups. The
average composition year is 1864 for Group 0, 1843 for Group 1, 1850 for Group 2, 1798
for Group 3 and 1840 for Group 4. Group 3 retains the earlier works, but not with as big
of a margin as before. Chopin’s works are distributed between Group 1 and Group 2.
Beethoven’s remain split into Group 1 and Group 3, and surprisingly Schubert’s have
been split as well into Group 2 and Group 4. All other repeating composers remain split
into groups. Out of the 11 major keys, we find 1 in Group 0, 2 in Group 1, 4 in Group 2,
2 in Group 3 and 2 in Group 4. Out of the 14 minor keys, we find 1 in Group 0, 6 in
Group 1, 4 in Group 2, 2 in Group 3 and 1 in Group 4. In this split, we also have one
cluster with the least dissonance with some margin, one cluster with the earlier works
and one cluster with the most minor keys. However, there is no major key dominance in
any cluster. This is a distinction that has probably been lost due to too many clusters.
Upon a more general evaluation, former Group 0 has become Group 1, former Group 1
has split into Group 0 and Group 4, former Group 2 has become Group 3 and former
Group 3 has become Group 2 with two exceptions.

It is interesting to note that, generally, pieces that were classified together remained
together through all the iterations analyzed. The following works belonged in the same
group respectively 0, 0, 3 and 2: Chopin Op. 10 No. 5, Tchaikovsky’s The seasons -
March, Mussorgsky’s Pictures at an exhibition - Samuel Goldenberg and Schmuyle,
Chopin Op. 23, Mendelssohn Op. 30 No. 5, Chopin Op. 35 1st mov, Debussy’s
Suite bergamasque - Prélude and Schubert’s Piano Sonata in Bb major 4th mov. The
following works also remained together for groups 1, 2, 0 and 1: Brahms Op. 116 No. 2,
Mussorgsky’s Pictures at an exhibition - Bydlo, Chopin Op. 10 No. 12, Beethoven Op.
22 3rd mov, Schumann Op. 15 - Blindman’s Buff, Burgmüller Op. 109 - Agitato, Chopin
Op. 27 No. 1 and Mendelssohn Op. 19 No. 1. Other works that remained together are:
Albeniz Op. 165 No. 1 and Schumann Op. 15 - Curious Story for 0, 1, 1 and 0; Bach’s
Prelude and Fugue in C minor BWV 847, Beethoven Op. 22 1st mov, Sonata No. 12 F
major 3rd mov. Besides the metrics explained in the previous paragraphs, there is no
obvious relationship between these pieces. However, this group stability proves that
k-means was stable and generally grouped the same pieces together, and that indeed
BERT places them in the same category.

It is also interesting to note that, during the analysis, it was observed that BERT
differentiated each cluster according to a different metric. For example, one cluster
would have the earlier works, while the rest would have a much closer average of years
of composition. Or one cluster would have a significantly lower dissonance ratio while
the others would have a much closer average. This might suggest that the metrics
according to which BERT decides some pieces are similar and some are different are
still under the surface, which we just started scraping.

40

5.4 Analysis of results

To sum up, according to our control group and the metrics chosen for evaluation,
clusterings with 3, 4 and 5 clusters have provided good results. Clustering with only 2
groups did not show any difference between them. With 3 clusters, a difference could
be told. With 4 clusters, they could be labeled. With 5 clusters, some meaning was lost.
Thus, we find the optimal number of clusters for our case to be 4.

File name Piece name Year Composer
chpn_op10_e05 Chopin Op. 10 No. 5 1830 Chopin
br_im2 Brahms Op. 116 No. 2 1892 Brahms
muss_4 Pictures at an exhibition - Bydlo 1874 Mussorgsky
liz_et3 Etude No. 3 La campanella 1838-1851 Liszt
chpn_op10_e12 Chopin Op. 10 No. 12 1831 Chopin
ty_maerz The seasons - March 1876 Tchaikovsky
muss_6 Pictures at an exhibition - Samuel Goldenberg and Schmuyle 1874 Mussorgsky
alb_esp1 Albeniz Op. 165 No. 1 1890 Albéniz
beethoven_opus22_3 Beethoven Op. 22 3rd mov 1800 Beethoven
scn15_3 Schumann Op. 15 - Blindman’s Buff 1838 Schumann
chpn_op23 Chopin Op. 23 1831 Chopin
burg_spinnerlied Burgmüller Op. 109 - Spinning Song 1844 Burgmüller
bach_847 Prelude and Fugue in C minor BWV 847 1722-1723 Bach
burg_agitato Burgmüller Op. 109 - Agitato 1844 Burgmüller
mendel_op30_5 Mendelssohn Op. 30 No. 5 1834 Mendelssohn
chpn_op27_1 Chopin Op. 27 No. 1 1836 Chopin
mendel_op19_1 Mendelssohn Op. 19 No. 1 1830 Mendelssohn
beethoven_opus22_1 Beethoven Op. 22 1st mov 1800 Beethoven
scn15_2 Schumann Op. 15 - Curious Story 1838 Schumann
schubert_D850_4 Piano Sonata in D major 4th mov 1825 Schubert
chpn_op35_1 Chopin Op. 35 1st mov 1839 Chopin
deb_prel Suite bergamasque - Prélude 1890 Debussy
mz_332_3 Sonata No. 12 F major 3rd mov 1783 Mozart
schub_d960_4 Piano Sonata in Bb major 4th mov 1828 Schubert
grieg_album Grieg Op. 47 No. 2 1884 Grieg

Table 5.1: Annotated data set test group. Part 1.

41

5 Results

File name Key Dissonance ratio Annotations
chpn_op10_e05 D flat major 0.2305
br_im2 A minor 0.1584
muss_4 G sharp minor 0.4932
liz_et3 G sharp minor 0.1277
chpn_op10_e12 C minor 0.221
ty_maerz G minor 0.2513
muss_6 B flat minor 0.6633 Phrygian scale and augmented seconds used
alb_esp1 A minor 0.1694 Gipsy scale
beethoven_opus22_3 B flat major 0.2231
scn15_3 B minor 0.5024
chpn_op23 G minor 0.2637
burg_spinnerlied D major 0.1256
bach_847 C minor 0.2543
burg_agitato E minor 0.2115
mendel_op30_5 D major 0.2367
chpn_op27_1 C sharp minor 0.2165
mendel_op19_1 E major 0.1559
beethoven_opus22_1 B flat major 0.1561
scn15_2 D major 0.3075
schubert_D850_4 D major 0.166
chpn_op35_1 B flat minor 0.245
deb_prel F major 0.2079
mz_332_3 F major 0.2359
schub_d960_4 B flat major 0.123
grieg_album E minor 0.3802

Table 5.2: Annotated data set test group. Part 2.

42

6 Conclusions

Carrying out this work has been particularly fruitful. Due to the multi-part nature of a
work like this, with a literature review, an implementation and a final analysis, different
skills were required, different mistakes were made, and different lessons were learned.

During the literature review, I learned that much more work than I thought was being
carried out in the interdisciplinary domain of computer science and music. However, I
also learned that there are even more still unexplored areas, more paths awaiting to be
walked. Perhaps it is because I am a musician myself, and I consider this combination
extremely interesting, but it was a great experience to learn about the work that had
been made before mine, so I could stand on giants’ shoulders. I know this work would
have been impossible, or at least, of a much different nature, had it not been for the
existence of Transformers and BERT and people that had thought about mixing them
with music before me. But, as mentioned previously, there is still more work to do.

Making the implementation work was a particularly laborious part of the project.
Dealing with code that is not yours is always a bit complex, and all the dependency
problems that had to be solved could probably account for a thesis themselves. But we
managed to make everything work smoothly and develop the "pipeline" that could take
the MIDI files and finally turn them into those plots that we obtained. As a future work,
it could be interesting to write a script that would run the whole process in one task.
The consequences of using t-SNE twice on the same set of data should also be studied.
Ideally, we would like to have worked directly with the hidden states. This could be
done in future work as well if the hardware constraints are resolved.

Finally, we were able to show that music does indeed possess latent dimensions and
BERT is able to capture them. Although we were not able to fully understand them, we
were able to label the clusters computed. These labels were based on the dissonance
ratio, the year the work was composed, the number of major keys and the number
of minor keys. In future work, a fully annotated dataset should be used for a more
thorough and complete examination of results, as well as datasets containing more and
different genres of music. We are also aware of the constraints of BERT regarding music.
Music is indeed sequential data, but the start and end of sequences are very hard to
determine, sometimes even for trained professionals. If an improvement is provided
in future work regarding the way MIDI or music sequences are processed by BERT or
other models, we are sure that BERT’s "understanding" of music would also improve.

To sum up, in this work a thorough literature review was presented, regarding the
mix of both music and computer science, entire chapters were dedicated to explaining
the model and the decision behind it, as well as our reference paper, its methodology
and our methodology, a comprehensive explanation of experiments and their results
was provided step by step and finally a meticulous and careful analysis was done on
them.

43

7 General Addenda

Table 7.1 shows the complete data set pieces file names. The file names corresponding
to pieces that were discarded during the clustering analysis, since they appeared as
outliers in the graphs, are highlighted in red color.

Table 7.1: Data set file names
alb_esp1 brahms_opus1_4 chpn_op27_2 haydn_7_1 muss_5 schumm-2
alb_esp2 br_im2 chpn_op33_2 haydn_7_2 muss_6 schumm-3
alb_esp3 br_im5 chpn_op33_4 haydn_7_3 muss_7 schumm-4
alb_esp4 br_rhap chpn_op35_1 haydn_8_1 muss_8 schumm-5
alb_esp5 burg_agitato chpn_op35_2 haydn_8_2 mz_311_1 schumm-6
alb_esp6 burg_erwachen chpn_op35_3 haydn_8_3 mz_311_2 schum_abegg
alb_se1 burg_geschwindigkeit chpn_op35_4 haydn_8_4 mz_311_3 schu_143_1
alb_se2 burg_gewitter chpn_op53 haydn_9_1 mz_330_1 schu_143_2
alb_se3 burg_perlen chpn_op66 haydn_9_2 mz_330_2 schu_143_3
alb_se4 burg_quelle chpn_op7_1 haydn_9_3 mz_330_3 scn15_1
alb_se5) burg_spinnerlied chpn_op7_2 hay_40_1 mz_331_1 scn15_10
alb_se6 burg_sylphen chp_op18 hay_40_2 mz_331_2 scn15_11
alb_se7 burg_trennung chp_op31 islamei mz_331_3 scn15_12
alb_se8 chpn-p1 debussy_cc_1 liz_et1 mz_332_1 scn15_13
appass_1 chpn-p10 debussy_cc_2 liz_et2 mz_332_2 scn15_2
appass_2 chpn-p11 debussy_cc_3 liz_et3 mz_332_3 scn15_3
appass_3 chpn-p12 debussy_cc_4 liz_et4 mz_333_1 scn15_4
bach_846 chpn-p13 debussy_cc_6 liz_et5 mz_333_2 scn15_5
bach_847 chpn-p14 deb_menu liz_et6 mz_333_3 scn15_6
bach_850 chpn-p15 deb_prel liz_et_trans4 mz_545_1 scn15_7
beethoven_hammerklavier_1 chpn-p16 elise liz_et_trans5 mz_545_2 scn15_8
beethoven_hammerklavier_2 chpn-p17 gra_esp_2 liz_et_trans8 mz_545_3 scn15_9
beethoven_hammerklavier_3 chpn-p18 gra_esp_3 liz_liebestraum mz_570_1 scn16_1
beethoven_hammerklavier_4 chpn-p19 gra_esp_4 liz_rhap02 mz_570_2 scn16_2
beethoven_les_adieux_1 chpn-p2 grieg_album liz_rhap09 mz_570_3 scn16_3
beethoven_les_adieux_2 chpn-p20 grieg_berceuse liz_rhap10 pathetique_1 scn16_4
beethoven_les_adieux_3 chpn-p21 grieg_brooklet liz_rhap12 pathetique_2 scn16_5
beethoven_opus10_1 chpn-p22 grieg_elfentanz mendel_op19_1 pathetique_3 scn16_6
beethoven_opus10_2 chpn-p23 grieg_halling mendel_op19_2 schubert_D850_1 scn16_7
beethoven_opus10_3 chpn-p24 grieg_kobold mendel_op19_3 schubert_D850_2 scn16_8
beethoven_opus22_1 chpn-p3 grieg_march mendel_op19_4 schubert_D850_3 scn68_10
beethoven_opus22_2 chpn-p4 grieg_once_upon_a_time mendel_op19_5 schubert_D850_4 scn68_12
beethoven_opus22_3 chpn-p5 grieg_spring mendel_op19_6 schubert_D935_1 ty_april
beethoven_opus22_4 chpn-p6 grieg_voeglein mendel_op30_1 schubert_D935_2 ty_august
beethoven_opus90_1 chpn-p7 grieg_waechter mendel_op30_2 schubert_D935_3 ty_dezember
beethoven_opus90_2 chpn-p8 grieg_walzer mendel_op30_3 schubert_D935_4 ty_februar
bor_ps1 chpn-p9 grieg_wanderer mendel_op30_4 schub_d760_1 ty_januar
bor_ps2 chpn_op10_e01 grieg_wedding mendel_op30_5 schub_d760_2 ty_juli
bor_ps3 chpn_op10_e05 grieg_zwerge mendel_op53_5 schub_d760_3 ty_juni
bor_ps4 chpn_op10_e12 haydn_33_1 mendel_op62_3 schub_d760_4 ty_maerz
bor_ps5 chpn_op23 haydn_33_2 mendel_op62_4 schub_d960_2 ty_mai
bor_ps6 chpn_op25_e1 haydn_33_3 mendel_op62_5 schub_d960_3 ty_november
bor_ps7 chpn_op25_e11 haydn_35_1 mond_1 schub_d960_4 ty_oktober
brahms_opus117_1 chpn_op25_e12 haydn_35_2 mond_3 schuim-1 ty_september
brahms_opus117_2 chpn_op25_e2 haydn_35_3 muss_1 schuim-2 waldstein_1
brahms_opus1_1 chpn_op25_e3 haydn_43_1 muss_2 schuim-3 waldstein_2
brahms_opus1_2 chpn_op25_e4 haydn_43_2 muss_3 schuim-4 waldstein_3
brahms_opus1_3 chpn_op27_1 haydn_43_3 muss_4 schumm-1

45

7 General Addenda

Table 7.2 shows the complete data set pieces with their corresponding cluster according
to the various cluster sizes tested in Section 5.3. The members of the control group used
to draw conclusions are highlighted in red color.

Table 7.2: Data set clustering
File Name Number of clusters

2 3 4 5 6 7 8 9
alb_esp1 0 1 1 0 3 1 4 2

alb_esp2 0 1 1 0 3 1 4 2
alb_esp3 0 0 3 2 0 5 7 6
alb_esp4 1 2 0 1 1 2 5 8
alb_esp5 0 0 3 2 0 0 2 1
alb_esp6 1 2 0 1 4 4 1 8
alb_se1 0 0 3 2 0 0 2 1
alb_se2 0 1 1 0 3 1 4 2
alb_se3 0 1 1 0 3 1 4 2
alb_se4 1 2 0 1 4 4 6 3
alb_se6 1 2 0 1 4 4 6 3
alb_se7 1 2 0 1 4 4 1 8
alb_se8 1 2 0 1 1 2 5 7
appass_1 0 0 3 2 0 0 2 1
appass_2 0 0 3 4 2 3 0 5
appass_3 0 0 3 4 2 3 0 5
bach_846 0 0 3 2 2 3 7 6
bach_847 1 2 2 3 5 6 3 4
bach_850 1 2 0 1 4 4 6 3
beethoven_hammerklavier_1 1 2 0 1 1 2 5 7
beethoven_hammerklavier_2 0 0 3 2 0 0 2 1
beethoven_hammerklavier_3 0 0 3 2 0 5 7 6
beethoven_hammerklavier_4 1 2 0 1 1 2 5 8
beethoven_les_adieux_1 1 2 0 1 4 4 1 8
beethoven_les_adieux_2 0 0 3 2 0 0 2 1
beethoven_les_adieux_3 1 2 2 3 4 4 1 0
beethoven_opus10_2 1 0 2 3 5 6 3 4
beethoven_opus10_3 1 2 0 1 4 2 1 8
beethoven_opus22_1 1 2 2 3 4 4 1 0
beethoven_opus22_2 1 2 0 1 1 2 5 7
beethoven_opus22_3 1 2 0 1 4 4 6 3
beethoven_opus22_4 0 0 3 2 0 5 7 6
beethoven_opus90_1 0 0 3 2 0 5 7 6
beethoven_opus90_2 1 2 0 4 2 2 1 8

Continued on next page

46

Table 7.2 – continued from previous page
File Name Number of clusters

2 3 4 5 6 7 8 9
bor_ps1 0 0 3 2 0 0 2 1
bor_ps2 0 1 1 4 2 3 0 5
bor_ps3 0 0 3 2 0 5 7 6
bor_ps4 1 2 0 1 4 4 6 3
bor_ps5 1 2 0 1 1 2 5 7
bor_ps6 0 1 1 0 3 1 4 2
bor_ps7 1 2 0 1 4 2 6 8
brahms_opus117_1 0 0 3 2 0 5 7 6
brahms_opus117_2 0 0 3 2 0 5 7 6
brahms_opus1_1 0 0 3 2 0 0 2 1
brahms_opus1_2 0 0 3 2 0 5 7 6
brahms_opus1_3 1 2 0 1 1 2 5 7
brahms_opus1_4 1 2 2 3 5 6 3 4
br_im2 1 2 0 1 1 2 5 7
br_im5 0 1 1 0 3 1 4 2
br_rhap 0 1 1 0 3 1 4 2
burg_agitato 1 2 0 1 4 4 1 8
burg_erwachen 0 1 1 4 2 3 0 5
burg_geschwindigkeit 1 2 0 1 4 4 1 8
burg_gewitter 1 2 0 1 4 4 1 8
burg_perlen 1 2 0 1 4 2 1 8
burg_quelle 0 1 1 4 2 3 0 5
burg_spinnerlied 0 1 3 4 2 3 0 5
burg_sylphen 0 1 1 4 2 3 0 5
burg_trennung 0 0 3 2 0 5 7 6
chpn-p1 1 2 0 1 1 2 5 7
chpn-p10 1 2 2 3 5 4 1 0
chpn-p11 1 2 2 3 4 4 1 0
chpn-p12 0 1 1 4 2 3 0 5
chpn-p13 1 2 0 1 4 4 1 0
chpn-p14 1 2 0 1 4 4 1 0
chpn-p15 0 0 3 2 0 0 2 1
chpn-p16 1 2 2 3 5 6 3 4
chpn-p17 0 0 3 2 0 0 2 1
chpn-p18 0 1 1 0 3 1 4 2
chpn-p19 0 1 1 4 2 3 0 5
chpn-p2 1 2 2 3 4 4 1 0
chpn-p20 1 2 2 3 4 4 1 0
chpn-p21 1 2 0 1 1 2 5 8

Continued on next page

47

7 General Addenda

Table 7.2 – continued from previous page
File Name Number of clusters

2 3 4 5 6 7 8 9
chpn-p22 0 0 3 2 0 0 2 1
chpn-p23 0 0 3 2 0 0 2 1
chpn-p24 1 2 0 1 4 4 6 3
chpn-p3 0 1 1 0 3 1 4 2
chpn-p4 0 0 3 2 0 0 2 1
chpn-p5 1 2 0 1 1 2 5 8
chpn-p6 1 2 0 1 4 4 1 0
chpn-p7 1 2 2 3 4 4 1 0
chpn-p8 0 0 3 4 2 3 2 1
chpn-p9 1 2 0 1 4 4 1 0
chpn_op10_e01 0 1 1 4 2 3 0 5
chpn_op10_e05 0 0 3 2 0 0 2 1
chpn_op10_e12 1 2 0 1 1 2 5 7
chpn_op23 0 0 3 2 2 0 2 1
chpn_op25_e1 1 2 0 1 1 2 5 7
chpn_op25_e11 1 2 2 3 5 0 2 0
chpn_op25_e12 1 2 0 1 4 2 1 8
chpn_op25_e2 1 2 0 1 4 4 6 3
chpn_op25_e3 1 0 2 3 5 6 3 4
chpn_op25_e4 1 2 0 1 4 4 6 3
chpn_op27_1 1 2 0 1 4 4 1 8
chpn_op27_2 0 0 3 4 2 3 0 5
chpn_op33_2 1 2 0 1 4 4 1 8
chpn_op33_4 1 2 0 1 4 2 6 3
chpn_op35_1 0 0 3 2 0 5 7 6
chpn_op35_3 0 0 3 2 0 5 7 6
chpn_op35_4 1 2 0 1 4 4 1 8
chpn_op53 0 1 1 0 3 1 4 2
chpn_op7_1 1 2 0 1 4 4 6 3
chpn_op7_2 1 2 0 1 4 4 6 3
chp_op18 0 1 0 4 2 3 0 5
chp_op31 0 1 3 4 2 3 0 5
debussy_cc_1 1 2 0 1 4 4 6 3
debussy_cc_2 0 0 3 2 0 0 2 1
debussy_cc_3 0 0 3 2 2 3 7 6
debussy_cc_4 0 0 3 2 0 5 7 6
debussy_cc_6 0 1 1 4 2 3 0 5
deb_menu 0 0 3 2 0 5 7 6
deb_prel 0 0 3 2 0 5 7 6

Continued on next page

48

Table 7.2 – continued from previous page
File Name Number of clusters

2 3 4 5 6 7 8 9
elise 0 0 3 4 2 3 0 5
gra_esp_2 0 1 1 0 3 1 4 2
gra_esp_3 0 1 1 0 3 1 4 2
gra_esp_4 1 2 0 1 4 4 1 8
grieg_album 1 2 2 3 4 4 6 0
grieg_berceuse 1 2 0 1 1 2 5 7
grieg_brooklet 0 0 3 2 0 5 7 6
grieg_elfentanz 1 2 0 1 4 4 1 8
grieg_halling 1 2 0 1 1 2 5 7
grieg_kobold 1 2 0 1 4 4 6 3
grieg_march 1 2 0 1 4 4 6 3
grieg_once_upon_a_time 0 0 3 2 0 0 2 1
grieg_spring 0 0 3 2 0 5 7 6
grieg_voeglein 1 2 0 1 1 2 5 7
grieg_waechter 0 1 1 0 3 1 4 2
grieg_walzer 0 1 1 0 3 1 4 2
grieg_wanderer 1 2 0 1 1 2 1 8
grieg_wedding 0 1 1 0 3 1 4 2
grieg_zwerge 1 2 0 1 4 4 1 3
haydn_33_2 1 2 0 1 4 4 6 3
haydn_33_3 1 2 0 4 2 0 2 8
haydn_35_1 1 0 2 3 5 0 2 1
haydn_35_2 1 2 0 1 1 2 5 7
haydn_35_3 0 0 3 2 0 5 7 6
haydn_43_1 1 2 0 1 1 2 5 8
haydn_43_2 1 2 2 3 4 4 1 0
haydn_43_3 1 2 0 1 1 2 5 7
haydn_7_1 1 2 2 3 4 4 1 0
haydn_7_2 0 0 3 2 0 0 2 1
haydn_7_3 1 2 0 1 4 4 1 0
haydn_8_1 1 2 0 1 1 2 5 8
haydn_8_2 1 2 0 1 4 2 1 8
haydn_8_3 1 2 2 3 4 4 1 0
haydn_8_4 1 2 0 1 4 4 6 3
haydn_9_1 1 2 0 1 4 4 1 8
haydn_9_2 1 2 2 3 5 6 3 4
haydn_9_3 1 2 0 1 1 2 5 8
hay_40_1 1 2 2 3 5 0 2 0
islamei 0 1 1 0 3 1 4 2

Continued on next page

49

7 General Addenda

Table 7.2 – continued from previous page
File Name Number of clusters

2 3 4 5 6 7 8 9
liz_et1 1 2 0 1 1 2 5 7
liz_et2 0 1 1 4 2 3 0 5
liz_et3 0 1 1 4 2 3 0 5
liz_et4 0 0 3 2 0 5 7 6
liz_et5 1 0 2 3 5 6 3 4
liz_et6 0 1 1 0 3 1 4 2
liz_et_trans4 0 1 1 4 2 3 0 5
liz_et_trans5 1 2 2 3 5 6 3 4
liz_et_trans8 1 2 0 1 1 2 5 7
liz_liebestraum 1 2 2 3 5 4 1 0
liz_rhap02 1 0 2 3 5 6 3 4
liz_rhap09 0 0 3 2 0 5 7 6
liz_rhap10 0 1 1 0 3 1 4 2
liz_rhap12 1 2 2 3 5 6 3 4
mendel_op19_1 1 2 0 1 4 4 6 3
mendel_op19_2 1 2 0 1 1 2 5 7
mendel_op19_4 0 1 1 0 3 1 4 2
mendel_op19_5 1 2 2 3 4 4 1 0
mendel_op19_6 0 0 3 2 0 0 2 1
mendel_op30_1 1 2 0 1 1 2 6 3
mendel_op30_2 0 1 1 4 2 3 0 5
mendel_op30_3 1 2 0 1 4 4 1 8
mendel_op30_5 0 0 3 2 0 0 2 1
mendel_op53_5 0 1 1 4 2 3 0 5
mendel_op62_3 1 2 0 1 1 2 5 8
mendel_op62_4 0 1 1 0 3 1 4 2
mendel_op62_5 0 1 1 0 3 1 4 2
mond_1 1 2 2 3 5 6 3 4
mond_3 0 1 1 4 2 3 0 5
muss_1 0 0 3 2 0 5 7 6
muss_2 0 0 3 2 0 5 7 6
muss_3 1 2 0 1 1 2 5 7
muss_4 1 2 0 1 4 4 1 8
muss_5 0 0 3 4 2 3 0 5
muss_6 0 0 3 2 0 0 2 1
muss_7 0 0 3 2 0 5 7 6
muss_8 1 2 0 4 2 3 0 8
mz_311_1 1 2 0 1 1 2 5 8
mz_311_2 0 0 3 2 0 5 7 6

Continued on next page

50

Table 7.2 – continued from previous page
File Name Number of clusters

2 3 4 5 6 7 8 9
mz_311_3 0 1 1 0 3 1 4 2
mz_330_1 1 2 2 3 4 4 1 0
mz_330_2 1 2 0 1 4 4 1 8
mz_331_1 0 1 1 4 2 3 0 5
mz_331_2 0 0 3 2 0 5 7 6
mz_331_3 0 0 3 2 0 0 2 1
mz_332_1 1 2 0 4 1 2 5 8
mz_332_2 1 2 0 1 4 4 1 0
mz_332_3 1 2 2 3 5 4 1 0
mz_333_1 1 2 0 4 2 3 0 5
mz_333_3 1 2 2 3 5 0 2 0
mz_545_1 1 2 2 3 4 4 1 0
mz_545_2 1 2 0 1 4 4 1 8
mz_545_3 1 2 0 1 1 2 5 7
mz_570_1 1 2 2 3 4 4 6 0
mz_570_2 0 0 3 2 0 0 2 1
mz_570_3 1 2 2 3 4 4 1 0
pathetique_1 0 0 3 2 2 3 0 5
pathetique_2 0 1 1 4 2 3 0 5
pathetique_3 1 2 0 1 1 2 5 8
schubert_D850_2 0 0 3 2 0 5 7 6
schubert_D850_3 1 0 2 3 5 0 2 1
schubert_D850_4 0 0 3 4 2 3 0 5
schubert_D935_2 0 0 3 2 0 5 7 6
schubert_D935_3 0 0 3 2 0 0 2 1
schubert_D935_4 0 0 3 4 2 0 2 1
schub_d760_2 1 2 0 1 4 4 6 3
schub_d760_3 0 0 3 2 0 3 7 6
schub_d760_4 0 0 3 2 0 0 2 1
schub_d960_2 0 0 3 2 0 5 7 6
schub_d960_3 1 2 2 3 4 4 1 0
schub_d960_4 0 0 3 2 0 5 7 6
schuim-1 0 0 3 2 2 3 7 6
schuim-2 1 2 2 3 5 0 2 0
schuim-4 0 1 1 4 2 3 0 5
schumm-1 1 2 2 3 5 6 3 4
schumm-2 0 0 3 4 2 0 2 1
schumm-3 0 1 1 4 2 3 0 5
schumm-4 0 1 1 4 2 3 0 5

Continued on next page

51

7 General Addenda

Table 7.2 – continued from previous page
File Name Number of clusters

2 3 4 5 6 7 8 9
schumm-6 1 0 3 4 2 0 2 1
schum_abegg 0 0 3 2 0 5 7 6
schu_143_1 1 2 0 1 4 4 1 8
schu_143_2 1 2 0 4 1 2 5 8
schu_143_3 0 1 1 0 3 1 4 2
scn15_1 1 2 0 1 4 4 1 8
scn15_10 1 2 2 3 4 4 1 0
scn15_11 1 2 0 1 1 2 5 7
scn15_12 1 2 0 1 4 4 6 0
scn15_13 1 2 2 3 4 4 1 0
scn15_2 0 1 1 0 3 1 4 2
scn15_3 1 2 0 1 1 2 5 7
scn15_4 1 2 0 1 1 2 5 8
scn15_5 1 2 0 1 4 4 1 8
scn15_6 0 0 3 2 0 0 2 1
scn15_7 1 2 0 1 4 4 1 0
scn15_8 1 2 0 1 4 4 1 0
scn15_9 0 1 1 0 3 1 4 2
scn16_1 1 2 0 1 4 4 1 8
scn16_2 0 1 1 0 1 1 5 7
scn16_3 1 2 0 1 4 4 1 8
scn16_4 0 0 3 2 0 0 2 1
scn16_5 0 1 1 0 3 1 4 2
scn16_6 0 1 1 0 3 1 4 2
scn16_7 1 2 2 3 5 6 3 4
scn16_8 1 2 0 1 1 2 6 3
scn68_10 1 2 2 3 5 4 1 0
scn68_12 0 1 1 4 2 3 0 5
ty_april 0 1 1 4 2 3 0 5
ty_august 1 2 0 1 4 4 6 3
ty_dezember 1 2 0 1 1 2 5 8
ty_februar 1 2 0 1 4 4 1 8
ty_januar 0 0 3 2 0 5 7 6
ty_juli 1 2 2 3 5 6 3 4
ty_juni 0 1 1 0 3 1 4 2
ty_maerz 0 0 3 2 0 0 2 1
ty_mai 1 2 2 3 4 4 1 0
ty_november 1 2 2 3 5 6 3 4
ty_oktober 1 2 0 1 4 4 1 8

Continued on next page

52

Table 7.2 – continued from previous page
File Name Number of clusters

2 3 4 5 6 7 8 9
ty_september 1 2 0 1 4 4 6 3
waldstein_2 1 2 0 1 1 2 5 8
waldstein_3 0 1 1 0 3 1 4 2

53

List of Figures

5.1 t-SNE analysis of hidden states for Beethoven Sonata No. 5 C minor,
Opus 10/1 (1798), first movement . 31

5.2 t-SNE analysis of hidden states for Mozart Sonata No. 8 D major, KV 311
(1777), first movement . 32

5.3 t-SNE analysis of hidden states for various settings of perplexity parame-
ter. Beethoven Sonata No. 5 C minor, Opus 10/1 (1798), first movement . 33

5.4 t-SNE analysis of hidden states for various settings of perplexity parame-
ter. Mozart Sonata No. 8 D major, KV 311 (1777), first movement 34

5.5 t-SNE analysis of hidden states for various settings of perplexity parame-
ter. Full data set . 36

5.6 t-SNE analysis of hidden states for various settings of perplexity parame-
ter. Full data set where outlier points are deprecated 37

5.7 k-Means analysis for 2 to 5 clusters . 38
5.8 k-Means analysis for 6 to 9 clusters . 39
5.9 Elbow method visualization. 40

55

List of Tables

5.1 Annotated data set test group. Part 1. 43
5.2 Annotated data set test group. Part 2. 44

7.1 Data set file names . 47
7.2 Data set clustering . 48

57

Bibliography

[1] N. Ndou, R. Ajoodha, and A. Jadhav. “Music Genre Classification: A Review of
Deep-Learning and Traditional Machine-Learning Approaches”. In: 2021 IEEE
International IOT, Electronics and Mechatronics Conference (IEMTRONICS). 2021,
pp. 1–6. doi: 10.1109/IEMTRONICS52119.2021.9422487.

[2] H. Bahuleyan. “Music Genre Classification using Machine Learning Techniques”.
In: CoRR abs/1804.01149 (2018). arXiv: 1804.01149. url: http://arxiv.org/abs/
1804.01149.

[3] C. N. Silla, A. L. Koerich, and C. A. A. Kaestner. “A Machine Learning Approach
to Automatic Music Genre Classification”. In: Journal of the Brazilian Computer
Society 14.3 (Sept. 1, 2008), pp. 7–18. doi: 10.1007/BF03192561. url: https:
//doi.org/10.1007/BF03192561.

[4] A. Ghildiyal, K. Singh, and S. Sharma. “Music Genre Classification using Machine
Learning”. In: 2020 4th International Conference on Electronics, Communication and
Aerospace Technology (ICECA). 2020, pp. 1368–1372. doi: 10.1109/ICECA49313.
2020.9297444.

[5] Z. Qi, M. Rahouti, M. A. Jasim, and N. Siasi. “Music Genre Classification and Fea-
ture Comparison Using ML”. In: Proceedings of the 2022 7th International Conference
on Machine Learning Technologies. ICMLT ’22. Rome, Italy: Association for Com-
puting Machinery, 2022, pp. 42–50. isbn: 9781450395748. doi: 10.1145/3529399.
3529407. url: https://doi.org/10.1145/3529399.3529407.

[6] A. Elbir, H. Bilal Çam, M. Emre Iyican, B. Öztürk, and N. Aydin. “Music Genre
Classification and Recommendation by Using Machine Learning Techniques”. In:
2018 Innovations in Intelligent Systems and Applications Conference (ASYU). 2018,
pp. 1–5. doi: 10.1109/ASYU.2018.8554016.

[7] A. Roberts, J. Engel, S. Oore, and D. Eck, eds. Learning Latent Representations of
Music to Generate Interactive Musical Palettes. 2018. url: http://ceur-ws.org/Vol-
2068/milc7.pdf.

[8] J. Shen, R. Wang, and H.-W. Shen. “Visual exploration of latent space for traditional
Chinese music”. In: Visual Informatics 4.2 (June 2020). issn: 2468-502X. doi: 10.
1016/j.visinf.2020.04.003. url: https://www.osti.gov/biblio/1772109.

[9] A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and D. Eck. A Hierarchical Latent
Vector Model for Learning Long-Term Structure in Music. 2019. arXiv: 1803.05428
[cs.LG].

59

https://doi.org/10.1109/IEMTRONICS52119.2021.9422487
http://arxiv.org/abs/1804.01149
http://arxiv.org/abs/1804.01149
http://arxiv.org/abs/1804.01149
https://doi.org/10.1007/BF03192561
https://doi.org/10.1007/BF03192561
https://doi.org/10.1007/BF03192561
https://doi.org/10.1109/ICECA49313.2020.9297444
https://doi.org/10.1109/ICECA49313.2020.9297444
https://doi.org/10.1145/3529399.3529407
https://doi.org/10.1145/3529399.3529407
https://doi.org/10.1145/3529399.3529407
https://doi.org/10.1109/ASYU.2018.8554016
http://ceur-ws.org/Vol-2068/milc7.pdf
http://ceur-ws.org/Vol-2068/milc7.pdf
https://doi.org/10.1016/j.visinf.2020.04.003
https://doi.org/10.1016/j.visinf.2020.04.003
https://www.osti.gov/biblio/1772109
http://arxiv.org/abs/1803.05428
http://arxiv.org/abs/1803.05428

Bibliography

[10] A. Pati and A. Lerch. “Latent Space Regularization for Explicit Control of Mu-
sical Attributes”. In: 2019. url: https://api.semanticscholar.org/CorpusID:
208230803.

[11] R. Yang, D. Wang, Z. Wang, T. Chen, J. Jiang, and G. Xia. Deep Music Analogy Via
Latent Representation Disentanglement. 2019. arXiv: 1906.03626 [cs.SD].

[12] Z. Wang, Y. Zhang, Y. Zhang, J. Jiang, R. Yang, J. Zhao, and G. Xia. PIANOTREE
VAE: Structured Representation Learning for Polyphonic Music. 2020. arXiv: 2008.
07118 [eess.AS].

[13] G. Brunner, A. Konrad, Y. Wang, and R. Wattenhofer. MIDI-VAE: Modeling Dy-
namics and Instrumentation of Music with Applications to Style Transfer. 2018. arXiv:
1809.07600 [cs.SD].

[14] J. Jiang, G. G. Xia, D. B. Carlton, C. N. Anderson, and R. H. Miyakawa. “Trans-
former VAE: A Hierarchical Model for Structure-Aware and Interpretable Mu-
sic Representation Learning”. In: ICASSP 2020 - 2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). 2020, pp. 516–520. doi:
10.1109/ICASSP40776.2020.9054554.

[15] R. Yang, T. Chen, Y. Zhang, and G. Xia. Inspecting and Interacting with Meaningful
Music Representations using VAE. 2019. arXiv: 1904.08842 [cs.SD].

[16] X. Liang, J. Wu, and J. Cao. MIDI-Sandwich2: RNN-based Hierarchical Multi-modal
Fusion Generation VAE networks for multi-track symbolic music generation. 2019. arXiv:
1909.03522 [cs.LG].

[17] O. Cifka, A. Ozerov, U. Simsekli, and G. Richard. “Self-Supervised VQ-VAE
for One-Shot Music Style Transfer”. In: ICASSP 2021 - 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, June 2021.
doi: 10.1109/icassp39728.2021.9414235. url: https://doi.org/10.1109%
2Ficassp39728.2021.9414235.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. “Attention is All You Need”. In: Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems. NIPS’17. Long Beach,
California, USA: Curran Associates Inc., 2017, pp. 6000–6010. isbn: 9781510860964.

[19] C. Jin, T. Wang, S. Liu, Y. Tie, J. Li, X. Li, and S. Lui. “A Transformer-Based
Model for Multi-Track Music Generation”. In: vol. 11. 3. July 2020, pp. 36–54. url:
https://ideas.repec.org/a/igg/jmdem0/v11y2020i3p36-54.html.

[20] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever. Jukebox: A
Generative Model for Music. 2020. arXiv: 2005.00341 [eess.AS].

[21] A. C. Serra, A. J. G. Busson, Á. L. V. Guedes, and S. Colcher. “Quality Enhancement
of Highly Degraded Music Using Deep Learning-Based Prediction Models for
Lost Frequencies”. In: Proceedings of the Brazilian Symposium on Multimedia and
the Web. WebMedia ’21. Belo Horizonte, Minas Gerais, Brazil: Association for
Computing Machinery, 2021, pp. 205–211. isbn: 9781450386098. doi: 10.1145/
3470482.3479635. url: https://doi.org/10.1145/3470482.3479635.

60

https://api.semanticscholar.org/CorpusID:208230803
https://api.semanticscholar.org/CorpusID:208230803
http://arxiv.org/abs/1906.03626
http://arxiv.org/abs/2008.07118
http://arxiv.org/abs/2008.07118
http://arxiv.org/abs/1809.07600
https://doi.org/10.1109/ICASSP40776.2020.9054554
http://arxiv.org/abs/1904.08842
http://arxiv.org/abs/1909.03522
https://doi.org/10.1109/icassp39728.2021.9414235
https://doi.org/10.1109%2Ficassp39728.2021.9414235
https://doi.org/10.1109%2Ficassp39728.2021.9414235
https://ideas.repec.org/a/igg/jmdem0/v11y2020i3p36-54.html
http://arxiv.org/abs/2005.00341
https://doi.org/10.1145/3470482.3479635
https://doi.org/10.1145/3470482.3479635
https://doi.org/10.1145/3470482.3479635

[22] V. Välimäki, S. Gonzalez, O. Kimmelma, and J. Parviainen. “Digital audio an-
tiquing - Signal processing methods for imitating the sound quality of historical
recordings”. In: AES: Journal of the Audio Engineering Society 56 (Mar. 2008), pp. 115–
139.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding”. In: ArXiv abs/1810.04805
(2019). url: https://api.semanticscholar.org/CorpusID:52967399.

[24] G. Penha and C. Hauff. “What Does BERT Know about Books, Movies and
Music? Probing BERT for Conversational Recommendation”. In: Proceedings of the
14th ACM Conference on Recommender Systems. RecSys ’20. Virtual Event, Brazil:
Association for Computing Machinery, 2020, pp. 388–397. isbn: 9781450375832. doi:
10.1145/3383313.3412249. url: https://doi.org/10.1145/3383313.3412249.

[25] A. van den Oord, S. Dieleman, and B. Schrauwen. “Deep content-based music
recommendation”. In: Advances in Neural Information Processing Systems. Ed. by
C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger. Vol. 26.
Curran Associates, Inc., 2013. url: https://proceedings.neurips.cc/paper_
files/paper/2013/file/b3ba8f1bee1238a2f37603d90b58898d-Paper.pdf.

[26] M. Kelly. “An Exploration of BERT for Song Classification and Recommendation”.
In: 2021. url: https://kaimalloy.com/172B_Project.pdf.

[27] K. Choi, G. Fazekas, M. Sandler, and K. Cho. Transfer learning for music classification
and regression tasks. 2017. arXiv: 1703.09179 [cs.CV].

[28] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-Z. A. Huang, S. Dieleman, E.
Elsen, J. Engel, and D. Eck. Enabling Factorized Piano Music Modeling and Generation
with the MAESTRO Dataset. 2019. arXiv: 1810.12247 [cs.SD].

[29] M. Zeng, X. Tan, R. Wang, Z. Ju, T. Qin, and T.-Y. Liu. MusicBERT: Symbolic Music
Understanding with Large-Scale Pre-Training. 2021. arXiv: 2106.05630 [cs.SD].

[30] Y.-H. Chou, I.-C. Chen, C.-J. Chang, J. Ching, and Y.-H. Yang. “MidiBERT-Piano:
Large-scale Pre-training for Symbolic Music Understanding”. In: ArXiv abs/2107.05223
(2021). url: https://api.semanticscholar.org/CorpusID:235795740.

[31] H. Zhu, Y. Niu, D. Fu, and H. Wang. “MusicBERT: A Self-Supervised Learning of
Music Representation”. In: Proceedings of the 29th ACM International Conference on
Multimedia. MM ’21. Virtual Event, China: Association for Computing Machinery,
2021, pp. 3955–3963. isbn: 9781450386517. doi: 10.1145/3474085.3475576. url:
https://doi.org/10.1145/3474085.3475576.

[32] L. van der Maaten and G. Hinton. “Visualizing Data using t-SNE”. In: Journal
of Machine Learning Research 9.86 (2008), pp. 2579–2605. url: http://jmlr.org/
papers/v9/vandermaaten08a.html.

61

https://api.semanticscholar.org/CorpusID:52967399
https://doi.org/10.1145/3383313.3412249
https://doi.org/10.1145/3383313.3412249
https://proceedings.neurips.cc/paper_files/paper/2013/file/b3ba8f1bee1238a2f37603d90b58898d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/b3ba8f1bee1238a2f37603d90b58898d-Paper.pdf
https://kaimalloy.com/172B_Project.pdf
http://arxiv.org/abs/1703.09179
http://arxiv.org/abs/1810.12247
http://arxiv.org/abs/2106.05630
https://api.semanticscholar.org/CorpusID:235795740
https://doi.org/10.1145/3474085.3475576
https://doi.org/10.1145/3474085.3475576
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html

Bibliography

[33] C. McKay, J. Cumming, and I. Fujinaga. “JSYMBOLIC 2.2: Extracting Features
from Symbolic Music for use in Musicological and MIR Research”. In: Proceedings
of the 19th International Society for Music Information Retrieval Conference, ISMIR 2018,
Paris, France, September 23-27, 2018. Ed. by E. Gómez, X. Hu, E. Humphrey, and
E. Benetos. 2018, pp. 348–354. url: http://ismir2018.ircam.fr/doc/pdfs/26%
5C_Paper.pdf.

62

http://ismir2018.ircam.fr/doc/pdfs/26%5C_Paper.pdf
http://ismir2018.ircam.fr/doc/pdfs/26%5C_Paper.pdf

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Machine Learning and Music
	Latent Spaces

	State of the art
	Machine Learning
	Latent Space Exploration
	Variational Autoencoders
	Machine Learning Models

	Model Introduction
	Comparative: VAEs and Transformers
	Variational Autoencoders and Transformers in MIDI Music Language Processing
	Application of Transformers in Music Processing
	Application of BERT in Music Processing
	Application of Midi-BERT in Music Processing

	Methodology
	Background
	Research Strategy

	Results
	MIDIBERT models Hidden States Analysis on MIDI Files
	t-SNE Analysis of Hidden States of a MIDI File Data Set
	K-means Analysis of Hidden States of a MIDI File Data Set
	Analysis of results

	Conclusions
	General Addenda
	List of Figures
	List of Tables

