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a b s t r a c t

Multithreaded latency-critical applications represent an important subset of workloads running on
public cloud systems. Most of these systems deploy powerful computing servers including Intel Hyper-
Threading processors. Understanding how performance is affected by the consumption of the main
system resources is a major concern for cloud providers in order to devise virtualization strategies that
improve the system efficiency. With this aim, this paper first characterizes the impact of QPS on tail
latency, analyzing different scenarios varying the number of threads and the thread-to-core allocation
(single-task and multi-task execution) policy. The characterization study reveals that the performance
of some applications does not scale with the number of threads, and the performance of some others
is insensitive to the Hyper-Threading technology, so they can be allocated in less physical cores and
improve system utilization. Identifying these applications, however, at run-time is challenging. Despite
identifying these applications at run-time is challenging, this paper shows that they can be successfully
detected at run-time by analyzing the utilization trend of the major system resources. In addition to
CPU, we have also studied how assigning the share of each application of other major shared system
resources impacts on performance. We outline considerations cloud providers should take into account
to improve performance and resource utilization.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the public cloud the client has the illusion of accessing
rented machine with a given configuration. However, virtu-

lization is used by cloud providers, which allows public cloud
latforms to share the system resources among clients or tenant
pplications, typically hosted by virtual machines (VMs). This
an be done provided that the service level agreement (SLA)
pecifying the target quality of service (QoS) is not violated. To
eal with this concern, cloud providers need to understand how
irtualization of the major resources of the cloud system affects
enant applications.

The complex infrastructure of cloud systems and the nature
f cloud applications make it difficult to meet this concern. On
he one hand, cloud systems are made up of multiple components
hat interact with each other, including server nodes, client nodes,
torage nodes and the interconnection networks. On the other
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hand, among cloud applications, latency-critical applications de-
serve a special interest. Examples of these applications include
many popular interactive services such as MongoDB [1] and NG-
INX [2], as well as image or speech recognition. Performance
of these applications is usually given by the users’ queries per
second (QPS) the server is able to attend while guaranteeing QoS.
Since QoS violations cannot be overlooked but could be hidden
under the average latency metric, the key performance metric for
these applications is the tail latency. This metric accounts for the
latency of a small percentage of slowest requests, typically 95th
or 99th percentile.

In order to perform representative cloud performance studies,
the experimental platform should resemble as much as possible
the real production environment. This fact is specially hard to
achieve due to the complexity (both hardware and software)
of production systems. Consequently, research works simplify
the experimental framework. Unfortunately, existing studies omit
important system components or do not consider the appropriate
software environment, which results in losses of representative-
ness. For instance, in CoPart and Hypart [3,4] only LLC and main
memory bandwidth are taken into account omitting network and
disk resources. Similarly, Heracles and Parties [5,6] approaches

do not study important resources like the disk. Regarding system
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oftware, recent works like [3,4] do not consider virtualization
t all and other works like [6] use LXC containers, a more light-
eight solution. In this work we implement the full system stack
hardware and software) to make the study representative.

This paper characterizes the multithreaded Tailbench [7] and
edia-streaming [8] applications in a production-like environ-
ent. Most CPU servers implement simultaneous multithreading

SMT) cores (e.g., Intel Hyper-Threading), which are seen as dif-
erent logical CPUs by the OS. We study the impact of varying
he number of threads or scalability, as well as the effect of
yper-Threading (i.e., threads running on the same core), on the
erformance – tail latency and QPS while satisfying QoS – for each
pplication. The results of this study reveal two main counter-
ntuitive findings regarding the insensitivity of applications to the
umber of server threads (non-scalable) and Hyper-Threading.
dentifying these applications can help the cloud provider im-
rove system performance and resource utilization. However, it is
hallenging to detect these applications at run-time. To this end,
e study the correlation between these applications and the uti-

ization of each major (CPU, LLC, main memory bandwidth, disk
andwidth, and network bandwidth) system resource showing
hat measuring the utilization and trend of these resources can
elp in the detection.
Finally, we study the impact of inter-VM interference at the

ain shared resources other than the CPU by applying exist-
ng technologies. We used Intel Resource Director Technologies
RDT) [9] to limit the LLC ways and allocate a share of the system
emory bandwidth to the target VM; and a stressor microbench-
ark that competes for disk bandwidth. Results show that scal-
ble applications are more sensitive to LLC space and mem-
ry bandwidth while disk bandwidth consumption is strongly
onnected with disk applications performance.
All the studies are made from two main perspectives. On

he one hand, research conclusions are highlighted in small to
ake away sections. On the other hand, practical actions oriented
o the cloud provider are highlighted in small cloud provider
ctions sections that include hints to improve performance and
he utilization at the major resources.

This paper makes three main contributions:

• We present two main findings: applications insensitive to
the number of threads (non-scalable) and Hyper-Threading
(SMT) insensitive applications. Notice that the latter finding
advises cloud providers to assign threads of SMT insensitive
applications on the same SMT core without adverse effects
on performance.

• We study the correlation between the consumption of the
major system resources and non-scalable and SMT insensi-
tive applications. We show that these applications can be
easily detected at run-time by the cloud provider as there
exists a strong connection between resource consumption
and the previous findings.

• We analyze the effect of inter-VM interference at the shared
resources by limiting the available cache space, memory
bandwidth and disk bandwidth to cloud applications. The
study reveals that the performance of the studied applica-
tions can widely suffer when the share of a given resource
reduces.

The remainder of this paper is organized as follows. Sec-
ion 2 discusses the related work. Section 3 presents the hard-
are/software platform. Section 4 discusses key characteristics
f latency-critical applications. Section 5 presents the workload
haracterization study. Section 6 relates the workload resource
onsumption with the main findings from the previous section.
ection 7 presents a workload classification and analyzes the
nter-VM interference at the major system resources. Finally,
ection 8 presents some concluding remarks.
195
2. Related work

Due to the nature and fast evolution of the public cloud
and related industry concerns, many research works have been
proposed in the last few years. These studies apply a wide
range of characterization methodologies that present important
differences regarding virtualization levels (e.g., VMs, containers
or no virtualization), considered performance metrics (e.g., exe-
cution time, throughput, or tail latency), target shared resources
(e.g., LLC, main memory, etc.), and system configurations (e.g., SMT
vs no SMT, system specifications). In contrast to previous research
works, in this paper we perform a comprehensive study including
all the main shared resources (i.e., CPU, LLC, main memory,
network, and disk); focusing in a realistic configuration for cloud
providers with a full virtual machine-oriented system stack and
SMT-enabled CPUs; and considering tail latency as key metric to
evaluate QoS from the tenant perspective.

The workload characterization performed in previous works
is often leveraged to propose novel resource management ap-
proaches dealing with distinct shared resources that affect the
behavior of these applications. A major difference among these
approaches is whether the target workloads are representative
of public cloud deployments. This is the case when the work-
load is implemented using virtual machines (VMs) running in
full-stack system configurations. Consequently, this section sum-
marizes previous research taking into account this differentiation.

2.1. Approaches not considering VMs

In [3], Park et al. focus on the interference at the LLC and/or
memory bandwidth, but they do not consider other major shared
resources in the cloud environment like the network or the disk.
This approach characterizes the behavior of each application only
according to the number of LLC misses and number of accesses
per second. However, the system performance is not considered
at all. Moreover, the approach mostly focuses on HPC workloads
and only a small section studies the behavior of scenarios where
a single latency-critical application runs concurrently with batch
workloads.

Also regarding memory bandwidth, in [4], the impact of Intel
Memory Bandwidth Allocation (MBA) technology on performance
is studied. MBA provides a rather coarse interface to limit main
memory bandwidth consumption. Therefore, this approach also
studies complementary techniques such as thread packing [10]
and clock modulation [11].

In [12], each application is categorized considering four main
aspects that affect performance: scale-up (amount of resources
per server), scale-out (number of servers per workload), server
configuration, and interference (symbiotic workloads). This cat-
egorization can be used to establish the right amount of re-
sources allocated to an application to reach a given performance
level while maximizing overall resource utilization (i.e., avoid
overprovisioning). The resources that are taken into account are
number of compute cores, memory, and storage capacity. Unlike
our work, neither LLC occupancy, main memory bandwidth, nor
disk bandwidth are considered.

In [5], similarly to our work, Lo et al. characterize the impact
of interference at shared resources on performance for different
load levels; however, just three latency-critical Google work-
loads are characterized. To study the effect of interference, syn-
thetic benchmarks stress each shared resource. Nevertheless, the
interference at the disk is not analyzed.

In contrast, Parties [6] considers disk interference. In this
work, six latency-critical applications are studied. However, Par-
ties, as some of the works mentioned above, studies applications
running in LXC containers [13] (i.e., Linux containers), which
are more light-weighted that full VMs and thus, the studied
workloads are not representative in a significant amount of public
cloud deployments.



L. Pons, J. Feliu, J. Puche et al. Future Generation Computer Systems 131 (2022) 194–208

2

S
a
m
i
o
u
(
T
t

m
t
I
c
c
t
S
p

t
m
t
h
p
t
p
a
d
b
t
i
m
u

3

p
d

3

s
2
e
n
a

i

D
S
w
M
o

b
b
t

.2. Full system stack approaches with VM support

In [14], a mix of batch (Hadoop running over Mahout and
park jobs) and latency-critical applications (memcached jobs)
re studied in three representative workload scenarios (mini-
um, medium, and high load variability). The focus of this study

s to find the optimal mapping of applications to reserved and
n-demand VM instances. This paper presents a high-level eval-
ation perspective. There is no insight about the exact resources
e.g., cache, disk bandwidth) that affect the jobs’ execution time.
his work only deals with VM instances whose size is defined in
erms of numbers of virtual CPUs.

With the goal of determining the best VM to physical core
apping, in [15], VMs are classified as compute or memory in-

ensive, considering readings from several performance counters.
n particular, this work uses just three performance events (L2
ache misses, L1 cache misses, and committed instructions) to
lassify applications. The focus is on best-effort scenarios and
he evaluated workloads are four-application mixes composed of
PEC CPU2006 benchmarks, which are scheduled in pairs to the
rocessor cores.
Finally, DeepDive [16] pursues to identify interference be-

ween VMs in IaaS clouds. Deepdive uses about a dozen low-level
etrics (including performance events acting at the L2 cache as

he LLC in the system, the iostat and netstat tools, and available
ypervisor -VM- statistics) to find out if interference is taking
lace as well as what is the main shared resource where in-
erference rises. Nevertheless, DeepDive lacks from important
erformance events, which are present in modern processors
s well as partitioning mechanisms (i.e., Intel CAT and MBA)
ealing with shared resources like the LLC and the main memory
andwidth. The analysis introduces some unexpected metrics like
he use of the private L1 cache misses, mainly because the L2
s the LLC. In modern processors, the latency of most L1 cache
isses is hidden by the out-of-order mechanisms. Experiments
se three cloud and latency-critical (web search) workloads.

. Experimental system

This section presents a general overview of the experimental
latform, both hardware and software, employed in this work and
iscusses the devised VM infrastructure.

.1. System specifications

The experimental framework is made up of three physical
ervers (main, client and storage nodes) interconnected with two
0 Gbps dedicated links. Fig. 1 shows a block diagram of the
xperimental platform, including the three system nodes: main
ode, client node and storage node, and the installed packages
nd libraries. Below, the system nodes are described.
The main node is where the developed framework is installed,

ncluding the Resource and Application Manager software (ReAM).
This node runs the VMs hosting the tenant applications or bench-
marks to be studied. This two-socket node has two Intel Xeon
Silver 4116 processors with six memory channels holding three
16 GB DDR4 DIMM each, which amounts to 96 GB (6 × 16GB)
RAM capacity and supports 115 GBps bandwidth. The Intel Xeon
ilver 4116 processor is equipped with 12 cores and a 16.5 GB 11-
ay LLC. It supports Intel Cache Allocation Technology (CAT) and
emory Bandwidth Allocation (MBA) [17], allowing the partition
f LLC space and memory bandwidth.
The client node is used to run the clients for the client–server

enchmarks, e.g., applications from the TailBench and CloudSuite
enchmark suites. A script in the client node is executed to launch
he client side of each application.
196
Fig. 1. Overview of the complete experimental framework.

The storage node implements a remote storage system with
Ceph [18] (version 14.2.9). This node has a SATA SSD hard drive
devoted to the remote storage. It runs a Ceph OSD daemon and a
Ceph monitor. We would like to remark that, in this work, Ceph
is not used to increase performance in a multi-node environment
by leveraging Ceph’s parallel I/O. Instead, we use Ceph to provide
our system with a realistic software stack similar to those used
by current cloud providers.

Regarding the system software, the installed operating system
in the three nodes is Ubuntu 18.04 LTS. The main node has
kernel version 5.4. On this node we developed the Resource and
Application Manager software (ReAM), which is able to monitor
resource consumption and assign fractions of the major system
resources (e.g., number of CPUs, main memory space, LLC space,
network and disk bandwidth) to each individual VM.

3.2. VM infrastructure

To create a realistic infrastructure resembling that of servers
deployed by cloud service providers, we developed ReAM to
be compatible with VMs. KVM [19] is installed as hypervisor,
QEMU [20] (version 2.11.1) as virtualizer and libvirt [21] as vir-
tualization manager (version 4.0.0). Additionally, the main node
has a virtual switch configured to connect the physical network
interfaces with the VMs. The virtual switch is configured using
Open vSwitch [22] (OvS, version 2.9.5) and Data Plane Devel-
opment Kit [23] (DPDK, version 17.11.9). OvS and DPDK enable
direct transfer of packets between the user space and physical
interface, bypassing the kernel network stack. This setup boosts
network performance compared to the default packet forwarding
mechanism implemented in the Linux kernel. This configuration
is similar to that used by OpenStack on its compute nodes [24].

To reduce the start-up overhead, the designed framework
makes use of the Ceph block device snapshots [25]. For each VM,
we take a snapshot of the state where the OS boot process is
already performed and it is ready to receive the command to
launch the target benchmark.

3.3. Intel hyper-threading

The processor of the server node implements Intel Hyper-
Threading technology [26], that is, Intel’s implementation of
the simultaneous multithreading (SMT) paradigm [27]. The key
characteristic of SMT processors is the capability to issue mul-
tiple instructions from different threads on each cycle, which
allows increasing the processor throughput. However, this means
that instructions from the applications – or threads – concur-
rently running on the same core compete, among other shared
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esources, for the scarce issue ports; thus, introducing inter-
hread interference that harms their performance with respect
o their individual execution.

Hyper-Threading processors typically support the concurrent
xecution of two threads. From the operating system perspective,
given physical core is seen as two logical cores or CPUs. In a
ulti-core processor with Hyper-Threading cores, it is important

o differentiate between physical and logical cores when talking
bout resource sharing. Two threads running on different phys-
cal cores only share the off-core processor resources, mainly
he LLC and main memory. However, when two threads are
ssigned to the two logical cores of the same physical core, they
lso compete for intra-core components. These components are
ritical for performance and include, among others, issue ports,
eorder buffer (ROB), physical registers, load queue, store queue,
unctional units, as well as L1 and L2 caches. As a consequence,
he performance of a given thread highly depends on the de-
ands of the internal components of the thread it is co-running
ith. Previous works [28] have studied this performance drops.
Appendix analyzes the impact of Hyper-Threading in different
rocessor architectures.

. Workload generation

.1. Latency-critical applications

Latency-critical applications are widely used in cloud envi-
onments. In these applications, the cloud server typically im-
lements online services (e.g., speech recognition or language
ranslation) and must respond to the input requests within spe-
ific latency bounds to guarantee QoS and provide a satisfactory
ser experience.
As a representative set of latency-critical applications, we use

he TailBench benchmark suite [7]. This suite includes eight rep-
esentative workloads of today’s latency-critical applications. For
he sake of making this paper self-contained, we briefly describe
he main characteristics of the studied applications:

• img-dnn is a handwriting recognition application based on
OpenCV. The application uses randomly chosen samples
from the MNIST database.

• masstree is a fast in-memory key–value store written in C++.
Each user’s request often involves many tens or hundreds of
requests to the key–value store; therefore, it has very short
latency requirements.

• moses is a statistical machine translation system written in
C++. It is driven using randomly-chosen dialogue snippets
from the opensubtitles.org English–Spanish corpus.

• shore is a transactional on-disk database. It uses the
industry-standard OLTP benchmark TPC-C. Its database and
logs are both stored in a solid state drive.

• silo is an in-memory transactional database designed for
modern multicores. It uses TPC-C like shore, although they
differ significantly in how they store and access data.

• specjbb is an industry-standard Java middleware bench-
mark. Java middleware is widely used in business services
and must often satisfy strict latency constraints.

• sphinx is a compute-intensive speech recognition system
written in C++. Speech recognition systems are an important
component of speech-based interfaces and applications such
as Apple Siri, Google Now, and IBM Speech to Text.

• xapian is a search engine written in C++ that is widely used
both in software frameworks (e.g., Catalyst) and popular
websites (e.g., the Debian wiki).
 o
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Cloud providers often need to evaluate the efficiency shown
by servers that stream multimedia contents. However, none of
the studied Tailbench applications exhibit such behavior since
all of them present negligible network demands. Because of this
reason, other applications outside the Tailbench benchmark suite
need to be considered. With this aim, this work also analyzes the
media-streaming workload from CloudSuite [8]. This application,
based on the NGINX web server, is a streaming server that hosts
synthetic videos of various lengths and qualities. The server is ac-
cessed by clients based on the httperf’s wsesslog session generator,
which performs a set of requests per session for videos stored in
the server. This popular application in today’s data centers makes
it possible to further broaden the spectrum of studied behaviors.

4.2. Setting representative load levels

Unlike HPC benchmark suites, TailBench applications include
the QPS parameter that allows generating a wide range of load
levels. For experimental purposes, this parameter needs to be
tuned to match the desired workload level. Below, we discuss the
approach followed to obtain a representative range of QPS values
for each of then studied application.

To simulate real client–server behavior, clients of TailBench
applications issue requests to the server following the Zipfian1
distribution [29,30]. To do so, the clients use a request generator to
indicate the points of time when requests are issued to satisfy the
demanded QPS and the Zipfian distribution. Unfortunately, when
a large QPS is demanded, it may happen that the client cannot
generate and send the requests fast enough. In this scenario, the
client might still reach the desired QPS on average but break the
Zipfian distribution, which compromises the representativeness
of the experiment.

To address this issue and make experimental results represen-
tative, we defined the metric timely requests ratio, which accounts
for the percentage of requests that the clients are able to issue
fulfilling the request times generated following the Zipfian distri-
bution. A request is defined as non-timely when the request time,
provided by the request generator, is earlier than the current
time. Notice that clients can break the distribution and still meet
the requested QPS on average. In this regard, we found that
even though a single client can generate up to thousands of
requests per second, usually it can only generate between 400
and 600 without breaking the distribution. To provide represen-
tative results, we checked that the target QPS is achieved while
guaranteeing that, at least, 97.5% of the requests are timely.

Under this condition, we explored the QPS range of each
workload as well as the required number of clients to generate
the requests. QPS steps were chosen to cover a wide range of
representative CPU loads, from 10% to saturation (over 50%). This
allows to study the behavior at a usual average utilization [31]
(e.g., 20%) and how it is affected as the load grows. Table 1
presents the results. As observed, QPS widely varies among ap-
plications, ranging from 0.2 to 8.5 in sphinx and from 250 to 4000
in silo.

Unlike TailBench applications, the load of media-streaming is
indicated as the number of sessions. Any number of clients can be
launched to complete the target number of sessions. In this work,
we explore the client load up to a maximum of 70 sessions and
24 clients, since we found out that a higher number of sessions
yields saturated results.

1 The Zipfian distribution is a related discrete power law probability distribu-
ion that states that, for a given set of items (e.g., words of a text), the frequency
f any item is inversely proportional to its rank in the frequency table.
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Table 1
QPS range and number of clients used for each workload to guarantee that the
ratio of timely requests is above 97.5%.
Workload QPS range Number of clients

img-dnn 100–3100 12
masstree 250–2500 12
moses 10–1100 6
shore 10–2000 12
silo 250–4000 18
specjbb 250–3500 18
sphinx 0.2–8.5 2
xapian 100–2800 4

5. Workload characterization

Due to the multithreaded nature of many cloud workloads and
he Hyper-Threading technology of many cloud servers, countless
cenarios regarding the server configuration can be studied. This
ection first presents the studied scenarios and performance met-
ics. After that, we analyze the results of each metric across the
ifferent scenarios.

.1. Studied server scenarios

We characterize the behavior of Tailbench applications and
edia-streaming across different server configurations or scenar-

os. Scenarios have been designed to evaluate both the effect
f Hyper-Threading and the scalability with increasing number
f threads the server application spawns. We assume that each
hread is assigned to an individual virtual CPU (vCPU).

Three main configurations have been considered as shown in
ig. 2 to generate scenarios of interest. In configuration (a), only
ne vCPU is used, pinned to a logical core, which is in charge of
unning the single-threaded server application. In configuration
b), the server application runs N threads (assigned to N vCPU
cores), and each one runs in single-task mode in a different
physical core.

Finally, configuration (c) differs from configuration (b) in that
the N threads (vCPU cores) are pinned in pairs to the two logical
cores of the same SMT physical core, running both threads con-
currently. Notice that scenario (c) uses half the number of SMT
cores of scenario (b).

Under these configurations, N has been evaluated both for two
and eight threads or vCPUs, providing five main scenarios. More
precisely, configuration (b) splits into scenario 2-ST (2 threads
are assigned to 2 cores working each in single task mode) and
8-ST, and configuration (c) breaks down into 2-SMT (2 threads
are pinned to half the number of cores working in multi-task
mode) and 8-SMT. Notice that configuration (a) can be seen as a
particular case of configuration (b) for N equals to 1, so it will
be referred to as 1-ST and represents the fifth scenario. These
scenarios allow to compare the behavior of a single-threaded
server against a multithreaded server, as well as the impact of
Hyper-Threading in a relatively high multithreaded (i.e., eight
threads) server.

5.2. Studied performance metrics

In order to characterize the workloads in the introduced sce-
narios we need to define the metrics of interest. The characteriza-
tion studies presented in this work cover both performance and
resource utilization. Below, we list the studied metrics.

• 95th tail latency, i.e., the 95th percentile of the sojourn
(end-to-end) times, which considers both queue and ser-
vice times. This percentile indicates that only 5% of the
198
Fig. 2. Server VM core configurations studied. N stands for the number of
threads spawned by the server, each assigned to a different vCPU.

responses take longer to complete than that value. In case of
media-streaming, it shows the 95th percentile of the server
response time. In this paper, we consider that this metric
defines the QoS (see Section 5.3).

• CPU utilization. This metric refers to the average CPU uti-
lization of the logical cores assigned to the VM (vCPU cores),
e.g., for the 2-thread scenarios, we report the average uti-
lization of the two CPUs where the application is running. To
obtain the utilization of each CPU, we use the data collected
from the file /proc/stat which reports statistics about the
kernel activity aggregated since the system first booted. The
CPU utilization quantifies the fraction of time the applica-
tion is running on the processor (i.e., percentage of active
time with respect to the total time). Notice that this time
also accounts the time the application is waiting for main
memory accesses even though the processor is stalled and
no instruction can be executed.

• LLC occupancy and main memory bandwidth show the
sum of the LLC capacity occupied and main memory band-
width consumed, respectively, by the vCPU cores.

• Network bandwidth. Two main bandwidths can be consid-
ered from the server (i.e., running-VM perspective): received
and transmitted. The latter is dominant and the former is
almost negligible, so the study focuses on the latter one.

• Disk bandwidth. This metric refers to the disk bandwidth
consumed by the running VM at the server node.

Next we present and analyze the results for each metric.

.3. QoS and tail latency analysis

.3.1. Defining QoS
Nowadays, many online-service workloads present tail latency

oS constraints. These constraints are part of the Service Level
greement (SLA) in some cases; in other cases, users should make
ure of hiring enough resources to meet their target QoS. To de-
ermine realistic tail latency QoS constraints in our experimental
etup and evaluate whether the workloads meet the QoS, we
efine the QoS requirement for each workload as a function of the
verage service time. This approach is based on the one proposed
y Delimitrou et al. [32]. The QoS target for each workload is
efined as 5× the average service time achieved with a CPU
tilization of 20% in the 1-ST scenario. We will refer to this
alue as LQoS. Experimental results in this paper assume that
oS is met whenever the 95th tail latency is lower than the
orresponding LQoS.
Table 2 presents the LQoS values (in ms) and the QPS sup-

orted by the single-threaded server for each workload that
eets the QoS latency constraint. Tail latency requirements range

rom 0.5 ms for silo to 4275.4 ms for sphinx. Notice that the LQoS
f sphinx is over 4 s, which may seem rather high in comparison
ith other speech recognition services. However, we found that
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hese values are in line with the results of this application pre-
ented by other researchers [7]. Finally, in media-streaming LQoS
is defined in terms of 95th percentile of the response time [33].
Many web and streaming services are time-bounded, requiring
the response time to be less than a fixed threshold [34]. In this
work we have set the threshold to 500 ms as the maximum as-
sumable delay the user should wait for the demanded streaming
contents.

5.3.2. Tail latency analysis
This section studies the effect of the studied configurations

on the tail latency provided that LQoS is met. Fig. 32 shows the
results. The figure consists of nine plots, one for each studied
application. In each plot, the LQoS value is represented by an
horizontal dotted line. Since all the studied metrics experience
high variation, scatter plots are used instead of line plots. More
precisely, the LOWESS [35] algorithm has been used to create a
smooth trend line to ease the analysis.3 In the analysis of this
metric, we found a major observation and two main findings
discussed below.

Observation 1: Performance Scalability
It is expected that the performance of the studied multi-

threaded latency-critical applications, which are build to execute
in cloud systems, scales with the number of threads. This is true
for most applications, as they exhibit a great performance scal-
ability and support higher QPS, while meeting LQoS, with 2 and
8 threads than when running on the single-threaded server. Two
main tendencies can be identified in thread scalable applications.

Firstly, applications that significantly improve the supported
QPS with both 2 and 8 threads. Applications showing this behav-
ior are img-dnn, moses, sphinx or xapian. For instance, img-dnn
meets LQoS with 600 QPS, 1600 QPS and 2900 QPS in the 1-
ST, 2-ST and 8-ST scenarios, respectively. This means that the
supported QPS in the 2-ST and 8-ST is 2.67× and 4.83× higher
han in the 1-ST.

Secondly, applications that show minor QPS improvements
ith 2 threads but exhibit a high performance increase with 8
hreads. This is the case for shore and media-streaming. For the
atter application, it can be observed that the response time in
oth 8-ST and 8-SMT scenarios does not saturate in the same
ay as the other applications. The response time grows up to
bout 75 sessions, point after which it remains constant and starts
ecreasing. Even though the LQoS point has not been reached, this
rend indicates that the server has saturated.

inding 1: QPS Insensitive Applications to the Number of Server
hreads
Many factors such as the application configuration, the ap-

lication version, the system’s features, and the virtualization
nvironment affect scalability. Therefore, adding a high number
f server threads does not always translate into the server being
apable of supporting more QPS. We found three applications
howing this behavior. Below we analyze the reason behind this
nexpected behavior for each application.
Specjbb supports up to 700 QPS with the single-threaded con-

iguration and improves up to 1200 QPS with the 2-ST scenario,
ut then experiences a little drop to 1100 QPS with the 8-ST
erver that quadruples the number of threads. The reason behind
his behavior is, as introduced before, that the version of specjbb
rovided in the Tailbench benchmark suite has a fix number of
arehouses (a unit of stored data) during the whole run, and

2 Notice that due to QoS requirements range from milliseconds to seconds,
ifferent scales have been used to ease the analysis.
3 We leveraged an existing implementation [36] of LOWESS, and set the alpha
arameter to 0.6 and the polynomial degree to 1.
 p

199
Table 2
Tail latency QoS (LQoS) requirements for the Tailbench workloads in our
experimental platform.
Workload Tail latency QoS QPS single-thread

img-dnn 3.6 ms 600
masstree 1.4 ms 1000
moses 7.1 ms 250
shore 25 ms 90
silo 0.5 ms 700
specjbb 0.7 ms 1500
sphinx 4275.4 ms 0.6
xapian 6.2 ms 300
media-streaming 500 ms 25

there is a one-to-one mapping between warehouses and threads,
meaning that the number of server threads cannot be configured
as in other applications. This makes the configuration of this
application not optimal for scalability.

Masstree also supports more cumulative QPS with 2 threads
than with 8 threads. We looked into the reasons that explain this
behavior and we found that the DRAM fetch cost is a limiting fac-
tor in masstree’s scalability as also found in recent research [37].
More precisely, the number of processor stalls due to main mem-
ory accesses rises with the number of contending queries (QPS),
thus the off-chip DRAM bottlenecks the performance and no im-
provement is obtained when increasing the number of threads. As
a consequence, the CPU utilization drops in the highly-threaded
scenarios as studied next.

Silo also shows the best results in the 2-ST scenario, but
followed by the 1-ST scenario, which outperforms the 8-ST server.
However, there is not a consensus on the behavior of this appli-
cation. For instance, in [38] Silo is identified as scalable, and in [7]
uthors argue that the overhead of adding threads prevents this
pplication to scale beyond a few threads.

inding 2: SMT Insensitive Applications
Since our server implements Intel processors with Hyper-

hreading technology (that is, the codemark used by Intel to refer
o its SMT implementation), an important decision to improve the
erver efficiency is whether threads should be pinned to the same
hysical core (i.e., to two logical cores of the same SMT core) or
hey should be pinned to distinct cores. In case threads are pinned
y couples to physical cores, only half the number of SMT cores
eed to be used. However, as explained in Section 3.3, running
wo threads concurrently in the same core causes interference
t the shared core-resources, harming the performance (i.e., QoS)
ith respect to single-task execution. This concern is analyzed
ext.
As expected, it can be observed in Fig. 3 that for a given

umber of threads, the supported QPS is in general higher in
he ST scenarios. For instance, in sphinx a significant difference
ises between SMT and ST configurations, which translates into
× and 1.4× higher QPS in the 2-ST and 8-ST scenarios over the
orresponding SMT scenarios, respectively. The general trend is
hat applications achieving higher performance in ST scenarios
re those identified above showing performance scalability with
he number of threads. We use the term SMT sensitive to refer to
hese applications.

Nonetheless, it can be noticed that some applications do not
enefit at all from having the threads pinned to separate cores
nd working in single-task mode. We refer to these applica-
ions as SMT insensitive. This is the case for the three insensi-
ive applications to the number of threads, which show barely
ny difference between the 8-SMT and 8-ST servers since their
erformance does not scale. Counter-intuitively, the scalable ap-

lications media-streaming and shore also show a SMT insensitive
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Fig. 3. 95th tail latency (ms) for Tailbench applications and 95th percentile of the response time (ms) for media-streaming.
ehavior. We looked into this event and found that the main rea-
on behind this behavior is that the CPU is not a critical resource
n these applications. In other words, reducing the pressure in the
PU resources does not translate into actual performance gains.
An interesting observation is that in masstree (Fig. 3(b)) the 2-

MT configuration outperforms the 2-ST configuration (i.e., using
nly one core). We investigated this unexpected behavior and
ound that masstree keeps all the data (i.e., key–value database)
n memory. These data are shared among threads. Thus, pinning
wo server threads to the same core reduces the core resources
or each thread but improves the data sharing through the private
1 and L2 caches.

o Take Away. In Finding 1, we have identified three workloads
hat do not experience scalability when running in 8-threaded sce-
arios, and five applications showing different degrees of scalability.
n Finding 2, we have identified that there is a strong connection
etween scalability and SMT sensitive applications. In general, more
200
scalable applications support higher QPS when running in single-task
mode while low scalable applications present a close SMT insensitive
behavior.

Cloud provider actions for performance improvements. Cloud
provider admins could improve resource utilization and take benefit
from Finding 1 by constraining to two logical cores those server
applications presenting poor scalability. The key question is how
to detect these applications. Regarding Finding 2, important CPU
utilization savings can be achieved in case of SMT insensitive ap-
plications are detected at run-time.

The major challenge for cloud providers lies on how applica-
tions can be identified as (i) QPS insensitive to the number of
server threads (Finding 1) and/or as (ii) SMT insensitive (Finding
2) at production time. To deal with this challenge we looked
into the behavior exhibited by applications by measuring the
utilization of major system components. The main purpose of this
study is to analyze possible correlations between the resource
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onsumption of the major system components and both QPS and
MT sensitivity of applications.

. Major system resource consumption analysis and findings’
orrelation

This section analyzes the utilization of the major system com-
onents (CPU utilization, LLC occupancy, main memory trend,
etwork and disk) for each workload, and establishes logical
elationships between the consumption of these resources and
he findings presented in the previous section.

.1. Analysis of CPU utilization

The CPU utilization was measured at specific client load levels
f interest that can be identified in Fig. 3 as follows. It was studied
t abscissa of the point where the tail latency curve crosses the
QoS horizontal line, which represents the client load (i.e., QPS or
umber of sessions in media-streaming) that meets the LQoS for

each studied scenario.
Fig. 4(a) shows the results. It plots the quartiles of the average

CPU distribution with box plots for each scenario. Central quartiles
are represented as boxes, variability outside the boxes as vertical
lines, and outliers as points. A strong relationship can be observed
between the CPU utilization and the findings discussed above.

Regarding Finding 1, the three applications showing no scal-
ability with the number of threads experience a sharp drop in
the CPU utilization in the highly threaded scenarios. On the con-
trary, this sharp drop is not experienced in applications showing
scalability. Among these applications, those presenting high CPU
utilization with 1-ST (e.g., moses and sphinx) further increase
heir utilization with 8-ST. For instance, sphinx increases its CPU
tilization over 90%. The reason is that high CPU utilization is
aused by memory stalls that block the processor execution for
longer, as further discussed in the next section. In contrast, those
presenting medium CPU utilization (e.g., img-dnn and xapian)
do not experience a CPU utilization increase in the 8-threaded
scenarios, but it remains equal or even decreases.

Regarding Finding 2, SMT insensitive applications present a
low CPU utilization (e.g., below 20%) regardless of the number of
threads, with the exception of masstree in the Tailbench applica-
tions, which presents a medium (by 40%) CPU utilization for the
low-threaded scenarios. As discussed above, masstree presents
this particular behavior because the off-chip DRAM main memory
bottlenecks the system performance. Thus, adding more server
threads translates into a slight decrease in the overall perfor-
mance and a drop in the average CPU utilization since there
are 4× more threads providing less system performance. In con-
trast, SMT sensitive applications present a medium to high CPU
utilization in the low-threaded scenarios.

6.2. LLC occupancy and main memory bandwidth

The shared Last Level Cache (LLC) can have a high impact
on the system performance [39,40]. Some recent processors im-
plement hardware support that allows the system administrator
partition this component among applications at run-time (e.g., at
the granularity of OS quantum). This section analyzes the space
requirements of each application and its trend when increasing
the number of threads. Below, we analyze the results, mainly
focusing on the correlation with Observation 1.

On the one hand, applications present both different cache
requirements per individual query and number of QPS; conse-
quently, the LLC occupancy experiences wide differences among
the studied applications. On the other hand, for a given applica-
tion, the higher the amount of queries the server processes, the
201
higher the LLC occupation regardless of the number of threads.
However, only scalable applications can significantly rise the LLC
occupancy in the 8-threaded scenarios. It is also worth to mention
that the main memory bandwidth consumed depends on the
number of LLC misses. Therefore, it is strongly connected to the
data locality of the cached blocks as well as the LLC occupancy,
since a high occupancy would rise in many LLC capacity misses.

Figs. 4(b) and 4(c) present the distribution across all the ex-
ecution quanta of the LLC space and main memory bandwidth
consumed, respectively, by the applications in the studied scenar-
ios at the LQoS threshold. Taking into account both LLC occupancy
and main memory bandwidth, two main types of applications
can be observed related to Observation 1 and Finding 1 discussed
below:

(a) Applications where the 8-threaded scenarios significantly
rise the supported QPS. In these applications, the huge increase in
the supported QPS translates into a huge increase in the LLC uti-
lization, which makes these applications consume nearly all the
cache capacity (over 14MB out of 16.5MB). Exceptions are shore
(though this application consumes 12MB), and media-streaming,
hose average LLC occupancy is around 7 MB but in some exe-
ution phases of the 8-threaded scenarios, it manages to occupy
he full cache space. This common behavior is exhibited by the
ailbench applications showing scalability with 8 threads. Notice
hat memory bandwidth increases in a 10× factor, which means
hat the LLC is suffering a high amount of cache misses. These
isses translate into long main memory latencies that introduce
ignificant processor stalls, rising the CPU utilization. Addition-
lly, the relative difference in bandwidth is much higher (log
cale) than the difference in LLC space, meaning that most cache
isses are capacity misses.
(b) Applications showing small differences in the cache oc-

upancy regardless of the number of threads. This behavior can
e observed in the remaining applications (i.e., those not show-
ng QPS scalability) like masstree. The reason is that QPS is not
mproved in the 8-threaded scenarios. Consequently, the main
emory bandwidth among the studied scenarios also experi-
nces minor differences.
Almost all the applications exhibiting the former behavior

early consume all the cache space in the 8-threaded scenar-
os suffering a high amount of cache misses. This means that
he performance of these applications is clearly limited by this
rocessor component, hence the cloud provider should identify
hese applications in order to assign them more space. Section 7
nalyzes this claim in further detail.

.3. Disk bandwidth

Among the studied Tailbench applications only three of them
re disk oriented: moses, shore and xapian. The remaining applica-
ions make a scarce usage of the disk. In fact, their disk bandwidth
onsumption remains below 1 MB/s during most of the execution
ime. Fig. 4(e) presents the results.

Disk bandwidth is not constant along the execution time but it
xperiences peaks and drops along time. As it can be observed in
ig. 4(e), most applications have many outlier values (represented
y diamond-like dots), meaning that disk bandwidth is usually
ow and presents some peak values at few intervals of time. In
ontrast, more disk-consuming applications like shore include less
utliers as the median of the disk consumption (horizontal line
rossing the boxes) is much higher.
In spite some Tailbench applications are disk oriented, the

resented results make the disk bandwidth consumption not a
oncern in our experimental platform in terms of scalability.
hat is, this resource does not prevent the performance of disk
riented applications from growing in the 8-threaded scenar-
os. However, remember that even if the SSD installed in the
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Fig. 4. Box plots showing the resource consumption supported by the studied applications in each scenario before reaching LQoS.
torage server allows up to 500 MB/s in large sequential reads,
he bandwidth is significantly reduced when operations become
mall, random, and reads and writes are combined. Therefore,
nterference is likely to take place when multiple applications
202
perform disk I/O operations at the same time. This issue will be
studied in more detail in Section 7.4.

To Take Away In this section we have analyzed and identified the
relationship between the findings and the utilization of the main
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Table 3
QPS scalability, SMT sensitive, and resource consumption of the studied applications. Resource consumption (low, medium or high)
is measured with the single-threaded server and the trend (↓ or ↑) represents the behavior change from 1-ST to 8-ST. Conditions
to fulfill each finding are highlighted in yellow (Finding 1), blue (Finding 2) and green (Findings 1 and 2).

Workload Resource Utilization Finding 1 Affinity Finding 2 Affinity
CPU LLC MM Network Disk QPS Scalability SMT
utilization Occupancy trend Bw Bw with # 8 threads sensitive

img-dnn Medium ≈ Medium ↑ ↑ ↑ Low Low + + +

masstree Medium ↓ Medium ≈ ≈ Low Low No No
moses High ↑ High ↑ ↑↑↑ Low Medium + +

shore Low ↑ Low ↑ ↑ Low Medium + + No
silo Low ↓ Medium ≈ ≈ Low Low No No
specjbb Low ↓ High ≈ ≈ Low Low No No
sphinx High ↑ Medium ↑ ↑ ↑ ↑ Low Low + + + +

xapian Medium ≈ Medium ↑ ↑ ↑ Low Medium + + + + +

media-streaming Low ↓ Low ≈ ↑ High Low + + No
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system resources. We found that both non-scalable and SMT insensi-
tive (e.g., silo) applications present medium to low CPU utilization in
the low-threaded scenarios, that drastically drops in the 8-threaded
scenarios. The term low and high are used to refer to below and
above average, respectively. On the contrary, both scalable and SMT
sensitive applications (e.g., moses) experience a medium to high CPU
utilization in the low-threaded scenarios that tends to increase in
the 8-threaded scenarios. These applications present a significant
increase in the main memory bandwidth consumption as the number
of threads increases.

Cloud provider actions to detect applications. In order to help
loud providers, we present Table 3 that shows the average utiliza-
ion (low, medium and high) of the studied resources for 1-ST, and
he trend (upwards or downwards arrow) it experiences with 8-ST.
he table also shows the main memory bandwidth behavior with 8-
T over 1-ST. With ↑↑↑, ↑↑, and ↑ denotes that memory bandwidth
ises with 8 threads by 104, around 103, around 102, respectively.
his table summarizes the previous findings. The conditions to fulfill
inding 1 and Finding 2 are highlighted in yellow and blue, respec-
ively. The conditions that remain valid for both findings are colored
n green. It can be concluded that only checking the CPU utilization
nd the memory trend is enough for cloud providers to identify the
pplications with higher resource requirements and carry out the
orresponding actions to improve resource management previously
escribed.

.4. Network bandwidth

The studied TailBench workloads present negligible (i.e., below
MB/s) network bandwidth requirements. Thus, this consump-

ion is not a concern in our experimental 20 Gb/s network. In
ontrast, media-streaming consumes much higher network band-
idth. Fig. 4(d) presents the experimental results.
In media-streaming, however, the bandwidth consumption is a

ajor concern. Similarly as discussed above regarding disk band-
idth, network bandwidth experiences high peaks and drops
s sessions are dynamically started and finished. This can be
bserved in Fig. 4(d), where the lower whisker of all media-
treaming plots drops down to 0 MB/s and the upper whisker
eaches around 1000 MB/s.

o Take Away The network allows cloud tenants to access the cloud
ystem. This resource is typically overdimensioned since queuing
elays in this component can force the cloud system violate the
oS regardless of the improvement actions made in the other major
ystem components.

. Analysis of inter-VM interference at the main shared re-
ources

So far, we have analyzed the performance of the server work-
oads by allocating threads in pairs to the same physical core or
203
ach thread to a different core. This section goes a step beyond
nd pursues to analyze the impact of the inter-VM (i.e., inter-
orkload) interference at the main shared system resources,
ther than the CPU. To this end, we focus on resources whose
haring can be controlled by the cloud provider. In other words,
he cloud provider can apply existing advanced technologies to
llocate certain amounts of specific shared resources to the run-
ing applications.
Some examples of these technologies are Intel Resource Direc-

or Technology (RDT) [17], which implements Cache Monitoring
echnology (CMT) and Cache Allocation Technology (CAT) that
llow monitoring and partitioning the LLC occupancy, respec-
ively; and Memory Bandwidth Monitoring (MBM) and Memory
andwidth Allocation (MBA) from Intel RDT that support mon-
toring and partitioning the memory bandwidth, respectively.
elow, we use all these technologies to limit the available space
r bandwidth for the target application, and study the effect on
erformance [3,4,39–41]. Notice that by limiting the amount of
given resource we mimic an scenario where the remaining

raction of the shared resource is being used by other VMs – from
ither the same or distinct tenant – competing for that resource.
Before analyzing the impact, we first categorize applications

rom the major system resource that constraints its performance.

.1. Workload classification

The performance of the studied workloads is mainly domi-
ated by a major system resource (CPU, disk or network). The
tudied workloads present a diversity of behaviors covering all
he major system components. This section relates applications
ith the major consumed resources and the discussed findings.
CPU Workloads. This group includes workloads mainly dom-

nated by CPU resources, including both core, LLC and DRAM
emory, and make a negligible use of network and disk. DRAM
emory is included as CPU since, from the OS perspective, the

ime the CPU is waiting for DRAM accesses in accounted as CPU
tilization. One could expect that CPU workloads scale in perfor-
ance. However, this is not always the case since a well balanced
esign and a 95th tail latency large enough are required . Instead,
PU applications present both scalable and non-scalable behav-
ors. Examples of scalable workloads are img-dnn and sphinx, and
xample of non-scalable masstree, silo and specjbb. The former set
f applications behave as SMT sensitive and the latter as SMT
nsensitive.

Disk Workloads. Applications in this group present a significant
isk bandwidth consumption that makes them stand out from the
emaining categories. Two main categories can be distinguished
ccording to whether the dominant bandwidth is incurred by disk
ead or write operations. Examples of applications presenting a
edium disk utilization mainly due to read operations are moses
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Table 4
Workload Classification.
CPU Disk Network

Non-Scalable Scalable Read Write Streaming

specjbb img-dnn moses shore media-streaming
silo sphinx xapian
mastree

and xapian, while shore is an example of workload presenting a
medium disk utilization due to writes. An interesting observa-
tion is that all these applications scale in performance with the
number of threads; however, each of them presents a different
behavior with respect to SMT.

Network Streaming Workloads. As mentioned above, media-
streaming is the only studied workload presenting a noticeable
network bandwidth consumption. This application scales with
the number of threads, increasing the memory bandwidth. As the
number of threads increases, the CPU utilization reduces as much
as 10%.

Table 4 presents the devised groups (first row), categories
(second row) and workload classification. Notice that all the
applications except a subset of CPU workloads scale their perfor-
mance as the number of threads increases. Next, we study the
impact on performance of constraining the LLC, main memory
bandwidth, and disk bandwidth.

7.2. LLC partitioning analysis

This section analyzes the impact of reducing the LLC space
available to the target server application. Intel CAT supports as-
signing specific cache ways to applications. To this end, different
Classes of Service (CLOS) are defined with specific cache ways.
Then, each target workload (or VM) is associated to a CLOS.

The Intel Xeon Silver 4116 processor, used as server in the
experimental platform, implements a 11-way 16.5 MB LLC, hence
each cache way provides 1.5 MB storage capacity. To study the
impact of reducing the available cache capacity to the target
application, we reduced the number of cache ways assigned to
the application to 7 ways (i.e., 12 MB), 5 ways (7.5 MB) and
2 ways (3 MB). The remaining cache space is assumed to be
assigned to other VMs running on other cores and competing for
this resource.

The study analyzes four workloads: two CPU scalable work-
loads (img-dnn and sphinx) and two disk workloads (moses and
hore) on the 8-ST server. Fig. 5(a) presents the percentage de-
rease of the maximum supported QPS (w.r.t. the QPS achieved
ith full cache space) when varying the number of LLC ways
ssigned to each workload. Limiting the LLC can translate into an
ncrease in the main memory BW, especially in memory intensive
pplications. This side effect can be appreciated in Fig. 5(b) which
 1

204
shows the memory BW increase. As observed, the applications
showing highest scalability, img-dnn and shore, present bigger
PS reduction (over 30% with 2 cache ways), and consequently,
he bus bandwidth consumption significantly rises in a factor over
.5×. Despite that moses and sphinx also present important scala-
ility and cache occupancy, they experience lower QPS reduction
han the other applications. This is due to the fact that moses and
sphinx consume much more memory bandwidth under no cache
constraints.

Cloud provider actions for performance improvements. Results
show that applications presenting a high scalability are much more
sensitive to the available cache space. Limiting this space trans-
lates into an important rise in the memory bandwidth of these
applications. Therefore, the cloud provider should consider both QPS
scalability and memory bandwidth as a guide to limit the cache ways
assigned to a given VM.

7.3. Main memory bandwidth analysis

The impact of memory bandwidth on performance depends on
the LLC demands of the applications and the underlying system
organization. For instance, a huge LLC can catch most of accesses
of some memory hungry applications, hence reducing the number
of off-chip memory accesses. To carry out this experiment, we
used Intel Memory Bandwidth Allocation (MBA), which works
similarly to Intel CAT; applications are assigned to CLOSes since
we can only limit the amount of memory bandwidth that the
CLOSes can use.

For illustrative purposes, we considered the same four appli-
cations as in the previous section and we studied the effect of
reducing the memory bandwidth to 8-, 6-, 4- and 2-GB/s on both
the supported QPS and effective bandwidth consumption. The
huge LLC catches most of the working set of non-memory hungry
applications when they run alone on the system and the whole
cache is available for them. Therefore, we do not analyze those
applications (img-dnn and shore) having a MPKI (misses per kilo
instructions) of the LLC lower than 0.4 since they are scarcely or
not affected at all by constraining the memory bandwidth under
these conditions.

Fig. 6(a) shows the results for moses and sphinx. As observed,
both applications suffer a linear degradation in the percentage
of supported QPS; however, the slope of the curve in moses is
much more pronounced showing a much higher degradation. On
average, both applications consume a similar amount of band-
width. We looked the reasons behind this behavior and we found
that it is mainly due to the fact that the distribution of the aver-
age memory bandwidth in moses experiences at run-time much
higher peaks than in sphinx, which shows a more regular pattern
(see Fig. 4(c)). That is, the upper whisker is much higher (over
04

×4) in moses than in sphinx (around 104
×4). Finally, limiting
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Fig. 6. Impact of limiting the memory BW on the maximum supported QPS and LLC misses.
Fig. 7. Impact of stressing the disk BW by means of a microbenchmark on the maximum supported QPS and reduced disk BW consumption.
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the main memory bandwidth slows down the execution time of
the application; consequently, as a side effect, the number of LLC
misses also reduces linearly with the limited bandwidth since
they take place over longer time. Fig. 6(b) supports this claim. As
observed, the obtained values almost match those obtained with
the decrease in the supported QPS.

Cloud provider actions for performance improvements. The
emory bandwidth can have a strong impact on the performance
f the workloads. The cloud provider should provide memory band-
idth enough to applications (e.g., CPU scalable) suffering a high
umber of LLC misses, otherwise, the performance can dramatically
rop.

.4. Disk bandwidth analysis

The disk does not prevent the performance of disk oriented
pplications from growing in the 8-threaded scenarios since the
tudied applications have a small consumption compared to the
vailable total bandwidth (see Section 6.3). Despite this fact, the
isk bandwidth is a concern in public clouds, especially in those
ituations where multiple VMs try to perform I/O operations at
he same time.

To test this claim, we have used the microbenchmark stress-
g to introduce a constant stress on the disk bandwidth by
erforming random write operations. Different interference levels
ave been explored by limiting the disk bandwidth assigned to
tress-ng to 50 MB/s, 100 MB/s and 200 MB/s, which has been
one with the libvirt tool. The remaining disk bandwidth (up to
00MB/s) is available for the studied benchmark. We analyzed
he impact on the supported QPS and on how the consumed
andwidth reduces over isolated execution.
Fig. 7 shows the results for the three disk applications, shore,

apian and moses. Fig. 7(a) shows the impact of stress-ng on the
onsumed bandwidth of the disk applications for the studied in-
erference levels. The consumed bandwidth significantly reduces
205
ver isolated execution (None), especially in shore and xapian. This
appens because, their bandwidth consumption keeps similar
cross all the execution intervals; that is, the standard deviation
f the gathered bandwidth values is very small and all the values
all close to the median (see Fig. 4(e)), and stress-ng reduces the
vailable bandwidth across all the execution time. In contrast,
oses consumes most of its bandwidth at the beginning of its
xecution, thus its consumption is only affected at that execution
hase.
Fig. 7(b) shows the impact of the bandwidth reduction on

he supported QPS. It is strongly related with the type of disk
peration performed. It can be noticed that disk read workloads
i.e., at least 80% of the operations are reads) suffer less perfor-
ance degradation, even when their bandwidth decreases over
0% in xapian. In this case, performance drops by 20% when stress-
g consumes 200MB/s. In contrast, in disk write workloads like
hore, the supported QPS decrease (in percentage) is higher than
he bandwidth consumption decrease.

loud provider actions for performance improvements. There
s a strong connection between disk bandwidth consumption and the
erformance of disk applications, especially for write disk workloads
hat present an homogeneous disk consumption across the execu-
ion time. The cloud provider should take especial care with these
pplications by pinning them to machines with balanced or low disk
andwidth consumption.

. Conclusions

Multithreaded latency-critical and streaming applications
epresent an important subset of cloud workloads as well as
treaming applications like media-streaming. Understanding how
erformance is affected by the utilization of the major system
esources is a major concern of public cloud providers.

This paper has characterized cloud applications in order to
dentify key relationships between performance and resource
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onsumption. The results show that CPU resources can be sig-
ificantly reduced by taking into account that the performance
f some applications does not scale with the number of threads
nd that threads of Hyper-Threading insensitive applications can
e allocated to the same physical cores without affecting per-
ormance. Identifying these applications at run-time, however,
s challenging. We have shown that this challenge can be suc-
essfully dealt with by analyzing the utilization of the major
ystem components. In addition to CPU, we have also studied
ow the share each application has of other major shared system
esources impacts on performance. Experimental results show
hat some applications can suffer performance losses by more
han 80% if not provided with a big-enough share of its critical
esource.

The conclusions of the presented studies and the discus-
ions identifying cause–effect relationships among the utilization
f different system components can serve as basis for cloud
roviders to develop virtualization strategies.
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Appendix. Effect of hyper-threading in different processor ar-
chitectures

The fact that SMT processors can improve system throughput
with just a little extra hardware cost has made most processor
manufacturers (e.g., IBM, Intel or AMD) include SMT processors
among their products, especially those deployed in the server
segment of the market.

Regarding Intel Hyper-Threading (Intel name to refer to the
simultaneous multithreading or SMT paradigm) cores, the per-
formance improvement (e.g., in terms of instructions per cycle or
IPC) from running the threads in single-thread (ST) mode with
respect to SMT mode slightly differs among different proces-
sors. This is specially true for compute intensive applications and
mainly happens because the issue ports have experienced minor
differences across different processor generations.

To prove this claim, we tested three different Intel processors
with different microarchitectures from the last years:

1. Intel Broadwell processor – Intel Xeon CPU E5-2620 v4 CPU

(launched Q1 2016).

206
Fig. A.8. Speedup of ST vs. SMT for SPEC CPU applications in three different
machines.

2. Intel Skylake processor – Intel Xeon Silver 4116 CPU
(launched Q3 2017).

3. Intel Cascade Lake processor – Intel Xeon Silver 4210R CPU
(launched Q1 2020).

The experiment quantifies the speedup (in terms of IPC) of
ST execution with respect to SMT execution. For comparison
purposes, we have studied the behavior of SPEC CPU bench-
marks [42]. Two instances of each benchmark were launched in
each run. In ST mode, each instance was pinned to a different
physical core, and in SMT mode, both instances where pinned to
the same physical core. Fig. A.8 shows the results for speedup
obtained for the SPEC CPU applications both from 2006 (appli-
cation_06) and 2017 (application_17) when executed in the three
processors. For the purposes of quantifying the effect of Hyper-
Threading (i.e., CPU resources), memory-intensive applications
were omitted since the cache hierarchy widely differs among
them. The Intel Broadwell has an inclusive L3 cache of larger
capacity (20 MB compared to non-inclusive 16.5 MB in Skylake
and 13.8 MB in Cascade Lake) and a smaller L2 cache (256 KB
compared to 1 MB both for the Intel Skylake and Cascade Lake
processors). The results show that for all the studied applications,
similar improvements are obtained, and differences never exceed
5%.

The conclusions of this experiment show that the results of the
paper can be extended to other Intel Hyper-Threading processors,
at least from the last 6 years as evaluated in this appendix.
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