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Abstract

The closed form expressions of the effective properties in periodic fluid laminates

are derived thanks to the Padé approximation of the transfer matrix. A second-

order Taylor expansion of the transfer matrix elements exhibits Willis coupling.

This coupling is the sum of a local term and a nonlocal term. The nonlocal term

arises from the apparent bulk modulus in quasi one-dimensional problems. The

nonlocality directly impacts the governing equations modeling the acoustic wave

propagation in these Willis materials, which then involve convolution products

in space. As an example, a two-orthotropic porous material laminate is consid-
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ered. The effective properties and scattering coefficients theoretically derived

are found in excellent agreement with those numerically calculated. The Willis

coupling widens the frequency range of validity and accuracy of the effective

properties and thus of the calculated scattering coefficients when compared to

classical homogenization results for which the Willis coupling is absent. This

widening mostly relies on the effect of Willis coupling on the impedance of the

fluid laminate. The effective properties are finally derived for a general laminate.

Keywords: Willis coupling, Non-locality, Laminate structures
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1. Introduction

Since the seminal work of Willis in the 80’s [1], the eponymous materials

have received an increasing attention, because of their analogy with bi-isotropic

electromagnetic metamaterials [2]. The Willis coupling parameters couple the

potential and kinetic energies in the acoustic conservation relations, therefore5

enhancing the ability to control waves in asymmetric [3, 4, 5, 6, 7, 8, 9, 10] or

non-reciprocal [11, 12, 13, 14] systems. Willis couplings effectively appear along

the diagonal of the propagation matrix, i.e., the Hamiltonian, either with oppo-

site signs to account for the structural asymmetry, i.e., the even coupling, or with

identical signs to account for the non-reciprocity and/or non-locality, i.e., the10

odd coupling [6]. Non-locality arises from spatial dispersion and translates into

the dependence of the effective properties on the wavenumber [15]. In acoustics,

only a few articles tackled the problem of non-locality [16, 17, 18, 19, 20]. In

order to investigate the nonlocal Willis coupling, we consider a simple asymmet-

ric fluid laminate excited at oblique incidence, thus extending results derived at15

normal incidence notably in [21]. The effective properties are derived by consid-

ering the Padé approximation of the transfer matrix that relates the state vectors

at both sides of the unit cell. A second-order Taylor expansion is required to de-

rive effective density tensor, bulk modulus, and Willis coupling. Similar results

were derived in electromagnetism in [22] using the Baker–Campbell–Hausdorff20
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formula [23]. Laminate fluid-like porous structures are often used to achieve

impedance matching for absorption or insulation purposes [24, 25, 26]. As an

example, we thus consider a two-orthotropic fluid-like porous material laminate.

The article is organized as follows. The propagation matrix of a general

Willis material layer is derived in Subsection 2.1. The formulation to evaluate25

the effective properties in reciprocal structures is reminded in Subsection 2.2

and applied to a two-material unit cell fluid laminate in Section 3. In Section

4, the apparent and effective properties as well as the scattering coefficients of

a two-orthotropic fluid-like porous material laminate are discussed. Finally, the

general forms of the effective properties are derived for a general anisotropic30

fluid laminate in Section 5.

2. General statement

2.1. Wave propagation in a planar Willis medium

Assuming an implicit time dependence e−iωt and locality of the medium, i.e.,

the intrinsic medium parameters are independent of the spatial coordinate x,

the pressure p and velocity V satisfy the following equations in a general Willis

fluid medium

iωξ̄p+ iω¯̄ρ ·V = ∇p,

iωζ̄ ·V + iωCp = ∇ ·V,
(1)

where ξ̄ and ζ̄ are Willis couplings, ¯̄ρ is the mass density tensor, and C is the

compressibility, which is inverse to the bulk modulus B = 1/C. We consider

a layer of such material, invariant in the plane x⊥ = (x1,x2) and of thickness

L along the x3-direction, as sketched in Fig. 1 (a). The Cartesian coordinate

system attached to the layer is assumed to match the principal directions of the

material such that ¯̄ρ = diag (ρj), j = 1, 2, 3. The spatial Fourier transform of

Eq. (1) can thus be cast in the form

∂

∂x3
W = A ·W, (2)

where W =< p̃, Ṽ3 >
T is the state vector formed by the spatial Fourier trans-

forms p̃ and Ṽ3 of p and V · x3 = V3 respectively and A is the propagation

3



matrix that reads as

A = iω

 ξ3 ρ3

C − (k1 − ωζ1) (k1 − ωξ1)

ω2ρ1
− (k2 − ωζ2) (k2 − ωξ2)

ω2ρ2
ζ3

 . (3)

The details of the derivation are provided in Appendix A. Note that each

element of the propagation matrix is that along the x3 direction, but that

related to the compressibility, i.e., the a21 component. This element accounts

for both the propagation direction in the plane x⊥ via its dependence on the

in-plane wavenumber components k⊥ =< k1, k2 > and the properties of the

material along these in-plane directions. This element is usually cast in the

form of an apparent compressibility [27, 28]

Ca = C − (k1 − ωζ1) (k1 − ωξ1)

ω2ρ1
− (k2 − ωζ2) (k2 − ωξ2)

ω2ρ2

= C − k21
ω2ρ1

− k22
ω2ρ2

+
k1ω (ζ1 + ξ1)

ω2ρ1
+
k2ω (ζ2 + ξ2)

ω2ρ2
− ζ1ξ1

ρ1
− ζ2ξ2

ρ2
,

(4)

while the material is obvisouly local. Therefore, this type of system is often

described as quasi one-dimensional, because its propagation matrix is formally35

written as that of a one-dimensional system [29, 27, 28]. The solution to Eq. (2)

relates the state vector at x3 = L to that at x3 = 0 via the matrix exponential,

i.e., the transfer matrix, W(l) = exp (Al) W(0) = TlW(0).

(a) (b) (c)

Figure 1: [Color online] Sketch of a L-thich layer of a general Willis fluid (a), of the d-thick

unit cell of the Willis fluid, and of the two-orthotropic fluid laminate unit cell (c).
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2.2. Calculation of the effective properties from the knowledge of the unit cell

transfer matrix40

We assume a quasi one-dimensional reciprocal and asymmetric system com-

posed of a d-periodic unit cell of respective propagation matrix Ae. The state

vectors at both sides of the unit cell, W(d) and W(0), are related to each other

through the 2×2 transfer matrix Td = exp (Aed) of elements tij , (i, j) ∈ [1, 2]2.

Following Ref. [21], the propagation matrix is correctly approximated by the in-

version of the first-order Padé approximation of the matrix exponential,

Ae ≈ 2

d
(Td + I)−1(Td − I)

≈ 2

d

1

2 + t11 + t22

 t11 − t22 2t12

2t21 t22 − t11

 , (5)

where the reciprocity of the system has been accounted for by imposing det (Td) =

1 and I is the identity matrix. This form directly provides the apparent elements

of the propagation matrix of a quasi one-dimensional Willis material, Eq. (3),

from which the Willis parameters and the other effective properties can be ef-

ficiently calculated, as sketched in Fig. 1 (b). The effective parameters derived45

following this procedure are indicated by a superscript e in the following.

3. Effective properties of the reciprocal laminated two-material unit-

cell structure

We consider a laminated unit cell of thickness d composed of a layer of

material M (1) of density tensor ¯̄ρ(1), compressiblity C(1), and thickness l(1),

and a layer of material M (2) of density tensor ¯̄ρ(2), compressiblity C(2), and

thickness l(2) = d − l(1), as sketched in Fig. 1 (c). The state vectors at both

sides of the unit cell are thus related by the total transfer matrix composed

of the multiplication of the transfer matrices modeling the propagation in each

layer

W(d) = TdW(0) = Tl(2)Tl(1)W(0), (6)
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where Tl(j) = exp
(
A(j)l(j)

)
, j = 1, 2, is the transfer matrix of the layer of

material M (j) over the thickness l(j), with A(j) the propagation matrix of each

anisotropic layer of the laminate simply obtained when the Willis couplings in

Eq. (3) vanish, i.e., ξ̄ = ζ̄ = 0 [27]. These transfer matrices read as

Tl(j) =

 cos
(
k
(j)
a l(j)

)
iZ

(j)
a sin

(
k
(j)
a l(j)

)
i

Z
(j)
a

sin
(
k(j)a l(j)

)
cos
(
k
(j)
a l(j)

)
 , (7)

where k
(j)
a = ω

√
C

(j)
a ρ

(j)
3 is nothing but the projection of the wavenumber along

the x3-axis, i.e., k
(j)
a = k

(j)
3 , and Z

(j)
a =

√
ρ
(j)
3 /C

(j)
a , j = 1, 2. Assuming λ >> d

in such a way that k
(1)
a l(1) and k

(2)
a l(2) are much smaller than 1 and making use of

Eq. (5) leads to the following propagation matrix components aeij , (i, j) ∈ [1, 2]2

ae11 = −ae22 =
ω2l(1)l(2)

2d

(
C(2)
a ρ

(1)
3 − C(1)

a ρ
(2)
3

)
=
ω2l(1)l(2)

2d

(
C(2)ρ

(1)
3 − C(1)ρ

(2)
3 +

(k1)2

ω2

(
ρ
(2)
3

ρ
(1)
1

− ρ
(1)
3

ρ
(2)
1

)
+

(k2)2

ω2

(
ρ
(2)
3

ρ
(1)
2

− ρ
(1)
3

ρ
(2)
2

))
,

ae12 = iω
ρ
(1)
3 l(1) + ρ

(2)
3 l(2)

d
,

ae21 = iω
C

(1)
a l(1) + C

(2)
a l(2)

d

= iω
C(1)l(1) + C(2)l(2)

d
− i

ω

(
l(1)

dρ
(1)
1

+
l(2)

dρ
(2)
1

)
(k1)2 − i

ω

(
l(1)

dρ
(1)
2

+
l(2)

dρ
(2)
2

)
(k2)2 .

(8)

The details of the calculation are provided in Appendix B. Note that these

expressions are identical to those derived via the Baker–Campbell–Hausdorff

formula in Appendix C. By identifying Eq. (8) with Eq. (3), we obtain on the

one hand

ρe3 =
ρ
(1)
3 l(1) + ρ

(2)
3 l(2)

d
,

1

ρe1
=

l(1)

dρ
(1)
1

+
l(2)

dρ
(2)
1

,
1

ρe2
=

l(1)

dρ
(1)
2

+
l(2)

dρ
(2)
2

,

Ce =
C(1)l(1) + C(2)l(2)

d
,

(9)
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which are classical results from the homogenization theory, when first-order

Taylor expansion is considered, i.e., O
(

(kd)
2
)

, and on the other hand

ξe1 = −ζe1 = 0, ξe2 = −ζe2 = 0,

ζe3 = −ξe3 =
−iωl(1)l(2)

2d

(
C(2)ρ

(1)
3 − C(1)ρ

(2)
3 +

(k1)2

ω2

(
ρ
(2)
3

ρ
(1)
1

− ρ
(1)
3

ρ
(2)
1

)
+

(k2)2

ω2

(
ρ
(2)
3

ρ
(1)
2

− ρ
(1)
3

ρ
(2)
2

))
,

(10)

when second-order Taylor expansion is considered, i.e., O
(

(kd)
3
)

. This last

result applies several comments.50

First, the structure being symmetric along the x1 and x2 directions, the

results ξe1 = −ζe1 = 0 and ξe2 = −ζe2 = 0 were expected. Nevertheless, this result

must be tempered by analyzing Eq. (4) in terms of power of ω. Assuming ζj

and ξj , j = 1, 2, of O
(
ω2
)

as it is usually the case for reciprocal Willis material

[6, 21], the last two terms of Eq. (4) are O
(
ω3
)
, which would imply a third-order55

Taylor expansion of the transfer matrix elements, i.e., O
(

(kd)
4
)

. Rigorously,

we can only conclude that ξe1 = −ζe1 and ξe2 = −ζe2 in the absence of analysis

of the current system, i.e., by noticing that the structure is symmetric along

the x1 and x2 directions. In the general case, the propagation of a plane wave

along each principal direction, i.e., along the directions x1, x2, and x3 must60

be successively considered. This induces a permutation of the indices in the

propagation matrix, thus allowing a direct determination of the remaining Willis

coupling elements which are then located along the diagonal of the propagation

matrix. Nevertheless, this point should be moderated, because all elements of

the propagation matrix are O (kd)
3
. Thus, these two last terms could be avoided65

because they are O (kd)
4
. The Willis couplings along these directions are O

(
ω2
)

as the other, except the last two terms of the propagation matrix should not

impact the scattering coefficients, because they become of higher order.

Second, the structure being reciprocal, we have ξe = −ζe.

Third, the even Willis coupling ζe3 is the sum of a local term, i.e.,
−iωl(1)l(2)

2d

(
C(2)ρ

(1)
3 − C(1)ρ

(2)
3

)
,70

and of a nonlocal term, i.e.,
−iωl(1)l(2)

2d

(
(k1)2

ω2

(
ρ
(2)
3

ρ
(1)
1

− ρ
(1)
3

ρ
(2)
1

)
+

(k2)2

ω2

(
ρ
(2)
3

ρ
(1)
2

− ρ
(1)
3

ρ
(2)
2

))
.

Note that the local term is that derived in Ref. [21]. The initial form of the
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whole Willis coupling is that of the local term where the compressibilities are

the apparent compressibilities, i.e., C
(j)
a , j = 1, 2. The non-locality thus arises

from the dependence of the apparent compressibilities on k⊥ = (k1,k2). Nev-75

ertheless, this non-locality is effective and not apparent.

Fourth, the nonlocal Willis coupling is even in that formulation and not odd

as proposed in Ref. [6]. Nevertheless, both Willis couplings, i.e., the local and

the nonlocal couplings, are the difference of properties between the material

M (1) and M (2), while all the other effective properties are weighted sums of80

both material properties. The x3-direction of propagation is thus implicit and

is accounted for when solving the bounded system. This was already pointed

out in Ref. [6], where the odd feature is attributed to the phase change over the

unit cell, which will change sign with the opposite propagation direction.

Fifth, the Willis coupling is a linear function of the frequency in the absence85

of dispersion. While the first-order Taylor expansion gives rise to constitutive

equations that are characteristic of symmetric structures, i.e., classical homoge-

nization with AH =< [0 iωρe3], [iωCea 0] >T , the second-order Taylor expansion

reveals Willis coupling that is characteristic of asymmetric structures. In the

quasi-static limit, an asymmetric laminated structure generally falls back to a90

symmetric structure.

All these remarks suggest that the governing equations in a Willis material

composed of a fluid laminate unit cell should rather be of the form

−iωζ̄ ?⊥ p+ iω¯̄ρ ·V = ∇p,

iωζ̄ ?⊥ ·V + iωCp = ∇ ·V,
(11)

where ?⊥ expresses the convolution product in the in-plane space, as detailed in

Appendix D. This last system highlights the dependence of the Willis coupling

on the in-plane coordinates and thus the non-locality features. Nevertheless, this95

dependence does not take the usual form of non-locality, which would rather be

on the whole Cartesian coordinates and in particular on the x3-coordinate. It

is more closely related to a dependence of the Willis coupling on the angle of
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incidence and thus suggests that the form of the governing equations, although

providing the accurate propagation matrix, could be inadequate to describe the100

three-dimensional acoustic wave propagation in fluid laminates. This is also in

accordance with the fact that this non-locality only relies on the dependence of

the apparent compressibility on k⊥.

4. Results and discussion

We consider a fluid-like laminated structure composed of two air-saturated

porous materials as depicted in Fig. 2 (a). Both materials consist in the periodic

repetition of the micro-structure unit-cell sketched in the inset of Fig. 2 (a). This

micro-structure unit-cell is generated by extruding an ellipsoid from a cuboid,

the semi-axes of which are longer than the associated cuboid sides [27]. This

assumption is fundamental to form an open porosity material. The respective

micro-structure unit cells of the two materials M (1) and M (2) differ in the cuboid

and ellipsoid dimensions. The skeletons are assumed motionless. The resulting

equivalent fluids are orthotropic because the ellipsoid is centered in the cuboid

and the in-plane dimensions are imposed as identical. Each material is thus fully

characterized by the porosity φ, the thermal characteristic length Λ′, the thermal

permeability Θ, the in-plane and out-of-plane tortuosities α⊥ = α1 = α2 and

α‖ = α3, the in-plane and out-of-plane viscous characteristic lengths Λ⊥ and

Λ‖, and the in-plane and out-of-plane viscous permeabilities K⊥ and K‖. These

porous material properties are scaled by the thicknesses l
(1)
c = 300 µm and

l
(2)
c = 75 µm of the M (1) and M (2) material micro-structures and are calculated

with a two-scale homogenization procedure [26, 27, 30]. They are listed in

Table 1. The complex and frequency dependent effective densities and bulk

modulus take the forms [31, 32]

ρh
ρ0

=
αh
φ

+ i
η/Kh

ωρ0

√
1− iωρ0

η

(
2αhKh

φΛh

)2

, h =‖,⊥ ,

B0

B
= φ

γ + (γ − 1)

1 + i
φη/Θ

ωPrρ0

√
1− iωPrρ0

η

(
2Θ

φΛ′

)2
−1

 ,

(12)
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M (1) M (2)

lc (µm) 300 75

φ 0.6718 0.6718

Λ′ (m) 0.8637× l(1)c 0.8906× l(2)c

Θ (mm2) 0.08545×
(
l
(1)
c

)2
0.1220×

(
l
(2)
c

)2
α⊥ 1.3572 1.3486

α‖ 2.8903 3.1570

Λ⊥ (µm) 0.5713× l(1)c 0.6030× l(2)c
Λ‖ (µm) 0.7599× l(1)c 1.00175× l(2)c

K⊥ (mm2) 0.01612×
(
l
(1)
c

)2
0.01766×

(
l
(2)
c

)2
K‖ (mm2) 0.03568×

(
l
(1)
c

)2
0.06464×

(
l
(2)
c

)2
Table 1: Acoustic properties of the fluid-like porous materials.

where the air density is ρ0 = 1.213 kg.m−3, the adiabatic constant is γ = 1.4,105

the dynamic viscosity is η = 1.839 × 10−5 Pa.s, the Prandtl number is Pr =

0.71, and the air bulk modulus is B0 = γP0, with the atmospheric pressure

P0 = 1.013× 105 Pa.

The layer thicknesses are l(1) = 2 cm and l(2) = 1 cm, such that d =

l(1) + l(2) = 3 cm. The effective and apparent properties as calculated from

Eqs. (8, 9), and (10) are compared to those as numerically calculated from

log (TL) = Ae
numL. The structure is L = Nd-thick, N ∈ N, i.e., an inte-

ger number of repetition of the unit cell, and is excited by a plane incident

wave initially propagating in the air medium that surrounds the laminate, with

θ and ψ the elevation and azimutal angles such that k1 = k0 sin (θ) cos (ψ),

k2 = k0 sin (θ) sin (ψ), and k
(0)
3 = k0 cos (θ), as shown in Fig. 1 (a). The scatter-

ing coefficients are the reflection coefficients R+, when the structure is excited

from the x3 positive axis, and R−, when the structure is excited from the x3

negative axis, and the transmission coefficient T . These scattering coefficients

10



are calculated from the transfer matrix via

R+ =
t11 − t12/Z̄0 + Z̄0t21 − t22
t11 − t12/Z̄0 − Z̄0t21 + t22

, R− =
−t11 − t12/Z̄0 + Z̄0t21 + t22
t11 − t12/Z̄0 − Z̄0t21 + t22

,

T =
2

t11 − t12/Z̄0 − Z̄0t21 + t22
,

(13)

where Z̄0 = Z0/ cos (θ) is the reduced impedance that accounts for the elevation

angle, with the air impedance Z0 =
√
B0ρ0. The transfer matrix elements used110

in Eq. (13) are either those of TL or those of Te
L = exp (AeL). Note that

R+ = R− = RH , when classical first-order Taylor expansion homogenization is

employed, because the structure is symmetric with ζe3 = 0. We first analyzed

the apparent elements as they appear in Eq. (8) and as calculated numerically.

The normalized values ζe3c0 and Bea/γP0 are depicted in Figs. 2 (e,f) and Figs. 2115

(g,h) for (θ, ψ) = (0, 0) and (θ, ψ) = (π3 ,
π
6 ) respectively. Figure 2 (b) depicts

the normalized density ρe3/ρ0, which does not depend on the angle of incidence.

The dependence of both ζe3 and Bea on k⊥ is clearly visible. The effective and ap-

parent properties directly calculated from Eqs. (8, 9) are in excellent agreement

with those numerically calculated, thus validating the theoretical expressions.120

We also numerically verify that ζe3,num = −ξe3,num. While the imaginary part of

ζe3c0 vanishes at low frequency, its real part goes to a finite value because of the

viscous regime of the porous materials, i.e., ρ
(j)
i /ρ0 ≈

α
(j)
i

φ(j) + iη/Ki

ωρ0
, i =‖,⊥, and

j = 1, 2. This prevents the opening of a band gap at low frequency, which could

have resulted from a purely imaginary value of ζe3 . Only ζe3 starts to deviate125

from ζe3,num for frequencies higher than 400 Hz. This should be mitigated by

the fact that the dispersion relation ke = ω
√

(ζe3)
2

+ ρe/Bea is correctly modeled

by the effective properties as shown in Figs. 2 (i,j). Note that Re (ked) becomes

larger than ≈ 0.2 for f > 400 Hz. The low frequency requirement is thus theo-

retically no longer satisfied in this frequency range. Both the properties and the130

scattering coefficients, depicted in Figs. 2 (c,d), seem to be correctly modeled

even for much larger values of Re (ked), while it is usually accepted that low

frequency approximation is valid for Re (ked) < 0.1. For the sake of comparison,

the reflection and transmission coefficients, RH and TH , calculated with ζa3 = 0,

11



i.e., classical homogenization results, are plotted on Figs. 2 (c,d). Although the135

transmission coefficient is correctly modeled whatever the order of the Taylor

expansion considered to derive the effective properties, the reflection coefficients

become different for f > 200 Hz, which roughly corresponds to Re (ked) < 0.1.

The Willis coupling is thus a key parameter to model laminated structures, al-

lowing to correctly account for the geometrical and material asymmetry. The140

frequency range of validity and accuracy of the effective properties is widened

simply because a second-order instead of a first-order Taylor expansion is con-

sidered. This was already pointed out in Ref. [6] and is also partly due to the

non-resonant feature of the present structure. The dispersion relations calcu-

lated in the absence of the Willis coupling, i.e., classical homogenization, are also145

plotted in Figs. 2 (i,j) and are found in good agreement with those numerically

evaluated and calculated with the effective Willis coupling. Thus, this coupling

mostly impacts the impedances Z±a = Bea

(√
(ζe3)

2
+ ρe/Bea ± ζe3

)
translating

the structural asymmetry into different reflection coefficients when the laminate

is excited from the positive or the negative x3-directions.150
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Figure 2: [Color online] Sketch of the laminate unit cell together with the micro-structure unit

cell (a). Absolute value of the reflection and transmission coefficients (c-d) of a L = d-thick

laminate (N = 1), normalized Willis coupling (e-f), normalized apparent bulk modulus (g-h),

and dispersion relation -black lines depict the classical homogenization results- (i,j) for (0, 0)

and (π
3
, π
6

). The normalized density along the x3-direction is depicted in (b). Real (blue

curves) and imaginary (red curves) parts of each element are depicted. Elements calculated

with the effective parameters are plotted in solid line and those numerically evaluated are

plotted with circle symbols.
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To get a grip on the effective parameters, the normalized Willis coupling ζe3 ,

in-plane ρe⊥/ρ0 = ρe2/ρ0 = ρe1/ρ0 and out-of-plane ρe‖/ρ0 = ρe3/ρ0 normalized

densities, and the normalized value of the bulk modulus Be/γP0 are plotted

Figs. 3 (a,b,c). To make it clearer and because the considered Willis material is

orthotropic, the Willis coupling is decomposed into a local part and a nonlocal155

part as ζe3 = ζe,l3 + (k1/k0)2ζe,nl3 + (k2/k0)2ζe,nl3 . Obviously, this decomposition

is not optimal, because ζe,nl3 then depends on the surrounding fluid properties.

Nevertheless, the influence of ζe,nl3 , notably at high frequency, is clearly visible.

All Willis terms vanish at low frequency but the real part of the local Willis

coupling because of the viscous regime. The orthotropy of the Willis material160

is clearly visible in Fig. 3 (b). For completeness, the reflection and transmission

coefficients of a L = 5d-thick laminate calculated with the effective properties

(both first- and second-order) and with the full transfer matrix are plotted

in Fig. 3 (d) for (θ, ψ) = (π3 ,
π
6 ). Again, the frequency range of validity and

accuracy of the effective properties when the Willis coupling is accounted for is165

clearly evidenced.
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Figure 3: [Color Online] Normalized effective properties of the laminate porous material: local

(solid line) and nonlocal (dashed line) Willis couplings (a), out-of-plane (dashed line) and in-

plane (solid lines) densities (b), and bulk modulus (c). Real parts are plotted in blue lines and

imaginay parts in red lines. The absolute values of the reflection and transmission coefficients

of a L = 5d-thick laminate (N = 5) for (θ, ψ) = (π
3
, π
6

) as calculated via Eqs. (8, 9, 10) and

via the total transfer matrix (d). Coefficients calculated with the effective parameters are

plotted in solid lines and the numerically evaluated elements are plotted with circle symbols.

5. General form of the effective properties of a laminate

To derive the general form of the effective properties of a laminate, we con-

sider a laminated unit cell of thickness d composed of N layers of material M (j)

of density tensor ¯̄ρ(j), compressiblity C(j), and thickness l(j), j ∈ N = [1, N ],

such that d =
∑
j∈N l

(j). Following the procedure described in Section 2.2, we
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end with

ρe3 =
∑
j∈N

ρ
(j)
3

l(j)

d
,

1

ρe1
=
∑
j∈N

l(j)

dρ
(j)
1

,
1

ρe2
=
∑
j∈N

l(j)

dρ
(j)
2

, Ce =
∑

j∈[1,N ]

C(j) l
(j)

d
,

ξe1 = −ζe1 = 0, ξe2 = −ζe2 = 0,

ζe3 = −ξe3 =
∑
j∈N

∑
i>j

−iωl(j)l(i)

2d

(
ρ
(j)
3 C(i)

a − ρ
(i)
3 C(j)

a

)
=
∑
j∈N

∑
i>j

−iωl(j)l(i)

2d

(
ρ
(j)
3 C(i) − ρ(i)3 C(j) +

(k1)2

ω2

(
ρ
(i)
3

ρ
(j)
1

− ρ
(j)
3

ρ
(i)
1

)
+

(k2)2

ω2

(
ρ
(i)
3

ρ
(j)
2

− ρ
(j)
3

ρ
(i)
2

))
.

(14)

Note that the derivation of these general formulae are straigthfoward via the

Padé approximation and seems more complex via the Baker–Campbell–Hausdorff

formula [22].170

6. Conclusion

The closed forms of the effective properties of an anisotropic two-material

fluid laminate are derived thanks to the Padé approximation of the total trans-

fer matrix. These closed forms rely on second-order Taylor expansions of the

transfer matrix elements, allowing the derivation of the Willis coupling. This175

Willis coupling is composed of a purely local term and nonlocal terms that

depend on the projection of the wavenumber on the in-plane directions. The

nonlocality directly impacts the governing equations modeling the acoustic wave

propagation in these Willis materials, which then involve convolution products

in space. This highlights the dependence of the Willis coupling on the in-plane180

coordinates and thus on the angle of incidence, suggesting that the form of the

governing equations, although providing the accurate propagation matrix, could

be inadequate to describe the three-dimensional acoustic wave propagation in

fluid laminates. The nonlocal Willis coupling arises from the apparent com-

pressibility. While the effective density and bulk modulus are weighted sum of185

the material properties that compose the laminate, the Willis coupling involves

their difference. Thus, the derived closed form requires orientating the laminate,

which is the reason why the nonlocal Willis coupling is even in our formulation.
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In practice, the Willis coupling widens the frequency range of validity and accu-

racy of the effective properties and thus of the calculated scattering coefficients190

when compared to classical homogenization results for which the Willis coupling

is absent. This widening is mostly attributed to a better modeling of the mate-

rial impedance thanks to the Willis coupling. As an example, a two-orthotropic

porous material laminate is considered. All effective properties and scattering

coefficients are found in good agreements. The general forms of the effective195

properties of a laminate are provided. Beyond easing the engineering use of

Willis materials, this article also aims at providing the basis of the experimen-

tal characterization of 2 or 3 dimensional planar Willis materials by inverting

the propagation matrix derived in the present article.
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Appendix A. Derivation of the propagation matrix

The system Eqs.(1) is first expanded as

iωξ1p+ iωρ1V1 =
∂p

∂x1
,

iωξ2p+ iωρ2V2 =
∂p

∂x2
,

iωξ3p+ iωρ3V3 =
∂p

∂x3
,

iωζ1V1 + iωζ2V2 + iωζ3V3 + iωCp =
∂V1
∂x1

+
∂V2
∂x2

+
∂V3
∂x3

.

(A.1)

Introducing ã(k1, k2, x3) the in-plane spatial Fourrier transform of a(x), such

that a =

∫∫ ∞
−∞

ãeik1x1+ik2x2dx1dx2, the in-plane spatial Fourrier transform of
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Eqs.(A.1) reads as

iωξ1p̃+ iωρ1Ṽ1 = ik1p̃ ,

iωξ2p̃+ iωρ2Ṽ2 = ik2p̃ ,

iωξ3p̃+ iωρ3Ṽ3 =
∂p̃

∂x3
,

iωζ1V1 + iωζ2V2 + iωζ3Ṽ3 + iωCp̃ = ik1Ṽ1 + ik2Ṽ2 +
∂Ṽ3
∂x3

.

(A.2)

From the first two equations, it is clear that Ṽ1 = (k1 − ωξ1) p̃/ωρ1 and Ṽ2 =

(k2 − ωξ2) p̃/ωρ2. The introduction of these expressions in the fourth equation

leads, together with the third equation, to the following first order differential

system

∂p̃

∂x3
= iωξ3p̃+ iωρ3Ṽ3 ,

∂Ṽ3
∂x3

= iωCp̃+ i (ωζ1 − k1) Ṽ1 + i (ωζ2 − k2) Ṽ2 + iωζ3Ṽ3

=

[
iωC − i (k1 − ωζ1) (k1 − ωχ1)

ωρ1
− i (k2 − ωζ2) (k2 − ωχ2)

ωρ2

]
p̃+ iωζ3Ṽ3 ,

(A.3)

which can then be cast in the form of Eqs. (2) and (3).

Appendix B. Derivation of the effective properties from the total

transfer matrix of a two-fluid laminate

The total transfer matrix of the two-fluid laminate unit cell is

Td = Tl(2)Tl(1) =


c(1)c(2) − s(1)s(2)Z

(2)
a

Z
(1)
a

iZ(1)
a s(1)c(2) + iZ(2)

a s(2)c(1)

ic(1)s(2)

Z
(2)
a

+ fracic(2)s(1)Z(1)
a c(1)c(2) − s(1)s(2)Z

(1)
a

Z
(2)
a

 ,
(B.1)
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where c(j) = cos
(
k
(j)
a l(j)

)
and s(j) = sin

(
k
(j)
a l(j)

)
, j = 1, 2. Second order

expansion of each element tij , (i, j) ∈ [1, 2]2 thus reads as

t1,1 = 1−

(
k
(1)
a l(1)

)2
2

−

(
k
(2)
a l(2)

)2
2

− Z
(2)
a k

(1)
a l(1)k

(2)
a l(2)

Z
(1)
a

+O (kd)
3
,

t1,2 = iZ(1)
a k(1)a l(1) + iZ(2)

a k(2)a l(2) +O (kd)
3
,

t2,1 =
ik

(1)
a l(1)

Z
(1)
a

+
ik

(2)
a l(2)

Z
(2)
a

+O (kd)
3
,

t2,2 = 1−

(
k
(1)
a l(1)

)2
2

−

(
k
(2)
a l(2)

)2
2

− Z
(1)
a k

(1)
a l(1)k

(2)
a l(2)

Z
(2)
a

+O (kd)
3
,

(B.2)

which leads to

a1,1 =
2 (t1,1 − t2,2)

d (2 + t1,1 + t2,2)
=
k
(1)
a l(1)k

(2)
a l(2)

2d

(
Z

(1)
a

Z
(2)
a

− Z
(2)
a

Z
(1)
a

)
+O (kd)

3
,

a1,2 =
4t1,2

d (2 + t1,1 + t2,2)
=

i
(
Z

(1)
a k

(1)
a l(1) + Z

(2)
a k

(2)
a l(2)

)
d

+O (kd)
3
,

a2,1 =
4t2,1

d (2 + t1,1 + t2,2)
=

i

d

(
k
(1)
a l(1)

Z
(1)
a

+
k
(2)
a l(2)

Z
(2)
a

)
+O (kd)

3
,

a2,2 =
2 (t2,2 − t1,1)

d (2 + t1,1 + t2,2)
=
k
(1)
a l(1)k

(2)
a l(2)

2d

(
Z

(2)
a

Z
(1)
a

− Z
(1)
a

Z
(2)
a

)
+O (kd)

3
.

(B.3)

Keeping in mind that Z
(j)
a k

(j)
a = ωρ

(j)
3 and k

(j)
a /Z

(j)
a = ωC

(j)
a , we end up with210

Eqs. (8).

Appendix C. Derivation of the effective properties using the Baker–Campbell–Hausdorff

formula

Inspired by [22], we derive the effective properties of a two-material fluid

laminate by the Baker–Campbell–Hausdorff formula [23] in order to valid our

analytical results. The Baker–Campbell–Hausdorff formula perfectly fits our

problem, because the total transfer matrix reads as a multiplication of matrix

exponentials. The story is completely different if the configuration incorpo-

rates point resonators whose transfer matrix does not take the form of a matrix
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exponential [21]. The Baker–Campbell–Hausdorff formula is concerned with

exp (Z) = exp
(
B(1)

)
exp

(
B(2)

)
, (C.1)

where B(1) and B(2) are square matrices. The analytical expression of Z =

log
(
exp

(
B(1)

)
exp

(
B(2)

))
is approximated at the first-order by

Z ≈ B(1) + B(2) +
1

2

[
B(1),B(2)

]
, (C.2)

where
[
B(1),B(2)

]
= B(1)B(2) −B(2)B(1) is the commutator of B(1) and B(2).

Applying this formula to our problem, i.e., Eq. (6)

Td = exp (Aed) = Tl(2)Tl(1) = exp
(
A(1)l(1)

)
exp

(
A(2)l(2)

)
, (C.3)

directly provides

Ae =


ω2l(1)l(2)

2d

(
C(2)
a ρ

(1)
3 − C(1)

a ρ
(2)
3

)
iω
ρ
(1)
3 l(1) + ρ

(2)
3 l(2)

d

iω
C

(1)
a l(1) + C

(2)
a l(2)

d

−ω2l(1)l(2)

2d

(
C(2)
a ρ

(1)
3 − C(1)

a ρ
(2)
3

)
 ,

(C.4)

which are identical to the expressions provided in Eq. (8).

Appendix D. Rewritting the constitutive equations when the Willis215

parameters depend on x⊥

From Eqs. (9) and (10), it is clear that Ce and ¯̄ρe do not depend on k⊥, but

that ζe3(k⊥) and thus ζ̄
e
(k⊥) = −ξ̄e(k⊥) =< 0, 0, ζe3(k⊥) >T do. Therefore,

the Willis coupling is an in-plane spatial Fourier transform and should be ˜̄ζe

rather than ζ̄
e
. Each step of the derivation of the propagation matrix from

the governing equations (detailed in Appendix A) is the same and can thus be

followed in reverse, but the inverse spatial Fourier transform of the governing

equations. Effectively, the system Eq. (A.2) becomes

iωρ1Ṽ1 = ik1p̃ ,

iωρ2Ṽ2 = ik2p̃ ,

−iωζ̃3p̃+ iωρ3Ṽ3 =
∂p̃

∂x3
,

iωζ̃3Ṽ3 + iωCp̃ = ik1Ṽ1 + ik2Ṽ2 +
∂Ṽ3
∂x3

,

(D.1)
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the inverse spatial Fourier transform of which is

iωρ1V1(x) =
∂p(x)

∂x1
,

iωρ2Ṽ2(x) =
∂p(x)

∂x2
,

−iωζ3(x⊥) ?⊥ p(x) + iωρ3Ṽ3 =
∂p̃(x)

∂x3
,

iωζ3(x⊥) ?⊥ Ṽ3(x) + iωCp(x) =
∂V1(x)

∂x1
+
∂V2(x)

∂x2
+
∂V3
∂x3

,

(D.2)

where the spatial dependence has been highlighted, ζ3(x⊥) =

∫∫ ∞
−∞

ζ̃3(k⊥)eik⊥·x⊥dx⊥/4π
2,

and ?⊥ is a convolution product along the in-plane component x⊥. This system

can thus be cast in the form of Eq. (11).
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[6] C. F. Sieck, A. Alù, M. R. Haberman, Origins of willis coupling and acoustic

bianisotropy in acoustic metamaterials through source-driven homogeniza-235

tion, Phys. Rev. B 96 (2017) 104303.

21



[7] M.-F. Ponge, P. O., D. Torrent, Dynamic homogenization theory for non-

local acoustic metamaterials, Extreme Mechanics Letters 12 (2017) 71 –

76.

[8] A. L. Shuvalov, A. A. Kutsenko, A. N. Norris, O. Poncelet, Effective willis240

constitutive equations for periodically stratified anisotropic elastic media,

Proc. R. Soc. A. 467 (2011) 1749–1769.

[9] S. Nemat-Nasser, J. R. Willis, A. Srivastava, A. V. Amirkhizi, Homoge-

nization of periodic elastic composites and locally resonant sonic materials,

Phys. Rev. B 83 (2011) 104103.245

[10] A. Melnikov, Y. K. Chiang, Q. Li, S. Oberst, A. Alù, S. Marburg, D. Powell,
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G. Gabard, E. R. Fotsing, A. Ross, J. Mardjono, J.-P. Groby, Optimally290

graded porous material for broadband perfect absorption of sound, J. Appl.

Phys. 126 (2019) 175101.

[26] T. Cavalieri, J. Boulvert, G. Gabard, V. Romero-Garćıa, M. Escouflaire,
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