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1 Introduction 

1.1 Motivation and Objectives 

The manufacturing-oriented companies assume the main share in global industrial activities, 

transforming natural resources, capital, and technology into products. Besides the positive im-

pacts of manufacturing on economic growth and employment, there are severe environmental 

impacts in terms of waste creation as well as energy and material consumption (Sutherland et 

al. 2020, p. 1). Furthermore, the industrial sector accounts for one-third of the global annual 

CO2 emissions, which were 11.6 Gt in 2018 (International Energy Agency 2019). The exploi-

tation of resources poses a significant challenge for the manufacturing industry, as it leads to 

fluctuations and increases in material prices as well as to increasing political power of the 

nations that control these resources (Ellen MacArthur Foundation 2017, p. 6). In the current 

situation, the resources of two earths are needed to maintain the level of consumption sustain-

ably. This is estimated to worsen if no drastic measures are taken (Sutherland et al. 2020, 

p. 2), as with the still growing population, more resources will be needed in future (Ellen Mac-

Arthur Foundation 2017, pp. 19–20). Therefore, there is a continuous movement towards an-

choring sustainability in the manufacturing industry. Additionally, legal regulations such as the 

European Green Deal (European Commission 2019) and the Circular Economy Action Plan 

(European Commission 2020), as well as investment incentives like the ESG-criteria (Park and 

Jang 2021), make considering sustainable development almost inevitable in strategic produc-

tion management (Schuh and Schmidt 2014, p. 16). 

A strategy to become more sustainable is implementing a Circular Economy, which aims to 

close material loops, to use resources more efficiently, to decouple economic growth from the 

use of resources, and to ensure long-term competitiveness (European Commission 2020, 

p. 2). Manufacturers play a key role here (Andersen et al. 2022), but are still looking for guid-

ance when implementing methods that enable circularity (Murray et al. 2017, p. 1). 

Circularity can be achieved by, e.g., the reuse of products, their repair and reconditioning, and 

remanufacturing. Remanufacturing is a standardized industrial process in which products are 

returned to their original, as-new, and improved condition with full warranty (Remanufacturing 

Industries Council 2022). The largest sectors of the remanufacturing industry in Europe are 

aerospace and automotive parts supply. In 2019, Mercedes-Benz had 20.000 components in 

their remanufacturing portfolio, including classic elements of the powertrain and HV batteries 

of electric and hybrid vehicles (Daimler 2019, p. 48). Caterpillar, a leading global manufacturer 

of earth-moving equipment, offers a wide variety of remanufactured products and aims to in-

crease sales and revenues from remanufacturing offerings by 25 % from 2018 to 2030 (Cater-

pillar Inc. 2021, p. 7). Other big companies engaging in remanufacturing are Kodak, Xerox, 

Delphi, and Volkswagen (Subramoniam et al. 2013; Volkswagen AG 2021, p. 63).  
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While remanufacturing is already used in industry, there is often a lack of standardized, effi-

cient processes (Östlin 2008, p. 1). In remanufacturing, products that have reached the end of 

their life cycle become core components of new products, turning the customer into the sup-

plier (Östlin 2008, p. 6). This affects the creation of the production programs, which are an 

essential component of production planning. The feasibility of the production program depends 

sensitively on the availability and condition of the returning products and their components. 

Production program planning in remanufacturing is therefore subject to an elevated level of 

uncertainty. 

In literature, the challenges of remanufacturing have so far been approached in several ways. 

ACERBI et al. (Acerbi et al. 2022) propose a data model for intermediate to long term strategic 

decision making on which strategy to implement when dealing with circular economy, but the 

model does not facilitate production program planning in intermediate planning horizons. AN-

DERSEN et al. (Andersen et al. 2022) discuss data management systems needed for imple-

menting circular strategies but do not explain the effects on production program planning. Mod-

els specifically intended for creating a production program using mathematical approaches like 

the work of GIGLIO et al. (Giglio and Paolucci 2014) incorporate sales planning to a limited 

extend and make assumptions about the available data. GAO et al. (Gao et al. 2023), MUSTAJIB 

et al. (Mustajib et al. 2021), and JIANG et al. (Jiang et al. 2019) propose models that predict the 

quality of components or process sequences, but partially rely on data points that must be 

collected when cores are returned and do not elaborate further on the effects on the production 

program. In the automotive industry, production program planning can be conducted several 

months before production (Klug 2010, p. 372). At this point in time, key information on which 

existing planning models are based is not yet available.  

A data model covering all data points needed to create a production program in remanufactur-

ing before a core returns to the remanufacturer could reduce the uncertainties and short plan-

ning lead times, making production program planning in remanufacturing more reliable. There-

fore, the research question for this thesis is: 

How can a data model be designed for data-based production program planning in remanu-

facturing? 

1.2 Structure of the Thesis 

To systematically derive the answer to the research question, chapter 2 describes the pro-

cesses and methods that are part of production program planning. It also analyzes which data, 

and data classes are used. In addition, insights into the Internet of Production and the Digital 

Product Passport provide information about infrastructures that are currently gaining im-

portance in data-based production planning. Then, remanufacturing is explained as one ap-

proach to a more sustainable production with lifecycle-spanning planning. In doing so, the spe-

cific contexts and challenges of production program planning in remanufacturing are elabo-

rated. By analyzing the equivalent processes in the automotive industry, it is shown how highly 
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complex products influence in the planning processes. The chapter also serves to define the 

scope of the thesis. 

Chapter 3 then analyzes the current state of research by conducting a systematic literature 

review. For this purpose, consideration criteria are defined that narrow down the scope of the 

selected literature, which is then analyzed regarding predefined evaluation criteria. Only liter-

ature that shows intersections from production program planning and remanufacturing is con-

sidered. The selected literature is analyzed based on evaluation criteria with regard to the core 

planning processes of the production program planning. Those are sales planning, primary 

demand planning, and gross resource planning. Other evaluation criteria for the literature are 

the comprehensiveness of the proposed models and their scalability. 

Based on the findings from chapter 2 and 3, the concept of the developed solution for the 

research question is presented in chapter 4. The basis of the model building is defining the 

remanufacturing process. Then, the activities of production program planning in remanufactur-

ing are derived, and the data required to implement the activities is identified. In the next step, 

the data is combined into a data model. 

In chapter 5, the process for obtaining the detailed solution is explained. The activities in the 

activity model are described using the IDEF0 method, dependencies between the activities are 

clarified, and the corresponding data requirements for input, constraint, resource, and output 

data are derived. This data is categorized into classes, and relationships of classes are defined 

using the Unified Modeling Language (UML) to obtain the data model.  

In chapter 6, the data model is validated. For this purpose, a prototypical simulation model is 

developed that reflects core aspects of the data model and of the activity model. The simulation 

model is evaluated with components from the production of electric vehicles, and it is used to 

create a prototypic production program for an example scenario in remanufacturing. Finally, 

the limitations of the developed solution are analyzed.  

Chapter 7 provides a summary of the results obtained throughout this work and gives an out-

look for the need for future research and action. 
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2 Fundamentals and Scope 

2.1 Scope within Production Planning 

For the definition of this work’s scope within production planning, German, English, and Span-

ish literature is reviewed to outline similarities and differences between the established funda-

mental concepts which result in a production plan. The scope is then defined based on com-

monalities of the definitions. 

2.1.1 Production Planning and Control 

In German literature, the task of production management is to design, plan, monitor, and con-

trol production, using the company's available resources such as employees, materials, ma-

chinery, and information. In this context, operative production management aims to produce 

products in the required quantity and quality at a defined time while minimizing costs (Lödding 

2016, p. 7; Schuh and Schmidt 2014, p. 1). One of the core processes in operative production 

management is production program planning (PPP, literal translation of the German term 

“Produktionsprogrammplanung”), which results in a feasible production program (Lödding 

2016, p. 110; Wiendahl 2010, p. 272). A feasible production program is essential for high de-

livery reliability (Lödding 2016, p. 110). 

PPP is a sequence of the three subtasks sales planning, primary demand planning, and gross 

resource planning, which are conducted periodically. The sequence is shown in Figure 2.1 and 

can be seen as a modular method, where each of the three modules requires a certain input 

and delivers a defined output for the subsequent module (Wiendahl 2010, p. 258). There are 

various levels of detail for the subdivisions of the general process, like naming the manage-

ment of customer orders and the determination of delivery times as separate entities, which 

the three-step sequence includes implicitly as cross-modular tasks (Wiendahl 2010, pp. 257–

259). The production program is developed in close coordination between production and 

sales, because in order to sell, production must be capable of providing the products in time, 

with the limiting factors being production capacity and the availability of resources. The sales 

plan incorporates demand forecasts and direct customer orders. Consecutively, to ensure a 

balanced usage of resources and to check whether primary demand can be matched, a gross 

resource planning is conducted. Primary demand includes final products for the customer and 

pre-produced standard components. PPP uses different types of information and focuses on 

different tasks depending on the underlying production type, like make-to-order or make-to-

stock. (Schuh and Schmidt 2014, p. 64)  

If the delivery times demanded by customers are shorter than the necessary manufacturing 

time, (pre-)production or purchasing, and warehousing is necessary up to a certain point in 

production, called decoupling point. Another reason for decoupling can be high machine setup 

costs for small customer order quantities. (Lödding 2016, p. 168; Schuh and Schmidt 2014, 

p. 64) 
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Figure 2.1: Sequence of tasks in production program planning (Schuh and Schmidt 2014, p. 65) 

The aim of sales planning is to determine when a certain quantity of a product needs to be 

available. This can be done for product groups to save costs in case of a large number of final 

products. One example is the automotive industry, because the exact specifications of a car 

are determined just before entering the assembly line (Hopp and Spearman 2000, p. 237). In 

the sales plan, existing customer orders are considered as well as sales statistics and trends 

or profit targets. Sales forecasts are particularly important for companies which produce to 

stock, without assigning products to a specific customer before they are sold. Also, a forecast 

for standard products and components is necessary to check in gross resource planning if the 

sales plan is achievable. Different forecasting methods are used depending on the sales 

trend’s behavior. A sales trend can rise, be constant or fall, and have seasonal dependencies. 

(Schuh and Schmidt 2014, p. 67) 

Depending on the model, a development plan can be considered independently from the sales 

plan. It is created in parallel with the sales plan and describes the necessary technical devel-

opments of the products and services. The development plan is based on current weaknesses 

and strengths of the products and identifies development opportunities. It includes the costs 

associated with the development and compares the expenses with the expected sales. Devel-

opments can be functional enhancements to existing product families, changes in production 

processes, or, in rarer cases, new product developments. (Wiendahl 2010, p. 59) 

Primary demand is derived from the demand stated in the sales plan, from existing orders, 

and, if necessary, from other internal demands. For primary demand planning, product groups 

must be disaggregated, if the sales plan was conducted at group level. Therefore, the quanti-

ties of the different end products as members of a product group must be known. Customer-

related orders do not have to be fully specified at the instant they are planned for production. 

In this case, it is necessary to temporarily assign similar parts for planning purposes. The result 

Sales Plan
Sales Statistics 

and Trends
Customer Orders

Sales Planning

Net Primary Demand InventoryGross primary demand

Primary Demand Planning

Alignment Resource SupplyResource Demand

Gross Resource Planning

Market

Production Program
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is a preliminary production program stating net primary demand, which is the quantity of prod-

ucts that must be produced after deducting stock and orders, which are currently being pro-

duced. The production program also includes external demand. (Schuh and Schmidt 2014, 

pp. 67–68; Wiendahl 2010, p. 60) 

Resources are staff, material, and operating or auxiliary tools. The resource requirements for 

the items defined in the preliminary production program, like type, quantity, and date or period, 

are roughly planned and compared with the available resources to check whether net primary 

demand can be produced. The result is the production program. If representative or summa-

rized data is used, the requirements from the preliminary production program must be assigned 

to the substitute products which were used. (Schuh and Schmidt 2014, p. 68)  

2.1.2 Manufacturing Resource Planning 

The corresponding English term for an integrated production planning and control process is 

manufacturing resource planning (MRP II), which includes a subset of processes that facilitate 

planning and control for short-, intermediate-, and long-term planning horizons. The processes 

in MRP II can be seen in Figure 2.2.The long-term planning horizon is of 6 months to 5 years 

and includes long-term demand forecasts, resource planning at the level of investing in new 

plants or expanding existing ones and aggregate planning, which determines long-term pro-

duction-, staff-, and other capacity-requirements. (Hopp and Spearman 2000, pp. 136–137) 
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Figure 2.2: MRP II flow chart (Hopp and Spearman 2000, p. 136) 

At the intermediate range, a first important step is demand management, which aims to narrow 

down the aggregated forecasts into detailed and, if applicable, customer specific demands for 

the next planning periods. Here, it is crucial to determine the already committed orders and the 

available capacity for new ones which can be promised to a customer. These so-called firm 

orders, are orders which are fixed and will not be altered, which helps to stabilize production. 

(Hopp and Spearman 2000, p. 137) 

Then, in master production scheduling (MPS) the specific quantity and due dates for all parts 

of independent demand, including the demand for end parts and the demand for external sub-

parts is determined (Jacobs et al. 2018c; Hopp and Spearman 2000, p. 114). In MPS, inde-

pendent demand is any external demand while dependent demand is the underlying demand 

for components that comprise the products of independent demand (Hopp and Spearman 

2000, p. 110). If the products are complex and therefore the MPS planned at group level, a 

final assembly schedule determines when the exact end items are produced. Such planning 
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requires a superbill of material which contains forecast percentages for the different variants 

of each group or model (cf. automotive industry) (Hopp and Spearman 2000, p. 137). 

To check the viability of the MPS regarding the availability of resources, a rough-cut capacity 

planning (RCCP) is conducted (Jacobs et al. 2018b). A simple example of RCCP is shown 

below. RCCP uses a bill of resources, which states how many hours xp,r are needed for a 

product of group p on resource r to fabricate each part on the MPS and their sub-parts. The 

first step is to calculate the total hours hreq,r,t needed on each resource in each planning period 

t. This is shown in equation 1, where hreq,r,t is the sum of the products of the quantity 𝑁p,t of 

each product needed and of xp,r. 

ℎ𝑟𝑒𝑞,𝑟,𝑡 = ∑𝑁𝑝,𝑡 ∗ 𝑥𝑝,𝑟 

𝑃

𝑝=1

 

 

(1) 

The hours required are then compared to the available hours on that resource. Should there 

be significant differences, adjustments can be made at an early stage in production planning. 

The method is also known as capacity planning using overall factors (CPOF) or, when routing 

information and BOMs are used, as capacity bill procedure (Jacobs et al. 2018b). Inconsisten-

cies with the available resources can be adjusted by either changing due dates for the orders 

on the MPS or by augmenting or reducing the available resources. Limitations of RCCP are, 

that there is neither offsetting nor netting considered, meaning that on the one hand the pre-

sumption is that one part can be fabricated within the same period. On the other hand, sub-

assemblies and stock are ignored, making RCCP an optimistic estimate of what can be real-

ized realistically. (Hopp and Spearman 2000, p. 139) 

A core process of MRP II is material requirements planning (MRP). There, the MPS is taken 

as an input to schedule jobs and purchase orders. It also considers the dependance of end 

items from lower-level parts. This dependence is described in the bill of material (BOM), which 

specifies the demand for lower-level items caused by each end items (Jacobs et al. 2018a). 

All items are assigned with a low-level-code (LLC), which refers to the first moment the product 

is needed in production, based on its level in the BOM. An end item has LLC zero. The first 

layer of products which is used to produce the end item is LLC one, as long as it is not needed 

for the production of any other part at an even lower level. The LLC always refers to the lowest 

level where the part is needed first in production. Figure 2.3 shows an example of a BOM for 

the two products A and B and the associated LLCs. The LLC is especially necessary for MRP 

because it is used to organize the iterations over the sub-level items, starting with items of LCC 

zero and moving on to higher numbers. (Hopp and Spearman 2000, p. 111) 
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Figure 2.3: Example of a BOM with part numbers and LLCs for two different products (Hopp and 

Spearman 2000, p. 111) 

The main steps to perform an MRP for each level within the BOM can be seen in Figure 2.4. 

In summary, the necessary minimum information which must be provided by MPS as input to 

MRP are a part number, a need quantity, and a due date for each order. Additionally, the BOM 

and the current inventory status is needed. The part numbers are typically linked to an item 

master file which contains other processing information, like lot sizing information, and plan-

ning lead times. 

 

Figure 2.4: MRP scheme (Hopp and Spearman 2000, pp. 111–112) 

A typical MRP without firm orders can be seen in Table 2.1 with a lot size of fifteen and a lead 

time of 1 planning period. There is also an adjustment in the scheduled receipts, postponing 

the receipts from period one to period two and forwarding the one hundred pieces from period 

three by one period. In the first case, the stock is sufficient to cover the demand; in the second 

case, the gross requirements exceed the stock. As a basic rule, scheduled receipts are ad-

justed before launching new orders, as long as they are not marked as firm orders. 

 

Product A

100 LCC 2 200 LCC 1

300 LCC 3 400 LCC 3

Product B

300 LCC 3 500 LCC 1

100 LCC 2 600 LCC 2

300 LCC 3 400 LCC 3

MRP

1. Net requirements are determined by subtracting inventory and outstanding orders 

from the gross requirements

2. The net requirements are divided into lot sizes to form jobs

3. Determine start times for the jobs by subtracting lead time form due dates

4. Determine gross requirements based on start times, lot sizes, and BOM

5. Repeat for all subsequent LLC

BOM Status of inventory Outstanding orders MPS
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Table 2.1: Example for the calculation of planned orders and receipts of part A (Hopp and Spe-

arman 2000, p. 119) 

Part A Periods: 1 2 3 4 5 6 7 8 

Gross requirements 15 20 50 10 30 30 30 30 

Scheduled receipts 10 10  100     

Adjusted SRs  20 100      

Inventory 20 5 5 55 45 15    

Net requirements      15 30 30 

Planned order receipts      45  30 

Planned order releases     45  30  

The last step in the intermediate planning horizon is capacity requirements planning (CRP), 

which is used to predict job completion times and loads for each process center. CRP requires 

planned order releases, existing work-in-progress positions, routing data, capacity, and lead 

times for all process centers as input information. CRP creates a profile of the planned order 

releases over the planning periods as can be seen in Figure 2.5. The intermediate-term plan-

ning results in a collection of planned order releases, called the job pool, which is assigned for 

production. (Hopp and Spearman 2000, p. 139) 

 

Figure 2.5: CRP load profile (Hopp and Spearman 2000, p. 140) 

In case the capacity limit is exceeded, no corrective action is performed because an infinite 

capacity is assumed, which is a general flaw of both MRP and CRP. Therefore, both methods 

are only useful in the intermediate planning range. There is also no information regarding the 

cause of the overload. To resolve an overload, reports that disaggregate the load to determine 

which jobs are causing the problem are needed to trace back the problem to the MPS. 
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Furthermore, there are vast amounts of data required and the processes are very time-con-

suming. The root of these problems is the assumption of constant lead times. There are other 

methods, which consider capacity limits and adjust lead times. This yields a more realistic 

result and thus the number of companies using CRP is decreasing. (Hopp and Spearman 

2000, pp. 140–141) 

All planning results from the intermediate-term phase are given to the short-term control entity, 

where job releases are scheduled and conflicts in the production of lower-level items are re-

solved. That includes defining rules for dispatching jobs to certain process steps. Those rules 

are necessary to maintain the due dates and low manufacturing times while keeping machines 

at their maximum capacity. (Hopp and Spearman 2000, pp. 141–142) 

2.1.3 Excursion into Spanish Literature 

The Spanish “Planificación de la Producción” defines a “Plan Maestro” or master plan based 

on orders, demand forecasts, and stock. In the master plan it is determined which products 

are to be manufactured and in what quantities for the next planning periods (Heredia and José 

2004, p. 122), which is the equivalent of MPS and MRP in English terms.  

Also, the other processes in Spanish literature are similar to MRP II because the English con-

cepts are used as a basis. A standard period for establishing a master plan is two months. For 

the first periods, the explosion of material requirements for the different parts is done. The term 

explosion refers to iterating over all levels of the BOMs needed for each product. Knowing the 

demand in end- and sub-parts, a capacity analysis is performed. The result is a production 

plan stating the quantities of products to be manufactured in the different process centers of 

the factory and the demand for materials that need to be purchased. The order of production 

is not determined, and therefore the effect that the different sequences may have on change-

over times is not considered. If the capacity analysis shows that there is not enough capacity 

available, the master plan is adjusted manually. The actual situation of the manufacturing pro-

cesses is not taken into account. (Heredia and José 2004, p. 152)  

The subsequent step after establishing the master plan and estimating capacity is scheduling 

the jobs for each process step while following certain rules and resolving bottlenecks (Heredia 

and José 2004, pp. 147–150). This is the equivalent of what in ERP II is called short-term 

control. 

2.1.4 Definition of Scope 

While the literature from English authors like HOPP and JAKOBS, and from the Spanish author 

HEREDIA ALVARO on methods for production planning are similar in their content and their def-

inition of scopes, the German authors SCHUH, LÖDDING and WIENDAHL define slightly different 

terminologies and areas for the processes necessary to obtain a production plan. The correla-

tions are shown in Figure 2.6, where the scope of this work regarding production planning is 

marked by the dark grey areas. 
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Figure 2.6: MRP II (Hopp and Spearman 2000, p. 136) and PPP (Schuh and Schmidt 2014, p. 65) 

process 

PPP is located mostly at the intermediate planning range of MRP II. Sales planning may ex-

ceed the intermediate range depending on the time frame used for forecasts and firm orders, 

but it is in its core similar to demand management in MRP II and results in an MPS. Planning 

horizon and duration of a planning period can vary widely depending on the product and com-

pany but there is a recommendation for a minimum planning horizon of eight weeks while the 

minimum planning period is one week (Heredia and José 2004, p. 123). The MPS is part of 

primary demand planning. The calculations done for MRP at component level are part of gross 

resource planning. Although the BOM and scheduled receipts are not explicitly mentioned in 

PPP, it requires the very same information. Gross resource planning also includes CRP in 

MRP II.  
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this work. The short-term control, which is carried for processes with a maximum planning 

period of two months, uses the plan developed in the intermediate planning period. It is a 

subsequent process which is also excluded from the scope of this work. 

2.1.5 Methods for Demand Forecasting 

Due to the high number of variants and uncertain markets, it is very difficult to reliably forecast 

demand and to establish reliable production programs (Lödding 2016, p. 3). Demand forecasts 

can be based on a variety of data, have different levels of aggregation, contain different as-

sumptions about the market, and must therefore be adequate for the application before being 

used for planning and control activities. They have a continuous influence on all processes and 

decisions made in PPP, so a forecasting method must be well suited for the actual character-

istics in demand development. Mathematically predictable demand development can be sta-

tionary, follow a trend, or show seasonal or intermittent profiles. These profiles are shown in 

Figure 2.7. They can also appear in mixed forms. An intermittent profile shows clear peaks in 

demand, which can be irregular and return to zero after a certain time. Trendy demand shows 

an approximately linear development that either increases or decreases over time. Nonlinear 

trends can also be predicted mathematically as long as there is no inflection point in the de-

mand function. The seasonal profile, unlike the intermittent profile, exhibits a degree of repeat-

ability that can be, for example, weekly, monthly, or annual. The stationary demand profile 

oscillates irregularly around a mean value. (Schuh and Schmidt 2014, p. 71; Wiendahl 2010, 

p. 302) 

Fluctuations in demand are amplified in supply chains, which is known as the Bullwhip-Effect. 

The further away the partners of a supply chain are from the end customer, the higher are the 

fluctuations in demand. In a supply chain consisting of customers, a final producer, a supplier, 

and a sub-supplier, the final producer experiences the lowest fluctuations in demand and the 

sub-supplier the highest. (Lödding 2016, p. 139) 

 

Figure 2.7: Characteristic demand profiles (Schuh and Schmidt 2014, p. 71) 
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The shown demand profiles can be analyzed using mathematical analysis. Random demand, 

nonlinear trends, and general structural changes in the demand profile only allow for an em-

pirical-intuitive prediction or a delayed reaction. (Wiendahl 2010, p. 302) 

Mathematical forecasting can be done in a simple way, using only the demand of the past 

periods as input variable to the forecasting model. The forecasting models get more complex 

if a multivariable approach is used, where the underlying assumption is that future demand 

depends on several independent influential factors. In models which are based on just one 

variable, being the demand over the previous periods, the underlying data is obtained by sam-

pling of adjacent points in time, which is why the models are also known as time series analysis 

(Acerbi et al. 2022, p. 1). 

Mean value methods 

Using the arithmetic mean of the demand recorded in the past is one of the simplest methods 

for demand forecasting. It is possible to use either the average of all demand recorded in the 

past or to define a time frame for the considered past demand. The demand for each consid-

ered previous period is summed and divided by the number of considered periods. The method 

smooths out trend-like behavior, especially if many prior periods are used to calculate the 

mean. Forecasting using mean values is therefore only suitable for stationary demand profiles. 

(Schuh and Schmidt 2014, pp. 72–73; Wiendahl 2010, p. 303) 

Exponential smoothing 

First order exponential smoothing is a special case of mean value forecasting. It assumes that 

more recent demand development is more relevant for demand forecasting, so there is a 

weight applied to the errors made in the previous demand forecasts. The weight causes errors 

made further in the past to have a decreasing influence on the current demand forecast. The 

higher the weight, the more the forecast is prone to fluctuations caused by the most recent 

demand development. Smaller weights increasingly smooth out the forecast. The method 

needs less historical data, since only the most recent forecast value is included in the calcula-

tion of the new forecast. It is also easy to adjust by changing the applied weight. The forecast 

follows the real course with a time lag and is not suited for stationary demand profiles. (Wien-

dahl 2010, p. 304; Schuh and Schmidt 2014, pp. 74–75) 

Second order exponential smoothing can be used if the demand curve follows a trend, since 

changes in demand from period to period are considered individually. The method uses an 

additional weight to consider the slope of the demand development over the previous period. 

One of the prominent methods for second order exponential smoothing was developed by 

HOLT (Holt 2004). In contrast to other methods that include linear trends in the forecast, HOLT's 

method has the advantage that new forecast values are very easy to calculate and only a small 

amount of data is needed. (Schuh and Schmidt 2014, pp. 75–76) 
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The method from HOLT can be extended to the method from WINTERS by introducing a sea-

sonal factor to forecast seasonal demand profiles. The actual demand is additionally divided 

by the seasonal factor of the previous period (Winters 1960). WINTERS’  ethod req ires  s-

suming an initial arbitrary value for the seasonal factor, so the initial values for the forecast can 

derivate significantly from the actual demand. Nonetheless, the forecast adjusts rapidly to the 

real demand profile. When a large value for the seasonal factor is chosen, the current magni-

tude of the seasonal development is weighted more heavily relatively to the past development 

and recent demand developments have a higher influence on the forecast. The method is 

suited for both trend-like and stationary demand with seasonal influences. But it requires high 

implementation effort and a previous observation period of at least three to four seasonal cy-

cles to determine a reasonable initial value for the seasonal factor. (Schuh and Schmidt 2014, 

pp. 77–79) 

Forecasting intermittent demands 

Intermittent demand leads to major problems in production planning, as it complicates fore-

casting demand and controlling inventories. The reason for this lies in the variability of the 

demand quantity and in the irregularity. An often-recited method for forecasting intermittent 

demand is Croston's method, which is specifically made for intermittent demand. The method 

is based on exponential smoothing, but periods of zero demand are excluded from the fore-

cast. It is also assumed, that demand sizes are normally distributed. The occurrence of de-

mand in every review period is random and described by a Bernoulli distribution, while the 

inter-demand intervals follow a geometric distribution. (Syntetos and Boylan 2001) 

Regression models 

The linear regression method is well suited for forecasting linear demand profiles which can 

be stationary, or continuously increasing or decreasing. It uses the least squares algorithm to 

calculate the linear equation which best approximates the previous demand values (Wiendahl 

2010, p. 302). The linear equation is then used to forecast the demand for the next planning 

period. Regression models can also consider more than one independent variable, in which 

case they are called multiple regression models. Those models are suited for seasonal de-

mand profiles. The independent variables (independent meaning not depending on each other) 

are often time-dependent. Multiple regression can generally be done with dummy variables, 

where certain parameters are activated by binary variables to take seasonal influences into 

account. If seasonal influences show a regularity, the demand can be forecasted using trigo-

nometric functions. The approximation of the function is also done with a least squares method. 

Trigonometric functions need less parameters, which increases the quality of the estimation 

given that the underlying assumption of regularity is correct. (Schuh and Schmidt 2014, pp. 81–

84) 
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ARIMA Models 

In multiple regression models, the demand is only influenced by the current values of the in-

dependent variables. Theoretically, past values of all the variables can influence the current 

demand. Therefore, regression models often do not capture all underlying dynamics of the 

demand development (Shumway and Stoffer 2017, p. 75). Auto-Regressive Integrated Moving 

Average (ARIMA) or Box-Jenkins models, can capture these dependencies by interpreting the 

time series as a purely stochastically determined series of random values. ARIMA-models are 

extremely complex and require appropriate software (Jiménez Guerrero et al. 2006). 

2.1.6 Methods for Gross Resource Planning 

The aim of gross resource planning is to achieve a cost-optimized match between the produc-

tion quantities in the individual planning periods and the available resources. Therefore, it is 

necessary to check if the net primary demand can be matched, or, if adjustments are neces-

sary. For gross resource planning, orders can be anonymized. All adjustments can be posi-

tioned in between two extreme cases, the first being adjusting the available resources to follow 

the net demand exactly. This can lead to severe fluctuations in production, but also eliminates 

the need for warehousing, which reduces the associated costs. The second extreme is to de-

couple demand and resource availability while maintaining a constant capacity. Should there 

be less demand than capacity, items can be produced to stock. Should the demand exceed 

the capacity, orders can be taken from the stock. If the stock is empty, orders will be delayed. 

Costs to be considered include inventory costs, resource costs including overtime, and out-

sourcing costs. It is recommended, however, to maintain a certain flexibility to be able to com-

pensate for short-term fluctuations. (Lödding 2016, p. 109; Schuh and Schmidt 2014, pp. 87–

89) 

Resource smoothing using tabular methods 

Tabular methods are an easy way to find an optimal balance between conflicting goals, such 

as following demand and minimizing costs. Increasing production capacity through overtime 

or external procurement can compensate for strong fluctuations and enables following de-

mand, but also causes higher short-term costs. In the tabular method, it is assumed, that a 

product requires a known additional capacity on a certain resource. It is necessary to define 

an objective for the optimization, for example minimizing inventory costs, and to know the cor-

relation between the objective and the produced items. In the case of inventory costs this can 

include the costs per period in stock and the costs of added capacity. (Schuh and Schmidt 

2014, pp. 89–90) 

Resource smoothing using linear optimization methods 

More complex problems, where for example more than one product is considered, can be 

solved using linear optimization methods. The first step is to define an objective function C as 

can be seen in equation 2. In the given example, 𝐶 is the sum of all costs caused by the 
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product 𝑝 and the aim is to find the minimum. The warehousing costs per product are given by 

𝑙𝑝, which is multiplicated with the stock volume 𝐿𝑡,𝑝 in the planning period 𝑡. The other part of 

the equation represents the costs related to overtime, with ut being the costs per extra hour 

and Ut the number of extra hours. (Schuh and Schmidt 2014, pp. 90–92) 

𝑀𝑖𝑛 →  𝐶 = ∑∑𝑙𝑝 ∗ 𝐿𝑡,𝑝

𝑇

𝑡=1

𝑃

𝑝=1

+∑𝑢𝑡 ∗ 𝑈𝑡

𝑇

𝑡=1

 

 

(2) 

The solution space of the target function can then be constrained. For example, equation 3 

shows that there is a fixed relationship between the stock levels at the beginning (𝐿𝑡−1,𝑝) and 

end (𝐿𝑡,𝑝) of a period, the production quantity 𝑋𝑡,𝑝, and the demand, or the products with-

drawn 𝑛𝑡,𝑝.  

𝑋𝑡,𝑝 + 𝐿𝑡−1,𝑝 − 𝐿𝑡,𝑝 = 𝑛𝑡,𝑝 

 

(3) 

Other constraints can be: 

◼ The maximum storage capacity that cannot be exceeded, even if it would be cheaper 

to store more items 

◼ The maximum possible overtime and production capacities 

◼ The non-negativity condition, which all variables must satisfy. Non-negativity means 

that all variables must be greater than or equal to zero. 

Resource profiles for closer analysis of lead times 

Simple planning methods for resource utilization do not take into account the specific timing of 

workloads at individual workstations. By considering resource profiles, planning can be made 

more precise. Here, production lead time data is considered to create time-phased projections 

of capacity requirements for individual production facilities. The method requires BOM infor-

mation and routing data. Resource profiles are a more sophisticated approach to gross re-

source planning because they are more detailed. In gross resource planning, the time periods 

for the capacity plan can be of various durations (e.g., weeks, months, quarters). If the time 

periods used for planning are significantly longer than the lead times, much of the value of the 

time-phased information can be lost when aggregating the data. This means that planning 

periods longer than a week may hide important fluctuations in capacity requirements. (Jacobs 

et al. 2018b) 

2.1.7 Limitations of PPP and MRP II in Remanufacturing 

Regarding all in- and outputs it is crucial to consider that the analyzed models show certain 

flaws regarding remanufacturing. MRP II and PPP assume that the needed materials for pro-

duction can be purchased. But the availability of parts which can be put through a process of 

remanufacturing depends on the customer, who is also the supplier. MRP II and PPP are highly 
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integrated processes over several departments, which can have opposing interests within the 

company (Heredia and José 2004, p. 120). The external interfaces are procurement and sales. 

For remanufactured products, a logical step would be to integrate the customer and the product 

during its use-phase into the planning process, broadening the scope of MRP II and PPP. 

2.1.8 Data in Production Program Planning 

Data are a combination of characters that can be converted into information after applying a 

defined logic. They are structured messages that provide information about past, current, or 

future states of a system (Philippson and Schotten 1999, p. 219). In the context of production 

management, there are different approaches to organizing and structuring data. Data can be 

differentiated by field of application, like product, production, staff, customer, and supplier data, 

or by function, like master data and movement data, inventory data and change data, as well 

as application data and control data. (Schuh and Schmidt 2014, p. 44) 

Figure 2.8 is a structured representation of typical data and data types found in a manufactur-

ing company. They are explained below. The classification of the data serves only as an ex-

ample and to improve the overview. No claim is made to completeness. 
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Figure 2.8: Data in production planning 

Modern production planning is carried out using enterprise resource planning (ERP) systems 

that manage data and information from the entire organization. ERP systems digitalize and 

facilitate the established MRP II planning methods and enable a series of advancements for 

production planning, like implementing Just-In-Time without Kanban cards or designing pro-

cesses that combine several techniques to tailor production to the organization. (Heredia and 

José 2004, p. 116) 
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- Customer-specific material descriptions, requirements, 

packaging regulations, alternative materials, delivery 

times, quantities, quality
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- Resource identifier
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- …

- Machine capacities depending on shift model and 

number of workers

- Capacity profiles
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- …

Production data
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(valid in the long term)
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(changes during a process)

Application data
(coordinate activities)

- Order-, customer and reporting information

- Status data

Application data
(coordinate activities)
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- Status data

- …

Control data
(executes a task)
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- in specific cases: status data

Control data
(executes a task)

- Feedback on processes

- in specific cases: status data

- …
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Master data 

Master data represents the structure of the company and its products (Philippson and Schotten 

1999, p. 219). It is frequently accessed in the planning process and requires extensive mainte-

nance efforts. Master data is independent of the orders within a company and includes infor-

mation that is valid in the long-term, such as the cost center structure and the warehouse 

structure, the BOM, or the capability to produce certain products. Other typical types of master 

data are staff master data, customer master data, vendor master data, material master data, 

and routings. (Schuh and Schmidt 2014, p. 44) 

Structural Data 

Master data is independent of other data, meaning that there is no additional information 

needed to interpret it. Another category of data is structural data, which establishes relation-

ships between the characteristics of master data and can therefore not be interpreted inde-

pendently. (Eigner and Stelzer 2009, p. 80) 

Movement data 

Information that refers to persons, production orders, machines, and warehouses in the work 

process, like the processing of customer, production, and purchase orders, belongs to the 

category of movement data. It is input information to a business process, where it is trans-

formed into input information for a subsequent process. Movement data has two essential 

characteristics. In contrast to master data, it is only valid for a limited amount of time, like the 

warehouse stock (Wiendahl 2010, p. 309). The second characteristic is the management of 

different statuses. For example, production orders can be blocked, released, in process, and 

completed. Movement data is liked to specific master data information. For example, a pro-

duction order is linked to the BOM of the ordered part. (Schuh and Schmidt 2014, pp. 42–44) 

Inventory data and change data 

The terms inventory data and change data can be found in business informatics. They are 

related to a change in the state of data. Change data is process-oriented information that can 

cause structural changes to master data while inventory data refers to the quantity and value 

structure, such as the stock level of an item or the utilization of capacity. By processing move-

ment data, inventory information is frequently changed. (Schuh and Schmidt 2014, p. 45) 

Application and control data 

In production management, a distinction regarding the use of information is made between 

application data and control data. Application data is processed during the execution of a busi-

ness process to coordinate several activities. It includes order, customer, and reporting infor-

mation. In contrast, control data activates the execution of a task in a process and contains 

feedback on the progress of the process. Application data often contains status data but 
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depending on the design of a production system, status data can also represent control data, 

such as a planning board in production or a process instruction. (Schuh and Schmidt 2014, 

p. 45) 

Product data 

Properties and components of materials and items in a production system belong to the mate-

rial master data (Eigner and Stelzer 2009, p. 91). Materials are grouped into in-house produc-

tion parts, externally procured parts, and externally produced parts. They can further be differ-

entiated according to the degree of processing into finished products, assemblies, and individ-

ual parts. Other subdivisions are possible and may be specific to the company or production 

system. Material master data can be related to other data, like a BOM and routing information 

for in-house produced items, and standard suppliers for externally procured items. Additionally, 

every material has a unique identifying number. (Schuh and Schmidt 2014, p. 46) 

Attributes of different materials vary with the   teri  ’s type, like the normed description, di-

mensions, weight, numbers of associated CAD drawings, unit of measure for procurement, 

inventory, and production. Product data must still be available after many years, e.g., for spare 

parts production (Wiendahl 2010, p. 130). Most of the material properties are stored in ERP 

systems. Materials can be linked to associated alternative materials needed in case of supply 

bottlenecks or for different lot sizes. In the operations of the assigned routing, the technical 

and human resources are defined with which the material is produced. There can also be 

alternative BOMs and routings, which are used when a higher production lot size is required. 

(Schuh and Schmidt 2014, p. 46) 

Forming material groups allows sales planning at product group level. Adding additional attrib-

utes, like material and capacity profiles to material groups, enables gross requirements plan-

ning for items for which BOMs or routings are not entirely available. Another group of material 

properties are the status (e.g., released for production), version, and validity period of a mate-

rial. This information is used to determine the relevance of the data for each department in-

volved in order processing. (Schuh and Schmidt 2014, p. 46)  

Key information for manufacturing a product is maintained in the item master file. The item 

master file contains a description of the part, BOM information, lot-sizing information, and plan-

ning lead times. The lot-sizing information is a combination of the lot-sizing rule (LSR) and the 

planning lead time (PLT). The LSR is needed to define a trade-off between opposing interests 

in production, like maintaining a small inventory but trying to make use of the full production 

capacity. The PLT is used to calculate the necessary start time for a job. In MRP this means 

to subtract the lead time from the planned order receipts. (Hopp and Spearman 2000, p. 114) 

Production Data 

Production data includes information about the available resources within the factory, like de-

scriptions of machines, how the machines are grouped and what capacity they have depending 
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on the availability of workers and the shift model. Just as products, resources have a unique 

identifying number. Some information in production is stored linked to a specific process, for 

example the specific tools or devices needed for a machine setup. Some of this information 

can additionally be store as machine master data, if it is valid for a long term, like information 

on the machine number, the name of the machine, the cost center, and the potential capacity. 

Lead times and alternative routings also belong to the production master data (Eigner and 

Stelzer 2009, p. 91). The most important machines required to produce a specific item and its 

capacity requirements are summarized in capacity profiles, which are useful for gross resource 

planning. (Schuh and Schmidt 2014, p. 47) 

The production process for an item is organized by routings, which consist of several opera-

tions. Routing information includes the routing status, the validity period for the routing data, 

and alternative routings. An operation needs information on the processing time on the ma-

chine, required staff, setup time, time for transports, as well as the corresponding costs. (Schuh 

and Schmidt 2014, p. 47)  

The control of a production process is based on order-related operational data, which is col-

lected at a specific time and includes current quantities, capacity, and other order-related in-

formation. Order-related information changes its state during the production process, so it be-

longs to the category of movement data. During production planning, master data and move-

ment data is constantly accessed. (Schuh and Schmidt 2014, pp. 47–48) 

Another category of data in production planning is warehouse data. Warehouse master data 

includes the part number of the warehouse item, the storage location, and the minimum stock 

level. In contrast to warehouse master data, warehouse stock data is movement data because 

it changes every time an item is stored or removed. Warehouses maintain separate inventory 

accounts for all item and product master data, where expected and actual input to the ware-

house are recorded on the asset side and actual and expected outputs are recorded on the 

liability side. (Schuh and Schmidt 2014, pp. 47–48) 

Production data also includes relevant data related to the production workforce, like the quali-

fications of the staff, availability and schedules, wage cost rates, and the period of assignment 

to a machine or machine group. (Schuh and Schmidt 2014, p. 47) 

Customer and supplier data 

Data related to customers includes contact information, shipping, and billing addresses. Cus-

tomers can be grouped depending on the objective. To facilitate the handling of markets, 

groups can be product-based, customer-based, or based on the customers location within a 

similar region. There can also be material data connected to individual customers or customer 

groups for the specific material of a specific customers, like customer-specific material descrip-

tions, alternative materials, delivery times and delivery quantities, as well as customer-specific 

quality requirements and packaging regulations. Like the sales conditions negotiated with a 



2 Fundamentals and Scope 23 

23 

customer, supplier materials can be linked to purchasing conditions, which are specific to a 

supplier or material. Supplier data also includes contact information for external procurement 

and external production of material. (Schuh and Schmidt 2014, pp. 49–50) 

2.1.9 Identification and Classification Systems 

An identification system consists of numbers, letters, or special characters, which are orga-

nized in a defined way and describe and classify master and movement data in operational IT 

systems (Wiendahl 2010, p. 166). It is recommended that numbering systems are simple to 

use, as short as possible, and adaptable in future (Biedermann 2008, p. 134). 

As the previous chapter on data in production planning showed, there are various sources, 

types, and groups of data. Identification systems help to organize this data and are categorized 

into part-number systems, staff-number systems, and order-number systems. A part-number 

system is used to assign products, assemblies, auxiliary and operating materials, or machines 

to each other. Staff number systems identify employees, customers, suppliers, and represent-

atives. In an order-number system, order-specific data such as sales orders, production orders, 

or purchase orders are specified. Using identification systems facilitates fast and easy corre-

lation of similar assemblies or BOMs, simplifies managing product variants, and improves pro-

curement coordination. Identification systems also enable a more efficient use of operational 

IT systems because they simplify the processing of information. The identifier of an article or 

material number can be used for different data that refer to the same object, like technical 

drawings, BOMs, or routings. The classification number then serves to assign each object to 

a group. The number must be constant, systematic, and clear. (Schuh and Schmidt 2014, 

p. 51; Wiendahl 2010, p. 167) 

There are three main types of numbering systems: the parallel number system, the compound 

number system, and the classification system. Although many more can be found in literature. 

(Meyer and Sander 2008, p. 134) 

Parallel number system 

Parallel numbers are used, for example, when the same item has its own identification num-

bers in different numbering systems or in different areas of application of the same numbering 

system (Norm DIN 6763 1985, p. 6). The parallel number system consists of classifying and 

identifying parts. The latter are unique to the object while the classifying part is independent 

and describes the object. In most cases, the identifying part is formed by a simple, consecutive 

number. It is possible to assign several classifiers to an identifying part, which is a mayor ad-

vantage of this system. It is very flexible and can be changed, reduced, or extended if needed. 

The system also requires less alphanumeric characters than other systems which reduces the 

data entry effort and the susceptibility to errors. (Schuh and Schmidt 2014, p. 53) 
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Compound number system 

Features can be dependent on each other or independent of each other. In the case of de-

pendence, the numbering systems are called branched, hierarchical, or compound numbering 

systems (Wiendahl 2010, p. 169). Compound numbers also consist of a classifying part and 

an identifying part but there is a rigid connection of both parts within a single number, causing 

the system to be less flexible than the parallel number system because changes in the classi-

fication directly affect the identification. If the classification of a part is changed, its compound 

number must also adapt to this change. To uniquely identify a part, the complete number must 

be known. A compound number cannot be extended but an advantage of compound number 

systems is that numbers can be assigned decentrally. They are also more user friendly, since 

the classification can be identified directly from the number. (Schuh and Schmidt 2014, p. 53) 

Classification systems and feature bars 

Classification systems organize objects according to certain properties by which they can be 

grouped into classes (Norm DIN 6763 1985, p. 3). Each element within a class has a unique 

classification number. Classification systems simplify the access to information of already ex-

isting parts and assemblies which are frequently used. For example, the manufacturing costs 

of a new item can be estimated by comparing similar parts with a similar cost structure. Another 

tool for this comparison is a feature bar, which is recommended for companies with modern IT 

infrastructure. (Schuh and Schmidt 2014, p. 53) 

The structure of a classification system and the individual classification criteria highly depend 

on the specific application. Product requirements, function, form, or manufacturing-related re-

quirements can influence the criteria. For example, the manufacturing requirements of a work-

piece are derived from the desired final shape, accuracies, and the surface qualities. A classi-

fication system then makes it possible to characterize the individual workpieces according to 

their technological requirements and to derive classes of components that are similar in terms 

of manufacturing technology. A disadvantage of classification systems is their limited capability 

of managing complex part spectrums because either the classification system becomes ex-

tremely large, or the accuracy of the description decreases. (Schuh and Schmidt 2014, p. 53) 

Feature bars 

Feature bars summarize all characteristics and features relevant for a group of items in a struc-

tured form (Norm DIN 4000-1 2019). They are used to search for identical and similar items, 

and simplify the recording or calculation of already existing, similar articles in the processing 

of orders. This includes access to routing information of similar products, which can be modi-

fied and used in production management for the scheduling of orders without creating new 

routings from scratch. Feature bars simplify the handling of product variants by standardizing 

them. They allow simple and fast access to a wide range of planning information and 
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documents, and enable shortening setup times by forming setup families. (Schuh and Schmidt 

2014, pp. 55–56) 

2.1.10 Limits of Classical Data Handling in Remanufacturing 

The general data structure of a manufacturing company primarily revolves around the data 

pertaining to activities taking place within the company itself. However, a gap exists once the 

products are no longer under the company's control, as there is currently no established infra-

structure in place to monitor and track the subsequent journey of these products. This lack of 

oversight beyond the company's boundaries presents a challenge in terms of maintaining a 

comprehensive data flow throughout the entire lifecycle of the product. 

2.1.11 Internet of Production 

There are vast amounts of data in production, which are often hard to access, difficult to inter-

pret, and insufficiently interconnected. The Internet of Production (IoP) is designed to over-

come these boundaries. It is to a certain extent similar to the Internet of Things (IoT), which 

transfers the internet as a worldwide network to the physical world. Main advantages of the 

IoT are high reliability and accuracy in data collection, high data-storage capacities, fast trans-

mission of data, and the possibility to automate processes (Alarcón et al. 2016, p. 75). In pro-

duction, the ratio of data to parameters is low, making it difficult to transfer the IoT approach 

to physical production systems, where information assets with high volume, high velocity, and 

high variance are needed (Wulfsberg et al. 2019, p. 533). 

Within the IoP, the abilities of cyberphysical systems (CPS) are applied to the manufacturing 

industry. CPS have often been considered isolated from production, even though they can 

develop higher economic potential by overcoming existing product and industry boundaries 

(Trauth et al. 2021, p. 275). They are tightly interconnected resources, which contain embed-

ded computers that control physical actuators while receiving and processing information from 

sensors. The combination of these components creates an intelligent control loop with a certain 

degree of autonomy, which is adaptive, and can improve efficiency (Zanero 2017, p. 1).  

A major advantage of CPS is that they offer a wide range of opportunities for data monetization, 

especially when connecting different domains. For production planning, data from the produc-

tion of a material supplier can be used to adapt the parameterization of one's own production 

processes to any fluctuations in the supplier's processes. Data generated in an IoP extends 

experimental data and enables improving existing engineering models using data-driven meth-

ods. The IoP is meant to be the infrastructure for providing data in real time in a semantically 

adequate manner and adapted to the application context of the viewer (Wulfsberg et al. 2019, 

p. 535). A central concept for the realization of the IoP is the digital shadow. (Trauth et al. 2021, 

p. 277) 

In contrast to a digital twin, a digital shadow does not provide a fully comprehensive digital 

copy, it is not suited for a complete simulation but also does not require a high-resolution 
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database (Wulfsberg et al. 2019, p. 536). Instead, it combines the necessary subset of availa-

ble data, like field data, simulation data, or data from production engineering models. The in-

formation is then processed and displayed in a domain- and application-specific manner, facil-

itating a cross-domain use of IoP-data. The digital shadow depends on the perspective from 

which a physical system is viewed, because for each domain the relevant information can be 

different. Since the data is aggregated and abstracted in a context-specific manner for deci-

sion-making, digital shadows enable a reduction of the latency of decision-making situations 

in production. (Schuh et al. 2020a, p. 7) Digital shadows can be applied to production planning, 

for example to obtain an optimal production schedule (Becker et al. 2021). 

Production includes complex interactions that are often not fully understood. Existing models 

that represent physical relationships are typically subject to simplifications and specifically de-

signed for their use case. To obtain an improved understanding of the complex mechanisms 

involved in production, a large number of experiments are required. A major goal of the IoP is 

creating a World Wide Lab (WWL) where large amounts of field data are made available, re-

sulting in a close connection between manufacturing industries, and science and research. 

Every data-generating process in the IoP is understood as a potentially valuable experiment. 

The experiments complement the digital shadows of the production processes, as a digital 

shadow can be reused for subsequent tasks and continuously improves with use, as the un-

derlying production models are tested, validated, and extended with each successive experi-

ment (Wulfsberg et al. 2019, p. 536). Data-driven methods such as machine learning can de-

rive patterns and models from large amounts of data without a priori knowledge of the under-

lying physical relationships. Therefore, they assume an important role in the IoP to transform 

data into decision bases and to further develop and complement existing knowledge-based 

models. Conversely, the integration of existing expert knowledge and contextual information 

into data-driven modeling is an important challenge to achieve higher robustness. (Wulfsberg 

et al. 2019, p. 353; Trauth et al. 2021, p. 278) 

Production is currently characterized by various domain silos, each of which uses models and 

data tailored to the domain. This results in a high degree of heterogeneity, which makes it 

difficult to use data and knowledge across domains, so that work is often carried out with out-

dated or incorrect information from other areas. Each domain within the product development, 

production and use phase of the product should therefore contain all the relevant information 

for the respective domains (Wulfsberg et al. 2019, p. 534). IoT models use vast amounts of 

data for multiple parameters and have a high resolution, which is usually neither necessary 

nor feasible in the context of cross-domain model usability in production. IoP aims to enable 

an overall exchange of data and information between product development, production, and 

the use phase, and to enhance productivity and agility in production, which goes beyond the 

existing organizational boundaries (Wulfsberg et al. 2019, p. 534). Key challenges of IoP lie 

within the area of data-driven modeling as well as the needed infrastructure. (Trauth et al. 

2021, pp. 275–276)  
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Creating, maintaining, applying, and continuously developing digital shadows requires a cross-

domain-functional infrastructure that includes data, models, and decision-makers from all 

phases of the product's lifecycle. An exemplary depiction of this infrastructure and its levels 

can be seen in Figure 2.9.  

 

Figure 2.9: Infrastructure of the IoP (Schuh et al. 2020b) 

The base level contains vast amounts of raw data from the software-systems used in produc-

tion, e.g., product data in a PLM system or process data in an ERP system. The raw data can 

often only be accessed and understood by specialists. Interfaces and data queries must be 

tailored to the respective systems. Accordingly, the implementation of interfaces which enable 

recognizing production-related correlations between different domains is costly and time-con-

suming. The top level is formed by experts who contribute to an intuitive and interactive deci-

sion-making process, which is supported by virtual agents. Virtual agents control event-based 

decisions, autonomous actions, and adaptive processes. They can learn and make decisions 

autonomously if necessary. This requires an intelligent data layer between the intelligent expert 

layer and the raw data layer. The layer uses analytical methods and digital shadows that are 

horizontally and vertically integrated and help to refine the raw data. Comprehensive data mod-

els with data storage and caching functions are used to integrate the data. The data is pro-

cessed context-specifically with minimal latency and made available to the Smart Expert Layer. 

Methods such as correlation analysis and cluster algorithms capture patterns in data, models, 

and processes. A Middleware is required as a semantic interface to access the raw data. (Wul-

fsberg et al. 2019, p. 537) 

The biggest challenges of the IoP are controlling and storing large amounts of data from dis-

tributed sources and ensuring real-time collaboration through model mappings between pro-

prietary application systems, while complying with data privacy regulations within and across 

the boundaries of a single organization (Pennekamp et al. 2019, pp. 36–37; Wulfsberg et al. 

2019, p. 537). Increasing computing and storage resources will enable new use cases in 
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production in the future, based on complex operations that are not supported by today's net-

works, models, and available resources. Therefore, an infrastructure for the IoP must be adapt-

able to new use cases, making the realization of a global infrastructure a challenging, interdis-

ciplinary task (Pennekamp et al. 2019, p. 37). 

The IoP can support decision-making in production management in an increasingly uncertain 

and complex competitive environment, which is characterized by shorter product life cycles, 

individualization, and disruptive innovations. The volatile environment requires efficient imple-

mentation of changes. The IoP can help to improve the quality of the decisions made and 

increase the speed of decision-making and implementation at all levels of production manage-

ment (Wulfsberg et al. 2019, p. 538). It can lower product development costs while augmenting 

profit margins and generally improve product quality and safety (Pennekamp et al. 2019, p. 36). 

2.1.12 Digital Product Passport 

The Digital Product Passport (DPP) is a set of data that summarizes specific information about 

a product. This can include components, materials, and chemical substances, information on 

repairability, spare parts or guidelines for proper disposal. The data originates from all phases 

of the product life cycle (development-, production-, and user-cycle) and can be used for vari-

ous purposes in all these phases. Structuring environmentally relevant data in a standardized, 

comparable format enables all actors in the value and supply chain to work together toward a 

circular economy. At the same time, the digital product passport is an important basis for reli-

able consumer information and sustainable consumption decisions. (BMUV 2022b)  

The DPP is mentioned in the European Green Deal (European Commission 2019, p. 8) and 

the Circular economy Action Plan (European Commission 2020, p. 17) of the EU as an essen-

tial instrument for a climate-friendly and resource-efficient economy. It is also a key enabler of 

circular, sustainable supply chains. (Jansen et al. 2022, p. 5) 

The DPP is more important for products with complex compositions than for products with few 

components. Initial approaches already exist, although they have often not yet been institu-

tionalized through mandatory standard data sets or central databases. Accordingly, there are 

still no concrete and comprehensive concepts at the political level as to how such a compre-

hensive product passport should be designed and implemented in the future. (Götz et al. 2021, 

p. 7) A depiction of the concept can be seen in Figure 2.10. 
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Figure 2.10: Digital Product Passport (BMUV 2022a) 

There are legal or voluntary requirements that regulate information flows in production, use, 

repair, and disposal. But the respective goals and characteristics are depending on various 

factors. Regulations vary if the requirements are mandatory or voluntarily adapted. Respective 

information differs by type (database or labeling on the product), by the product group (elec-

tronics, chemicals), accessibility (public, non-public), information density (selected aspects, life 

cycle analysis) and target group (consumers, politics, etc.). There is no coordinated data col-

lection or management system for the consolidation of product-relevant information flows from 

the different existing systems and sources, which is a challenge for manufacturers and suppli-

ers, who have to comply with numerous information obligations with a wide range of data re-

quirements. (Götz et al. 2021, p. 11) 

The majority of current DPPs can be found in the private sector in individual companies or 

company networks (Jansen et al. 2022, pp. 11–12). DPPs have different characteristics de-

pending on their application. A material pass for example, comprises information about a ma-

terial so that it can be reused while a cycle passport or cradle-to-cradle passport is more prom-

inent for complex products like passenger cars. Here, manufacturers or the responsible actors 

provide information on raw materials, dismantling plans, and recycling plans. These aspects 

should be included in product development. Also, the data has to be available as up-to-date 

as possible in every phase of the product life cycle. This means that data must be collected 

not only at the end of the life cycle to show which materials can be returned to the material 

cycle in which way, but also right from the start to facilitate the design or maintenance in a 

targeted manner. (Götz et al. 2021, pp. 19–21) 
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2.2 Fundamentals of Remanufacturing 

2.2.1 History and Definitions of Sustainability 

A popular definition of sustainability originates from the 1987 Brundtland Report of the United 

Nations (UN), which defines sustainable development as lasting development that meets the 

needs of the present without risking that future generations will not be able to meet their own 

needs (Brundtland 1987, p. 37). The report had significant impact on future efforts such as the 

Environment and Development Conference held by the UN in 1992 in Rio de Janeiro which 

led to the so-called Agenda 21 (Hajian and Jangchi Kashani 2021, p. 1). Nonetheless, the 

Brundtland report has also been subject to critique. It is a good documentation of many envi-

ronmental problems but does not identify their fundamental causes and suggests solutions 

which do not have the desired effect (Trainer). Also, a lack of serious commitment could be 

seen. For example, the Agenda 21 provides a framework for sustainable development, but no 

nation is lawfully bound to follow up on it (Hajian and Jangchi Kashani 2021, p. 3). The chair 

of the German Sustainable Development Council evaluates the Brundtland report twenty years 

later (in 2007), stating that many of the defined goals were not accomplished because of a lack 

of systematic sustainability management and a poor linkage of the objectives with the private 

sector (Hauff 2007, pp. 8–9).  

For the EU this changes with the Circular Economy Action Plan in 2020, where the European 

Commission commits to working towards several objectives to anchor sustainability in the Eu-

ropean economy. For the manufacturing industry, important aspects to consider in future are 

the right to repair, requirements for batterie manufacturing, and closing material loops. The 

 ction p  n st tes th t   n f ct rin  co p nies’   teri   costs   ke up an average of 40 % 

of their cost and that closed material loops can increase profitability while protecting from ma-

terial price fluctuations. (European Commission 2020) 

Other incentives for sustainable development have been set by the financial sector by evalu-

ating companies based on environmental, social, and governance (ESG) criteria (Syed 2017, 

p. 2). These developments require transferring the paradigm of sustainability to the manufac-

turing industry, where sustainability can be subdivided into the three pillars of economic, eco-

logic, and social sustainability. Examples for goals for economic sustainability are minimizing 

the operational expenditure of resources and the operational use of energy. That includes the 

use of renewable raw materials and energy sources, increasing the efficiency of raw material 

and energy use as well as productivity per unit area, to avoid the use of hazardous materials, 

and to develop environmentally friendly products and manufacturing processes. (Schuh and 

Schmidt 2014, pp. 17–18) 

Sustainability requires holistic thinking which, if truly successful would enable decoupling eco-

nomic growth from the exploitation of natural resources and environmental damage (Murray et 

al. 2017). In this thesis, the sustainability-definition from the Brundtland report will be used, 

including economic, ecologic, and social sustainability. 
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2.2.2 Circular Economy 

Circular Economy (CE) is an approach to target the previously mentioned challenges and 

goals. It emerged as the adversary of past manufacturing principles, which are also known 

under the name linear economy and characterized by an extraction-production-dispose (Ar-

ruda et al. 2021, p. 1), or a take-make-dispose (Ellen MacArthur Foundation 2017, p. 11) pat-

tern. The term linear economy arose simultaneously to CE because a linguistic antonym was 

needed when discussing circularity (Murray et al. 2017). The difference is illustrated in Figure 

2.11. Linear economy ultimately results in the disposal of products and materials. This waste 

is an environmental burden, resulting in pollution, climate change, and biodiversity loss 

(Kampker et al. 2016, p. 1).  

On the other hand, decisions towards circularity in one sector can have a damaging effect on 

another sector. For example, many green technologies rely on rare earth materials, the extrac-

tion of which has a severe environmental impact. Additionally, a product designed for having 

a long lifespan can ultimately bare a higher ecologic burden than a product that can easily be 

disassembled or degraded after use. (Murray et al. 2017) 

 

Figure 2.11: Comparison of linear and circular economy (Sutherland et al. 2020, p. 8) 

There is an ongoing discussion on the definition of CE. The Ellen Macarthur Foundation de-

fines it  s “an industrial system that is restorative or regenerative by intention and design” 

(Ellen MacArthur Foundation 2017, p. 7). It is meant to rep  ce the ‘end-of- ife’ thinking con-

cepts, allow restoration, and include a shift to using renewable energy, eliminating toxic chem-

icals, which cannot be reused, and to eliminate waste. This is achieved by advancing in the 

design of materials, products, systems, and business models. 
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CE does not necessarily cover all areas of sustainability. CE, as defined by the Ellen Macarthur 

Foundation, does not mention the social sustainability component, which is one of the prob-

lems that the term CE faces. It is said to focus on environmental and ecological challenges 

(Arruda et al. 2021, p. 1), and to show definitional ambiguities and conceptual uncertainties 

(Schöggl et al. 2020, p. 1). One reason the concept of a CE shows several weaknesses is that 

is driven by actuators outside the scientific community (Arruda et al. 2021, p. 1).  

Another proposed definition of  E, which inc  des the soci   di ension, is: “The Circular Econ-

omy is an economic model wherein planning, resourcing, procurement, production, and repro-

cessing are designed and managed, as both process and output, to maximize ecosystem func-

tioning and human well-being.“ (Murray et al. 2017) This definition for CE will be used in this 

thesis. It is based on a review of 114 circular economy definitions, where CE is often described 

as a combination of reduce, reuse, and recycle activities. The activities which help establishing 

circularity are known as 9R-Framework. They are shown in Figure 2.12. 

 

Figure 2.12: The 9R-Framework (Kirchherr et al. 2017, p. 224) 

2.2.3 Definition of Remanufacturing 

Remanufacturing is a central element of a CE. It enables the recovery of products or compo-

nents for further use (Kampker et al. 2016, p. 1) in closed-loop supply chains, which consist of 

a forward and a reversed supply chain. The forward chain refers to how products reach the 

customer, the reverse chain describes their way back to the supplier. (Östlin 2008, p. 4) 
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The Remanufacturing Industries Council defines remanufacturing  s   “comprehensive and 

rigorous industrial process by which a previously sold, leased, used, worn, or non-functional 

product or part is returned to “like-new” or “better-than-new” condition, from both a quality and 

performance perspective, through a controlled, reproducible, and sustainable process” (Re-

manufacturing Industries Council 2022). The used products, which are returned to the manu-

facturer are also called cores (Golinska-Dawson and Nowak 2015, p. 1; Parker et al. 2015, 

p. 0).  

Older definitions of remanufacturing include the term core but are less precise on the condition 

of the returning product. They also do not mention the sustainability component, meaning that 

modern remanufacturing implicitly requires social sustainability, while older definitions focus 

on ecological or economic benefits. (Ijomah et al. 2004, p. 6; Sundin 2004, p. 2; Östlin 2008, 

p. 2) 

The definition distinguishes remanufacturing from other R-strategies. The reuse of a product 

does not require any processing activities (Östlin 2008, p. 33). For recycling, mixed streams of 

post-consumption or post-production waste are processed to recover raw materials at the end 

of the prod ct’s  ife c c e (Reike et al. 2018, pp. 256–257). In a repair process, defects are 

repaired to restore the prod ct’s functionality, which does not result in a “ ike-new” condition 

that includes warranty for the entire product and additional product life. Meanwhile refurbishing 

includes activities that make a product appear new but does not include activities that restore 

the original functionality corresponding to a new condition. (Kampker et al. 2016, p. 3) 

2.2.4 Core Acquisition Management 

The task of core acquisition management (CAM) is to ensure the supply of cores. It aims to 

minimize the uncertainties of timing, volume, and quality in core acquisition while maintaining 

low costs. An important activity in CAM is acquisition control, which helps the manufacturer to 

influence the return of cores by augmenting or lowering incentives for the customer. This is 

combined with the forecasting of returns and implementing return strategies. CAM also classi-

fies cores according to their quality, evaluates their price, and creates channels for product 

returns. There are several models of customer relationships which enable gathering used prod-

ucts from customers. Each has a different effect on the remanufacturing system. (Östlin 2008, 

p. 1; Wei et al. 2015, pp. 5–6; Östlin 2008, pp. 39–44) 

Cores can emerge from a market stream or a waste stream. The market stream includes used 

products, which are still useful, but are not used anymore by their owners. The waste stream 

refers to products, which can no longer be used, like a car damaged during an accident. (An-

drew-Munot and Ibrahim 2013, p. 489) 

The sources for cores can further be categorized into end-of-life returns, end-of-use returns, 

commercial returns and secondary channel goods, and reusable components. End-of-life re-

turns are removed from the market to prevent environmental or economic damage. Examples 

of such products, for which disposal is regulated by law, are vehicles, packaging materials, 
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batteries, tires, and construction waste. End-of-use returns are given back by the user after a 

certain period of time, e.g., because leasing contracts end, or because products are replaced. 

These products are still in good condition, making them well suited for remanufacturing or 

resale. Commercial returns are products that are returned shortly after sale. The phenomenon 

is particularly prevalent in e-commerce, where up to 25 % of purchase volumes are returned. 

Reusable items include components that are related to the consumption, use, or distribution 

of the actual product without being part of the actual product. (Krikke et al. 2004, p. 26) 

Leasing and renting are part of the end-of-use and reusable components, and a main source 

for cores. They are more predictable than other types of returns because the time of return is 

easier to estimate. Another model to ensure the availability of cores is to request the customer 

to sell the core to get a new product. One example is an exchange cycle in the automotive 

industry, where a remanufactured engine is only sold if a used engine is returned (Seitz and 

Peattie 2004b, p. 81). There are also voluntary systems where the user may freely return the 

cores to a remanufacturer or sell it to a core broker. And there can be financial incentives like 

product-discounts if the user commits to returning the core after use. This way a company can 

avoid losing cores to competitors (Östlin 2008, p. 41). 

Return forecasting 

Cores are not immediately available when a product is released on the market (Guide 2000). 

They appear when the demand for remanufactured products has reached its maximum, i.e., 

there is a period of time when demand can no longer be met. Also, the total amount of cores 

which are available over time exceeds the demand for remanufactured products (Östlin 2008, 

p. 72). Functional updates that bring the product up to the current state of the art can create 

stronger demand at the end of the product life cycle (Kampker et al. 2016, p. 5). 

Past sales data can be used to make predictions about when products are likely to be returned. 

Figure 2.13 shows how the failure of a product quantity 𝐷(𝜏) ∗ Δ𝜏 after the average lifetime 𝜇 

can be approximated with a normal distribution S(τ, t). If only components are considered in-

stead of whole products, the disposal distribution can be represented as a function of the prod-

uct quantity in the market and the failure rate of the individual components. (Umeda et al. 2005, 

pp. 7–9) 
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Figure 2.13: Model linking production and disposal distributions (Umeda et al. 2005, p. 9) 

Predicting the availability of cores is necessary to level the supply and demand of remanufac-

tured products. It enables reducing the stock of cores, disposal of surplus cores, and avoiding 

supply bottlenecks. It also reduces the overall uncertainties in the system and lowers the cost 

of remanufacturing. Balancing core-demand and -supply in a remanufacturing system affects 

resource and materials planning, lot sizing, production decisions, and scheduling. (Östlin 2008, 

pp. 39–44) 

Product Cannibalization 

Product cannibalization causes a decline in sales of a product that results from the introduction 

of another product from the same company, brand, or product line (Wildemann 2008, p. 71). 

In remanufacturing, customers may decide to buy an older, remanufactured version of the 

product at a lower price (Okuda et al. 2018, p. 114).  

Cannibalization depends on the product. It is less likely for consumer products because there 

is little overlap in bidders between the new and remanufactured products. This overlap is big-

ger for commercial products and therefore the risk of direct cannibalization is higher. (Guide 

Jr. and Li 2010, p. 1) 

2.2.5 Remanufacturing Process 

The remanufacturing process is not standardized, i.e., the activities and their sequence within 

the process depend on the application and the requirements for the specific components. Re-

manufacturing includes activities such as inspection, disassembly, storage, reassembly, clean-

ing, and testing, which in the case of household appliances can be carried out in that precise 

order (Sundin 2004). In other cases, the order might be different or certain steps can be ignored 

(Östlin 2008, p. 4); Andrew-Munot and Ibrahim 2013, p. 488). Also, the location of the activities 
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The organization of the processes is influenced by decisions that must be made during the 

process. For example, if a core has defective components, a decision must be made whether 

to replace or repair them (Östlin 2008, pp. 5–6). Figure 2.14 shows an exploratory remanufac-

turing process. It can be described in more detail and include cleaning, sorting, and inspection 

activities or the replacement of certain parts in underlying process steps (Kampker et al. 2016, 

p. 3). 

 

Figure 2.14: Remanufacturing process (Östlin 2008, p. 7) 

Pre-Disassembly 

The cores are first introduced to a quality control to assess their ability to be remanufactured 

(Östlin 2008, p. 44). This can be done, for example, by means of a visual inspection. Inspection 

times for similar types of cores from the market stream are also similar. However, high varia-

tions in quality conditions can occur within the waste stream, and between the waste stream 

and the market stream, which can result in varying inspection times. Cores from the waste 

stream tend to have longer inspection times and require special inspection tools. The percent-

age of cores that can be classified as suited for remanufacturing can vary depending on the 

batch due to the uncertain quality condition of the cores. The cores suited for remanufacturing 

can be classified into several quality groups, and the best quality group should be given the 

highest priority for reprocessing. Furthermore, the variability of quality groups in the waste 

stream is expected to be higher than in the market stream. (Andrew-Munot and Ibrahim 2013, 

pp. 489–490) 

The cores must also be cleaned because grease, oil, dirt, paint, and rust can complicate the 

disassembly process (Östlin 2008, p. 44). The cleaning operation can be the most time-con-

suming (Sundin 2006, p. 431) and there can be products which are impossible to inspect with-

out cleaning them (Sundin 2004, p. 27). Meanwhile LIU et al. argue that the availability, quality, 

reprocessing costs, and remaining service life of the remanufactured product depend directly 

on the used cleaning methods and the corresponding cleaning quality (Liu et al. 2013). They 

further state that cleaning can also introduce impurities into the remanufacturing process, 

which limits the technical application. 
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Disassembly 

After the inspection process, the cores that have not been classified as scrap are sent to the 

disassembly process. Disassembly involves breaking down cores into their subassemblies and 

their individual components (Östlin 2008, p. 44). General-purpose tools such as drills are often 

used here and although robotic arms may also be used for the disassembly of complex cores, 

automation is rarely found in disassembly processes (Östlin 2008, p. 44). In contrast to inspec-

tion times, disassembly times are largely independent of the quality or origin of the cores, but 

they do depend on their complexity. Cores with a complex product structure require more dis-

assembly time than those with a simple product structure. In addition, disassembly times can 

be reduced by more skilled labor or automated systems. (Andrew-Munot and Ibrahim 2013, 

p. 490) 

The disassembly can be accompanied by further inspection and sorting of subcomponents, 

which is why a loop was added to Figure 2.14. The processes for subcomponents can be 

carried out in parallel or sequentially, depending on the product structure. Parallelism is possi-

ble for large-volume cores with a simple product structure, as well as for cores with a small 

number of components and a complex product structure. Large-volume cores with complex 

product structure are usually first disassembled, then inspected. (Andrew-Munot and Ibrahim 

2013, p. 491) 

Disassembly yields of components from high quality cores are higher than those from the low-

est quality group. In addition, the disassembly yield for cores from the market stream is higher 

than that of cores originating from the waste stream. Besides the product structure, the product 

design also influences the disassembly yield, as products that are not designed for disassem-

bly may be damaged in the disassembly process. (Andrew-Munot and Ibrahim 2013, pp. 491–

492)  

The yield of reusable components of a core is measured with the material recovery rate (MRR) 

as can be seen in equation 4. (Guide 2000, p. 473) 

𝑀𝑅𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑢𝑠𝑎𝑏𝑙𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
 (4) 

 

Reprocessing 

Reprocessing aims to repair or to improve the quality of the core (Östlin 2008, p. 44). It includes 

cleaning, surface treatment, and repair activities. The aim is to restore the components to their 

original condition and functionality. The number of processes and the process duration depend 

mainly on the quality group of the components. High quality components may require only 

cleaning and surface treatment, while low quality components may require additional repair. 

The more complex the product design, the more repair steps such as cutting, welding, and 

deburring is necessary. Therefore, lead times vary widely, and planning of the corresponding 
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process steps, the necessary machines, and materials is also required (Andrew-Munot and 

Ibrahim 2013, p. 492). 

Reassembly 

In reassembly there can be a cannibalization of parts, meaning that components obtained from 

one item are used to repair or rebuild another unit of the same product (Rogers and Tibben-

Lembke 1999, p. 256). Reassembly can also be done with reused, reprocessed, and new com-

ponents (Östlin 2008, p. 45). If the remanufactured parts show a fluctuating, predictable de-

mand, MRP is a well-suited method to plan the necessary materials and components for reas-

sembly because it uses fixed planning horizons which buffer fluctuations (Östlin 2008, p. 51). 

Components that cannot be reused are replaced. In the case of original equipment manufac-

turers (OEMs), spare parts can be manufactured. Otherwise, they are procured externally. 

Replacement components are especially important in the remanufacture-to-order business 

model, where the customer sends cores to the manufacturer for remanufacturing. The same 

uncertainties in quality apply to subcomponents as to the original cores. In reassembly, mainly 

universal tools are used to assemble the components into remanufactured products. Complex 

cores may require the use of robotic arms to assemble components. (Andrew-Munot and Ibra-

him 2013, p. 492) 

2.2.6 Effects of Remanufacturing on PPP and Refinement of Scope 

The design of a product influences its ability to be remanufactured (Sundin 2004, p. III). As 

design is not part of PPP, it is excluded from the scope. 

The inherent characteristics of a production system affect the remanufacturing process. These 

unique characteristics are a challenge for production planning and control and must therefore 

be considered accordingly. (Andrew-Munot and Ibrahim 2013, p. 488) 

Sales planning and demand forecasting are the first step in PPP. They are often performed at 

group level meaning that for remanufacturing one of the main challenges is to balance the 

demand for remanufactured products with the supply of cores, which are not always synchro-

nized. Their ratio depends on the rate of technological innovations and the expected life of a 

product. (Östlin 2008, pp. 106–107) 

In primary demand planning, the demand for products gets broken down into components. The 

resulting uncertainty at component level poses a challenge for MRP, because the actual need 

for components is determined in the process but planned one to six months ahead. For exam-

ple, disassembly generates an uncertain number of components, cannibalizing components 

requires having them in stock and if new components are needed, lead and delivery times 

must be considered for procurement. Manufacturers therefore often plan according to demand 

and supply of cores and then break the demand down to the components. A graphic 
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interpretation of the decision process at component level and the consequences was devel-

oped by ÖSTLIN and can be seen in Figure 2.15. (Östlin 2008, pp. 106–107) 

 

Figure 2.15: Material planning for components in remanufacturing (Östlin 2008, p. 108) 

The decisions made in the disassembly process are part of the short-term control, which was 

excluded from the scope (see page 11). Nonetheless, confirmed needs for components that 

are always replaced and demand forecasts for components which cannot be procured or made 

within the order lead-time are an important input for primary demand planning and gross re-

source planning in PPP (see: decoupling point, described by SCHUH for PPP (Schuh and 

Schmidt 2014, p. 64)).  

When products reach the end of their previous life cycle, it is difficult to report the status of the 

products to the remanufacturer (Wang et al. 2014, p. 1). The inspection of cores gives infor-

mation that can be used for material planning, but this information is often not collected or used 

because there is no efficient way to gather and analyze it. Also, the administrative costs can 

be greater than the potential benefit of having the information. Especially components with low 

sourcing lead-times and low minimal order quantities would benefit from such information be-

cause instead of having an inventory they could be ordered just-in-time. (Östlin 2008, p. 113) 

There are further challenges which are inherent to a remanufacturing system and differentiate 

it from a normal manufacturing system which must also be resolved in production planning but 

are no direct part of PPP or can be placed at interfaces of PPP where specific activities overlap. 

The implementation of a reverse supply chain and especially CAM is a challenge in remanu-

facturing, but the overlapping activities of CAM and PPP are the forecasts for core supply and 

demand considering MRRs. Also, the optimal mix of remanufactured and new products put 

into production must be determined. The general need for an efficient disassembly process 

with multiple key remanufacturing stages which are interdepended and hard to automize are 

also crucial for production planning at process level but not included in PPP because existing 

facilities and routings are an input to PPP. Regarding this, the important challenges lie within 

the multiple types of subcomponents and the quality-dependent varying lead times as well as 

finding transparent methods for tracking materials and their requirements while dealing with 

small lot sizes. (Andrew-Munot and Ibrahim 2013, p. 492; Guide 2000; Östlin 2008, pp. 6–9) 

Lean principles can be difficult to implement in remanufacturing because they require stand-

ardized, robust, and predictable processes when manufacturing new products. In 
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remanufacturing systems, predictable processes can only be realized to a certain extent be-

cause of the fluctuations in core quality. (Östlin 2008, p. 1) 

In summary, uncertain core demand, return quantity, quality, and timing result in variable in-

spection yields and variable disassembly yields, reprocessing effort, and reprocessing times 

which leads to fluctuations in capacity requirements. While there are many references for the 

challenges inherent to remanufacturing, there is no generally accepted framework on how to 

resolve them from a PPP perspective, which describes which information to gather, and how 

to process them. 

2.2.7 Remanufacturing Market 

A report from the US International Trade Commission states, that from 2009 to 2011 the US 

was the largest remanufacturer in the world. In this period, the value of US remanufactured 

production reached $43.0 billion, growing by 15 % and supporting 180,000 full-time jobs. The 

most contributing industries were aerospace, consumer products, electrical apparatus, heavy-

duty and off-road equipment, information technology products, locomotives, machinery, medi-

cal devices, motor vehicle parts, office furniture, restaurant equipment, and retreaded tires. In 

export, U.S. remanufacturing generated $11.7 billion in 2011. The report also states that in 

2011 the US and Europe assumed the main share in remanufacturing activities and associated 

trade. The foreign markets face challenges in regulations, import bans, and lack a common 

definition of remanufactured goods, which limit trading remanufactured goods and cores. 

(Treat et al. 2020) 

In the past, the remanufacturing sector has extended from smaller companies to OEMs such 

as Caterpillar, Kodak, Xerox, and Delphi (Subramoniam et al. 2013). Caterpillar, a leading 

global manufacturer of earth-moving equipment, offers a wide variety of remanufactured prod-

ucts and aims to increase sales and revenues from remanufacturing offerings by 25 % from 

2018 to 2030 (Caterpillar Inc. 2021, p. 7). For OEMs, remanufactured versions of their products 

can have higher profit margins than new products (Guide Jr. and Li 2010, p. 4). 

In 2015, the remanufacturing industry in Europe had an annual turnover of 30 billion euros 

while supporting 190,000 employees. Germany is the European pioneer and leader in reman-

ufacturing. With sales of 2.4 billion euros, Germany accounts for 31 % of European remanu-

facturing sales. By 2030, growth to 90 billion euros and an additional 75,000 jobs are expected 

in the European remanufacturing industry. 80 % of remanufacturing activities take place in the 

aerospace industry (42 %), in the supply of automotive parts (25 %), and in heavy-duty and 

off-road applications (14 %). Up to 80 % of the material used can be reused in remanufacturing 

products. As a result, 2.260.000 t of material and 8,255,000 t of CO2 are saved per year in 

Europe. (Parker et al. 2015, pp. 42–49) 

Remanufacturing is often not operated as a core business, but as a service in aftersales. The 

share of sales accounted for by remanufacturing cannot always be clearly determined, as data 

here are available in an aggregated form (Östlin 2008, p. 5) but remanufacturing is playing a 
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crucial role in the currently occurring paradigm shift from selling a product to providing products 

and services (Ijomah 2009, p. 91). 

2.3 Fundamentals in the Automotive Industry 

2.3.1 Production Program Planning in the Automotive Industry 

In the automotive industry, PPP is a part of tactical production management, which deals with 

the medium-term implementation of strategic goals over a planning horizon of up to five years 

and determines production capacity and production technology. Tactical production manage-

ment aims to adapt the production structure and work organization to changing processes and 

products, taking into account legal requirements and collective agreements. (Herlyn 2012, 

p. 17) 

Program planning deals with production capacities, while program control is responsible for 

drawing up specific production programs in the factories, which are the link to operational pro-

duction management. In the automotive industry, program planning and control is also a cross-

sectional discipline that assumes an integrative function for the brands, sites, and divisions of 

a customer-driven manufacturer. It includes the company's own production, as well as suppli-

ers, their sub-suppliers, and the vehicle handover to the customer. (Herlyn 2012, pp. 17–18) 

The automotive industry differentiates between PPP and production program control (PPC). 

They are multi-stage, cyclical and recursive planning processes that are based on the sales 

plans and gradually decrease the planning horizon, so the planning terms become more spe-

cific, resulting in a steady increase in planning accuracy (Herlyn 2012, p. 121). PPP and PPC 

must be viewed holistically as an interaction between the internal production of vehicles and 

aggregates and external suppliers (Kropik 2009, p. 23). 

Production plans and production programs are clearly distinguished. They differ in time frame 

and aggregation. Production plans are created for aggregated products (Hopp and Spearman 

2000, p. 237), while production programs contain the individual products (Günther and Tem-

pelmeier 2003, pp. 141–142). The tasks of PPP and PPC are the preparation of production 

plans for the vehicles and aggregates, the preparation of production programs for manufactur-

ing all fully specified vehicles and aggregates, and the commissioning of the assembly of all 

vehicles and aggregates with optimal use of resources at the highest possible utilization of the 

available capacities. The aim of PPP is to assure the manufacturing of all vehicles and asso-

ciated assemblies as ordered by the customer and on schedule (Herlyn 2012, p. 18). An ex-

ample for the planning horizons depending on the aggregational level is shown for VW in Fig-

ure 2.16.  
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Figure 2.16: Program planning stages using the example of VW (Klug 2010, p. 372) 

Production plans and programs are created for the entire international production network of 

an automotive manufacturer, including the production companies and external suppliers that 

manufacture vehicles or assemblies on behalf of the OEM. The production programs contain 

the binding basis for the actual production of goods and services at operational level. (Herlyn 

2012, p. 19) 

The production programs refer only to the vehicles and assemblies (primary programs), while 

the manufacturing programs refer to the required components (assemblies, parts, production 

material), which are also called secondary programs. Furthermore, there are tertiary shipping 

programs, which are created for both the products and the components. The secondary re-

quirements for the components are derived from the primary and secondary programs with the 

aid of the BOMs. (Herlyn 2012, pp. 19–20) 

Automotive manufacturing is a build-to-order industry, so PPP starts with the customer and his 

order (Herlyn 2012, p. 57). Vehicle ordering takes place at product level, which is why only this 

level is relevant for PPP of vehicles and assemblies. The structural, parts-related, and material-

related variants and their relationships play no role in vehicle ordering and program planning 

(Herlyn 2012, p. 79). The vehicle order begins with the specification of the series vehicle with 

various configuration options or the selection of a special model. Series or special models can 

be converted into functional vehicles when choosing special equipment. The vehicle types can 

be further individualized according to the customer's wishes until a unique vehicle is created. 

Special, functional, and individual equipment are technical modifications to the series vehicle 

and have a major impact on the production processes, as they cannot be fully integrated into 

the series process and are therefore given special consideration in PPP (Herlyn 2012, p. 66). 

The PPP and PPC process and their dependencies are shown in Figure 2.17. PPP begins in 

sales with market-related sales plans, which are developed cooperatively by the importers and 

the OEM's sales department. Sales plans are created for countries, for groups of countries or 

for regions, since legislation and customer requirements can vary greatly (Grebe et al. 2021, 

p. 21; Ohl 2000). Market-specific sales plans form the basis for market-specific distribution 
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plans, which depend on the competitive situation, brand positioning, and customer segmenta-

tion in the respective market. In addition, the broadness and diversity of the product range as 

well as the introduction or discontinuation of models and ongoing model adjustments are con-

sidered. The distribution plan is an agreement between sales and production for the quantity 

of vehicles that can be assured to the importer by the manufacturer. (Herlyn 2012, p. 122) 

Vehicle production plans are derived from market-related distribution plans, i.e., the market-

related sales figures are distributed to the production sites across brands, taking into account 

certain restrictions. This way, changes in sales between brands and markets can be balanced 

out in production and a flexible response can be made to changes in customer demands. Ve-

hicles of several brands are bundled in one plant to save production, procurement, and logis-

tics costs. The production plans of all brands are therefore coordinated by a companywide 

program planning committee. Here, the distinction between vehicle factories and aggregate 

factories becomes important, which also have to be coordinated with each other (Zernechel 

2007, p. 368). The demand for aggregates for all vehicle plants is distributed among the ag-

gregate factories to create their production plans. An aggregate factory can supply several 

vehicle plants and aggregate variants can be built in parallel in several factories. (Herlyn 2012, 

p. 123) 

 

Figure 2.17: PPP and PPC in automotive manufacturing (Herlyn 2012, p. 123) 

PPC starts with the vehicle-orders, which form the basis for the distribution programs and, 

later, for the vehicle production programs. Dealers and importers can use the orders to identify 

current demand trends at an early stage and may influence them with marketing measures 

(financial incentives). If there is a shortage of confirmed orders, vehicles are ordered without 

existing customer orders. Vehicle orders can also be scheduled later if the demand exceeds 

the sales plans. In this case, however, the delivery date is postponed. Vehicles can also be 

exchanged between market segments if production exceeds demand in one segment while 

the demand in another market segment is higher than expected. (Herlyn 2012, pp. 123–124) 

The distribution program is intended to meet the distribution plan's targets for vehicle volumes 

and variants. Discrepancies between the planned sales figures in the sales plan and actual 

customer orders require adjustments, which are reconciled with production and procurement 

capacities. In the event of a shortage of customer orders, the distribution program can be filled 

by the dealers and importers with their own orders. Surplus vehicle orders remain in the order 
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backlog and are included in the next distribution program. The vehicle orders in the distribution 

program are transferred to the production programs for the vehicle assembly plants. (Herlyn 

2012, p. 124) 

With the vehicle programs, production periods are defined for all vehicle orders and assigned 

to a factory. In the factory, the vehicle programs are then implemented in the various production 

areas and assembly programs are derived for the assembly lines. Based on the vehicle pro-

duction programs, the production programs for the aggregate factories can be created. There-

fore, the delivery times of the aggregates, and the capacities and distribution rules between 

the aggregate factories are required. In addition to the demand for aggregates by the vehicle 

plants, the production programs of the aggregate factories must also consider the production 

of spare parts and demand for aggregates from other companies. (Herlyn 2012, p. 124) 

The distribution and production plans only contain production capacities or production vol-

umes, but no quantities of specific vehicles or units. The sales and production programs, on 

the other hand, contain specific vehicle orders from which the binding production orders for the 

vehicle and aggregate factories are derived. (Herlyn 2012, p. 124) 

2.3.2 Remanufacturing in the Automotive Industry 

Remanufacturing in the automotive industry is already implemented for components and for 

special purpose vehicles, but not yet for passenger cars and light commercial vehicles (Kam-

per et al. 2019, p. 281). There is, however, high potential in applying remanufacturing to elec-

tric vehicles (EVs). Currently, they are more expensive to purchase and have a higher total 

cost of ownership than conventional cars with a combustion engine despite having lower op-

erating costs. An EV that can be remanufactured can further reduce these costs, making it 

cheaper than a conventional car (Kampker et al. 2016, p. 3). EVs are also more suited for 

remanufacturing than conventional cars because they have more conceptual freedom in their 

product and functional structure. Also, the disassembly, processing, and reassembly of an EV 

is easier because its engines (Kampker 2014, p. 22) and gear boxes (Kampker 2014, p. 231) 

are less complex. 

2.3.3 Challenges in PPP for Automotive Remanufacturing 

HERLYN states that for PPP of vehicles and aggregates, the ordering phase is of particular 

importance, while the information and usage phases play a subordinate role and can be ne-

glected. For PPP in remanufacturing, chapter 2.1.12 and 2.2 showed that the later phases of 

the product life cycle should be incorporated in the planning process to reduce uncertainties in 

production planning. (Herlyn 2012, p. 67) 

A challenge for demand forecasting in the automotive industry is that the simple time-series 

models described in chapter 2.1.5 predict trends or seasonal dependencies, but they are not 

suited for capturing complex market-influences or do so only in a very specific and limited way. 

For vehicles, the forecast variable usually refers to aggregate demand sizes or to the demand 
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for a specific new product category. Since disaggregated demand is not modelled within the 

framework of the demand forecast models, these approaches do not provide much basis for 

explaining product-specific life cycles (Eggert 2003, p. 21), which poses a challenge to reman-

ufacturing because it needs information about return quality, quantity, and timing from the use 

phase of the product. As in other remanufacturing activities, vehicle remanufacturing relies on 

the availability of cores (Sitcharangsie et al. 2017, pp. 13–14). Vehicle remanufacturers must 

therefore maintain a long-lasting relationship with customers which is complicated by the fact 

that customer loyalty to OEM service schemes decreases over time (Seitz and Peattie 2004a, 

p. 82). 

For pre-processing, it is important to differentiate mechanical components from mechatronic 

systems when performing functional tests to evaluate the quality of cores. The damage pat-

terns of mechanical components are often easier to detect, e.g., by visual inspection, than 

those of mechatronic systems. In addition, electronic control devices (ECDs) provide OEMs 

with limited access to records of user data because they often lack open communication inter-

faces. While error messages are transmitted, this makes the underlying causes untraceable, 

and the overlap of damage patterns of linked systems complicates the prediction of such dam-

ages. Furthermore, different usage patterns and environmental conditions during the vehicle 

lifecycle lead to different levels of wear and tear, making recurring damage patterns even more 

difficult to detect and the total reprocessing effort in the remanufacturing of vehicles hard to 

determine. (Kamper et al. 2019, p. 286) 

The efficiency of production systems for more complex products is more sensitive to devia-

tions, which can reduce profitability and therefore increases the planning effort. Vehicles also 

use frictional, positive, and adhesive connections, which often cannot be disassembled eco-

nomically. Therefore, a comprehensive initial assessment of the components’ condition is re-

quired to derive the necessary remanufacturing steps (Sitcharangsie et al. 2017, p. 13). Fur-

thermore, the storage of cores or additional resources, is not intended in an efficient and lean 

production as desired in the automotive industry. (Kamper et al. 2019, pp. 286–287) 

The quality assessment must be able to process various input variables from different sources 

such as status information, error messages, life cycle data from ECDs and sensors, and indi-

vidual assessments performed in the factory. Due to this complexity, incorrect assessments 

cannot be avoided, which leads to unplanned or deviating processes and additional material 

requirements. A PPC system for automotive remanufacturing must have additional information, 

dynamic scheduling, and allow continuous reassessment of the profitability of remanufacturing 

orders (Kamper et al. 2019, p. 287). On the other hand, long-term planning can be better suited 

for aggregate production planning in the automotive industry than short-time decision making 

because it mitigates the effects of uncertainties of material matching and material routings in 

remanufacturing (Sitcharangsie et al. 2017). 
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3 State of Research 

The aim of this thesis is the development of a data model for PPP in remanufacturing. The 

data model must contain all data points, which are required to create the production program 

in remanufacturing, in a structured form. Therefore, in addition to the data required for the 

classic PPP in manufacturing (demand, sales volume, routings, BOMs, assembly capacities, 

etc.), the data requirements implied by remanufacturing (sales mix of new and remanufactured 

products, quality classes of cores, disassembly capacities, etc.) must be included in the data 

model.  

Chapter 2 analyzes the basics of PPP, remanufacturing, and data handling in manufacturing 

companies. Chapter 3 examines the current state of research on existing data-based ap-

proaches, which result in a production program, or which deal with the handling of planning 

uncertainties that arise from remanufacturing in PPP activities. At first, requirements and eval-

uation criteria for the literature are defined. The identification and analysis of existing ap-

proaches is then carried out within a systematic literature analysis. Finally, the selected ap-

proaches are presented and evaluated according to the previously defined requirements in 

order to identify the research gap addressed in this thesis. 

3.1 Criteria for the Evaluation of Existing Approaches 

The examined literature should propose a data-based model which deals with sales planning, 

primary demand planning, and gross resource planning within PPP in remanufacturing. There-

fore, a model found in literature should indicate the specific remanufacturing process and the 

product or product group for which it is intended. All underlying assumptions must be clearly 

specified, and the literature should include a comprehensive description of the necessary data 

and information. The literature must also deal with one of the planning uncertainties identified 

in chapter 2.2.6 and 2.3.3. Those uncertainties are the basis for the evaluation criteria: 

◼ Ability of the proposed model to handle uncertainties in sales planning with re-

manufacturing: 

The literature should propose a data model for feasible processes that allow an eco-

nomic balance of remanufactured products and new products. This includes the fore-

casting of core supply, of core quality, and decision making on the introduction of new 

products to minimize negative effects of product cannibalization. 

◼ Ability of the proposed model to handle uncertainties in primary demand plan-

ning:  

The data model should reflect how uncertain core quality affects component yields, and 

how those yields in combination with uncertain core return quantities and timings affect 

inventories, total recovery rates, and new component requirements, in remanufacturing 

or combined systems. This may include methods on how to facilitate the initial assess-

ment of cores. 
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◼ Ability of the proposed model to handle uncertainties in gross resource plan-

ning: 

The data model should reflect how uncertain core quality, quantity, and timing affect 

routings, lead times, or processing times, and thus capacity requirements, in remanu-

facturing or combined systems. 

◼ Comprehensiveness of the data model for PPP in remanufacturing and incorpo-

ration of data from different phases of the product life cycle: 

Crucial information about cores originates in the use-phase of the product, which then 

affects the (re-)manufacturing phase. The literature should propose a framework on 

how to identify the relevant data, be precise in its definitions, explain how to obtain and 

handle the needed information, or describe the underlying logical or communicational 

infrastructure. 

◼ Transferability of the proposed model to the automotive industry: 

PPP in remanufacturing can be very depending on the product. The planning effort 

rises with the product complexity and remanufacturing processes for small parts can 

differ from those of more complex ones. Also, products of similar complexity but with 

other properties that vary (size, area of application, type of components like hazardous 

substances, etc.) may need different information and processes which affect the PPP. 

The model should also adapt to the planning horizons of two to three years at vehicle 

level in the automotive industry. 

3.2 Method for a Systematic Literature Review 

The identification and analysis of existing research approaches is conducted using a system-

atic literature analysis based on KITCHENHAM. The literature is examined as broadly as possible 

and narrowed down to a target area on the basis of predefined criteria. This allows for a com-

prehensive, scientific representation of the current state of research and research gaps can be 

identified. (Kitchenham 2007, pp. 3–4) 

The approach can be seen in Figure 3.1 and has three phases. In the first phase, the literature 

analysis is planned. This includes the definition of the objective, the selection of the databases, 

and the definition of the search terms. In addition, inclusion and exclusion criteria are defined, 

which serve to narrow down the literature to the target area. In the second phase, the data-

bases are searched for the search terms and the hits are exported and stored in a preliminary 

database. In this thesis, the preliminary database is created with Excel and narrowed down to 

the target area in various filter stages, taking into account the previously defined criteria. The 

final database is created by a forward and a backward search in the preliminary database. In 

the backward search, the bibliographies of the publications in the preliminary database are 

analyzed to find additional candidates for the final database. In the forward search, literature 

that cites the present article is searched for. In the third phase the results are documented and 

represented in a clear and comprehensive manner, and the publications which are part of the 

final database, are represented. The final step is to evaluate the literature with respect to the 

objective and the evaluation criteria. (Kitchenham 2007, pp. 7–39) 



48  

48 

3 State of Research 

 

 

  

Figure 3.1: Systematic literature review (Kitchenham 2007, p. 6) 

Figure 3.2 states the relevant information of the planning phase. The objective is defined based 

on the planning uncertainties identified in chapter 2.2.6 and 2.3.3. The evaluation criteria of 

the literature were explained in chapter 3.1 and the selected databases were chosen with the 

aim to broadly cover the field of scientific publications. The search is carried out in English, for 

electronically available literature only. The search in the databases is limited to title, abstract 

and keywords of the publications. In order to obtain an overview of the current state of re-

search, only publications with a publication date since the year 2000 are considered. Additional 

information on the final database is given in Appendix A.1. 

 

Figure 3.2: Planning parameters for the systematic literature review 

The search and export of the results from the databases were conducted in the period from 

Jan 1st to Jan 31st, 2023. Due to the special characteristics of the Google Scholar database, 

the export of this database was limited to the first 500 entries. Table 3.1 shows the hits and 

exports of the different databases. 
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Table 3.1: Search results of the systematic literature review 

Database Hits Exported hits 

Google Scholar 17.800 500 

IEEE Xplore 89 89 

Scopus 445 445 

The exported 1.034 publications are filtered in Excel. The first filtering step is to delete dupli-

cates, which result from searching multiple databases. Then, the content is further restricted 

by a blacklist filter. The blacklist filter automatically removes titles that contain terms from non-

relevant domains. The remaining 426 publications are manually filtered first by their title, then 

by abstract, and finally by full text. Whether to consider a publication or not is decided based 

on the defined objective and the inclusion and exclusion criteria. Through the manual filter, 46 

publications remain after the title filter, 29 publications remain after the abstract filter, and five 

publications remain after the full text filter. Additional research and forward and backward 

searches add seven publications to the database. Care was taken to avoid duplicating similar 

approaches that perform the same planning steps but use different calculation methods. The 

final database contains 12 publications. These approaches are presented in section 3.3. The 

final evaluation and thus the answer to the objective of the systematic literature analysis is 

given in section 3.4. The filtering steps can be seen in Figure 3.3. 

 

Figure 3.3: Filtering steps of the systematic literature review 

3.3 Presentation and Evaluation of the Results 

3.3.1 A Conceptual Data Model promoting Data-Driven Circular Manufacturing 

(ACERBI et al. 2022) 

ACERBI et al. propose a data model which captures all the data and information which must be 

available to implement a circular production. The required data and information are divided 

into the main classes of product, process, management, and technology, which in turn are 

subdivided into a total of 29 subclasses. A simplified version of the complex model can be seen 
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in Figure 3.4. The model language is UML. The data which needs to be gathered depends on 

the chosen strategy but there can be overlaps in the data needs of different circular processes. 

Remanufacturing, e.g., is mentioned as a separate class from the disassembly class because 

disassembly can be necessary before engaging in recycling or repair processes as well. By 

filling in the available data and by raising awareness for the missing data, manufacturers can 

better decide either which strategy they want to choose, or which information still needs to be 

obtained in order to implement, for example, a remanufacturing process. (Acerbi et al. 2022, 

854-545) 

 

Figure 3.4: Conceptual data model (Acerbi et al. 2022, p. 840) 

Evaluation: The data model provides an initial basis for important data and information that 

must be available or obtained when implementing a remanufacturing process. All phases of 

the product life cycle are considered, and the model is comprehensive, even if the information 

is not explicitly assigned to a specific phase. Due to the general validity of the model, it is also 

transferable to a complete vehicle in the automotive industry. In addition, important information 

and data that are required in the PPP are mentioned, but their relationship to each other and 

how they are interdepend is not explained. An example of this is naming the BOM, and the 

capacities and routings in separate classes. These are not directly related to each other in the 

data model. In PPP, the BOM influences the routing, and thus the use of capacity. Therefore, 

the consequences that uncertain core quality, quantity, and timing have on sales planning, on 

primary demand planning, and on gross resource planning are only assessed to a limited ex-

tent in this model. 

3.3.2 Sustainable Information Management for Waste Electrical and Electronic 

Equipment (LI et al. 2012) 

LI et al. propose a data model that helps to implement distributed information services which 

enable convenient and secure handling of electrical and electronical equipment (EEE) infor-

mation. The model is intended to assist companies in the traceability of information about their 

components to facilitate recovery and remanufacturing. The information that should be known 

about a product is divided into the eight categories factory information, tracing information, 
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technological information for recovery, feedback information, recovery/remanufacture-oriented 

design support information, legal information, economic information, and ecological infor-

mation. 

LI et al. transform this information into a data model for factory information (see Figure 3.5) 

and into a separate data model for recovery and remanufacturing information (see Figure 3.6). 

For LI et al., the factory information is considered the most important for remanufacturing. To-

gether with the product information, which shows the type of components and physical prop-

erties, the treatment strategy can be determined. This includes non-destructive and destructive 

dismantling. The manufacturer and supplier classes are inherited from the role in SC. The role 

in SC, the material, and the products have a unique identification number. The MBOM is a tree 

structure in which a node represents a component or part. Each node has corresponding in-

formation on the material composition, the process flows, and the types of joints used. The 

models are based on defined manufacturing and disassembly processes using the example of 

an LCD screen. The required information is derived from the     screen’s manufacturing pro-

cess. (Li et al. 2012) 

 

Figure 3.5: Conceptual information model of factory information (Li et al. 2012, p. 880) 

 

Figure 3.6: Conceptual information model for recovery and remanufacturing (Li et al. 2012, 

p. 880) 

Evaluation: The data model is tailored to EEE, and in particular to an LCD screen. This results 

in specific features in the data model that cannot be transferred to the automotive industry. 

These include, for example, the EEE category class and the recycling information and process. 

The model provides a structured approach to data required for PPP in remanufacturing but 

does not assign individual classes to specific planning steps. Nevertheless, important 
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dependencies that also play a role in the PPP are included. For example, the BOM is linked to 

the materials and process steps used in manufacturing, and the disassembly tree is derived 

from the manufacturing process. In addition, no quality classes for returns are mentioned in 

the model, and there is no time stamp that could be used to record important developments 

for individual products over its life cycle. Only the average service life is recorded here. The 

model therefore does not take into account any quality- or quantity-related influences on the 

PPP, but nevertheless captures a large part of the necessary data for gross resource planning. 

Also, the publication does not explain the classes and variables sufficiently, and the model is 

neither tested nor validated. 

3.3.3 Information Systems and Circular Manufacturing Strategies: The Role of 

Master Data (ANDERSEN et al. 2016) 

ANDERSEN et al. investigate which master data is required for different circular strategies, such 

as reuse, circular design, and remanufacturing. They also explain how the data is related to 

the information systems used in the manufacturing industry. The term information systems 

includes technologies such as computer-aided design (CAD) for product development, 

customer relationship management (CRM), product lifecycle management (PLM), and ERP. 

Table 3.2 shows the results of the publication. The table is intended here for better 

understanding and only shows an excerpt of the results. It shows which master data is relevant 

depending on the strategy, as these are supported by different information systems, 

technologies, and activities. The strategies are enumerated in the initial column and 

subsequently allocated to corresponding activities in the second column. In column two, a 

distinction is made between internal company processes and inter-company processes. In the 

third column, the domain that is influenced by the strategy is mentioned. The different domains 

are the product, the process, and the business domain. For remanufacturing, only supply chain 

activities between main actors are considered. Specific activities for the different information 

systems and circular economy strategies are not taken into account. The last column 

additionally gives examples of the relevant master data. (Andersen et al. 2022, pp. 28–29) 

Column four states the information system, which in case of remanufacturing and disassembly 

is, for example, PLM. The selection of the relevant master data in PLM is based on the re-

search from MYUNG et al. and includes parts data, design data, BOM, docs/specification, con-

figuration data, work instructions, product quality data, product compliance data, and product 

service data. (Myung 2016, p. 776) 
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Table 3.2: A framework for master data management for circular manufacturing strategies (An-

dersen et al. 2022, p. 29) 

CM strategy Activity Domain Information 

System 

Master Data    

element 

Examples 

(…)      

Remanufac-

turing 

Return to  

manufacturer 

Process 

Product 

PLM (CLSC) 

BC (OLSC) 

MD for products 

MD for manu-

facturing 

Material composi-

tion, MD for utiliza-

tion of parts 

Disassembly Return to  

manufacturer 

Process 

Product 

PLM (CLSC) 

BC (OLSC) 

MD for products 

MD for manu-

facturing 

Material composi-

tion, MD for utiliza-

tion of parts 

(…)      

Evaluation: For remanufacturing and disassembly, the publication specifies which information 

systems should be utilized. As the publication is very general and because it solely focuses on 

supply chain activities for remanufacturing, there is no actual differentiation made between 

remanufacturing and disassembly. Consequently, the according entries in the table are identi-

cal. The framework can theoretically be used in the automotive industry, but its practical value 

remains uncertain as it has not been validated in ANDERSSON et al.'s research. Moreover, the 

explanations are incomplete. The abbreviations BC and OLCS, mentioned as information sys-

tems in column four, are left unexplained. There is also no further specification of the master 

data (MD) for utilization of parts, which is mentioned in the last column. Thus, the publication 

falls short in fulfilling most of the defined evaluation criteria. Nonetheless it shows, that master 

data must be managed in a PLM system due to the elevated level of complexity involved in 

disassembly and remanufacturing. 

3.3.4 A Cloud-Based Approach for WEEE Remanufacturing (WANG et al. 2014) 

WANG et al. present a web-based, service-oriented platform for cloud remanufacturing. The 

model is tailored to waste electrical and electronic equipment (WEEE) and aims to provide an 

interoperable, adaptable, and distributed infrastructure to assist the manufacturing industry in 

recycling, reusing, and remanufacturing products with a cloud-based information system. 

(Wang et al. 2014, p. 409) 

The structure of the model can be seen in Figure 3.7. In the user layer, the user operates a 

web browser. Users are both customers and remanufacturers looking for synergies. For the 

consumer, the relevant product data is stored in a quick response (QR) code attached to the 

product, so the customer does not need to have any knowledge of the product or its repro-

cessing. The data model containing the product information is based on the ISO 10303, which 

enables computer-aided representation and exchange of product data over the entire life cycle 
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of a product (Norm ISO 10303 - 1 1994, p. 5). The web-interface offers various service re-

quests, which are documented in a standardized format. They are passed on to the cloud 

service coordination layer. Here, the broker agent assigns the available reprocessing services 

to a request. The selection of the appropriate services is made taking into account their cost, 

duration, and resource consumption. The user can then check the offers communicated to him. 

The selection of the optimal remanufacturing processes is supported by a quantifiable lifecycle 

analysis integrated into the service layer, which finds the options with the lowest ecological 

impact and the highest economic benefit. The negotiated service is then carried out and con-

trolled by the supervision agent. (Wang et al. 2014, pp. 410–411)  

 

Figure 3.7: Cloud remanufacturing service infrastructure (Wang et al. 2014, p. 410) 

Evaluation: The storage of product information with QR codes is limited to products with little 

complexity. Therefore, the model is not scalable to a complete vehicle. Furthermore, it is not 

specified which product data is used exactly and there is no possibility for the user to specify 

product-specific damage characteristics in the web interface. Thus, quality differences in the 

cores are not communicated to the manufacturers before the core arrives and cannot be con-

sidered when planning production in an intermediate planning horizon. However, the model 

does provide the ability to better estimate the demand for remanufactured products, as the 
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time of arrival of a core is known as soon as the user requests a remanufacturing process. In 

addition, by linking the user to remanufacturers through the service layers, a high level of inte-

gration of data across the product life cycle is achieved. 

3.3.5 Development of a Sales Planning Methodology for the Remanufacturing 

of Complete Vehicles in the Automotive Industry (FRANK 2022) 

FRANK proposes a model for profit-optimized sales planning of remanufactured vehicles and 

new vehicles over several planning periods. All vehicles to be sold are produced or remanu-

factured within the same period and sold at the end of the period. The planning horizon can be 

determined flexibly but there is a recommendation of eight years given for vehicle sales plan-

nings. The planning horizon is also limited by fundamental new developments to which a core 

cannot be remanufactured with the available remanufacturing methods. An example of this is 

a fundamental modification of the chassis. The model can be seen in Figure 3.8. Its central 

output is the profit over all periods. In addition, the profit-maximizing sales of the new and 

remanufactured vehicles are determined. The forecast is made on the basis of various input 

factors. These include, for example, the life cycle distribution of the vehicles, which determines 

the timing and volume of the returned cores, and the sales prices, which have an impact on 

demand, and determine the margins of the different vehicle types in the sales model. The 

model also considers product cannibalization effects in different sales scenarios. (Frank 2022, 

p. 86) 

Another important input to the model is the demand forecast, which serves as an upper bound 

for the maximum number of vehicles that can be sold in each planning period. The model is 

specifically tailored to electric vehicles and whenever possible, remanufacturing is favored over 

new vehicle production. Additionally, the probability of a core of a defined quality class being 

returned depending on the business model is taken into account. Cores can be bought, and 

surplus cores are sold if they are not needed to meet the demand in a certain period. In the 

start period, no remanufacturing takes place because no cores are available yet. If a core 

needs to be upgraded, the associated costs in the model increase. (Frank 2022, pp. 90–95) 
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Figure 3.8: Input and output factors of the sales model (Frank 2022, p. 87) 

Evaluation: The model is very well suited for the application in the automotive industry. More-

over, uncertain core quality and quantity are considered in the sales planning. Since it is a 

sales model, the consideration of primary demand and gross resource planning is omitted. 

However, the model provides a solid and comprehensive basis for subsequent steps of PPP 

and addresses essential information of sales planning in the automotive industry. 

3.3.6 A Mixed-Integer Mathematical Programming Model for Integrated Plan-

ning of Manufacturing and Remanufacturing Activities (GIGLIO et al. 2014) 

GIGLIO et al. investigate the creation of a production program for a hybrid manufacturing / re-

manufacturing system as shown in Figure 3.9. In the system, new products are manufactured 

in multi-step assembly operations. The goal is to determine the number of components and 

finished products to be manufactured, the quantity of new basic parts to be bought, the number 

of basic parts to be recovered from returned products, and the quantity of returned products to 

be acquired in order to match a predefined deterministic demand per planning period. The 

model minimizes the costs incurred in the system. (Giglio and Paolucci 2014, pp. 1–3) 

On the manufacturing side, the products are broken down into their components via a BOM, 

which also contains the lead times of components or products. Furthermore, a number of ex-

isting machines is defined, and which machines are suitable for processing which components. 

In addition, the maximum capacity of the machines is taken into account. The same applies to 

the remanufacturing side. Here, the quantity of available remanufactured components, the 

quantity of returns in the current period, and the quantity of cores that start the remanufacturing 
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process in the current period including their quality, and the quantity of cores in inventory at 

the end of a period are considered. (Giglio and Paolucci 2014, 3–5) 

 

Figure 3.9: Remanufacturing system model (Giglio and Paolucci 2014, p. 2) 

Evaluation: Despite its similarity to other periodic planning models, the model is included in the 

evaluation because it explicitly considers the effects of uncertain core quality and quantity on 

machine utilization and routings. Other models are more general in this aspect and do not 

break down the production program to the machine level. Therefore, this one fills a gap in the 

consideration of gross resource planning in connection with different routings. However, it 

lacks consideration of the problem that routings can change during disassembly depending on 

the quality of cores. The model can be scaled to the total vehicle but is not precise in which 

data is used to classify the quality of cores. Also, sales planning is not part of the model. 

3.3.7 Supply Planning Model for Remanufacturing System in Reverse Logis-

tics Environment (KIM et al. 2006) 

KIM et al. propose a mathematical model that helps manufacturers decide whether needed 

parts should be ordered from external suppliers or remanufactured internally. The decision is 

made by maximizing total cost savings and determines the quantity of parts to be processed 

at each remanufacturing facility. (Kim et al. 2006, p. 279) 

The basic structure of the model can be seen in Figure 3.10. After use, products are returned 

to a collection site, where a decision is made as to whether they will be passed on to a sub-

contractor or disassembled and refurbished at company-owned sites. The demand for prod-

ucts is a known input and can be flexibly adjusted, as can the planning horizon. From the 

demand for products, the demand for components is derived based on the BOM. Another 

known input is the number of cores that will be returned by the customer in each planning 

period. If demand cannot be met by the returns, missing components must be procured exter-

nally. In addition, the maximum capacity of the collection plant, the dismantling plant and the 

reprocessing plant is taken into account and a maximum disposal quota is defined. The indi-

vidual process steps are then assigned their costs and the cost optimal solution is calculated. 

(Kim et al. 2006, pp. 284–285) 
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Figure 3.10: Conceptual framework for a remanufacturing system – the shaded region (Kim et al. 

2006, p. 281) 

Evaluation: Based on the known inputs, the model can provide information about the cost-

optimal mix of new and remanufactured parts and is thus also suitable to determine a feasible 

mix of remanufactured components and new components which are converted into a new 

product. This is important in sales planning, but the model assumes a known cumulative de-

mand in which no distinction is made between new and remanufactured products. For the 

same reason it is only suited for the production of vehicles for which the customer does not 

care what parts were used to build the new vehicle and product cannibalization is also not 

considered. Quality-dependent planning uncertainties are mostly neglected in the model, 

since, for example, no MRR is considered and no classification of the quality of the cores takes 

place. In addition, the model relies on the timing and quantity of returns being known. Since 

the capacity of the factories is taken into account by moving production quantities to later time 

periods, planning uncertainties in gross resource planning caused by fluctuating core supply 

can be reduced to some extent. However, the effects of changing routings are neglected.  

3.3.8 Production Planning in Remanufacturing/Manufacturing Production Sys-

tem (KASMARA et al. 2001) 

KASMARA et al. introduce a model that generates a production plan in a hybrid manufacturing-

remanufacturing system. The model is based on a material flow diagram which can be seen in 

Figure 3.11. It is a linear programming model, which is implemented in the mathematical pro-

gramming tool XPRESS-MP and evaluated with three products with six common components. 

Although, it can be applied to any number of products with any number of components. An 

important assumption is modeling the sales of a product as a variable which has an upper limit, 

namely, the demand. The demand may not be matched in certain periods if the overall system 

does not allow for it economically. The BOM information are contained in a product structure 

parameter, which relates components to their products. Also, the model considers a variety of 

costs, which are related to the activities shown in the material flow diagram (manufacturing 

costs, remanufacturing costs, inventory costs, etc.) as well as revenues obtained from selling 

  n f ct rer

 e  n f ct rin 

S  contr ctor

E tern   

S pp ier

 ef r ishin 

Site

 ispos  Site

 is sse    

Site

 o  ection 

Site

  sto er et i er ho es  er

 eturned

Products

Products

Products

 aste

 eusable

Parts

  s new Parts

 ew 

Parts

Part 

 n entory

  s new 

Parts



3 State of Research 59 

59 

products. The expected time of return of cores is modeled by a probability distribution and 

there is a limited probability that a core can be successfully remanufactured. Additionally, 

KASMARA et al. define a minimal remanufacturing ratio to account for possible environmental 

regulations. The calculation of the inventories after each activity are given constraints like a 

maximum and minimum inventory and the activities themselves are constraint by a maximum 

capacity. The model aims to maximize the profits per planning period and determines the op-

timal numbers of sales, disassembly, assembly, disposal or lower recovery strategies, reman-

ufacturing, manufacturing, and remanufactured parts to be used in assembly. (Kasmara et al. 

2001, pp. 711–712) 

In addition, KASMARA et al. point out several important considerations for the information 

needed in remanufacturing systems and how they influence the planning process. Increasing 

product complexity leads to increasing process costs. Also, part commonality can help balanc-

ing inventories when the demand fluctuates. Fluctuating demand causes return fluctuations 

and the longer a product takes until it is returned, the worse its condition and the higher the 

remanufacturing costs. Longer lead times in returning cores also require a longer planning 

horizon for production planning. Remanufacturing generally generates higher profits than man-

ufacturing if the cores have a high quality and if collection rates are high. Also, general incen-

tives for increasing the remanufacturing ratio are inflated costs of material, manufacturing, and 

disposal while having low costs in collection and remanufacturing. (Kasmara et al. 2001, 

p. 713) 

 

Figure 3.11: Material flow diagram for a hybrid manufacturing-remanufacturing facility (Kasmara 

et al. 2001, p. 711) 

Evaluation: The model is one of the most comprehensive in the handling of planning uncer-

tainties in PPP. The publication does not explain the exact calculation steps, but it describes 

the data on which the model is based. It takes into account quality- and quantity-dependent 
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planning uncertainties in statistical form, including capacity limits and inventory constraints. 

Costs are considered, but the effects of different core qualities on reprocessing costs and spe-

cific routings are omitted. These could be included, for example, by using a probability distri-

bution of qualities that calculates increasing costs and process times for cores of lower quality. 

Furthermore, the model does not address which data exactly is the basis of the statistical core 

quality distribution. The model can be scaled to an entire vehicle, since it has no restriction for 

the number of components or products, or for the definition on the planning horizon and peri-

ods. However, the demand is only modeled for one product type, no new products are sold 

separately from remanufactured products, and sales planning is not part of the model. 

3.3.9 Material Planning for a Remanufacturing facility (FERRER et al. 2000) 

FERRER et al. propose a model to determine the optimal remanufacturing and purchase quan-

tities of cores, parts, and components per planning period. The model is based on MRP and 

requires an MPS as an input. As in the classical MRP, demand for components is derived with 

the BOM and comparison with the inventory yields the primary demand. The core supply is 

estimated as a percentage value of sales per planning period. FERRER et al. use a reverse 

BOM to determine the disassembly yield of the incoming cores. Should the disassembly yield 

not be sufficient to cover the demand for the assembly of components, either cores, parts, or 

components must be purchased from the market. The objective is to minimize the purchase 

quantities. Although, the authors state, that the model would work equally well minimizing the 

inventory level. Purchases have a lead time of four planning periods. For each planning period, 

the model defines the on-hand inventory, and which cores, parts, and components to buy, to 

disassemble, and to assemble. (Ferrer and Whybark 2001, pp. 118–122) 

 

Figure 3.12: Material process flow diagram for component remanufacturing (Ferrer and Whybark 

2001, p. 114) 

Evaluation: The model deals with core processes of primary demand planning and with parts 

of gross resource planning. Its limitations for PPP are that there is no sales planning consid-

ered and that capacity limits in production are ignored. The model assumes that all parts which 

are remanufactured have the same routing. Also, various kinds of failure modes are neglected. 

More precisely it can be seen in Figure 3.12, that there is no process step mentioned, where 

parts are restored to an as-new condition. Also, the disassembly BOM values are based on 

experience and the model is made for a pure remanufacturing facility, so there is no possibility 

to manufacture missing parts or components in-house and the sold components will always be 
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an uncertain mix of purchased and remanufactured parts. Therefore, the model cannot be used 

for a facility which considers demand for remanufactured and new products. The model was 

evaluated for automotive starters but could be scaled to a full vehicle remanufacturing facility. 

The failure modes of the cores are not described. The model does not explain which data is 

needed to determine return rates and qualities. 

3.3.10 A Data-Driven Method of Selective Disassembly Planning at End-of-Life 

under Uncertainty (GAO et al. 2023) 

GAO et al. propose a model for determining disassembly sequences. The model calculates a 

trade-off between the minimum number of disassembly operations and the maximum feasibility 

in order to remove target components or high-value parts from a core as quickly and feasibly 

as possible for reuse, remanufacturing, or recycling activities. It is a data-driven method where 

dismantlability describes the degree of difficulty with which components can be removed under 

uncertainty. For this, random and fuzzy evaluation data are converted into qualitative values, 

and then a prediction of the disassembly steps is made. The prediction of the time at which the 

disassembly must take place is based on historical data. (Gao et al. 2023, p. 365) 

The model is tested on an electric motor drive system, which has a defined set of components. 

Those have a simplified shape and are provided with information about their junctions, like the 

access side and the disassembly direction. A predefined graphical model shows the sequence 

of screws to take out or junctions to open, in order to obtain a specific component. The quality 

of screws can influence if a part can be recovered easily, and therefore a motor drive in bad 

physical condition has a high probability of component damage in the disassembly process. 

(Gao et al. 2023, pp. 567–568) 

The defined criteria to evaluate the uncertainty in disassembly can be seen in Figure 3.13. A 

distinction is made between component characteristics and disassembly characteristics with a 

total of six criteria against which each component of a core is evaluated. The physical condition 

describes the degradation status of the component that influences the disassembly sequence. 

In addition, the accessibility captures the ease of access to each component. A screw that is 

in a tight, deep spot is more difficult to access than exposed components that can be easily 

moved, positioned, or removed with a tool. Thus, accessibility depends on the relative location 

of the connections to other components. Disassembly tools and methods are accounted for by 

the disassembly pattern, which can vary depending on how the components are connected. 

The mating face captures the complexity of the disassembly process. For example, complexity 

increases when multiple joint components need to be disassembled. The connection type cri-

terion takes into account that it is easier, for example, to remove fasteners such as bolts and 

clamps, than it is to remove welded or soldered connections. Additionally, removing compo-

nents during the disassembly process may cause damage to the component, e.g., when open-

ing welded joints. Finally, the number and variety of joints are also recorded as criteria. The 

model also specifies briefly where and how the necessary data can be obtained. (Gao et al. 

2023, pp. 568–569) 
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Figure 3.13: A representation of the evaluation criteria used to assess uncertainty of EOL prod-

ucts and their data sources (Gao et al. 2023, pp. 568–569) 

Evaluation: The model provides a solid data basis for the determination of disassembly se-

quences with uncertain core quality. Expected return times are also taken into account, but 

here the specific data sources are not discussed further. However, they are described precisely 

for the quality categories used and they are also assigned to distinct phases of the product life 

cycle. Although the model does not deal with problems of sales planning or concrete periodic 

PPP, it does provide an important basis for the data requirements in disassembly, which is a 

necessary process step in PPP. The model can be transferred well to mechanical components 

of a vehicle because the defined criteria for evaluating dismantlability are formulated in a gen-

erally valid manner. It is a comprehensive approach to handling uncertainties in gross resource 

planning. 

3.3.11 A Novel Multi-Criteria Sorting Model Based on AHP-Entropy Grey Clus-

tering for Dealing with Uncertain Incoming Core Quality in Remanufac-

turing Systems (MUSTAJIB et al. 2021) 

MUSTAJIB et al. propose a quality grading method for cores based on the data criteria shown 

in Figure 3.14. The main criteria are the physical condition, the technological condition, and 

the usage condition. The obsolescence is a parameter that evaluates how up to date the prod-

uct is. It refers to the technological advances made during the product life cycle and serves to 

evaluate if the product can keep up with the emerging new technological innovations when 

surpassing its intended lifespan. The upgradability measures how easily the product can be 

functionally adapted or enriched by features in the remanufacturing process. It serves to eval-

uate how hard it is to upgrade the product with a modern technology to avoid obsolescence. 

Then, the model accounts for the products having limited life cycles. The multiple life cycles 
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parameter counts how many life cycles the product may have before being passed on to an-

other, lower-grade circular strategy. The disassemblability sub-criteria captures how easy it is 

to disassemble the core and the damage level captures the degree of physical defects like 

wear, cracks, and corrosion. Products may also return without containing all their parts, which 

is why the components completeness is evaluated as well. Also, the traceability of the product 

information such as model or type are important for the quality grading. If the   n f ct rer’s 

identification number is known or readable on the core, the product is considered to have a 

higher quality. As important is knowing the allowable geometric and dimensional tolerances 

and the frequency of use, which counts the number of times the product was used in the use 

phase. Another sub-criterion is the maintenance frequency, which captures how intensely the 

product is maintained during the use phase. This is done by establishing an expected load 

level as the average and then moving up the quality scale when the product was used under 

normal load, and moving down the quality scale when the product was used above normal 

load. The final sub-criterion is the remaining useful life. (Mustajib et al. 2021, p. 23) 

Most of the criteria are qualitatively evaluated on a scale from one to five. An exception is the 

component completeness, which is a percentage value of the complete product. There is also 

more detailed information given on the meaning of the scale from one to five in the different 

criteri .  he o so esce sc  e, e. ., re ches fro  “overtime” to “equal as new technology”  nd 

the  p r d  i it  fro  “minimal repair” to “replacement with new parts”. The disassemblability 

is evaluated by weather complex processes and machines are needed. It considers how time 

consuming the process is if there are permanent joints, or if damaging parts is inevitable when 

disassembling. The damage level can take on precise quantifiable measurements, for example 

when there are measurable levels of wear and tear. Regarding the traceability of the parts 

identity, the scale reaches from having a fully functional radio frequency identification (RFID) 

to incomplete identification numbers. (Mustajib et al. 2021) 

 

Figure 3.14: Hierarchy of decision levels for the incoming core quality sorting problem (Mustajib 

et al. 2021, p. 11) 

Evaluation: The model provides a very good overview of the data that needs to be known about 

a product in order to plan the remanufacturing process based on uncertain quality. It is also a 

good approach to handling the relevant data from the use phase and goes into more detail 
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about what exactly this data looks like. Nevertheless, it only represents a small part of the 

complex PPP, since return quantity and timing, demand, and concrete process steps are not 

considered. The model can be applied to the analysis of the components in vehicle production 

and is comprehensive in the description of the data points. Its value for PPP in remanufacturing 

lies mainly in gross resource planning. 

3.3.12 A Hybrid Approach of Rough Set and Case-Based Reasoning to Reman-

ufacturing Process Planning (JIANG et al. 2019) 

JIANG et al. address the impact of different quality states and fault patterns in cores on routings 

in the remanufacturing process to reduce the processing time and effort. For this purpose, they 

use a hybrid model based on rough-set (RS) reasoning on the one hand and case-based rea-

soning (CBR) on the other. RS is used to automatically identify the relevant features of a core 

and to determine the weights of the features. CBR is used to calculate the similarity of pro-

cesses in a database to find the optimal reprocessing techniques and routings for a new core. 

(Jiang et al. 2019, p. 19) 

The steps from the model are shown in Figure 3.15. A new core is called a case and is de-

scribed by a set of features. The case-based reasoning is used to fill information gaps like 

unknown features by comparison with similar parts. The RS then removes redundant features, 

since a case can theoretically have features which are not necessarily important for determin-

ing the reprocessing steps. The weights of the remaining features are calculated automatically. 

Then, the case is compared to other cases from the database using a nearest neighbors algo-

rithm to determine the best process flow for that case. For the presentation of a case, the 

features case number, condition feature description, and process solution are used. The con-

dition feature description includes the name of the component, its type, material category, 

brand, material hardness, surface roughness, straightness, failure location, and machining al-

lowance. The information related to the process solution contains data about processes and 

equipment, as well as process parameters and the sequence of process steps. (Jiang et al. 

2019, pp. 21–22) 

As a validation example, the work uses a saddle guide with the following characteristics: Guide 

type, guide number, material brand, machining accuracy, failure symptom, failure position, fail-

ure degree, heat treatment, horizontal straightness, vertical straightness, hardness, and sur-

face roughness. (Jiang et al. 2019, p. 25) 
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Figure 3.15: Process flow for the selection of a restoration process with rough-set and case-

based reasoning (Jiang et al. 2019, p. 22) 

Evaluation: The model is well suited for estimating the effects of different core qualities and 

specific fault symptoms on routings. It provides a basis for gross resource planning since op-

timal routings are suggested. In the model, however, it remains open at which point in time the 

failure symptoms are known. These may only be detected during a detailed analysis upon 

arrival at the factory. The model is therefore only partially transferable to vehicle production. 

For PPP in the automotive industry, the core qualities would have to be known over a long 

planning horizon and, in the sense of a lean production, the cores would have to go directly 

through the remanufacturing process as soon as they arrive at the factory, so that no unnec-

essary storage costs are incurred. In addition, no consideration is given to capacity limits and 

no consideration is given to separate demand for new or remanufactured products. 

3.4 Evaluation of the Existing Approaches 

Table 3.3 presents a summary of the evaluation outcomes. The analyzed research on PPP in 

remanufacturing can be classified into four categories. The first category examines deeply the 

required data and information, classifying them into distinct classes. However, such models do 

not account for several essential interdependencies of PPP in remanufacturing. The second 

category of models relates to the description of information flow infrastructures in remanufac-

turing or circular strategies in general. However, these models lack precision in terms of the 

exact data points that should be communicated. The third category of models addresses the 

periodic production planning in remanufacturing facilities. Such models involve uncertainties 
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in core qualities and supply, and incorporate effects on routings, capacity, or inventory con-

straints. However, these models simplify the input data. Demand, core quality, and core avail-

ability are estimated based on historical values or approximated by statistical distributions that 

must be gathered over long periods of time. As a result, they require a long planning lead time. 

They also do not specify the exact data points which are used to perform the quality assess-

ment. 

Models of the fourth category specifically determine optimal assembly, disassembly, or repair 

processes by using defined data points from different phases of the product life cycle. These 

models do not connect the data to all planning activities in PPP. However, they show the po-

tential of data-based PPP in remanufacturing. Models of category four still rely to some extent 

on quality assessments performed during an initial inspection when being returned. By gath-

ering data about the core before it returns, namely, during the user phase, long planning lead 

times, and uncertainties due to fluctuating core condition and availability could be reduced. 

Therefore, the user phase data needs to be combined with the relevant manufacturing and 

remanufacturing processes data, referenced to the activities of PPP in remanufacturing, and 

represented in a structured in a comprehensive data model. As the literature analysis shows, 

such a model does not exist yet. Hence, there is a research gap in data-based PPP in reman-

ufacturing and the derived research question is: 

How can a data model be designed for data-based production program planning in remanu-

facturing? 
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Table 3.3: Evaluation results of the relevant literature 
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4 General Model Structure 

4.1 Definition of the Remanufacturing Process 

Chapter 4 establishes the foundation for building the data model for PPP in remanufacturing. 

The literature on periodic planning in chapter 3.3 shows that PPP is process specific. For ex-

ample, in the case of a pure remanufacturing company that does not offer new products for 

sale separately, product cannibalization resulting from a mix of new and remanufactured prod-

ucts would not be considered and therefore would be excluded from sales planning. In this 

work, a product mix of new and remanufactured products is chosen. Similar considerations 

apply to individual process steps, since inventories, capacities, and qualifications must be de-

fined for each process step. Therefore, the basis of the data-driven PPP is the definition of the 

remanufacturing process including the individual process steps. The remanufacturing process 

defined for this work is shown in Figure 4.1. 

 

Figure 4.1: Cascaded remanufacturing process with defined levels for production program plan-

ning 

The process model shows, PPP is the first step in the remanufacturing process as it is defined 

for this work. The planning can be performed while some cores are still in use with the cus-

tomer. In PPP, the product’s user-phase data is considered so that uncertainties caused by 

the returning cores can be incorporated at an early stage. The second process step is the 

collection of cores after a user cannot or does not want to continue using the product. Cores 

are also collected when a company that retains ownership of the cores while they are in use 

at the customer's site requests the return of its cores. The collection step is highly relevant to 

the data model because, the nature of the business model influences how, when, and in what 

condition cores are returned for reprocessing (Frank 2022, p. 86). After collection, the cores 

are cleaned. This processing step is important because, as discussed in chapter 2.2.5, it 
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reveals defects and facilitates the disassembly and reassembly processes. In the third process 

step, the cores are then disassembled into their components.  

Afterwards, the components undergo a quality assessment. After the assessment, reusable 

components are transferred to assembly. It is important to note that product requirements may 

change during their life cycle, resulting in certain components of a core not being reused de-

spite having no technical defects. This is because new standards imposed by legislators may 

force the manufacturer to modify the product. Additionally, products and components are con-

tinuously being developed and upgraded through innovations, resulting in the new product 

receiving an upgrade and thus an increase in value compared to its predecessor generation, 

which also appeals to the customer. As a result, reusable components are only those that are 

functional, desired by the customer, realizable by the manufacturer, and tolerated by the leg-

islator (Chierici and Copani 2016, p. 1). 

Components that cannot be reused due to the reasons mentioned above are returned to their 

respective manufacturers as cores and undergo their respective remanufacturing process. By 

implementing the cascading process, each remanufacturer is solely responsible for the prod-

ucts that they manufacture in-house. The remanufactured components from lower cascades 

are then returned to the next higher level as new components. Meanwhile upgraded compo-

nents are obtained from a different source. The remaining useful core and the useful compo-

nents are then assembled with new and upgraded components into the new product. Before 

the product can be given to the customer, it needs pass the final assessment. Components 

which cannot be reused in any of the cascades, are passed on to a lower-level circular R-Strat-

egy. 

4.2 Derivation of the Planning Activities for PPP in Remanufactur-

ing 

Based on the remanufacturing process defined in chapter 4.1, the planning activities of PPP 

in remanufacturing can be derived. The thereby created activity model contains an initial de-

scription of the most important input and output information for the individual activities and 

forms, together with the remanufacturing process, the basis of the data model. For remanu-

facturing, core acquisition management (see chapter 2.2.4) is added as a planning element to 

PPP in addition to the classic elements of sales planning, primary demand planning, and gross 

resource planning as explained in chapter 2.1.1. Core acquisition management for PPP in 

remanufacturing is primarily responsible for the information management of core availabilities 

and qualities, as well as their communication with the classic elements of PPP. The activity 

model can be seen in Figure 4.2. 

The activity model starts in sales planning with the demand forecast at product-level. As shown 

in chapter 2.1.5, the input information requirements of the demand forecast depend on the 

selected forecasting method. Accordingly, once the forecasting method has been selected, the 

forecast parameters must be determined. In addition, historical sales data is used, if available. 
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As in classic PPP, the demand forecast, and the already existing customer orders form the 

basis for sales planning at product level. When creating the sales plan, the aim is to achieve a 

profit-optimized mix of remanufactured products and new products. Therefore, the costs and 

prices of the new products and the costs and prices of the remanufactured products must be 

known. At the same time, the core acquisition management needs to provide the core-procure-

ment costs and the revenues that can be generated by selling surplus cores on the market. In 

addition, the expected core availabilities must be known, as well as their expected quality dis-

tribution. The prediction of core availabilities and qualities is also the task of core acquisition 

management and depends on the business model. The availability of cores can be estimated 

using core return probability distributions. The quality of a core is determined by the quality of 

its components. An estimation of the overall core quality can therefore be based on the com-

ponent’s quality distribution, and on the probability of how many and which components can 

be recovered. The sales plan is then divided into a separate sales plan for new products and 

one for remanufactured products. The sales plan for new products is passed on to a normal 

manufacturing facility. 

With the sales plan completed, primary demand planning can be initiated. Primary demand 

planning consists in deriving the net primary demand for products, which is obtained by com-

paring the desired sales to the inventory level of products and to the already existing orders in 

production. The net primary demand is then used in gross resource planning to determine the 

gross demand for components using the BOMs. At this point, all desired and necessary com-

ponent upgrades are also taken into account. By subtracting the inventories while considering 

safety stock, and the expected component yield via disassembly, which is estimated by the 

core acquisition management, the net demand for new components can be derived. Also sub-

tracted here are component quantities that were ordered in earlier planning periods and whose 

arrival is therefore expected within the current planning horizon. The net demand for compo-

nents is passed on as an order to the according component manufacturers or production facil-

ities and must be available at the start of product assembly. Additionally, each core now is 

matched with a new product to be converted in. All components which have to be removed 

from the core are now known and based on the lead times for each component in disassembly 

and in assembly, the according lead times can be determined. 

The quantity of cores to be disassembled, as determined by the sales plan, is the basis for 

gross resource planning in disassembly. Gross resource planning for assembly, in turn, re-

quires the net primary demand for products as an input. In combination with the routings and 

other process information, such as processing times, the required capacities can be derived. 

As a core is ideally only striped of components, which can no longer be used, each core can 

have a different configuration or composition of components after disassembly, and therefore 

has a unique remanufacturing process. This means that each core must be identified individ-

ually when entering production. The final step is to compare the required capacities with the 

available capacities in all processing steps to check the feasibility of the production program. 
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Figure 4.2: General model of data-based production program planning in remanufacturing 

4.3 Conceptualizing the Data Model 

The activity model is examined with the IDEF0 method to deduce the data required for the 

respective activities. The data is transferred into a data model, which is written in UML. The 

general structure of the model is shown in Figure 4.3. The procedure for building the final data 

model is to sort the data from the activity model into classes. For this purpose, UML provides 

class diagrams that assign attributes and methods to a class. Instances of these classes then 
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represent the real objects of PPP in remanufacturing. In addition to the division into classes, 

data that is to be assigned to the master data is highlighted accordingly in order to simplify the 

future management of the data. Furthermore, data is highlighted that is related to the use 

phase of the product and should therefore be part of a digital product passport to support the 

PPP in remanufacturing. 

The aim of the PPP is to create a production program. The production program is therefore the 

central class in the UML diagram. A production program stands in relationship with other clas-

ses, which contain the necessary data of their instances. These relations can have different 

characteristics, which is represented by the labeling and end symbols of the lines. Accordingly, 

products are added to a production program, as well as cores that have many of the attributes 

that a product also has. Products are composed of components. To better structure the model, 

the production program receives a separate sales model, and the sales model receives a sep-

arate demand model. In addition, the production program registers the facilities for which it is 

created, and these in turn have several associated resources with the corresponding process 

parameters. The data is also marked as master data or as part of a DPP if applicable. 

 

Figure 4.3: General UML data model for PPP in remanufacturing 
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5 Detailing of the Model 

5.1 Methodological Approach and General Model Theory 

The data model is methodically derived based on the process model and the activity model 

defined in chapter 4. The activity model already contains the most important input and output 

information for the activities in PPP. In order to obtain a systematic and complete coverage of 

the data requirements, they must be derived in a structured way from the existing activity 

model. The data requirements are classified in order to obtain the final model, which then 

contains all data points about the respective products, components, and processes that are 

needed for PPP in remanufacturing as defined in chapter 4. The basis of the model construc-

tion are general requirements that are imposed on models. 

A model must have certain characteristics and meet certain requirements to be considered as 

such. STACHOWIAK (Stachowiak 1973, pp. 131–133) identifies three main characteristics of 

models in his general model theory. Those are the illustration characteristic, the shortening 

characteristic, and the pragmatic characteristic. The data model is evaluated against these 

characteristics to determine how the requirements of a model are met. 

◼ Illustration characteristic: A model is a representation of natural or artificial objects 

or processes. These objects or processes can be observed or created by humans or 

machines. Models can be simplified versions of the originals, which themselves can be 

models. Any object that can be experienced or constructed by a person can be consid-

ered the original form of one or more models. 

The data model represents the database required for carrying out a PPP in remanufacturing, 

and thus fulfills the illustration characteristic. 

◼ Shortening characteristic: Models do not necessarily capture all attributes of the orig-

inal they represent. They contain only those entities that seem relevant to the respec-

tive model creators and/or model users. However, the simplification made by the mod-

eler assumes that the modeler has fully understood the original in order to make an 

informed decision about which entities are relevant. 

With the presentation of the characteristics of PPP in remanufacturing, this thesis shows that 

the topic of PPP in remanufacturing has been comprehensively analyzed and understood, in-

cluding the weaknesses of classical approaches. Thus, an informed decision can be made 

about which entities the data model must represent and the shortening characteristic is fulfilled. 

◼ Pragmatic characteristic: Models are not necessarily uniquely assigned to their orig-

inals. They are created to replace the original by application of the model. The applica-

tion takes place in defined time intervals and under restriction to certain mental or actual 

operations. Thus, models are not only representations of an original, but have a, often 
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human, user. They are time-related and have a defined purpose. A model has to con-

sider not only the question of what it represents, but also for whom, when, and for what 

purpose it is made with respect to its specific functions. 

The data model represents all data required for PPP according to the defined remanufacturing 

process. By applying and filling in the model, all data required for PPP in remanufacturing can 

be obtained. The application is the responsibility of the production planner and is conducted in 

the PPP cycle defined by the company. Thus, the pragmatic characteristic is fulfilled. 

5.2 Systematic Derivation of the Information Requirements 

The model of PPP in remanufacturing is based on activities, which require defined information 

for their execution. To determine the information requirements of all activities, the Integration 

Definition for Process Modeling (IDEF0) method can be used. It is suitable for the structured 

design and analysis of systems, as well as for the improvement of productivity and communi-

cation in computer-integrated manufacturing systems. In addition, it is explicitly proposed for 

the development and specification of working methods. A working method is a combination of 

activities, methods, and tools, which serve the achievement of a defined purpose. (Presley and 

Liles 2015, p. 1) PPP in remanufacturing is such a sequence of activities and its purpose is to 

create the production program. 

The IDEF0 logic for mapping processes is based on a block structure. A classic IDEF0 block 

is shown in Figure 5.1 on the left. It contains an activity that requires an input and provides an 

output. The activity is subject to constraints and requires resources. The blocks can be com-

bined into arbitrarily complex models by connecting inputs and outputs of different blocks and 

combining them in different aggregation levels, as shown in Figure 5.1 on the right. (Presley 

and Liles 2015, p. 2; Dorador and Young 2000, pp. 431–433) 

 

Figure 5.1: Representation of an IDEF0 block (left) and of a decomposition-structure (right) 

(Presley and Liles 2015, p. 3) 
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The placement of the blocks is not bound to a strict order of precedence, making the IDEF0 

method suitable for mapping flows where multiple activities occur simultaneously, and where 

the actual order in which tasks are executed varies depending on the specific implementation. 

(Presley and Liles 2015) 

In the following, the individual components of an IDEF0 block are integrated into the context 

of this work, and the meaning of activity, input, output, constraint, and resource are explained 

in more detail. A graphic description of the final, general IDEF0 block as used in this thesis is 

represented in Figure 5.2. 

Activity: An activity is a task that must be carried out in PPP in remanufacturing. All activities 

are predefined as shown in Figure 4.2. As PPP in remanufacturing is a planning process, all 

activities convert non-physical inputs into non-physical outputs, meaning that the activities only 

convert information and no actual products or materials. 

Input: The input is the information needed to perform the activity and to obtain the output. 

Depending on the activity, the type of information varies significantly. In sales planning, mostly 

market information is needed. Meanwhile core acquisition management requires information 

about the condition of cores, which are then passed on to primary demand planning. Primary 

demand planning uses product related information and inventory information. Finally, gross 

resource planning requires capacity information in order to verify the production program. 

Output: The set of information generated by an activity is called the output. Apart from two 

exceptions, all outputs are inputs to a subsequent activity. Those exceptions are the new prod-

ucts sales plan, which is handled in a classic PPP, and the final feasibility check. 

Constraint: Constraints are here considered a special kind of input information that limit the 

solution space of the output. In the context of PPP in remanufacturing such constraints can be 

maximal or minimal inventories, capacity constraints, availabilities of cores, etc. 

Mechanism/Resource: Resources are needed to conduct the task or activity. As could be 

seen in chapter 3.3, the mechanism or resource to create a production program is often a 

mathematical optimization, which performs several activities at the same time, given certain 

variables, parameters, and constraints. Whenever a block has no specific assigned resource, 

the field is left empty. 
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Figure 5.2: General IDEF0 block in the context of PPP in remanufacturing 

5.2.1 IDEF0 and the Distinction between Data and Information 

The terms data and information are often not clearly distinguished from each other. In litera-

ture, a distinction between data, information, and knowledge is common, but the terms are 

defined differently depending on the context. In computer systems, data is the term for coded 

invariants. It also often refers to statistical records or, in its most basic form, a sequence of 

symbols that cannot be interpreted without context. Information in computer systems is data 

with an assigned meaning. Information is interpretable data and can be used to generate 

knowledge. (Zins 2007, pp. 480–486) 

For this work, the distinction between data and information is particularly important since the 

final goal is to create a data model. In the literature on the use of the IDEF0 logic, there is not 

always a clear distinction made between these two terms. For example, DORADOR et al. refer 

to data as information or objects (Dorador and Young 2000, p. 431), and PRESLEY et al. mainly 

use the term data in their explanations of how to use the IDEF0 method (Presley and Liles 

2015). Therefore, it is assumed that IDEF0 is suitable for mapping both data and information. 

However, by this definition a data model needs context to be applicable and understandable. 

Therefore, the IDEF0 blocks are first filled with information to allow for an understanding of the 

purpose of the corresponding model fragments. The data needed for each piece of information 

is then decontextualized and represented only by a variable name and the data type. The 

explanation on how to use the data must therefore be taken from the information blocks and is 

partially lost during translation into the data model. The following example illustrates the issue. 

A constraint for sales planning is that only as many remanufactured products can be sold as 

there are cores available. Formulated as an understandable equation and thereby an infor-

mation this means: 
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𝑁𝑟𝑒𝑚𝑎𝑛𝑆𝑎𝑙𝑒𝑠 ≤ 𝑁𝑐𝑜𝑟𝑒𝑠𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 

 

(5) 

A data model then reduces the context to the mere variables, which in this case are NremanSales 

and NcoresAvailable, without mentioning their relation to each other or how they are used. 

Accordingly, IDEF0 serves as a methodical approach for identifying the data. The data model 

finally summarizes this data, classifies it, and represents it in a from the activity model ab-

stracted form. This avoids duplications and simplifies the handling of the data. The procedure 

is illustrated in Figure 5.3. 

 

Figure 5.3: Method for deriving the data model from the activities of PPP in remanufacturing 

5.3 IDEF0 Information Requirements and Derivation of Data Re-

quirements 

Activity A1 – Demand forecasting at product-level (Figure 5.4) 

Input – The information needed to predict demand varies depending on the used prediction 

method. For the IDEF0 block, the EGGERT demand model is used as a reference (Eggert 2003, 

197–209). Independently of this, the planning horizon and the duration of the planning periods 

are defined. In addition, it is determined which products are included in the demand forecast. 

Those are identified by their product group ID, which also distinguishes between remanufac-

tured and new products and is assumed to be a sequence of integer values. In addition, ac-

cording to EGGERT, the product attributes that are valued by the customer are an input to the 

demand forecast. Such attributes can be of different types and units, which is why they must 

be normalized in advance to make them comparable (Eggert 2003, pp. 199–200). The demand 

forecast also requires product-group-specific variables as an input. The obsolescence is a 

measure of the customer's loss of interest in products as they age (Eggert 2003, p. 156). In 

addition, the customer is only willing to accept a certain level of deviation of product specifica-

tions from his personal preference. By incorporating historical demand records for the products 

under consideration, seasonality can also be taken into account and the accuracy of the model 

can be improved. If there is no seasonality to be seen in the previous demand, the parameter 

is set to zero. 
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Figure 5.4: IDEF0 block of information requirements and derivation of data requirements for 

product-level demand forecasting 

Constraints – Demand can be constrained or spurred by economic fluctuations. Therefore, 

an economic fluctuation parameter is included in the model. 

Output – The demand forecast provides a separate demand distribution for each product 

across all planning periods within the planning horizon. 

Explanation of the derived data – The planning horizon and the planning period are assumed 

to be integers. The list of normalized product attributes contains an associated set of normal-

ized attributes for each product. A normalization can be done to a range from zero to one, 

therefore the floating-point number is chosen as data format. A list structure is also proposed 

for the output, assigning a time series of integer demand forecast values to each product. The 

length of the list always corresponds to the number of planning periods. 

Activity A2 – Sales balancing at product-level (Figure 5.5) 

Input – The balancing of sales figures of remanufacturing and new products is based on the 

sales model from FRANK (Frank 2022, pp. 85–96). The activity requires above all the demand 

forecast from activity A1. Furthermore, already existing customer orders are taken into ac-

count, which have to be produced in addition to the expected demand. For the cores, the qual-

ity probability distribution must be known, which determines how likely it is that a core can be 

remanufactured. In addition, the prediction of core availability and their qualities are included 

in the balancing of sales. Core quality and availability depend on the business model and are 

core specific. Therefore, in addition to the product group ID, a unique product ID is introduced, 

Activity A1
Demand forecast at product-level

Input
▪ Planning horizon

▪ Duration of a planning period

▪ Products (via product group ID) 

and their specifications 

(dimensions of the product space)

▪ Normalized list of product 

attributes which create benefits for 

the customer

▪ Parameters which influence 

demand (obsolescence, deviation 

from desired specifications)

▪ Historical demand data 

(preference distribution of product 

characteristics, seasonality 

distribution)

Data

Input

▪ planningHorizon : int

▪ planningPeriod : int

▪ productGroupID : int

▪ normalizedProductAttributes : float[]

▪ productObsolescenceParameter : float

▪ productSubstitutionParameter : float

▪ seasonalityParameter : float

▪ productDemandHistory : int[]

Constraints

▪ economyFluctuationParameter : float

Output

▪ expectedDemand : int[]

Constraints
▪ Economic fluctuations

Output
▪ Expected demand for new 

products and remanufactured 

products for each planning period 

within the planning horizon
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which can identify every single product individually. On the cost side, estimations of the quality-

dependent procurement costs of the cores are required, and estimations of the processing 

costs for remanufacturing, for new production, as well as for upgrades. The inventory costs 

are needed as input, as well as the fixed costs of the production. Further costs are caused by 

the development of the remanufacturing system and by the development of the upgrades. Both 

can be zero if there were no developments made within the current planning horizon. The costs 

of the cores correspond to the price that can be achieved by selling surplus cores. Furthermore, 

the achievable prices of all products are needed, as well as information about what price in-

crease can be obtained with an upgrade. 

Constraints – Sales are constrained upward by demand. There may be periods in which a 

potential increase in profits justifies selling less products than the demand would allow. In ad-

dition, the maximum number of cores that can be purchased is the number of cores available 

on the market. If, at the end of a period, more cores are purchased than are needed for re-

manufacturing, the surplus cores are sold. In addition, the sales of remanufacturing and new 

products are at most as high as the sum of the inventory of a period and the products (re)man-

ufactured in that period. 

Output – The main output of the activity are the sales figures to be achieved for all products 

per planning period. The activity also determines the number of cores purchased per period, 

the required inventory and production quantities, and the total expected profits. 
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Figure 5.5: IDEF0 block of information requirements and derivation of data requirements for 

product-level sales balancing 

Explanation of the derived data – The probability of a core to have a sufficient quality for 

remanufacturing is a floating-point number. Furthermore, all data that changes with a planning 

period is represented as a list. This concerns all outputs and constraints, whereby the total 

profits form an exception as they represent the sum over all profits and planning periods. Prof-

its, prices, and probabilities are generally represented as data of type float. The business 

Activity A2
Sales balancing at product-level

Input
▪ Expected demand for new 

products and for remanufactured 

products for each planning period 

within the planning horizon

▪ Existing customer orders in a 

defined planning period

▪ Core quality probability distribution

▪ Core return- and quality-forecast

▪ Core purchasing costs depending 

on their quality

▪ Process costs for core 

remanufacturing, product 

manufacturing, and upgrading

▪ Fixed costs

▪ Inventory costs for 

remanufactured products and for

new products

▪ Development costs of upgrades

▪ Price increase for an upgrade

▪ Price of remanufactured products 

and of new products

▪ Revenue from selling surplus 

cores

▪ Remanufacturing system 

development costs

▪ List of business models under 

which the product is distributed

▪ Market share of the various 

business models for 

remanufactured products and for 

new products

Data

Input

▪ productID : int

▪ expectedDemand : int[]

▪ existingOrders : int[]

▪ coreQualityProbabilityDistribution : float

▪ coreReturnProbability : float[]

▪ manufacturingProcessCosts : float

▪ remanufacturingProcessCosts : float

▪ fixedCosts : float

▪ productInventoryCosts : float

▪ productPrice : float

▪ coreAcquisitionCosts : float

▪ businessModel : string

▪ businessModelMarketShare : float

▪ upgradingProcessCosts : float

▪ upgradeDevelopmentCosts : float

▪ upgradePriceIncrease : float

Constraints

▪ expectedDemand : int[]

▪ coresAvailableFromReturns : int[]

▪ coresPurchased : int[]

▪ coresResold : int[]

▪ remanufacturedProductInventory : int[]

▪ newProductInventory : int[]

▪ remanufacturedProductProduction : int[]

▪ newProductProduction : int[]

Output

▪ remanufacturedProductSales : int[]

▪ newProductSales : int[]

▪ coresPurchased : int[]

▪ remanufacturedProductInventory : int[]

▪ newProductInventory : int[]

▪ remanufacturedProductProduction : int[]

▪ newProductProduction : int[]

▪ totalProfits : float

Constraints
▪ Demand for remanufactured 

products and for new products is 

the upper limit of sales

▪ Number of purchased cores of a 

certain quality is smaller than the 

number of returned cores

▪ Surplus cores are resold

▪ Sales of remanufactured products 

are zero in the first period when 

initiating production

▪ Sales are always less than or 

equal to the sum of production 

and inventory

Output
▪ New product sales per planning 

period

▪ Remanufactured product sales 

per planning period

▪ Number of cores purchased per 

planning period

▪ Number of remanufactured 

product and of new products to be 

produced per planning period

▪ Expected inventory of 

remanufactured products and of 

new products per planning period

▪ Total optimized profits

Activity A2
Sales balancing at product-level
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model types are a list of strings, each of which is assigned a market share. The latter is a 

normalized value between zero and one, which is thus also defined as a floating-point number. 

Activity A3 – Returns and quality forecast at product-level (Figure 5.6) 

Input – Chapter 2.2.5 showed that core return times are statistically distributed. This distribu-

tion must be known for a product, including the time the core was sold to the customer. If 

additional information from the past is available, historical data can be used, similar to the 

demand forecast. A corresponding forecasting model may require further parameters. As de-

scribed in the general model, the probability of a core to have a certain quality is estimated 

based on the quality probability distribution of its components. The component quality distribu-

tions are derived from the individual component qualities, which are logged over time and cu-

mulated for each component group. The combined quality probability distribution of the com-

ponents then yields the probability for a core to have a sufficient quality to be remanufactured. 

Output – The objective of the prediction is to determine the core quality, the time at which a 

product is expected to be returned, and the probability with which a core will be returned in a 

specific business model and with a defined quality. Core acquisition management also com-

municates the procurement costs for cores, which depend on the quality of the cores, to sales 

planning. 

 

Figure 5.6: IDEF0 block of information requirements and derivation of data requirements for 

product-level returns and quality forecast forecasting 

Explanation of the derived data – As before, the time-dependent variables are represented 

as a list. The output can be summarized in four data points. On the one hand, the quality 

distributions are floating point numbers which define how likely it is that a core consisting of a 

Input
▪ Product ID

▪ Component ID (BOM)

▪ Component Group ID

▪ Component quality probability 

distribution

▪ Core return probability distribution

▪ Time of sale

▪ Historic sales data

▪ Historic core returns depending on 

the business model

▪ Forecasting model parameter

▪ List of business models under 

which the product is distributed

Data

Input

▪ productID : int

▪ bomComponentID : int

▪ componentGroupID : int

▪ componentQualityProbabilityDistribution : float[]

▪ returnProbabilityDistribution : float[]

▪ productTimeOfSale : int

▪ forecastingParameter : float

▪ businessModel : string

Output

▪ coreQualityProbabilityDistribution : float

▪ coreReturnProbability : float[]

▪ coreAcquisitionCosts : float

Output
▪ Core quality probability distribution

▪ Core return probability depending 

on the business model

▪ Expected time of return

▪ Core acquisition costs

Activity A3
Returns and quality forecast at 

product-level
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known set of components can be remanufactured, and on the other hand, the list format of the 

return probability also captures the period in which the return is expected to occur. Costs are 

floating-point numbers. 

Activity A4 – Derive product net primary demand (Figure 5.7) 

Input – The gross primary demand recorded in the sales plan is reduced by the current inven-

tories in the determination of the net primary demand for products. In addition, orders currently 

in production are subtracted, which also do not have to be included in new product orders. The 

distinction between the individual product ID and the product group ID is necessary at this point 

in order to first identify the products of the same type, and then to use the Individual ID to check 

compliance with the exact product specifications defined in the sales plan.  

Constraints – For all products, maximal and minimal inventory limits are defined, which may 

neither be exceeded nor undercut. The upper limit of the inventory can be chosen based on 

the available space, and the minimal inventory is a safety stock that must be maintained in 

order to be able to react to deviations from the plan. In addition, it can be specified that no 

changes are made to the production program within a defined number of subsequent periods 

in order not to destabilize production. The lead times are average values for the product group 

and the lot sizes constrain the flexibility in meeting demand. 

Output – The result of the activity is the net primary demand of the products, i.e., the number 

of pieces that are ordered per product and period in the production. As lot sizes and lead time 

must be considered in this activity, the inventories calculated in the sales plan must be up-

dated. 
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Figure 5.7: IDEF0 block of information requirements and derivation of data requirements for de-

riving the remanufacturing product net primary demand 

Explanation of the derived data – The data structure for deriving the net primary demand is 

less complex than that of the preceding activities. All data are integers. The output is then a 

list of orders that are put into production for a product in a specified planning period. Although 

only one product ID is recorded as a variable, the ID is recorded for all the products considered, 

and thus for each product a list of orders is submitted to production. 

Activity A5 – Derive component gross demand (Figure 5.8) 

Input – To determine the gross demand for components, the respective product IDs, and their 

associated component compositions from the BOMs are required. In remanufacturing those 

BOMs are also product specific, and each component has a unique ID. This causes complex 

data management but is necessary to be able to record the individual operating conditions of 

a component in the use phase. The BOM of a new product already includes all upgrades. In 

the data model, the ID of a product and the ID of a core are not formally distinguishable, as 

they both refer to products. The distinction becomes apparent only when looking at the spe-

cific ID that identifies the product. 

Output – The BOMs are used to calculate the gross demands of components for production. 

The gross demands do not include any inventory or planned component receipts. 

Input
▪ Products Group ID

▪ Product ID

▪ Current product inventory level

▪ Current orders in production

▪ Number of remanufactured 

products to be produced per 

planning period

▪ Expected inventory of 

remanufactured products per 

planning period

Data

Input

▪ productGroupID : int

▪ productID : int

▪ remanufacturedProductInventory : int[]

▪ ordersInProduction : int[]

▪ remanufacturedProductSales : int[]

Constraints

▪ productInventoryLimit : int

▪ productSaftyStock : int

▪ frozenPeriods : int

▪ productLeadTime : int

▪ lotSize : int

Output

▪ netProductDemandRemanufacturing : int[]

▪ netProductInventory : int[] 

Output
▪ Net primary demand for 

remanufactured products to be 

produced in each planning period

Activity A4
Derive product net primary demand

Constraints
▪ Maximum and minimum inventory 

levels of remanufactured product

▪ Number of upcoming periods 

which must not be altered in order 

to stabilize production

▪ Lead times and lot sizes for 

production
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Explanation of the derived data – The BOM must assign the component ID and the quantity 

of components required to each product ID. In addition, BOMs may have a tree structure if 

additional BOMs exist for the components themselves. However, according to the process 

defined in chapter 4.1, subcomponents are taken care of within a lower-level cascade in the 

remanufacturing process. Thus, the BOM needed to manufacture the product within one cas-

cade has only one sub-level. This is due to the cascading of the process, in which each com-

ponent demand is transferred to a sub-production as a customer order. 

 

Figure 5.8: IDEF0 block of information requirements and derivation of data requirements for de-

riving the component gross demand 

Activity A6 – Derive expected component yield (Figure 5.12) 

Deriving the expected component yield is a complex task which is displayed here in three 

consecutive IDEF0 blocks. Those blocks combined then form the activity as can be seen in 

Figure 5.9. At first, the components contained in a core are identified (A6.1). Then, the remain-

ing useful life of each component is estimated (A6.2) and finally the gross component yield is 

determined (A6.3).  

 

Figure 5.9: IDEF0 decomposition structure of activity six into three consecutive sub-activities 

 

 

 

Input
▪ Product ID

▪ List of all components and their 

quantity needed to manufacture 

the product, including upgraded 

components (BOM, component 

ID) 

▪ Net primary demand for 

remanufactured products to be 

produced in each planning period

Data

Input

▪ productID : int

▪ bomComponentID : int

▪ componentGroupID : int

▪ bomComponentQuantity : int

▪ netProductDemandRemanufacturing : int[]

Output

▪ grossComponentDemandRemanufacturing : int[]

Output
▪ Component gross demand per 

planning period

Activity A5
Derive component gross demand

A6 A6.2 A6.3A6.1
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Activity A6.1 – Identify core components (Figure 5.10) 

Input – Each core is identified individually, as it is composed of individual components which 

all have a quality that depends on their unique usage conditions during the use phase. The 

BOMs are therefore not generic anymore as in classic PPP, where one BOM can be used to 

decompose several products which consist of components of the same type.  

Output – The activity yields a list of all the individual component IDs that are installed in the 

product. Such a list is created for all the cores that are expected to return in a specific period. 

 

Figure 5.10: IDEF0 block of information requirements and derivation of data requirements for 

identifying the components of a core 

Activity A6.2 – Estimation of the remaining useful life of the components (Figure 5.10) 

Input – The quality of a component in the data model is determined by its remaining useful 

life. Components which have a sufficient remaining useful life can be reused in new products. 

The estimation of the remaining useful life requires several pieces of information. These are 

primarily based on MUSTAJIB et al. (Mustajib et al. 2021). This information includes the compo-

nent age. In addition, there may be components that can only go through a defined number of 

life cycles. For this purpose, the number of previous life cycles is recorded. Besides, physical 

damage is recorded in the form of the damage level. The tolerances of geometry and dimen-

sions must be known, and the frequency of use. A component that has been serviced more 

often is likely to have a higher remaining useful life. This also applies to components from 

products that are returned earlier. 

The categories listed are general criteria intended to cover as wide a range of data and com-

ponents as possible. In individual cases, the challenge is to identify exactly those data points 

that influence the lifetime of components. For this purpose, a placeholder for additional data is 

added to the data model. The following examples illustrate how versatile the possibilities are.  

Machine tools often have ball screws that are used to translate a rotary motion into a transla-

tional motion. In ball screws, the screw pitch error has a considerable influence on the operat-

ing behavior, internal load distribution, stiffness, and component life (Mei et al. 2003, p. 1). 

Input
▪ Product ID

▪ Expected time of return

▪ List of all components and their 

quantity contained in the product 

(BOM)

Data

Input

▪ productID : int

▪ coreReturnProbability : float[]

▪ bomComponentID : int

▪ componentGroupID : int

▪ bomComponentQuantity : int

Output

▪ coreComponentIDs : int[]

Output
▪ A list of the components contained 

in the core, individually identified 

by their ID

Activity A6.1
Identify core components
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Such a data point is rather specific but can be included in the tolerance parameter mentioned 

in this IDEF0 block. A different example is a lithium-ion battery. The life of lithium-ion batteries 

depends, among other things, on whether they are used outdoors, exposed to uneven road 

surfaces or temperature fluctuations, and on the load changes (Wu et al. 2016, p. 1). Another 

publication uses voltage, current, temperature, and the discharge capacity to predict the ca-

pacity of a lithium-ion battery (Ansari et al. 2021, p. 3), showing that even within one type of 

component, there is no general consent about which data to use. To predict the remaining 

useful life of engine oil in internal combustion engines, oxidation, antioxidant breakdown, ad-

ditive depletion, soot accumulation, total acid or base number, oil consumption, and wear met-

als can be used (Jagannathan and Raju 2000, p. 3511). 

Output – The activity outputs the expected remaining useful life of each component in the 

component list. 

Explanation of the derived data – The data used to estimate the remaining useful life of a 

component cannot always be estimated objectively. MUSTAJIB et al. use subjective ratings for 

all categories except for the completeness of the component. This is a quotient of the number 

of parts that make up the component and the number of parts that the component should have. 

In remanufacturing with a cascaded process, the formation of the quotient is obsolete, since 

components are remanufactured by their respective manufacturer should they not be com-

plete. Therefore, a boolean value is used here, which allows a yes-no distinction. 
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Figure 5.11: IDEF0 block of information requirements and derivation of data requirements for 

determining the remaining useful life of the components 

Activity A6.3 – Determining the gross component yield (Figure 5.12) 

Input – The gross component yield is determined for each product and its components. Those 

components, which have a remaining useful life superior of the necessary one, can be included 

in a new product. Additionally, the components are analyzed with respect to their obsolescence 

and their upgradability. 

Output – The output is a list of all components which can be reused. At the same time, com-

ponents which have no sufficient remaining useful life, are obsolete, or not upgradable, cannot 

be used again in a new product. Storing this information is important in order to return such 

components to their manufacturer. 

Input
▪ A list of the components 

contained in the core, individually 

identified by their ID

▪ Component age

▪ Number of previous lifecycles of 

the component

▪ Component damage level

▪ Component completeness

▪ Component traceability

▪ Component dimensional and 

geometrical tolerances

▪ Component frequency of use

▪ Component maintenance history

▪ Additional component specific

data

Data

Input

▪ productID : int

▪ coreComponentIDs : int[]

▪ componentAge : float

▪ componentLifecycleCount : int

▪ componentMaxLifecycles : int

▪ componentDamageLevel : int

▪ componentCompleteness : boolean

▪ componentDimensionalTolerance : float

▪ componentGeometricalTolerance : float

▪ componentUseFrequency : int

▪ componentMaintenanceStatus : int

▪ componentAdditionalData : int

Output

▪ componentRemainingUsefulLife : float

Output
▪ Component remaining useful life

Activity A6.2
Estimate remaining useful life
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Figure 5.12: IDEF0 block of information requirements and derivation of data requirements for 

deriving the expected component yield 

Activity A7 – Derive component net demand (Figure 5.13) 

Input – For the calculation of the net demand of components, the gross demands are needed 

as input information. From this, the expected component yields from the cores, the current 

inventories and the components already ordered that will arrive at the factory within the plan-

ning horizon are subtracted. An additionally needed information is how the components can 

be accessed. There may be components needing replacement, which cannot be removed 

without removing other components of acceptable quality first. 

Constraints – Similar to the determination of net requirements from the products, the maxi-

mum allowable inventory levels and component safety stock levels are required. Also, the min-

imal order quantities and ordering lead times must be considered as constraints. 

Output – The activity has several objectives. One of them is to determine the number of com-

ponents that need to be ordered from subsequent production lines or suppliers. There is also 

a quantity of components that will not be used in remanufacturing. Such components may meet 

quality requirements but are not installed in new product because they are either replaced by 

an upgrade, or simply not desired by the customer. In the automotive industry, for example, a 

core may have a trailer coupling, while the customer of the new product does not want it. Since 

the high quality of the component has already been verified at this point, it can be resold, or 

put into stock. Another main objective is determining which components must be removed in 

disassembly, and which must be reassembled. Therefore, a core is matched with a new prod-

uct based on the estimated availability of a core and their level of similarity. Knowing the pro-

cess sequence of all components in assembly and in disassembly, as well as the individual 

lead times, the core-specific remanufacturing process can now be planned because the routing 

Input
▪ Product ID

▪ Expected time of return

▪ List of all components and their 

quantity contained in the product 

(BOM)

▪ Component remaining useful life

▪ Component required useful life

▪ Component obsolescence

▪ Component upgradability

Data

Input

▪ productID : int

▪ coreReturnProbability : float[]

▪ bomComponentID : int

▪ componentObsolescence : int

▪ componentUpgradability : int

▪ componentRemainingUsefulLife : float

▪ componentRequiredUsefulLife : float

Output

▪ componentYieldFromDisassembly : int[]

▪ unusableComponents : int[]

Output
▪ Expected component yield from 

disassembled cores per planning 

period, including components 

which need to be disassembled to 

get to other components, but can 

later be reused

▪ Number of discarded components 

due to insufficient quality, which 

can be sold as cores to 

subsequent remanufacturing 

processes

Activity A6.3
Derive gross component yield
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is known. Therefore, the component net demand is already adjusted for when the components 

are needed, so that the final product can be delivered in the planned period. Additionally, each 

component is marked with a timestamp of the period in which it needs to be disassembled or 

assembled. 

Explanation of the derived data – The variable used to describe the combined routing of a 

core and later, a product, is determined by the sequence of process IDs, which refer to the 

co ponent’s dis sse      nd assembly processes. The variable is a list of integer IDs, which 

in this case is not related to the planning periods. 

 

Figure 5.13: IDEF0 block of information requirements and derivation of data requirements for 

deriving the component net demand 

Activity A8 – Derive assembly capacity requirements (Figure 5.14) 

Input – The required capacities in assembly can be determined on the basis of the routings 

and process times already known for the respective component assemblies. The planning pe-

riod, in which a component is assembled is specified in the previous activity. The sum of all 

component assemblies together with the IDs of the respective processes is the total required 

capacity on a resource in a defined period. 

Data

Input

▪ productid : int

▪ bomComponentID : int

▪ componentGroupID : int

▪ grossComponentDemandRemanufacturing : int[]

▪ componentYieldFromDisassembly : int[]

▪ currentComponentInventory : int[]

▪ componentReceipts : int[]

▪ componentAssemblyProcessID : int

▪ comonentDisassemblyProcessID : int

▪ componentAssemblyPredecessorID : int

▪ componentDisassemblyPredecessorID : int

▪ componentAssemblyProcessingTime : int

▪ componentDisassembllyProcessingTime : int

Constraints

▪ componentInventoryLimit : int

▪ componentSafetyStock : int

▪ minimalorderQuantity : int

▪ orderingLeadTime : int

Output

▪ netComponentDemandRemanufacturing : int[]

▪ componentInventory : int[]

▪ componentsForSale : int[]

▪ coreDisassemblyLeadTime : int

▪ productAssemblyLeadTime : int

▪ coreDisassemblyRouting : int[]

▪ productAssemblyRouting : int[]

▪ componentDisassemblyPeriod : int

▪ componentAssemblyPeriod : int

Output
▪ Component net demand per 

planning period

▪ Number of components which are 

not needed in production, and can 

be sold

▪ Core disassembly lead time

▪ Product assembly lead time

▪ Core and product routing

▪ Component inventories

▪ Component assembly and 

disassembly period

Activity A7
Derive component net demand

Constraints
▪ Maximum and minimum 

component inventory level

▪ Minimum order quantity and 

ordering lead times

Input
▪ Product ID (core and matched 

new product)

▪ Component ID

▪ Component gross demand per 

planning period

▪ Expected component yield from 

disassembled core

▪ Current component inventory 

levels

▪ Scheduled component receipts

▪ Disassembly and assembly 

process sequence

▪ Component disassembly and 

assembly processing time

▪ Information on how the 

component can be accessed and 

if other components must be 

removed or mounted in advance
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Output – For each process, uniquely identified by its ID, the required capacities are specified 

and expressed as the time the resource is occupied. 

 

Figure 5.14: IDEF0 block of information requirements and derivation of data requirements for 

deriving the assembly capacity requirements 

Activity A9 – Derive disassembly capacity requirements (Figure 5.15) 

Input – As in assembly, the required capacities in disassembly can be determined using the 

routings and process times already known for the respective component disassembly. The 

planning period, in which a component is disassembled is specified in the previous activity. 

The sum of all components to be disassembled, together with the IDs of the respective pro-

cesses, is the total required capacity on a resource in a defined period. 

Output – For each disassembly process, uniquely identified by its ID, the required capacities, 

e.g., expressed as the time the resource is occupied, are specified. 

 

Figure 5.15: IDEF0 block of information requirements and derivation of data requirements for 

deriving the disassembly capacity requirements 

Data

Input

▪ productID : int

▪ productAssemblyRouting : int[]

▪ processIDAssemblyProcessingTime : int

▪ componentAssemblyPeriod : int

Output

▪ processID : int

▪ requiredCapacityOnAssemblyResource : int[]

Input
▪ Product assembly routing with the 

corresponding process IDs

▪ Processing time depending on 

assembly process ID

▪ Component assembly periods

Output
▪ For each process, identified by its 

ID, the necessary capacity in a 

defined planning period

Activity A8
Derive assembly capacity 

requirements

Data

Input

▪ productID : int

▪ coreDisassemblyRouting : int[]

▪ processIDDisassemblyProcessingTime : int

▪ componentDisassemblyPeriod : int

Output

▪ processID : int

▪ requiredCapacityOnDisassemblyResource : int[]

Input
▪ Core disassembly routing with the 

corresponding process IDs

▪ Processing time depending on 

disassembly process ID

▪ Component disassembly periods

Activity A9
Derive disassembly capacity 

requirements

Output
▪ For each process, identified by its 

ID, the necessary capacity in a 

defined planning period

Activity A9
Derive disassembly capacity 

requirements
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Activity A10 – Checking the feasibility of the production program (Figure 5.16) 

Input – To check the production program and the availability of resources, the process ID and 

the total process times in a planning period are required. Formally, it is not necessary to dis-

tinguish between disassembly and assembly, since this information is linked to the process ID. 

Constraints – The feasibility of the production program is limited by the maximum available 

capacity. 

Output – The result of the activity is a comparison between the available and the required 

capacity for each period and resource. If these do not match, changes must be made in the 

production program to relieve the resources, or additional capacity must be made available. 

 

Figure 5.16: IDEF0 block of information requirements and derivation of data requirements for the 

feasibility assessment of the production program 

5.4 Model Building in UML and Data Classification 

5.4.1 Basics and Applications of UML 

UML is a standardized modeling language that is applied in the context of processes. There 

are several types of UML diagrams. These include UML use case diagrams, which describe 

system functionality, as well as class diagrams, and behavior diagrams. UML class diagrams 

depict relationships between classes and define which classes inherit from each other. A UML 

diagram forms the basis of an object-oriented data base, which comprises all relevant data for 

an information model (Dorador and Young 2000, p. 430). Therefore, UML is used to create the 

data model. In addition, UML can be used to build on IDEF0 information diagrams. The deri-

vation of data needs in a UML diagram from information needs defined in an IDEF0 logic is 

called a bottom-up approach to model building (Dorador and Young 2000, p. 435). 

DORADOR et al. use the IDEF3 method as an intermediate step when transferring an IDEF0 

model to a UML class diagram. IDEF3 is a further development of IDEF0, which was developed 

Data

Input

▪ processID : int

▪ requiredCapacityOnDisassemblyResource : int[]

▪ requiredCapacityOnAssemblyResource : int[]

Constraint

▪ capacityLimit : int

Output

▪ programFeasibility : Boolean[]

Input
▪ For each process, identified by its 

ID, the necessary capacity in a 

defined planning period

Output
▪ For each process, identified by its 

ID, the necessary capacity on all 

resources in a defined planning 

period

Activity A10
Feasibility assessment

Constraints
▪ Capacity limit of resource in 

planning period
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for the object-centric description of physical processes, with the goal of capturing every possi-

ble status of an object in a real process (Dorador and Young 2000, p. 433). Since the goal of 

this work is the development of a data model for PPP in remanufacturing, and not that of a 

data model that represents the physical remanufacturing process in the factory, the intermedi-

ate step of IDEF3 modeling is omitted. 

In a UML class diagram, a class describes a group of objects with common properties, behav-

ior, relationships to other objects, and semantics. A class is represented as a rectangle, which, 

in addition to the class name, contains all the attributes of the class and the methods available 

to the class (Dorador and Young 2000, p. 435). The methods are not considered further in the 

data model, since the goal is not representing the handling of the data, but the definition of the 

data, which must be obtained depending on the class. Attributes have a name and a type, and 

describe the state of a class. The type refers to the basic data types such as int, a class, or an 

interface. Classes, attributes, and methods can have modifiers specifying the visibility, insatia-

bility, and modifiability. For example, they can be public, protected, private, or readonly. Graph-

ically, this is indicated by "+", "#", "-" and "?" (Rumpe 2012, p. 35). 

The relations between the classes are described by means of lines, which end in symbols. An 

example of such a generic UML class diagram is shown in Figure 5.17. The figure shows, that 

the subclass Class_2 inherits from superclass Class_1. An inheritance relationship can exist 

between two classes. Here, the superclass inherits its attributes and methods to the subclass. 

In the subclass, further attributes and methods can be added, or those of the superclass can 

be redefined. In doing so, the restrictions imposed by the modifiers must be adhered to. Ac-

cording to the so-called substitution principle, instances of the subclass can also be used 

where instances of the superclass are required. Another element of the UML-logic are associ-

ations, which are binary relationships between classes that are used to realize structural infor-

mation. An association has a name, a cardinality, and an indication of navigation directions. 

The cardinality expresses multiplicity and is specified for each association. A cardinality of 

"0..1" means, that there can be zero or one objects of another class associated with the class, 

whi e “0..*" allows for multiple objects to be associated with the class (Rumpe 2012, p. 35). An 

example of an association in which a class can have an aggregation of objects from another 

class is the relationship between Class_3 and Class_1. The UML diagram states that Class_1 

can be aware of zero or several objects of Class_3. 
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Figure 5.17: Representation of a basic structure for a UML class diagram combined from DORA-

DOR et al. (Dorador and Young 2000, p. 435) and RUMPE (Rumpe 2012, p. 37) 

5.4.2 Building of the UML Class Diagram for PPP in Remanufacturing 

Since UML is an object-oriented modeling language, the basis of the UML model for PPP in 

remanufacturing is the definition of the classes, their respective attributes, and their associa-

tions with each other. The result is shown in Figure 5.18. 

The ProductionProgram-class 

The production program is the central object of PPP in remanufacturing. It is defined by the 

planning horizon, the number of planning periods, and by the frozen periods in which no 

change is made to the current production program. To create it, the current product inventories 

are needed, as well as the number of current orders in the factory for the upcoming periods. 

Then, the expected inventories over the next periods are determined, both for new products 

and for remanufactured products. The gross component demand is derived from the net de-

mand for remanufactured products. By matching component inventories, components already 

ordered, and expected component yields from core disassembly, the net component demand 

is determined as well as the quantity of components that cannot be reused. In addition, the 

production program records the required disassembly capacity for each core and the required 

assembly capacity for each product, so that these can then be compared with the available 

resources to check the feasibility of the production program. 

The other data needed to create the production program are attributes of other classes. A 

production program has a unidirectional association to at least one product. This is marked by 

an open arrow and means that a production program can know several objects of the Product-

class, but these in turn have no knowledge about the production program itself. The production 

program has an identical unidirectional association with one or more cores. There is also a 

bidirectional relationship with one or more facilities and with one sales model. Here, the asso-

ciations are bidirectional, so that an object of the SalesModel-class and of the Facility-class is 

aware of the existence of its respective production program and vice versa. This is necessary 
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because the objects of the SalesModel-class and the Facility-class need to identify the prod-

ucts for which the production program is made.  

The SalesModel-class 

The sales model provides further data points for the production program, which are outsourced 

to a separate class to improve the diagram structure. Through the bidirectional relationship, 

the sales model can identify the products for which the production program is to be created. 

The sales model records the existing orders for a product, as well as the market shares of the 

business model under which a product was sold. It stores information about when cores are 

expected to be returned, how many cores need to be purchased, and how many cores will be 

resold. The sales model also defines for each planning period how many products of the same 

type are to be produced and sold and it can be adjusted by another parameter to make the 

prediction more precise. 

The class has another bidirectional association with exactly one demand model. Thus, the 

demand model in turn can provide the prediction for the demand of all products contained in 

the sales model. 

The DemandModel-class 

A demand model is integrated into the sales model and stores information about the product 

obsolescence and about its substitutability. It also stores the demand history of a product and 

includes a parameter for seasonal fluctuations as well as for economic ones. Based on this 

data the class estimates the expected demand for a product group. 

The Facility-class 

A facility has associated fixed costs and processing costs for manufacturing and remanufac-

turing products. Additionally, the facility accounts for the process costs of an upgrade. It also 

defines a safety stock and an inventory limit for all products and components.  

Regarding the bidirectional association to the production program, it should be noted, that a 

production program can include several facilities, while a facility only has one assigned pro-

duction program. Each facility is composed of one or more processing resources. 

The ProcessingResource-class 

Each resource has a process ID and a capacity limit. The dismantlability of components is 

assumed, so all resources needed to process the product are available and have defined pro-

cessing times in assembly and disassembly. 
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The Product-class 

Each product is an object that has a unique ID and belongs to a product group. This distinction 

is necessary to enable the individual determination of the installed components and their data. 

A product has normalized attributes, causes inventory costs, and can be sold at a certain price. 

If the product has been upgraded, the resulting increase in value is recorded. The development 

costs for an upgrade are also recorded in the product data. Each product is sold under a spe-

cific business model, at a defined time. In addition, the product-specific data includes the lead 

time for assembly and the routing. Also, the lot sizing information must be known for a product. 

As the last relevant data point, a list of unique component IDs is added to represent the BOM. 

The Core-class 

A core in PPP is a product, which is given back to the manufacturer. Thus, a core has the 

attributes that a product has, such as an individual ID, normalized attributes, etc. In UML no-

tation, this relationship can be depicted as an inheritance. The inheritance is marked with a 

white triangle. In addition to the inherited attributes, a core has a quality distribution, a return 

probability, and acquisition costs. Furthermore, the disassembly lead time and the disassembly 

routing are recorded for each core. 

The Component-class 

A product is an aggregation of one or more components. Each object of this class has an 

individual ID and a group ID. In addition, each component receives a statistical distribution of 

its quality. This is determined based on several data points, which here serve as orientation 

and do not have to be raised necessarily for each component, or can also be extended, should 

very specific data points for the determination of the remaining useful life of a component be 

needed. After determining the remaining useful life, the obsolescence and upgradability are 

used to filter for the components which can be reused. In addition, a component has a pro-

cess ID that links it to its respective assembly and disassembly process, as well as the corre-

sponding processing time and period in which the component is likely to be disassembled or 

reassembled. To determine components to be disassembled or reassembled before others, 

the process IDs of the preceding production steps are also stored. In normal manufacturing 

facilities without remanufacturing, components would also have lot sizing information. In the 

defined remanufacturing process, as new components are ordered and not produced, the 

equivalent of lot sizes for components are minimal order quantities from the supplier. 

Classification as master data 

In Figure 5.18 there are also remarks given on which data is master data. Following the defi-

nition of master data in chapter 2.1.8, there are fundamental differences in what is the master 

data when comparing regular PPP to PPP in remanufacturing. In PPP, routings, processing 

times and BOMs are master data. In PPP in remanufacturing, on product level all this infor-

mation is individual for every product due to the individually identified components. The product 
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routing depends on the component yield of each product and so do the processing times. As 

every component is unique, and has a unique ID, the BOM of a product changes every time a 

component is replaced. Therefore, these data points should not be treated as master data in 

the data management system of the remanufacturer. The equivalent of the processing lead 

time is the ordering lead time. 

Integration into a digital product passport 

Many of the in the data model mentioned data points are not inherently known to the manu-

facturer, as the data emerges or changes during the use phase. As shown in chapter 2.1.12, 

such data can be collected in a structured way in a DPP. This work does not define a complete 

DPP but provides data that should be part of it to facilitate PPP in remanufacturing. 

The DPP should include the product ID and the product group ID in order to identify the prod-

uct. The time of sale should be included as well as all individual component IDs which identify 

the components the product is made of. Those components should also keep their group ID, 

to facilitate the creation of component group specific quality statistics. The key parameters 

which help build these statistics at component level should also be included in the DPP to 

serve as a basis for the evaluation of a core’s quality. These parameters change during the 

useful life of the component. That includes the age, the number of life cycles, the damage level, 

the completeness, and the deviancy of the dimensional and geometrical tolerances from their 

tolerable values. Also included should be the use frequency and the maintenance status. The 

additional data parameter is also recorded because there may be more product specific data 

points necessary to determine the remaining useful life of a component. The upgradability and 

the respective price increase should also be part of the DPP, so that a component that breaks 

can be replaced in a repair shop, or upgraded in case the customer wishes to do so. 
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Figure 5.18: UML data model for production program planning in remanufacturing, categoriza-

tion as master data, and assignment to a DPP 
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6 Validation 

6.1 Conceptualization of a Prototypical Simulation Model 

To validate the data model, a prototypical PPP is conducted in remanufacturing with the aim 

to show that the PPP can be performed with a simulation model based on the data listed in the 

data model. Since this is a concept validation, the data model is reduced to a selected set of 

essential elements, which are shown in Figure 6.1, and only core functions are implemented. 

 

Figure 6.1: Depiction of the data used for the prototype of the simulation model 
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Development Tools 

The simulation model is implemented in Python in the Spyder development environment. Ad-

ditionally, the large language model (LLM) ChatGPT is used to assist in writing parts of the 

model code. The model code is shown in Appendix A.2 and all parts that were created using 

the LLM are marked accordingly. The LLM was used solely to assist in writing program code. 

No text passages or other content of the thesis were written using an LLM and no LLM was 

used in the interpretation of results. This is important because LLMs can have severe biases 

in the interpretation of data and text and are therefore generally not acceptable as authors of 

scientific publications (Norris 2023, p. 1). 

Definition of the remanufacturing product and process 

The simulation model is created for an electric vehicle remanufacturing process. This requires 

a dataset, which defines the components of an electric vehicle, and which contains the required 

processing information. Such a dataset is described by HOLLAH (Hollah 2019, pp. 190–192). 

The dataset contains the components of an electric vehicle, and for each component an oper-

ation number, a damage probability, a disassembly probability, and the duration of the disas-

sembly and reassembly process. In addition, the predecessor processes are defined, and pro-

cess IDs are specified as several components are (dis-)assembled on the same resource. The 

data is thus suitable for simulating the PPP for an electric vehicle remanufacturing process. 

The components and their processing information are shown in Appendix A.3. 

The PPP is carried out for an example scenario over a planning horizon of six months. The 

planning horizon is divided into six planning periods of one month each. Since a model for 

sales planning in remanufacturing already exists1, its output data structure is used to define 

the inputs for the prototype simulation model of PPP in remanufacturing. The scope of the 

prototype simulation model is shown in Figure 6.2. 

 
1 The sales model from FRANK described in chapter 3.3.5 
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Figure 6.2: Activities of PPP in remanufacturing which are included in the prototype simulation 

model for creating the production program 
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6.2 Implementation and Analysis of the Results 

A04 – Deriving the product net primary demand  

The PPP is conducted for electric vehicles of product-group 𝑝. The expected sales figures 𝑆𝑝,𝑚 

of products in that group in month 𝑚, the orders in production 𝑂𝐼𝑃𝑝,𝑚 and the current inventory 

𝐼0,𝑝,𝑚, are known inputs. They are listed in Table 6.1 for the next planning periods. 

Table 6.1: Expected sales figures, current inventory, and orders in production for the simulation 

model 

 Month 1 Month 2 Month 3 Month 4 Month 5 Month 6 

Expected sales of remanufac-

tured products 𝑆𝑝,𝑚 

300 200 200 300 200 300 

Remanufacturing orders in 

production 𝑂𝐼𝑃𝑝,𝑚 

50 0 0 0 0 0 

Current inventory of remanu-

factured products 𝐼0,𝑝,𝑚 

20 0 0 0 0 0 

The net demand 𝑁𝐷𝑝,𝑚 for electric vehicles within a group is calculated using equation 6. 

𝑁𝐷𝑝,𝑚 = 𝑆𝑝,𝑚 − 𝑂𝐼𝑃𝑝,𝑚 − 𝐼0,𝑝,𝑚 (6) 

The results can be seen in Figure 6.3. As the current inventory and the orders in production 

only change the net demand for products in the current month, the other planning periods are 

unaffected by the calculation of the net primary demand. 

 

Figure 6.3: Net primary demand for products per month within the planning horizon 

0

50

100

150

200

250

300

350

M1 M2 M3 M4 M5 M6

N
e
t 

p
ri
m

a
ry

 d
e
m

a
n
d

Months



102  

102 

6 Validation 

 

 

 

A05 and A06 – Deriving the expected component yield and component gross demand 

The net demand for electric vehicles per month is used to create a database of the cores, 

which are to be used in the remanufacturing of the vehicles. Therefore, each product is as-

signed a unique ID. The ID is composed of a string for identifying the product group, an integer 

number corresponding to the month of remanufacturing, and an integer number assigned to 

each product within a month. Equation 7 illustrates this relationship. An example of an ID gen-

erated for the tenth product of group “P” in month five is: “P510”. 

"𝐼𝐷𝑝𝑟𝑜𝑑𝑢𝑐𝑡" = "𝐼𝐷𝑔𝑟𝑜𝑢𝑝" + "𝑀𝑜𝑛𝑡ℎ" + "𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝐼𝑛𝑀𝑜𝑛𝑡ℎ" (7) 

The components defined by HOLLAH are used to create the BOM for the product group. The 

components can then be assigned to a specific product in order to create the product specific 

BOM. All components in the product specific BOM must also be uniquely identifiable, including 

the assignment to the product in which they are installed. This can be achieved by creating a 

component ID according to equation 8. The component ID is composed of the product ID and 

the component name, which is also representative for the component group ID. An example 

of a component ID generated in this way is: "P510-engineHood". 

"𝐼𝐷𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡" = "𝐼𝐷𝑝𝑟𝑜𝑑𝑢𝑐𝑡" + "𝑁𝑎𝑚𝑒𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡" 

 

(8) 

For the prototype of the simulation model, there are no updates considered. Therefore, the 

group BOM of a new product is identical to the group BOM of a core. 

Creation of the individual core BOMs 

For the simulation model, the dataset with the component processing information is prepro-

cessed. The operation number and predecessor operations are omitted. Thus, the removal 

probability is no longer representative. In the simulation model, the damage probability is used 

to simulate the comparison of the remaining useful life estimate based on the component data 

with the required useful life. As the determination of the remaining useful life is highly individual 

to each component, the corresponding prediction models must be developed and validated for 

each component individually. The damage probability is a floating-point number between zero 

and one. For the simulation, a random number is generated, which also lies between zero and 

one. If this number is below the damage probability of a component, the component must be 

removed. In the list of cores, these components are given a "-REPLACE" identifier associated 

with the component ID. The list of cores, stripped of the components which contain a "-RE-

PLACE" identifier now represents the gross component yield of each individual core. On the 

other hand, the gross component demand is the sum of all components within a month, which 

are marked with a "-REPLACE" identifier. The gross component demand for the engine hood, 

mirrors, the driver door, and the headlights can be seen in Figure 6.4. A table of all component 

gross demands is shown in Appendix A.4. 
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The gross component demand in month four and in month six is elevated compared to month 

one, two, three, and five. This can be explained by the higher net demand for products in the 

respective months. Within one month, the gross demands for the engine hoods and mirrors 

vary slightly but are of a similar order of magnitude. The driver door on the other hand exceeds 

the demand of the other components while there is little gross demand for headlights. The 

reason for the higher demand for passenger doors is the elevated damage probability of the 

component. In the processing data, components of type engine hood and mirrors have a dam-

age probability of 0,3. The driver door has a damage probability of 0,7, which causes the com-

ponent to be replaced more frequently. Meanwhile the headlights only have a damage proba-

bility of 0,05, meaning that in most cases, they can be reused in a new product. 

 

Figure 6.4: Gross component demand for selected components over all planning periods 

A07 – Deriving the net component demand 

The gross requirements for components are compared with the current inventories and with 

the component orders already placed with the respective component remanufacturers, in order 

to determine the net demand for components. The calculation of the component yield is deter-

ministic, i.e., components are either exchanged or further used with a fixed probability. There 

has so far been no consideration of the probability, to which this deterministic assignment 

component yields leads to a correct result. Corresponding statistics about the reliability of the 

damage probability must be made component-individually. To validate the data model, the 

reliability of the damage probability is also expressed by a random number in the simulation 

model. In the context of the component data, the reliability of a re-use prediction increases, 

when historically many similar components had a similar component-specific dataset on which 

they were evaluated, or when key data about the component is known. The less comparable 

cases of a component that has a defined condition there are, the less reliable is the re-use or 

replace prediction.  

An approach to incorporate the reliability in the production program is by specifying the safety 

stock accordingly. If the reliability of a component-related damage probability is low, the safety 

stock is increased to account for fluctuations in the actual component yield. The reliability is a 
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floating-point number in between 0,4 and 0,9. For each component 𝑐, equation 9 defines the 

safety stock 𝐼𝑚𝑖𝑛,𝑐 and equation 10 defines the inventory limit 𝐼𝑚𝑎𝑥,𝑐. For the current inventory 

𝐼𝑜,𝑐 at the beginning of the planning horizon applies 𝐼𝑜,𝑐 ∈ [𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥].  

𝐼𝑚𝑖𝑛,𝑐 = (1 − 𝑟𝑐) ∗ 40 

 

(9) 

𝐼𝑚𝑎𝑥,𝑐 = 𝐼𝑚𝑖𝑛,𝑐 + 30 

 

(10) 

The net demand 𝑁𝐷𝑐,𝑚 for components of type 𝑐 in month 𝑚 is determined by equation 11. 

Here, the inventory 𝐼𝑐,𝑚−1 of the previous month and the scheduled component receipts 𝑆𝑅𝑐,𝑚 

of the current month, are subtracted from the gross component demand 𝐺𝐷𝑐,𝑚. 

𝑁𝐷𝑐,𝑚 = 𝐺𝐷𝑐,𝑚 − 𝐼𝑐,𝑚−1 − 𝑆𝑅𝑐,𝑚 

 

(11) 

If the inventory and the scheduled receipts exceed the gross demand, the surplus components 

are stored in the inventory of the current planning period. If the safety stock is undercut, the 

necessary additional demand is added to the net demand. If the maximum inventory is ex-

ceeded, either more space must be made available, or the assembly of the respective products 

is delayed. Adjustments for the maximum inventory are not included in the prototype. The 

scheduled receipts data is shown in Appendix A.5 and the inventory data is shown in Appen-

dix A.6. The results of the net demand calculation are shown in Figure 6.5, for the components 

engine hood, mirrors, the driver door, as well as for the headlights. A full list is shown in Ap-

pendix A.7. As before, the driver door shows the highest demand. The development of the net 

demand for headlights indicates that there are more scheduled receipts and surplus inventory 

in the first two months than there is gross demand. 

 

Figure 6.5: Net component demand for selected components over all planning periods 

A comparison with the inventory of the headlights depicted in Figure 6.6 reveals that the result 

from the net demand calculation is plausible. In the first two months, the inventory ranges in 

between the safety stock and the inventory limit. In month three, the gross demand for com-

ponents exceeds the receipts and the surplus inventory. Hence, in month three, the net 
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demand for headlights appears, while being zero in month one and two. The inventory then 

remains at the level of the safety stock. The underlying assumption of the prototype, that com-

ponents can be ordered by piece, and thereby ignoring minimal order quantities, causes this 

behavior of the model. 

 

Figure 6.6: Inventory of headlights over all planning periods 

A08 and A09 – Deriving the assembly and disassembly capacity requirements 

The capacity requirements are calculated as hours on a processing resource. This is shown in 

equation 12. The resource needed to disassemble and assemble a component is obtained 

using the assigned ID contained in the group BOM. The gross demand for components is 

multiplied with the processing time 𝑃𝑇𝑐,𝑟 of the component 𝑐 on resource 𝑟 to obtain the total 

required processing time 𝑇𝑅𝑃𝑇𝑟,𝑚 needed on a resource 𝑟 in each planning period. The result 

is divided by 3600 to convert the processing time contained in the group BOM from seconds 

to hours. The results of the calculations for each resource and month are shown in Appen-

dix A.8. 

𝑇𝑅𝑃𝑇𝑟,𝑚 =
1

3600
∑𝐺𝐷𝑐,𝑚

𝐶

𝑐=1

∗ 𝑃𝑇𝑐,𝑟 

 

(12) 

A10 – Feasibility assessment of the production program 

The total available capacity of the factory is shown in Appendix A.9. To facilitate the analysis 

of the production program, the total required processing time is subtracted from the total avail-

able processing time 𝑇𝐴𝑃𝑇𝑟,𝑚 as shown in equation 13, to get the deviation 𝐷𝑟,𝑚 of the two 

values.  

𝐷𝑟,𝑚 = 𝑇𝐴𝑃𝑇𝑟,𝑚 − 𝑇𝑅𝑃𝑇𝑟,𝑚 

 

(13) 

The result of the comparison is shown in Figure 6.7, and the respective data can be found in 

Appendix A.10. When the result of the comparison is negative in a given month on a specified 
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resource, the required capacity is exceeded. Such is the case for resource two in month one, 

where 18,6 h cannot be covered with the available processing time. For this month, the pro-

duction program is not feasible. In month two and in month five, all resources show surplus 

capacity. In month three, the required processing time exceeds the available one by 2,5 h. 

Months four and six are not feasible either, because in both months all required capacity is 

higher than the available one, except for resource zero in month six. 

 

Figure 6.7: Feasibility assessment of the production program 

The reason for the capacity to be exceeded significantly in month four and six is the higher net 

primary demand. The primary demand in month one is 220, the primary demand in month two, 

three, and five is 200. The net primary demand in month four and six is 300, and thereby 

exceeds the previous demand by 33 %. 

Adjustments 

To adjust for the demand peaks in month four and six, the additional capacities in the following 

months can be used. This causes a delay in delivery, because in remanufacturing the option 

to produce to stock in the previous months is limited to the available cores. Assuming, that the 

cores used in the calculation of the production program arrive in the respective month, the 

demand cannot be met, if no additional capacity is provided. This is a crucial difference to a 

regular production, where producing to stock is usually an option. Another solution is to adjust 

the sales planning. Initially, the sales plan yields the most profitable sales figures assuming 

that all net demand can be met. Should this not be the case, it is the task of sales planning to 

re-adjust the sales figures to the demand that can be matched. This may change the net de-

mand in all planning periods. 

6.3 Critical Reflection on the Obtained Results 

The simulation model validates the concept of the defined remanufacturing process, of the 

activity model, and of the data model. However, the data model for the PPP is based on much 

more extensive data than used in the simulation model. The simulation model assumes that 
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the probability with which a component can be reused is known. This assumption is based on 

real data, but the exact comparison of the remaining useful life with the required useful life 

would have to be included in a complete simulation model. Other component data that is not 

considered is the minimum order quantity and the ordering lead time. In addition, preceding 

operations are not taken into account in the calculation of the routings. 

By decoupling the sales model from the prototype, only core data is considered that is also 

used in the product data and inherited by the cores. Lot sizes in production are also not con-

sidered. Although the prototype does not output the assembly and disassembly routing directly 

in a sorted form, these are implicitly contained in the data sets of the cores and can be provided 

by simple readout of the generated tables.  

In its current state, the simulation model does not encompass all the data points from the 

comprehensive data model. Consequently, certain contents within the data model still require 

validation. To ensure the accuracy and reliability of the simulation results, it is imperative to 

address these outstanding contents and validate them accordingly. By validating the remaining 

data model contents, a more comprehensive and robust simulation can be achieved, providing 

greater insights and confidence in the comprehensiveness of the data model, in the correct-

ness of the activity model, and in the accuracy of the simulation model's predictions and out-

comes.  

Nonetheless, a production program has been created in which each product and component 

can be individually identified and tracked, component inventories are output and subject to 

defined constraints, and resource requirements are matched against the available resources 

to analyze the validity of the production program. 
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7 Summary and Outlook 

Implementing a circular economy through remanufacturing can help the manufacturing indus-

try to become more sustainable by using resources more efficiently while ensuring long-term 

competitiveness. However, there is a lack of standardized and efficient processes for reman-

ufacturing, which imposes challenges on the production program planning. Current literature 

has not yet adequately addressed this issue. Therefore, this work proposes a data model to 

cope with the uncertainties in production program planning caused by remanufacturing. The 

data model is obtained by analyzing the state of the art in production program planning and 

remanufacturing. The challenges are systematically identified, and the potential of managing 

those challenges using a defined set of data is analyzed. The data model is obtained by break-

ing down the production program planning process into activities, which are then analyzed for 

their information and data requirements using the IDEF0 method. The data is then structured 

and categorized into a UML class diagram which contains the attributes needed for each in-

stance entangled in the production program. The purpose of the data model is to provide a 

structured framework showing the data needed to create a production program, which can be 

made before cores return to the remanufacturer, and which allows for incorporating the effects 

of planning uncertainties such as product specific routings, fluctuating processing times, and 

core conditions. 

The data model is evaluated using a simulation model, which uses core activities within the 

production planning process, based on several core data points from the previously developed 

data model. As a practice-oriented example, the simulation is conducted for electric vehicle 

remanufacturing, based on a real component data set, which includes processing times, dam-

age probabilities, and process IDs for each component. The results show that the data model 

is suited for developing and analyzing a production program. However, as the simulation model 

is a prototype, some of the constraints imposed by remanufacturing on the production pro-

gramming process are not yet considered. These include preceding operations and an individ-

ual analysis of component data to determine their condition.  

The simulation also reveals a major drawback in production program planning in remanufac-

turing, compared to the normal production program planning process. When adjusting for ca-

pacity shortages, surplus capacity from previous months cannot always be used to stock more 

products, as the cores needed for production might not be available this early. The feasibility 

of the production program therefore depends sensitively on the reliability of the forecasts, and 

higher safety stocks are needed if such reliability is not provided. 

Outlook 

Future research should focus on addressing the constraints imposed by remanufacturing on 

the production programming process that were not yet considered in the simulation model. 

These constraints include preceding operations, inventory limits, and an individual analysis of 

component data to determine the co ponents’ condition. By considering these constraints, it 
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would be possible to develop a more comprehensive production program planning process 

that takes into account all the relevant factors and ensures effective and efficient remanufac-

turing. 

As the model reliability in the simulation depends sensitively on the reliability of the forecasts 

used for production program planning in remanufacturing, another research focus should be 

developing accurate and sophisticated forecasting methods for core return times and compo-

nent reusability. The developed data model relies on the comparison between the remaining 

useful life and the required useful life to be known. The remaining useful life is very specific to 

a component type. Its estimation cannot be based on a generalized set of information for a 

general component. The dataset must be collected for each component individually. 
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A.2. Prototypical Simulation Model Code 

 

2  """ 

3  Created on Wed Apr 26 13:48:56 2023 

4   

5  @author: ESTEBAN 

6  """ 

7  # import productionProgramClass 

8  import csv 

9  import random 

10 import os 

11  

12  

13 def main(): 

14     ## CHATGPT START 

15     # Replace 'example.csv' with the name of your CSV file 

16     if os.name == 'nt': 

17         os.system('TASKKILL /F /IM excel.exe /T') 

18          

19     filename1 = 'netDemandComponent.csv' 

20     filename2 = 'startComponentInventoriesUpdated.csv' 

21     filename3 = 'netDemandComponentNonNegative.csv' 

22     ## CHATGPT STOP 

23  

24     ### start variables 

25     # The output of the sales model are sales numbers for each product group. First step is 

defining the sales of a group for the next six months. 

26     remanufacturedProductSalesGroup1 = [300,200,200,300,200,300] 

27      

28     # Define the current inventory of products of group 1 

29     remanufacturedProductInventoryGroup1 = [50,0,0,0,0,0] #defines the current inventory 

30  

31     # Define the number of products which are being produced in the current period 

32     ordersInProductionGroup1 = [20,0,0,0,0,0] 

33  

34     # Define a variable which contains the net product demand 

35     netProductDemandRemanufacturingGroup1 = [] 

36      

37     # calculate net product demand (net demand = sales - inventory - orders in production) 

38     for x, y, z in zip(remanufacturedProductSalesGroup1, remanufacturedProductInvento-

ryGroup1, ordersInProductionGroup1): 

39         netProductDemandRemanufacturingGroup1.append(x-y-z) 

40  

41  

42     # Define a database for the products in the net product demand and give every product a 

unique ID and unique components with a unique ID. 

43     databaseProducts = {} 

44      

45     # components of the products 

46     components = ["Motorhaube", "Aussenspiegel", "TuerFahrer", "TuerBeifahrer", "Tuerdich-

tungen", "StossstangeVorne", "Grillabdeckung", "UntererKotfluegelschutz", "Fender", "Lampen-

Vorne", "Lampenmasken", "UntereTuerverkleidung", "UntereBSaeulenaussenverkleidung", "Lampen-

Hinten", "StossstangeHinten", "Wischersystem", "KlebeverbindungDach", "ASaeulenAussenverklei-

dung", "Tuerkontaktschalter", "SteckerHeizsystem", "Frontscheibe", "Kabelbaumabdeckung", 

"Sitzgruppe", "Gurtschloss", "Lenker", "Lenksaeulenverkleidung", "Lenkwinkelsensor", "Service-

klappen", "AbdeckungHintereMittelkonsole", "Handbremshebel", "Instrumentenpanel", "Kabel-

baumInstrumentenpanel", "Pedalerie", "Deckeninnenbeleuchtung", "Sonnenblenden", "ASaeu-

leninnenverkleidung", "BSaeuleninnenverkleidung", "Himmelverkleidung", "GurtaufrollerSamt-

Gurt", "Kofferaufbau", "BSaeulenaussenverkleidung", "Heizsystem", "Technikraumdeckel", "Klem-

men12VBatterie", "12VBatterie", "12VSchaltkasten", "KlemmenTraktionsbatterie", "Traktionsbat-

terie", "DcDcWandler", "HochvoltLadegeraet", "HochvoltSchaltkasten", "Ladebuchse", "KabelLeis-

tungselektronik", "Antriebswellen", "Pumpe", "Antriebsstrang", "Handbremssystem", "RaederHin-

ten", "RadhausHinten", "Hinterachse", "FederbeinHinten", "RaederVorne", "RadhausVorne", 

"Bremsleitungen", "BremssattelVorne", "BremsbelaegeVorne", "BremsscheibenVorne", "Koppel-

stange", "FederbeinVome", "Servolenkung", "Spurstange", "Motorhalterung", "EMotor", "Vorder-

achse", "Kabelbaum", "Karosserie"] 

47      

48     # CHATGPT: loop through the netProductDemandRemanufacturingGroup1 list and create a 

product entry in the database for each month 

49     for month, demand in enumerate(netProductDemandRemanufacturingGroup1, start=1): 

50         for i in range(demand): 

51             # create a unique ID for each product 

52             product_id = f"P{month}{i}" 

53             # create a dictionary entry for each product with its ID, month, and components 
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54             databaseProducts[product_id] = {"Month": month, "Components": {comp: f"{prod-

uct_id}-{comp}" for comp in components}} 

55      

56     ## CHATGPT START 

57     ### !!!only necessary when start variables change!!! 

58     # # Open a CSV file for writing the databaseProducts to the CSV file 

59     # with open('products.csv', mode='w', newline='') as file: 

60     #     # Create a writer object 

61     #     writer = csv.writer(file, delimiter=';') 

62      

63     #     # Write the header row 

64     #     writer.writerow(['ID', 'Month'] + components) 

65      

66     #     # Write each product to a row in the CSV file 

67     #     for product_id, product_data in databaseProducts.items(): 

68     #         month = product_data['Month'] 

69     #         component_ids = [product_data['Components'][comp] for comp in components] 

70     #         writer.writerow([product_id, month] + component_ids) 

71     ## CHATGPT STOP 

72    

73     # There is a CSV file called componentsProcessingData which contains for every type of 

component the processing information. 

74     # It needs to be read to a dictionary 

75     databaseComponents = {} 

76      

77     # CHATGPT START 

78     # read component data to a python dictionary 

79     with open('componentsProcessingData.csv', 'r') as csv_file: 

80         csv_reader = csv.reader(csv_file, delimiter=';') 

81         next(csv_reader) # skip the header row 

82          

83         for row in csv_reader: 

84             component = row[0] 

85             number = int(row[1]) 

86             damageProbability = float(row[2]) 

87             processingTime = int(row[3]) 

88             processID = int(row[4]) 

89              

90             databaseComponents[component] = { 

91                 "number": number, 

92                 "damageProbability": damageProbability, 

93                 "processingTime": processingTime, 

94                 "processID": processID 

95             } 

96     ## CHATGPT STOP 

97  

98     # For the prototype, there are no updates considered. The BOMs of the new products are 

equal to the BOMs of the cores. 

99     # So now the products which are contained in the sales program are convertet to cores. 

100    databaseCores = databaseProducts  

101     

102    # The processing data of the components contains information on their damage probabil-

ity. In the cores variable, a  

103    # component is flagged with "-REPLACE" to the existing string in the cell to mark the 

compoennts which need to be disassembled and replaced 

104    # The codde also counts how many components of which type must be replaced per month. 

105     

106    # the following dictionary called components_replaced can be used to count how many 

components of each type must be replaced in total 

107    # components_replaced = {} 

108     

109    # CHATGPT START 

110    for product in databaseProducts: 

111        for component, component_id in databaseProducts[product]['Components'].items(): 

112            damage_probability = databaseComponents.get(component, {}).get('damageProbabil-

ity') 

113            if damage_probability is not None and random.random() < damage_probability: 

114                replaced_component_id = component_id + "-REPLACE" 

115                databaseProducts[product]['Components'][component] = replaced_component_id 

116                 

117                # if component not in components_replaced: 

118                #     components_replaced[component] = 1 

119                # else: 

120                #     components_replaced[component] += 1 

121     

122    ### !!!only necessary when start variables change!!!             
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123    ##Open a CSV file for writing  the core variable to a CSV file called cores to visual-

ize it. 

124    # with open('cores.csv', mode='w', newline='') as file: 

125    #     # Create a writer object 

126    #     writer = csv.writer(file, delimiter=';') 

127     

128    #     # Write the header row 

129    #     writer.writerow(['ID', 'Month'] + components) 

130     

131    #     # Write each product to a row in the CSV file 

132    #     for product_id, product_data in databaseCores.items(): 

133    #         month = product_data['Month'] 

134    #         component_ids = [product_data['Components'][comp] for comp in components] 

135    #         writer.writerow([product_id, month] + component_ids) 

136    ## CHATGPT STOP 

137 

138    # The gross component demand is obtained by reading an empty excel file called grossDe-

mandComponent in a variable. 

139    # The CVS only contains zeros at the beginning 

140    databaseGrossDemandComponents = {} 

141     

142    ## CHATGPT START 

143    # read gross component demand data to a python dictionary, the preliminary file is 

filled with 0s 

144    with open('grossDemandComponent.csv', 'r') as csv_file: 

145        csv_reader = csv.reader(csv_file, delimiter=';') 

146        next(csv_reader) # skip the header row 

147         

148        for row in csv_reader: 

149            component = row[0] 

150            month1 = int(row[1]) 

151            month2 = float(row[2]) 

152            month3 = int(row[3]) 

153            month4 = int(row[4]) 

154            month5 = int(row[3]) 

155            month6 = int(row[4]) 

156             

157            databaseGrossDemandComponents[component] = { 

158                "month1": month1, 

159                "month2": month2, 

160                "month3": month3, 

161                "month4": month4, 

162                "month5": month5, 

163                "month6": month6, 

164            } 

165    ## CHATGPT STOP 

166     

167    # create a dictionary for the resource capacity needed, it is filled with 0s for a 

start 

168    databaseResourceNeeded = {}  

169       

170    # read resources to a python dictionary 

171    with open('resourcesNeeded.csv', 'r') as csv_file: 

172        csv_reader = csv.reader(csv_file, delimiter=';') 

173        next(csv_reader) # skip the header row 

174         

175        for row in csv_reader: 

176            resource = row[0] 

177            month1 = int(row[1]) 

178            month2 = float(row[2]) 

179            month3 = int(row[3]) 

180            month4 = int(row[4]) 

181            month5 = int(row[3]) 

182            month6 = int(row[4]) 

183             

184            databaseResourceNeeded[resource] = { 

185                "month1": month1, 

186                "month2": month2, 

187                "month3": month3, 

188                "month4": month4, 

189                "month5": month5, 

190                "month6": month6, 

191            } 

192    ## CHATGPT START        

193    # Search for all entries in databaseCores which have a replace flag and add the compo-

nent to the gross component demand 

194    for core_id, core_data in databaseCores.items(): 
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195        month = core_data['Month'] 

196        components = core_data['Components'] 

197        for component_name, component_id in components.items(): 

198            if "-REPLACE" in component_id: 

199            # remove everything up to and including the first "-" 

200                prefix_removed = component_id.split("-", 1)[1] 

201                # remove the "-REPLACE" suffix from the remaining string 

202                suffix_removed = prefix_removed.rsplit("-REPLACE", 1)[0] 

203                component_name = component_name.split("-")[0] 

204                if suffix_removed in databaseGrossDemandComponents: 

205                    databaseGrossDemandComponents[suffix_removed][f"month{month}"] += 1                 

206         

207    # Write each product to a row in the CSV file to visualize the gross component demand 

208    with open('grossDemandComponentUpdated.csv', 'w', newline='') as file: 

209        writer = csv.writer(file, delimiter=';') 

210        writer.writerow(['Component'] + list(databaseGrossDemandComponents['Motorhau-

be'].keys())) # write headers 

211        for component, data in databaseGrossDemandComponents.items(): 

212            writer.writerow([component] + [data[key] for key in data]) 

213 

214    # read inventory data to a variable of type dictionary 

215    databaseStartInventory = {} 

216    with open('startComponentInventories.csv', 'r') as csv_file: 

217        csv_reader = csv.reader(csv_file, delimiter=';') 

218        next(csv_reader) # skip the header row 

219    ## CHATGPT STOP 

220         

221        for row in csv_reader: 

222            component = row[0] 

223            currentInventory = int(row[1]) 

224            inventoryMin = int(row[2]) 

225            inventoryMax = int(row[3]) 

226            # the reliability is a random number to simulate how reliable the estimation of 

a components quality is. 

227            # if the reliability is low, more safety stock is needed 

228            reliability = float(row[4]) 

229            month1 = int(row[5]) 

230            month2 = int(row[6]) 

231            month3 = int(row[7]) 

232            month4 = int(row[8]) 

233            month5 = int(row[9]) 

234            month6 = int(row[10]) 

235 

236             

237            databaseStartInventory[component] = { 

238                "currentInventory": currentInventory, 

239                "inventoryMin": inventoryMin, 

240                "inventoryMax": inventoryMax, 

241                "reliability": reliability, 

242                "month1": month1, 

243                "month2": month2, 

244                "month3": month3, 

245                "month4": month4, 

246                "month5": month5, 

247                "month6": month6 

248            } 

249     

250    

251    # read planned component receipts data to a variable of type dictionary 

252    databasePlannedComponentReceipts = {} 

253    with open('plannedComponentReceipts.csv', 'r') as csv_file: 

254        csv_reader = csv.reader(csv_file, delimiter=';') 

255        next(csv_reader) # skip the header row 

256         

257        for row in csv_reader: 

258            component = row[0] 

259            month1 = int(row[1]) 

260            month2 = int(row[2]) 

261            month3 = int(row[3]) 

262            month4 = int(row[4]) 

263            month5 = int(row[5]) 

264            month6 = int(row[6]) 

265             

266            databasePlannedComponentReceipts[component] = { 

267                "month1": month1, 

268                "month2": month2, 

269                "month3": month3, 
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270                "month4": month4, 

271                "month5": month5, 

272                "month6": month6 

273            } 

274         

275    # define a dictionary for the preliminary component net demand, which is not yet ad-

justed for Min and Max inventories 

276    # if planned receipts and inventory are higher than the demand, the value can be nega-

tive 

277    preliminaryNetComponentDemand = {} 

278     

279    for component, component_demand in databaseGrossDemandComponents.items(): 

280        net_demand = {} 

281        for month, demand in component_demand.items(): 

282            planned_receipts = databasePlannedComponentReceipts[component][month] 

283            if month == "month1": 

284                current_inventory = databaseStartInventory[component]["currentInventory"] 

285                net_demand[month] = demand - planned_receipts - current_inventory 

286            else: 

287                net_demand[month] = demand - planned_receipts 

288        preliminaryNetComponentDemand[component] = net_demand 

289     

290    # write the preliminary net component demand to a csv for visualization 

291    with open('netDemandComponent.csv', 'w', newline='') as file: 

292        writer = csv.writer(file, delimiter = ';') 

293        writer.writerow(['Component', 'Month1', 'Month2', 'Month3', 'Month4', 'Month5', 

'Month6']) 

294        for component, demand in preliminaryNetComponentDemand.items(): 

295            row = [component, demand['month1'], demand['month2'], demand['month3'], de-

mand['month4'], demand['month5'], demand['month6']] 

296            writer.writerow(row) 

297             

298    netComponentDemand = preliminaryNetComponentDemand 

299    # correct the net Demand, so that all demand is matched, and min inventories are con-

sidered 

300     

301    for component, demand in preliminaryNetComponentDemand.items(): 

302        for month, value in demand.items(): 

303            previous_month = 'month' + str(int(month[5]) - 1) 

304            if value < 0: 

305                if month == 'month1': 

306                    databaseStartInventory[component][month] = abs(value) 

307                    if abs(value) < databaseStartInventory[component]['inventoryMin']: 

308                        diff = databaseStartInventory[component]['inventoryMin'] - 

abs(value) 

309                        databaseStartInventory[component][month] = databaseStartInven-

tory[component]['inventoryMin'] 

310                        netComponentDemand[component][month] = diff 

311                    else: 

312                        netComponentDemand[component][month] = 0 

313                else: 

314                    print('ELSEHIT') 

315                    databaseStartInventory[component][month] = abs(value) + abs(databas-

eStartInventory[component][previous_month]) 

316                    netComponentDemand[component][month] = 0 

317                    if databaseStartInventory[component][month] < databaseStartInven-

tory[component]['inventoryMin']: 

318                        print('ifhit') 

319                        diff = databaseStartInventory[component]['inventoryMin'] - databas-

eStartInventory[component][month] 

320                        databaseStartInventory[component][month] = databaseStartInven-

tory[component]['inventoryMin'] 

321                        netComponentDemand[component][month] = diff 

322                     

323                    # # Set negative value to zero in demand 

324                    # netComponentDemand[component][month] = 0 

325                    # # Add the absolute value to the current inventory in databaseStartIn-

ventory 

326                    # databaseStartInventory[component][month] = abs(value) 

327 

328            if value == 0: 

329                # The inventory does not change. This requires a check for the first month, 

which has no predecessor. 

330                # If the value 0 is hit in the first month, the inventory of the theoreti-

cal previous month is 0 resulting from the way the gross demand is calculated. 

331                # Then, the inventory is set to the Min value and the demand is increased 

respectively. 



126  

126 

VI Appendix 

 

 

 

332                if month == 'month1': 

333                    databaseStartInventory[component][month] = databaseStartInventory[com-

ponent]['inventoryMin'] 

334                    netComponentDemand[component][month] = databaseStartInventory[compo-

nent]['inventoryMin'] 

335                else: 

336                    databaseStartInventory[component][month] = databaseStartInventory[com-

ponent][previous_month] 

337     

338 

339            if value > 0: 

340                if month == 'month1': 

341                    databaseStartInventory[component][month] = databaseStartInventory[com-

ponent]['inventoryMin'] 

342                    netComponentDemand[component][month] = databaseStartInventory[compo-

nent]['inventoryMin'] + value 

343                     

344                else: 

345                    diffInv = databaseStartInventory[component][previous_month] - value 

346                    if diffInv < databaseStartInventory[component]['inventoryMin']: 

347                        netComponentDemand[component][month] = databaseStartInventory[com-

ponent]['inventoryMin'] - diffInv 

348                        databaseStartInventory[component][month] = databaseStartInven-

tory[component]['inventoryMin'] 

349                    elif diffInv >= databaseStartInventory[component]['inventoryMin']: 

350                        netComponentDemand[component][month] = 0 

351                        databaseStartInventory[component][month] = diffInv 

352     

353                         

354                     

355     

356    with open('netDemandComponentNonNegative.csv', 'w', newline='') as file: 

357        writer = csv.writer(file, delimiter = ';') 

358        writer.writerow(['Component', 'Month1', 'Month2', 'Month3', 'Month4', 'Month5', 

'Month6']) 

359        for component, demand in netComponentDemand.items(): 

360            row = [component, demand['month1'], demand['month2'], demand['month3'], de-

mand['month4'], demand['month5'], demand['month6']] 

361            writer.writerow(row) 

362     

363    with open('startComponentInventoriesUpdated.csv', 'w', newline='') as file: 

364        writer = csv.writer(file, delimiter = ';') 

365        writer.writerow(['Component', 'currentInventory', 'inventoryMin', 'inventoryMax', 

'reliability', 'Month1', 'Month2', 'Month3', 'Month4', 'Month5', 'Month6']) 

366        for component, demand in databaseStartInventory.items(): 

367            row = [component, demand['currentInventory'], demand['inventoryMin'], de-

mand['inventoryMax'], demand['reliability'], demand['month1'], demand['month2'], de-

mand['month3'], demand['month4'], demand['month5'], demand['month6']] 

368            writer.writerow(row) 

369     

370    print(databaseResourceNeeded) 

371     

372    for component, demand in databaseGrossDemandComponents.items(): 

373        process_id = databaseComponents[component]['processID'] 

374        duration = databaseComponents[component]['processingTime'] 

375        for month, value in demand.items(): 

376             

377            databaseResourceNeeded[str(process_id)][month] += value*duration 

378         

379    print(databaseResourceNeeded) 

380     

381    # Open a new file for writing and create a CSV writer object 

382    with open('databaseResourceNeeded.csv', 'w', newline='') as csvfile: 

383        writer = csv.writer(csvfile, delimiter = ";") 

384     

385        # Write the header row 

386        writer.writerow(['Process ID', 'Month 1', 'Month 2', 'Month 3', 'Month 4', 'Month 

5', 'Month 6']) 

387     

388        # Write the data rows 

389        for process_id, data in databaseResourceNeeded.items(): 

390            writer.writerow([process_id, data['month1'], data['month2'], data['month3'], 

data['month4'], data['month5'], data['month6']]) 

391             

392                 

393 

394    ## CHATGPT START 
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395    # Use the 'start' command on Windows to open the file with the default program 

396    if os.name == 'nt': 

397        os.system('start "" "%s"' % filename1) 

398        os.system('start "" "%s"' % filename2) 

399        os.system('start "" "%s"' % filename3) 

400    ## CHATGPT STOP 

401 

402 

403 

404if __name__ == "__main__": 

405    main() 

 

A.3. BOM Data for Electric Vehicle Remanufacturing (Hollah 2019, 

pp. 190–192) 

Component number damagePropability processingTime processID 

Motorhaube 1 0.3 162 0 
Aussenspiegel 2 0.3 234 1 
TuerFahrer 3 0.7 1236 1 
TuerBeifahrer 4 0.3 1236 1 
Tuerdichtungen 5 0.3 234 1 
StossstangeVorne 6 0.3 498 1 
Grillabdeckung 7 0.3 234 1 
UntererKotfluegelschutz 8 0.3 138 1 
Fender 9 0.3 618 1 
LampenVorne 10 0.05 618 1 
Lampenmasken 11 0.2 162 1 
UntereTuerverkleidung 12 0.2 162 1 
UntereBSaeulenaussenverkleidung 13 0.3 162 1 
LampenHinten 14 0.05 378 1 
StossstangeHinten 15 0.3 498 1 
Wischersystem 16 0.15 636 1 
KlebeverbindungDach 17 0.3 1080 1 
ASaeulenAussenverkleidung 18 0.3 198 1 
Tuerkontaktschalter 19 0.05 378 1 
SteckerHeizsystem 20 0.05 114 1 
Frontscheibe 21 0.1 1080 1 
Kabelbaumabdeckung 22 0.05 306 2 
Sitzgruppe 23 0.3 1098 2 
Gurtschloss 24 0.5 162 2 
Lenker 25 0.3 306 2 
Lenksaeulenverkleidung 26 0.05 306 2 
Lenkwinkelsensor 27 0.05 306 2 
Serviceklappen 28 0.05 234 2 
AbdeckungHintereMittelkonsole 29 0.15 114 2 
Handbremshebel 30 0.15 306 2 
Instrumentenpanel 31 0.3 1476 2 
KabelbaumInstrumentenpanel 32 0.05 234 2 
Pedalerie 33 0.3 438 2 
Deckeninnenbeleuchtung 34 0.05 114 2 
Sonnenblenden 35 0.05 186 2 
ASaeuleninnenverkleidung 36 0.05 234 2 
BSaeuleninnenverkleidung 37 0.05 306 2 
Himmelverkleidung 38 0.05 498 2 
GurtaufrollerSamtGurt 39 0.5 162 2 
Kofferaufbau 40 0.45 2160 2 
BSaeulenaussenverkleidung 41 0.2 198 2 
Heizsystem 42 0.05 618 2 
Technikraumdeckel 43 0.05 234 3 
Klemmen12VBatterie 44 0 126 3 
12VBatterie 45 0.5 126 3 
12VSchaltkasten 46 0.05 234 3 
KlemmenTraktionsbatterie 47 0 576 3 
Traktionsbatterie 48 0.7 864 3 
DcDcWandler 49 0.05 306 3 
HochvoltLadegeraet 50 0.05 618 3 
HochvoltSchaltkasten 51 0.05 234 3 
Ladebuchse 52 0.3 306 3 
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Component number damagePropability processingTime processID 
KabelLeistungselektronik 53 0.05 234 3 
Antriebswellen 54 0.05 738 3 
Pumpe 55 0.1 306 3 
Antriebsstrang 56 0.75 618 3 
Handbremssystem 57 0.3 618 3 
RaederHinten 58 0.15 216 3 
RadhausHinten 59 0.3 186 3 
Hinterachse 60 0.4 306 3 
FederbeinHinten 61 0.05 360 3 
RaederVorne 62 0.15 216 4 
RadhausVorne 63 0.3 144 4 
Bremsleitungen 64 0.3 978 4 
BremssattelVorne 65 0.5 306 4 
BremsbelaegeVorne 66 0.5 576 4 
BremsscheibenVorne 67 0.5 576 4 
Koppelstange 68 0.4 234 4 
FederbeinVome 69 0.4 234 4 
Servolenkung 70 0.15 306 4 
Spurstange 71 0.3 618 4 
Motorhalterung 72 0 924 4 
EMotor 73 0.1 0 4 
Vorderachse 74 0.6 0 4 
Kabelbaum 75 0.15 0 4 
Karosserie 76 0.75 0 4 

 

A.4. Simulated Gross Component Demand 

Component M1 M2 M3 M4 M5 M6 

Motorhaube 81 57 67 94 59 85 
Aussenspiegel 64 61 65 93 57 81 
TuerFahrer 157 148 144 204 138 209 
TuerBeifahrer 65 58 67 102 50 100 
Tuerdichtungen 69 58 62 95 64 87 
StossstangeVorne 69 64 62 84 54 90 
Grillabdeckung 80 64 61 88 63 84 
UntererKotfluegelschutz 53 65 58 92 67 88 
Fender 62 53 57 87 60 86 
LampenVorne 9 14 12 17 10 16 
Lampenmasken 45 45 34 61 37 67 
UntereTuerverkleidung 43 44 37 58 39 49 
UntereBSaeulenaussenverkleidung 52 65 62 88 56 95 
LampenHinten 7 6 7 18 13 7 
StossstangeHinten 86 62 63 78 61 86 
Wischersystem 32 39 23 44 18 42 
KlebeverbindungDach 51 64 60 85 60 84 
ASaeulenAussenverkleidung 63 63 60 82 66 91 
Tuerkontaktschalter 12 7 11 11 6 13 
SteckerHeizsystem 8 6 13 7 6 17 
Frontscheibe 19 24 25 32 22 27 
Kabelbaumabdeckung 10 11 13 12 7 14 
Sitzgruppe 60 62 54 95 56 97 
Gurtschloss 104 98 108 161 93 150 
Lenker 65 50 68 85 65 93 
Lenksaeulenverkleidung 13 13 7 8 11 13 
Lenkwinkelsensor 10 14 15 16 12 11 
Serviceklappen 12 6 9 12 8 14 
AbdeckungHintereMittelkonsole 27 27 27 51 25 46 
Handbremshebel 29 30 27 43 24 45 
Instrumentenpanel 84 53 72 83 71 91 
KabelbaumInstrumentenpanel 15 8 8 14 7 14 
Pedalerie 78 63 56 104 66 96 
Deckeninnenbeleuchtung 7 8 6 9 8 10 
Sonnenblenden 10 13 7 15 8 20 
ASaeuleninnenverkleidung 7 15 11 10 14 16 
BSaeuleninnenverkleidung 12 12 6 13 10 14 
Himmelverkleidung 13 10 9 18 16 15 
GurtaufrollerSamtGurt 119 105 106 164 90 146 
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Component M1 M2 M3 M4 M5 M6 
Kofferaufbau 109 80 99 136 89 155 
BSaeulenaussenverkleidung 42 41 37 64 34 50 
Heizsystem 7 10 15 9 5 12 
Technikraumdeckel 11 10 12 8 8 15 
Klemmen12VBatterie 0 0 0 0 0 0 
12VBatterie 113 122 114 141 99 170 
12VSchaltkasten 8 9 7 8 6 20 
KlemmenTraktionsbatterie 0 0 0 0 0 0 
Traktionsbatterie 153 138 146 207 144 224 
DcDcWandler 14 9 13 12 10 14 
HochvoltLadegeraet 11 3 8 10 6 24 
HochvoltSchaltkasten 15 9 10 17 9 20 
Ladebuchse 63 60 55 97 53 83 
KabelLeistungselektronik 13 10 9 16 9 11 
Antriebswellen 12 12 8 12 14 14 
Pumpe 24 19 23 32 20 26 
Antriebsstrang 173 147 148 237 148 219 
Handbremssystem 68 55 62 84 67 103 
RaederHinten 44 21 26 44 27 45 
RadhausHinten 67 65 56 109 58 90 
Hinterachse 90 74 76 112 90 114 
FederbeinHinten 12 8 4 19 10 9 
RaederVorne 27 29 26 40 34 46 
RadhausVorne 62 52 63 94 60 100 
Bremsleitungen 78 50 60 92 65 100 
BremssattelVorne 116 96 94 144 97 144 
BremsbelaegeVorne 105 102 100 152 105 140 
BremsscheibenVorne 106 106 109 128 104 148 
Koppelstange 90 81 71 121 77 132 
FederbeinVome 98 82 92 109 75 104 
Servolenkung 39 29 37 49 25 39 
Spurstange 72 61 64 92 64 88 
Motorhalterung 0 0 0 0 0 0 
EMotor 21 19 13 30 14 24 
Vorderachse 131 119 122 181 120 177 
Kabelbaum 29 35 24 49 28 50 
Karosserie 177 149 147 224 145 228 

 

A.5. Simulated Scheduled Receipts 

Component M1 M2 M3 M4 M5 M6 

Motorhaube 6 12 0 0 0 0 
Aussenspiegel 14 6 0 0 0 0 
TuerFahrer 20 1 0 0 0 0 
TuerBeifahrer 6 3 0 0 0 0 
Tuerdichtungen 16 11 0 0 0 0 
StossstangeVorne 8 2 0 0 0 0 
Grillabdeckung 4 17 0 0 0 0 
UntererKotfluegelschutz 10 5 0 0 0 0 
Fender 8 16 0 0 0 0 
LampenVorne 20 11 0 0 0 0 
Lampenmasken 16 1 0 0 0 0 
UntereTuerverkleidung 7 12 0 0 0 0 
UntereBSaeulenaussenverkleidung 16 17 0 0 0 0 
LampenHinten 16 12 0 0 0 0 
StossstangeHinten 10 10 0 0 0 0 
Wischersystem 15 12 0 0 0 0 
KlebeverbindungDach 9 15 0 0 0 0 
ASaeulenAussenverkleidung 12 19 0 0 0 0 
Tuerkontaktschalter 4 20 0 0 0 0 
SteckerHeizsystem 3 9 0 0 0 0 
Frontscheibe 4 11 0 0 0 0 
Kabelbaumabdeckung 5 4 0 0 0 0 
Sitzgruppe 1 4 0 0 0 0 
Gurtschloss 2 1 0 0 0 0 
Lenker 8 1 0 0 0 0 
Lenksaeulenverkleidung 8 1 0 0 0 0 
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Component M1 M2 M3 M4 M5 M6 
Lenkwinkelsensor 13 2 0 0 0 0 
Serviceklappen 14 0 0 0 0 0 
AbdeckungHintereMittelkonsole 7 1 0 0 0 0 
Handbremshebel 0 11 0 0 0 0 
Instrumentenpanel 15 4 0 0 0 0 
KabelbaumInstrumentenpanel 4 5 0 0 0 0 
Pedalerie 12 4 0 0 0 0 
Deckeninnenbeleuchtung 8 15 0 0 0 0 
Sonnenblenden 1 12 0 0 0 0 
ASaeuleninnenverkleidung 4 11 0 0 0 0 
BSaeuleninnenverkleidung 9 10 0 0 0 0 
Himmelverkleidung 11 14 0 0 0 0 
GurtaufrollerSamtGurt 3 14 0 0 0 0 
Kofferaufbau 10 14 0 0 0 0 
BSaeulenaussenverkleidung 11 4 0 0 0 0 
Heizsystem 7 10 0 0 0 0 
Technikraumdeckel 4 3 0 0 0 0 
Klemmen12VBatterie 5 1 0 0 0 0 
12VBatterie 8 5 0 0 0 0 
12VSchaltkasten 6 4 0 0 0 0 
KlemmenTraktionsbatterie 8 7 0 0 0 0 
Traktionsbatterie 11 4 0 0 0 0 
DcDcWandler 8 9 0 0 0 0 
HochvoltLadegeraet 15 4 0 0 0 0 
HochvoltSchaltkasten 15 2 0 0 0 0 
Ladebuchse 6 13 0 0 0 0 
KabelLeistungselektronik 9 14 0 0 0 0 
Antriebswellen 3 9 0 0 0 0 
Pumpe 12 5 0 0 0 0 
Antriebsstrang 3 7 0 0 0 0 
Handbremssystem 3 12 0 0 0 0 
RaederHinten 10 8 0 0 0 0 
RadhausHinten 11 3 0 0 0 0 
Hinterachse 0 12 0 0 0 0 
FederbeinHinten 10 9 0 0 0 0 
RaederVorne 1 2 0 0 0 0 
RadhausVorne 8 9 0 0 0 0 
Bremsleitungen 0 4 0 0 0 0 
BremssattelVorne 7 6 0 0 0 0 
BremsbelaegeVorne 4 3 0 0 0 0 
BremsscheibenVorne 12 13 0 0 0 0 
Koppelstange 4 1 0 0 0 0 
FederbeinVome 9 3 0 0 0 0 
Servolenkung 14 8 0 0 0 0 
Spurstange 7 5 0 0 0 0 
Motorhalterung 1 3 0 0 0 0 
EMotor 7 3 0 0 0 0 
Vorderachse 11 7 0 0 0 0 
Kabelbaum 12 3 0 0 0 0 
Karosserie 0 3 0 0 0 0 

 

A.6. Simulated Inventory 

Component currentInventory inventoryMin inventoryMax reliability M1 M2 M3 M4 M5 M6 

Engine hood 19 19 49 0.53 19 19 19 19 19 19 
Mirrors 14 6 36 0.87 6 6 6 6 6 6 
Door driver 29 22 52 0.47 22 22 22 22 22 22 
TuerBeifahrer 10 9 39 0.79 9 9 9 9 9 9 
Tuerdichtungen 11 10 40 0.76 10 10 10 10 10 10 
StossstangeVorne 13 12 42 0.7 12 12 12 12 12 12 
Grillabdeckung 8 7 37 0.83 7 7 7 7 7 7 
UntererKotfluegelschutz 32 24 54 0.41 24 24 24 24 24 24 
Fender 22 21 51 0.49 21 21 21 21 21 21 
Headlights 24 24 54 0.4 35 32 24 24 24 24 
Lampenmasken 9 5 35 0.88 5 5 5 5 5 5 
UntereTuerverkleidung 17 9 39 0.79 9 9 9 9 9 9 
UntereBSaeulenaussenverkleidung 13 13 43 0.69 13 13 13 13 13 13 
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Component currentInventory inventoryMin inventoryMax reliability M1 M2 M3 M4 M5 M6 
LampenHinten 13 9 39 0.78 22 28 21 9 9 9 
StossstangeHinten 12 7 37 0.83 7 7 7 7 7 7 
Wischersystem 13 6 36 0.87 6 6 6 6 6 6 
KlebeverbindungDach 28 22 52 0.45 22 22 22 22 22 22 
ASaeulenAussenverkleidung 26 19 49 0.54 19 19 19 19 19 19 
Tuerkontaktschalter 20 19 49 0.54 19 32 21 19 19 19 
SteckerHeizsystem 32 22 52 0.45 27 30 22 22 22 22 
Frontscheibe 27 20 50 0.5 20 20 20 20 20 20 
Kabelbaumabdeckung 18 18 48 0.56 18 18 18 18 18 18 
Sitzgruppe 6 5 35 0.89 5 5 5 5 5 5 
Gurtschloss 24 16 46 0.6 16 16 16 16 16 16 
Lenker 13 5 35 0.89 5 5 5 5 5 5 
Lenksaeulenverkleidung 22 15 45 0.64 17 15 15 15 15 15 
Lenkwinkelsensor 13 10 40 0.75 16 10 10 10 10 10 
Serviceklappen 21 20 50 0.51 23 20 20 20 20 20 
AbdeckungHintereMittelkonsole 13 7 37 0.83 7 7 7 7 7 7 
Handbremshebel 17 13 43 0.68 13 13 13 13 13 13 
Instrumentenpanel 31 24 54 0.42 24 24 24 24 24 24 
KabelbaumInstrumentenpanel 21 19 49 0.53 19 19 19 19 19 19 
Pedalerie 11 7 37 0.84 7 7 7 7 7 7 
Deckeninnenbeleuchtung 23 13 43 0.69 24 31 25 16 13 13 
Sonnenblenden 11 10 40 0.75 10 10 10 10 10 10 
ASaeuleninnenverkleidung 16 13 43 0.68 13 13 13 13 13 13 
BSaeuleninnenverkleidung 17 14 44 0.66 14 14 14 14 14 14 
Himmelverkleidung 22 19 49 0.53 20 24 19 19 19 19 
GurtaufrollerSamtGurt 18 13 43 0.68 13 13 13 13 13 13 
Kofferaufbau 24 19 49 0.54 19 19 19 19 19 19 
BSaeulenaussenverkleidung 21 12 42 0.72 12 12 12 12 12 12 
Heizsystem 18 14 44 0.65 18 18 14 14 14 14 
Technikraumdeckel 12 12 42 0.7 12 12 12 12 12 12 
Klemmen12VBatterie 26 18 48 0.56 31 32 32 32 32 32 
12VBatterie 16 16 46 0.62 16 16 16 16 16 16 
12VSchaltkasten 16 9 39 0.79 14 9 9 9 9 9 
KlemmenTraktionsbatterie 28 22 52 0.46 36 43 43 43 43 43 
Traktionsbatterie 11 8 38 0.81 8 8 8 8 8 8 
DcDcWandler 19 14 44 0.66 14 14 14 14 14 14 
HochvoltLadegeraet 23 14 44 0.66 27 28 20 14 14 14 
HochvoltSchaltkasten 18 10 40 0.75 18 11 10 10 10 10 
Ladebuchse 22 14 44 0.65 14 14 14 14 14 14 
KabelLeistungselektronik 31 22 52 0.47 27 31 22 22 22 22 
Antriebswellen 20 14 44 0.65 14 14 14 14 14 14 
Pumpe 23 13 43 0.68 13 13 13 13 13 13 
Antriebsstrang 18 9 39 0.78 9 9 9 9 9 9 
Handbremssystem 6 6 36 0.85 6 6 6 6 6 6 
RaederHinten 16 13 43 0.69 13 13 13 13 13 13 
RadhausHinten 16 10 40 0.75 10 10 10 10 10 10 
Hinterachse 11 11 41 0.73 11 11 11 11 11 11 
FederbeinHinten 7 7 37 0.83 7 8 7 7 7 7 
RaederVorne 17 12 42 0.72 12 12 12 12 12 12 
RadhausVorne 20 18 48 0.57 18 18 18 18 18 18 
Bremsleitungen 15 12 42 0.72 12 12 12 12 12 12 
BremssattelVorne 17 7 37 0.83 7 7 7 7 7 7 
BremsbelaegeVorne 25 15 45 0.64 15 15 15 15 15 15 
BremsscheibenVorne 14 14 44 0.65 14 14 14 14 14 14 
Koppelstange 14 11 41 0.74 11 11 11 11 11 11 
FederbeinVome 12 10 40 0.76 10 10 10 10 10 10 
Servolenkung 8 6 36 0.87 6 6 6 6 6 6 
Spurstange 10 6 36 0.87 6 6 6 6 6 6 
Motorhalterung 11 8 38 0.82 12 15 15 15 15 15 
EMotor 19 11 41 0.73 11 11 11 11 11 11 
Vorderachse 13 6 36 0.87 6 6 6 6 6 6 
Kabelbaum 14 12 42 0.72 12 12 12 12 12 12 
Karosserie 6 6 36 0.85 6 6 6 6 6 6 
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A.7. Simulated Net Component Demand 

Component M1 M2 M3 M4 M5 M6 

Engine hood 75 45 67 94 59 85 
Mirrors 42 55 65 93 57 81 
Door driver 130 147 144 204 138 209 
Door passenger 58 55 67 102 50 100 
Tuerdichtungen 52 47 62 95 64 87 
StossstangeVorne 60 62 62 84 54 90 
Grillabdeckung 75 47 61 88 63 84 
UntererKotfluegelschutz 35 60 58 92 67 88 
Fender 53 37 57 87 60 86 
Headlights 0 0 4 17 10 16 
Lampenmasken 25 44 34 61 37 67 
UntereTuerverkleidung 28 32 37 58 39 49 
UntereBSaeulenaussenverkleidung 36 48 62 88 56 95 
LampenHinten 0 0 0 6 13 7 
StossstangeHinten 71 52 63 78 61 86 
Wischersystem 10 27 23 44 18 42 
KlebeverbindungDach 36 49 60 85 60 84 
ASaeulenAussenverkleidung 44 44 60 82 66 91 
Tuerkontaktschalter 7 0 0 9 6 13 
SteckerHeizsystem 0 0 5 7 6 17 
Frontscheibe 8 13 25 32 22 27 
Kabelbaumabdeckung 5 7 13 12 7 14 
Sitzgruppe 58 58 54 95 56 97 
Gurtschloss 94 97 108 161 93 150 
Lenker 49 49 68 85 65 93 
Lenksaeulenverkleidung 0 10 7 8 11 13 
Lenkwinkelsensor 0 6 15 16 12 11 
Serviceklappen 0 3 9 12 8 14 
AbdeckungHintereMittelkonsole 14 26 27 51 25 46 
Handbremshebel 25 19 27 43 24 45 
Instrumentenpanel 62 49 72 83 71 91 
KabelbaumInstrumentenpanel 9 3 8 14 7 14 
Pedalerie 62 59 56 104 66 96 
Deckeninnenbeleuchtung 0 0 0 0 5 10 
Sonnenblenden 8 1 7 15 8 20 
ASaeuleninnenverkleidung 0 4 11 10 14 16 
BSaeuleninnenverkleidung 0 2 6 13 10 14 
Himmelverkleidung 0 0 4 18 16 15 
GurtaufrollerSamtGurt 111 91 106 164 90 146 
Kofferaufbau 94 66 99 136 89 155 
BSaeulenaussenverkleidung 22 37 37 64 34 50 
Heizsystem 0 0 11 9 5 12 
Technikraumdeckel 7 7 12 8 8 15 
Klemmen12VBatterie 0 0 0 0 0 0 
12VBatterie 105 117 114 141 99 170 
12VSchaltkasten 0 0 7 8 6 20 
KlemmenTraktionsbatterie 0 0 0 0 0 0 
Traktionsbatterie 139 134 146 207 144 224 
DcDcWandler 1 0 13 12 10 14 
HochvoltLadegeraet 0 0 0 4 6 24 
HochvoltSchaltkasten 0 0 9 17 9 20 
Ladebuchse 49 47 55 97 53 83 
KabelLeistungselektronik 0 0 0 16 9 11 
Antriebswellen 3 3 8 12 14 14 
Pumpe 2 14 23 32 20 26 
Antriebsstrang 161 140 148 237 148 219 
Handbremssystem 65 43 62 84 67 103 
RaederHinten 31 13 26 44 27 45 
RadhausHinten 50 62 56 109 58 90 
Hinterachse 90 62 76 112 90 114 
FederbeinHinten 2 0 3 19 10 9 
RaederVorne 21 27 26 40 34 46 
RadhausVorne 52 43 63 94 60 100 
Bremsleitungen 75 46 60 92 65 100 
BremssattelVorne 99 90 94 144 97 144 
BremsbelaegeVorne 91 99 100 152 105 140 
BremsscheibenVorne 94 93 109 128 104 148 
Koppelstange 83 80 71 121 77 132 
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Component M1 M2 M3 M4 M5 M6 
FederbeinVome 87 79 92 109 75 104 
Servolenkung 23 21 37 49 25 39 
Spurstange 61 56 64 92 64 88 
Motorhalterung 0 0 0 0 0 0 
EMotor 6 16 13 30 14 24 
Vorderachse 113 112 122 181 120 177 
Kabelbaum 15 32 24 49 28 50 
Karosserie 177 146 147 224 145 228 

 

A.8. Simulated Required Capacity in h 

ProcessID M1 M2 M3 M4 M5 M6 

0 3.6 2.6 3 4.2 2.7 3.8 
1 164.4 159.3 157.2 226.8 146.5 225.6 
2 158.6 125.5 142.5 199.5 135.1 213.6 
3 113 96.7 99.6 148.8 101.2 154.7 
4 96.8 82.4 86.5 123.1 86.8 126 
       

A.9. Simulated Available Capacity in h 

ProcessID M1 M2 M3 M4 M5 M6 

0 4 4 4 4 4 4 
1 200 200 200 200 200 200 
2 140 140 140 140 140 140 
3 125 125 125 125 125 125 
4 100 100 100 100 100 100 
       

A.10. Simulated Capacity Deviation in h 

ProcessID M1 M2 M3 M4 M5 M6 

0 0.4 1.4 1 -0.2 1.3 0.2 
1 35.6 40.7 42.8 -26.8 53.5 -25.6 
2 -18.6 14.5 -2.5 -59.5 4.9 -73.6 
3 12 28.3 25.4 -23.8 23.8 -29.7 
4 3.2 17.6 13.5 -23.1 13.2 -26 
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