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ABSTRACT

Handwritten Text Recognition (HTR) systems have gained interest in fields of academic research and
commercial applications. Deep learning techniques, and more precisely Convolutional Neural Net-
works (CNNs), have enabled many recent successes in the computer vision community. However, due
to high computational costs, applying CNNs to many real applications is challenging since the specific
training data is restricted in many cases. Therefore, in this paper, we present a Gated-CNN-BGRU op-
tical model capable of dealing with this complex challenge. The proposed model was evaluated on five
well-known datasets in HTR (Bentham, IAM, RIMES, Saint Gall, and Washington). Additionally, we
redefine the training and validation partitions for each dataset, progressively varying the percentage of
data between both partitions to create a total of 50 scenarios with different data volumes. The experi-
ment validates and shows that the proposed model presents statistically significant results, surpassing
the current models by an average of 2.96 and 8.91 percentage points in character and word recognition
accuracy. In the most complex scenario of using 49 images for training, we achieved character and
word precision of 87.25% and 71.54% respectively. That means an improvement of 78.32 and 53.54
percentage points, respectively, of the state-of-the-art optical models.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Offline Handwritten Text Recognition (HTR) intends to tran-
scribe cursive texts from images to the digital medium (ASCII,
Unicode). Thanks to the expansion of deep learning methods,
the HTR research area has evolved in recent years, bringing
more robust and accurate models for next generation of text
recognition systems (Bezerra et al., 2017). Thus, images are the
source of information for HTR systems, which can be applied
to transcribe images of historical manuscripts (Sánchez et al.,
2016), document forms (Palehai and Fanany, 2017), medical
prescriptions (Kamalanaban et al., 2018), and so on. Recent
successes in this research field can be attributed to develop-
ments in Convolutional Recurrent Neural Networks (CRNN),
in which the convolutional block is responsible for extracting
the features from text images. Next, the recurrent block propa-
gates and decodes the extracted features through a Connection-
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ist Temporal Classification (CTC), resulting in the final recog-
nized text hypothesis (Puigcerver, 2017; Bluche and Messina,
2017; Neto et al., 2020).

However, despite the improvements achieved in this field, ap-
plying deep learning methods to various tasks is challenging
due to the high computational costs involved and the restriction
of training data. In addition to the scarcity of data for training
deep models, another issue is the vanishing gradient problem of
deep learning models (according to the complexity of network
topology) (Glorot and Bengio, 2010).

With all these concerns in mind, we propose in this pa-
per an extension of the optical model for HTR systems based
on the Gated Convolutional Recurrent Neural Network ap-
proach with Connectionist Temporal Classification (Gated-
CRNN-CTC) (Bluche and Messina, 2017). In order to deal
with different complex scenarios with availability of data for
training, we extend the work of Neto et al. (2020) through an
optical model for HTR systems based on this Gated-CRNN-
CTC. In this way we simplified some layers and parameters of
the proposed model, that give it a greater robustness and stabil-
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ity throughout the training. The main objectives are:

• Achieve high stability and precision in scenarios of ex-
tremely low data volumes on handwritten lines available;

• Keep a low number of trainable parameters (thousands)
through models of low complexity.

In order to evaluate the effectiveness of the proposed opti-
cal model, we used the state-of-the-art models of Puigcerver
(2017), and Bluche and Messina (2017) to compare with our
proposed model. Several experiments were carried out on
5 well-known datasets: Bentham (Gatos et al., 2014), IAM
(Marti and Bunke, 2002), RIMES (Grosicki et al., 2008),
Saint Gall (Fischer et al., 2010) and Washington (Fischer
et al., 2011). In addition to the official partitions of each
dataset, we defined arrangements on their corresponding sam-
ple sets, with different proportions of training and valida-
tion data, varying from 90%/10% to 10%/90%, to analyze
the performance of our model for different data volume sce-
narios. The results demonstrated that our model outper-
forms state-of-the-art methods on all the datasets mentioned
through extensive experimental evaluations. The scripts of
the proposed model are available at: https://github.com/

arthurflor23/handwritten-text-recognition.
The remaining of this paper is structured as follows. In sec-

tion 2, state-of-the-art models are described. Then, in section 3,
the proposed optical model is presented. In section 4, the exper-
imental methodology is detailed. In section 5, the experimental
results obtained in each dataset are reported. In section 6, the
results and insights are discussed. Finally, section 7 presents
the conclusions.

2. Related Works

The basic pipeline of the optical models for text recognition
explored in this paper involves three steps: (i) line images are
fed into the convolutional block (CNN) to extract character-
istics; (ii) by considering the CNN’s output information as a
sequence in the writing direction, a recurrent neural network
(RNN) block processes it in both directions (bidirectional map-
ping); and finally (iii) the Connectionist Temporal Classifica-
tion (CTC) calculates the loss value (training mode), or decodes
the output in the final text (inference mode). The state-of-the-
art for optical models is presented in the following subsections.

2.1. Convolutional Recurrent Neural Networks

Puigcerver (2017) presented a traditional CRNN architec-
ture approach, which has a high number of trainable parameters
(around 9.6 million), but also a high performance in text recog-
nition. The architecture is composed of 5 convolutional and 5
recurrent layers.

The convolutional block is composed of layers with kernel
3x3 and number of filters with the following scheme: 16n (16,
32, 48, 64, 80). Max-pooling with kernel 2x2 is applied in
the first three layers, and Dropout (with rate 0.2) is applied
in the last three layers to avoid overfitting. Besides, the Glo-
rot Uniform initialization and the Leaky Rectifier Linear Unit

(LeakyReLU) activation are used throughout the layers. In ad-
dition, Batch Normalization is also used in all convolutional
layers to normalize the non-linear activation functions.

Finally, the recurrent block contains the Bidirectional Long
Short-Term Memory (BLSTM) implementation combined with
Dropout (rate 0.5) (Pham et al., 2014). The number of hidden
units in the LSTM cells is set to 256. A fully connected layer
with Dropout (rate 0.5) is the last layer with output size equal
to the character set size plus one (it includes the CTC blank
symbol).

2.2. Gated Convolutional Recurrent Neural Networks

The work Bluche and Messina (2017) presented the Gated-
CRNN, a variation of CRNN optical model for HTR systems.
The Gated-CRNN aims to extract the most relevant features in
the convolutional block, maintaining a low number of trainable
parameters while achieving good performance in the training
process. The Gated-Convolutional layer uses all input features
(x) to perform a sigmoid activation (s) and the result is a point-
wise multiplication between the input and the output features
according to:

y = s(x) ⊙ x (1)

The Gated-CRNN architecture in Bluche and Messina (2017)
has few parameters (around 730 thousand), and the optical
model is composed of 8 convolutional (3 gated included) and
2 recurrent layers.

Specifically, the convolutional block is composed of mini-
blocks with convolutions and gated mechanisms, except for the
first and last layers where only a regular convolution is used.
Thus, the pipeline of convolutions is as follows: (i) 3x3 kernel
(8 features); (ii) 2x4 kernel and 3x3 gated mechanism (16 fea-
tures); (iii) 3x3 kernel and 3x3 gated mechanism (32 features);
(iv) 2x4 kernel and 3x3 gated mechanism (64 features); and (v)
3x3 kernel (128 features). Besides, the Glorot Uniform initial-
ization and the Hyperbolic Tangent (tanh) activator are applied
throughout the layers.

Finally, the recurrent block contains a BLSTM implementa-
tion alternated with fully connected layers with tanh activation.
The number of hidden units in the LSTM cells is set to 128. A
final fully connected layer is set with an output size equal to the
character set size plus one.

3. Proposed Model

The proposed model is inspired by Puigcerver (2017) and
Bluche and Messina (2017) architectures, which aim to: (i) to
achieve better results than the Puigcerver (2017) model while
keeping a low number of trainable parameters as the model in
Bluche and Messina (2017); and (ii) to achieve high stability
and performance with few training data.

The gated mechanism used to compose our Gated-CRNN ar-
chitecture was presented in Dauphin et al. (2017), which also
aims to extract the most relevant features in the convolutional
block, although it is applied differently to Bluche and Messina
(2017). In this case. unlike Bluche and Messina (2017), half of
the input features (h1) goes to the sigmoid activation (s), while
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the other half does not (h2). The result is a pointwise multipli-
cation between the two halves:

y = s(h1) ⊙ h2 (2)

Therefore, the proposed architecture has few parameters
(around 920 thousand), which brings a compact model and fast
computation. The optical model contains 11 convolutional (5
gated included) and 2 recurrent layers as shown in Figure 1.

Recurrent Block

Convolutional Block

Conv 2x4 (2x4) (40 filters) + PReLU + BR

Conv 3x3 (48 filters) + PReLU + BR

Gated Conv 3x3
(48 filters) + Dropout

Conv 2x4 (2x4) (56 filters) + PReLU + BR

Conv 3x3 (64 filters) + PReLU + BR

Dropout + BGRU (128x2)

Dense (256)

Dropout + BGRU (128x2)

Dense + Softmax

Gated Conv 3x3
(56 filters) + Dropout

Conv 3x3 (32 filters) + PReLU + BR

Gated Conv 3x3
(32 filters)

Gated Conv 3x3
(40 filters) + Dropout

Conv 3x3 (1x2) (16 filters) + PReLU + BR

Gated Conv 3x3
(16 filters)

Fig. 1. The proposed optical model architecture.

The convolutional block is in turn composed of mini-blocks
with convolutions and gated mechanisms. Thus, the pipeline of
one of these mini-blocks is as follows: (i) 3x3 kernel and 3x3
gated mechanism (16 features); (ii) 3x3 kernel and 3x3 gated
mechanism (32 features); (iii) 2x4 kernel and 3x3 gated mech-
anism (40 features); (iv) 3x3 kernel and 3x3 gated mechanism
(48 features); (v) 2x4 kernel and 3x3 gated mechanism (56 fea-
tures); and (vi) 3x3 kernel (64 features). Besides, He Uniform
initialization with Parametric Rectified Linear Unit (PReLU)
activation is applied throughout the layers (He et al., 2015), and
Batch Renormalization (Ioffe, 2017) is applied in all traditional
convolutional layers followed by Dropout (rate 0.2) in the last
three gated mechanisms. Those last components prevent over-
fitting the model. In addition, we do not use Max-Pooling be-
tween the blocks, and we decrease the value of the kernel strides
of the first convolutional layer unlike the work of Neto et al.
(2020).

Finally, the recurrent block contains two Bidirectional Gated
Recurrent Unit (BGRU) layers with Dropout (rate 0.5) (Pham
et al., 2014) combined with a Fully Connected layer. The num-
ber of hidden units in the GRU cells is set to 128. A final Fully
Connected layer has an output size equal to the character set
size plus one. This last block emits the most likely characters
that make up the output text hypothesis.

4. Material and Methods

In order to compare the proposed model with the state-of-
the-art in different scenarios, we conducted segmentation-free
HTR experiments on the following standard datasets: Bentham
(Gatos et al., 2014), IAM (Marti and Bunke, 2002), RIMES
(Grosicki et al., 2008) Saint Gall (Fischer et al., 2010) and
Washington (Fischer et al., 2011).

4.1. Datasets

The Bentham dataset (Gatos et al., 2014) is a historical
collection of manuscripts written by the English philosopher
Jeremy Bentham (1748-1832). The official experimental par-
tition of the 11,473 text lines available in this dataset divides
them into 9,198 for training, 1,415 for validation, and 860 for
testing.

The IAM handwriting dataset (Marti and Bunke, 2002) is-
sued by the Institut für Informatik und Angewandte Mathe-
matik (Switzerland) contains forms with English manuscripts.
This dataset has 9,862 text lines in total, whose official parti-
tioning assigns 6,161 for training, 1,840 for validation (sets 1
and 2), and 1,861 for testing.

The Reconnaissance et Indexation de données Manuscrits et
de fac similÉS (Rimes) dataset (Grosicki et al., 2008) is a col-
lection of letters written in French by several writers. The offi-
cial partition, with 12,111 text lines, was set to 11,333 for train-
ing and 778 for testing. There is no validation partition defined
in this case.

The Saint Gall dataset (Fischer et al., 2010) brings
manuscripts written in Latin from the 9th century. This dataset
has 1410 text lines officially partitioned into 468 for training,
235 for validation, and 707 for testing.

Finally, the Washington dataset (Fischer et al., 2011) was
built from scanned letters handwritten in English by George
Washington (and his associates) in the 18th century. This
dataset has 656 text lines officially partitioned into 325 for train-
ing, 168 for validation, and 163 for testing. Table 1 summarizes
the default data distribution for each dataset.

Table 1. Default partitions of each dataset
Dataset Training Validation Test Total
Bentham 9198 1415 860 11,473

IAM 6161 1840 1861 9862
RIMES 11,333 - 778 12,111

Saint Gall 468 235 707 1410
Washington 325 168 163 656

In order to simulate and investigate the impact of restricted
data to HTR systems, we performed an experimental method-
ology with diverse data scenarios, generated from different
amounts of data between training and validation partitions.

Thus, we progressively and randomly vary the percentage of
data between both partition sets in steps of 10 percentage points
from 90%/10% to 10%/90%. It is worth mentioning that the test
partition was kept as the original in each set. Table 2 details the
data volume scenarios with the arrangements in the training and
validation partitions.
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Table 2. Arrangements of data in training and validation partitions of each dataset.
Arrangement Bentham IAM RIMES Saint Gall Washington

Train/Valid. (%) Train Valid. Train Valid. Train Valid. Train Valid. Train Valid.
90/10 9552 1061 7201 800 10,200 1133 633 70 444 49
80/20 8490 2123 6401 1600 9066 2267 562 141 394 99
70/30 7429 3184 5601 2400 7933 3400 492 211 345 148
60/40 6368 4245 4801 3200 6800 4533 422 281 296 197
50/50 5307 5307 4001 4001 5667 5667 352 352 247 247
40/60 4245 6368 3200 4801 4533 6800 281 422 197 296
30/70 3184 7429 2400 5601 3400 7933 211 492 148 345
20/80 2123 8490 1600 6401 2267 9066 141 562 99 394
10/90 1061 9552 800 7201 1133 10,200 70 633 49 444

4.2. Experimental Evaluation
The most common metrics for HTR systems are Character

Error Rate (CER) and Word Error Rate (WER). These met-
rics are calculated using the Levenshtein Distance (LD) (Leven-
shtein, 1966), also known as edit distance (insertion, deletion,
and substitution), between ground truth and predicted strings.
The Normalized Levenshtein Distance (NLD), which is more
immune to any bias resulting from the sentence length, can be
computed by:

NLD(aT , aR) =
LD(aT , aR)
| aT |

, (3)

where aT is the target string (ground truth), aR is the recognized
string, | aT | is the length of the string aT , and LD is the Leven-
shtein Distance. Furthermore, through the Average Normalized
Levenshtein Distance (ANLD) defined as:

ANLD =
∑T

i=1 NLD(ai
T , a

i
R)

T
, (4)

where T is the number of test samples. Experimental results
(see Sec.5) are reported in terms of Character/Word Precision
Rates CPR/WPR (which are the corresponding complements of
CER and WER), where a high value indicates high recognition
rate.

Finally, for statistical testing, we performed five training
runs of the optical models in each different arrangement of
the datasets (default partitioning included), and used Wilcoxon
signed-rank test (Wilcoxon, 1992) with 5% significance. Thus,
we considered the null hypothesis H0 : µ1 ≤ µ2, and alternative
hypothesis H1 : µ1 > µ2, where µ1 is the precision rate of the
proposed model and µ2 is the precision rate of the other model
in comparison. That means that the p-value must be lower than
α = 0.05 to assume that the proposed model offers a signif-
icantly higher precision rate. In addition, statistical testing is
applied to both character and word levels.

4.3. Experimental Setup
The optical models proposed by (Puigcerver, 2017) and

(Bluche and Messina, 2017) were evaluated following a differ-
ent experimental setup from that of their original works. There-
fore, to make a fair statistical comparison, we have adopted
the same workflow and hyper-parameters for all models in each
dataset.

In this context, we do not apply any image preprocessing to
the input data other than the standardization (Z-score normal-
ization) and resizing to 1024x128x1 (Height x Width x Chan-
nel) with padding. In addition, data augmentation was applied
to the training partition (during the training step) to increase the
variety of images. To this end, morphological and displacement
functions with random parameters were used, such as erosion
(up to 5x5 kernel), dilation (up to 3x3 kernel), rotation (up to 3
degrees), resizing (up to 5%), and displacement of height and
width (up to 5%).

The optical models were trained in order to minimize the
validation CTC loss function. To this end we used RMSprop
optimizer with a learning rate of 0.001 and mini-batches of 8
images per step. Reduce Learning Rate on Plateau (factor 0.2),
and Early Stopping mechanisms were also applied after 10 and
100 epochs, respectively, without improving the validation loss.

The Kaldi ASR (Povey et al., 2011) along with SRI Lan-
guage Modeling (SRILM) (Stolcke, 2002) toolkits were applied
to weight the CRNN model outputs with a language model
trained on external data. The language model, based on statis-
tical characters N-grams, can be efficiently trained using only
plain text from the ground-truth transcripts of the training par-
tition of each dataset (Sánchez et al., 2019).

Finally, the optical and character language models were sub-
sequently used by the Kaldi decoder, with a search beam of 30,
to produce the best hypotheses for the test-set lines images.

The whole training process was conducted on the Google Co-
lab platform, which offers Linux operating system with 12GB
memory and GPU NVIDIA Tesla T4 16GB.

5. Results

In this section, we present our results based on our data ar-
rangements in training and validation partitions of each dataset.
In the Bentham dataset, the best results were obtained using
a 9-gram language model, considering the full text of the test
set. The arrangement that provided the best precision result was
90%/10%, where the proposed model achieved a CPR/WPR of
96.73%/90.67%, while Puigcerver’s model got 95.05%/87.51%
and Bluche’s model 93.46%/78.96%, correspondingly. Even
with close results in the first arrangements (default partition in-
cluded), a decrease in the volume of training data leads to an
increase in the difference in performance between the optical
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models. Figure 2 shows the results obtained throughout the dif-
ferent arrangements for each optical model.

Fig. 2. Results for different arrangements of training and validation parti-
tions of the Bentham dataset (higher values are better).

In the IAM dataset, the best results were obtained using
an 8-gram language model. The proposed model achieved a
CPR/WPR of 96.41%/87.07%, while Puigcerver’s model got
95.57%/85.38% and Bluche’s model 93.43%/76.54%, respec-
tively. Figure 3 shows the results obtained throughout the dif-
ferent arrangements defined for the IAM dataset.

Fig. 3. Results for different arrangements of training and validation parti-
tions of the IAM dataset (higher values are better).

The RIMES dataset does not have an official default valida-
tion partition defined, so we use only the arrangements for anal-

ysis. In this way, the best results were obtained using a 12-gram
language model. Thus, the proposed model achieved a CPR of
97.77% with a WPR of 90.47%, while Puigcerver’s model got
96.90% with 89.67% and Bluche’s model 95.60% with 82.87%,
respectively. Figure 4 shows the corresponding results obtained
for each of optical model and arrangement.

Fig. 4. Results for different arrangements of training and validation parti-
tions of the RIMES dataset (higher values are better).

The Saint Gall dataset is the only one that does not have
punctuation marks in the text. Then, we found that 11-gram
language model produces the best results. The arrangement
that provided the best precision results were 70%/30%, for
the proposed model and Bluche’s model, while 80%/20% for
Puigcerver’s. Thus, the proposed model achieved a CPR of
96.20% with a WPR of 83.02%, while Puigcerver’s model was
96.31% with 78.28% and Bluche’s model 95.03% with 77.86%,
respectively.

Furthermore, Puigcerver’s and Bluche’s models achieved
low results in the last arrangement 10%/90%, due to the low
volume of data. In addition, we must also mention here about
the premature overfitting of Puigcerver’s model in all execu-
tions in this specific scenario. Figure 5 shows the results ob-
tained throughout the different arrangements for each optical
model.

The Washington dataset has the least amount of data com-
pared to the others, and as expected, this scenario highlights
the challenge of dealing with overfitting, for which early stop-
ping is quickly activated. Also employing an 11-gram language
model, the proposed model reached a CPR of 96.82% with a
WPR of 92.72%, while Puigcerver’s got model 89.20% with
75.43% and Bluche’s model 92.11% with 77.90%, respectively.

In particular, given that the Washington dataset has the most
restrictive data volume, overfitting cases emerged for several
of the data arrangement scenarios. Fortunately, the proposed
model proved to be stable in these different restrictive scenar-
ios. The 10%/90% arrangement, for example, has only 49 sam-
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Fig. 5. Results for different arrangements of training and validation parti-
tions of the Saint Gall dataset (higher values are better).

ples for training, and the proposed model still achieved a CPR
of 87.25% with a WPR of 71.54%, while the Puigcerver’s and
Bluche’s models did not exceed 20% in both metrics. Figure 6
shows the results obtained throughout the arrangements.

Fig. 6. Results for different arrangements of training and validation parti-
tions of the Washington dataset (higher values are better).

To summarize results of the performed entire experiment, we
compute the weighted average of all results over the datasets.
In general, the proposed optical model achieved a CPR around
96.81% with a WPR of 89.03%, while Puigcerver’s got 93.84%
with 81.31% and Bluche’s 93.85% with 78.93%, respectively.
That means an improvement of about 2.96 and 8.91 percent-

age points in CPR and WPR, respectively. Figure 7 shows the
averaged results.

Fig. 7. The weighted average of precision over all datasets (higher values
are better).

Finally, the statistical analysis was applied to all results ob-
tained from each dataset. Thus, we computed the character
precision p-value and word precision p-value lower than 0.04
in all datasets. That is below the standard α = 0.05 (p-value
< 5e-2), meaning that we can assume that the proposed opti-
cal model, based on Gated-CRNN, has a higher precision rate,
consequently, a lower CER and WER.

6. Discussion

The improvements of the proposed optical model can be ex-
plained mainly by the combination of gated mechanism, BGRU
in the recurrent block, and recent deep learning techniques.
That allows not only to achieve high performance of the optical
model in scenarios with a considerable amount of data, but also
in more complex scenarios with a reduced amount of data.

In scenarios with reduced data volume, it was possible to
compare the stable performance of the proposed model with
the current ones in the literature. Thus, the low achieved results
are caused by ill-learnt models with poor generalization and, in
some cases, by premature overfitting. Another important fact to
mention is that the obtained results are better compared to the
default partitions of datasets. In general, default partitioning is
defined by the study purpose of each dataset, so the specific se-
lection of images may be more complex in the training or val-
idation partition. Finally, the arrangements in this work were
applied through the pseudo-randomness of the data.

Another important aspect to evaluate in deep neural networks
is their complexity, which directly impacts its application per-
formance in terms of, for example, the computational mem-
ory usage of the model and its decoding time. The number of
trainable parameters of the proposed optical model is close to
Bluche’s model (thousands), and it is equivalent to about 10%
of the one of the Puigcerver’s model (millions). In decoding
time (decoding phase), we calculated the average decoding time
of each optical model across all runs of the experiment. Thus,
Bluche’s model was the fastest one, while the proposed model
was the slowest one. Table 3 shows the number of parameters
and the average decoding time using a standard notebook with
a dual-core CPU (Intel i7-7500U).

Therefore, the achieved results show a good performance
over several data scenarios, mainly with small training data.
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Table 3. Number of parameters and average decoding time.
Optical Model # of params Decoding Time

Puigcerver 9.4 M 157 ms/line
Bluche 0.7 M 111 ms/line
Ours 0.9 M 189 ms/line

However, it is important to mention that in the decoding phase,
the proposed model is a bit slower than the other state-of-the-
art models because its network pipeline has more internal layers
processing an image.

7. Conclusions

This paper presents a Gated-CNN-BGRU architecture, based
on Gated-CRNN for offline Handwritten Text Recognition
(HTR) systems, which focuses on improving the state-of-the-art
recognition rate, especially in low data volume scenarios. We
evaluated the proposed optical model and the current state-of-
the-art models on five known public benchmark datasets in the
HTR field (Bentham, IAM, RIMES, Saint Gall, and Washing-
ton), which allowed an analysis from several perspectives. In
addition to facilitating better analysis, mainly in low data vol-
ume scenarios, we evaluated performance models for different
arrangements of data partition between training and validation,
varying from 90%/10% to 10%/90%.

The proposed optical model demonstrated robustness in rec-
ognizing text lines, and we highlight its good performance even
with small training data compared to the other models. In all the
executions and results of the experiment, we surpass the state-
of-the-art optical models by 2.96 and 8.91 percentage points
on average in characters and words precision (recognition rate),
respectively. It is also worth mentioning that training only on
49 samples, the performance achieved was around 87.25% and
71.54% in character and word precision. If these are compared
with the Puigcerver’s and Bluche’s optical models, we outper-
form them by around 78.32 and 53.54 percentage points in this
specific scenario.

In the future, we want to explore alternatives of convolu-
tional layers for the optical model to make it even more compact
and improve performance in the decoding time. Moreover, we
will evaluate other study scenarios, such as offline handwriting
recognition at the paragraph and page levels.
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