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In this paper a novel time integration numerical method based on artificial perturbation
of damping is proposed. Viscous dissipative terms in the structural dynamics equations of
motion are perturbed by an artificial parameter. The subsequent asymptotic expansion
of the transient response results in an infinite series which can be summed, leading to
a well-defined new step-by-step explicit iterative scheme. Precise integration algorithms
are designed for the construction of the main matrices. Conditions for convergence and
numerical properties, i.e., stability and accuracy are also studied in detail. The proposed
approach is validated with a numerical example, showing high accuracy with respect to
other existing methods in literature.

Keywords: Time integration; damping perturbation; asymptotic method; structural
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1. Introduction

In this paper, dynamic analysis of linear structures with time invariant properties
and viscous damping is considered. Equilibrium of inertia, elastic and damping
forces leads to well-known system of second-order differential equations

Mii+ Ciu+Ku=f(t), u0)=uy, u0) =i, 1)

where M, C, K € RV*¥ are the mass, damping and stiffness matrices, respectively,
and f(t) € RY represents the time-dependent vector of external forces at time .
The mass matrix is assumed to be symmetric and positive definite, while K and C
are positive semidefinite symmetric matrices. The N degrees of freedom (dof) are
arranged in the column vector u(t) € RV,
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Explicit methods allow calculation of the solution at each time step from the
previous time step using simple matrix product. However, a known drawback of
explicit methods is their conditional stability, such as the central difference method

%CDM? or the fourth-order Runga-Kutta method (RK4) [Burden and Faires (IM),

)]. This is partially overcome by the family of precise integration

methods (PIM) of special interest in linear models of structural dynamics. The
main contribution of the PIM, originally proposed by Zhong and Williams [1994]

|, is the proposal of an explicit algorithm based on the precise com-
putation of the exponential matrix by means of the 2P algorithm in combination
with the evaluation of the incremental part m )]. The method exhibits
conditional stability although within such a wide range of time steps that in prac-
tice it can be considered unconditionally stable. In addition, it shows highly precise
results in the homogeneous problem, although the accuracy drops when there exist
nonhomogeneous terms in the equations. illi I19_9_4I] proposed to
linearly interpolate the external applied force in the time step, which needs the com-
putation of an inverse matrix with the consequent loss of accuracy. Since the first
attempt of Zhong and Williams, a variety of proposals to improve the efficiency and
accuracy of the method have been published. m Mé)] improved the PIM by
developing in trigonometric Fourier series the external force term within the time
step. [Wang and Zhou HM] proposed the so-called Modified Precise Integration
Method (MPIM), which consisted of evaluating the nonhomogeneous term by using
Gaussian quadrature integration. The approach allows achieving high accuracy in
the result in exchange for increasing the computational cost. Wang and Au ﬂM_ﬂ]
presented a PIM avoiding computation of the inverse matrix for the evaluation of
the nonhomogeneous terms. They proposed two methods for the evaluation of the
independent term based on interpolation with Chebyshev [Wang and Al dQJ)DS)]
and Lagrange polynomials [Wang and Au (IZJ)DQ)] [Fung ﬂw_ﬂ] used the principle
of precise integration, combining the 2P algorithm with the evaluation of the incre-
mental part, to determine the step-response and impulse-response matrices of the

system, as well as their derivatives. [Fung and Chen HQJM] also proposed an effi-

cient algorithm based on the precise integration, using the Krylov subspace and the
Padé approximations. In the work of |[Zhu and Law ﬂm the PIM is applied for
a continuous Euler-Bernouilli beam under moving loads. M] developed
a PIM based on modal analysis for moving forces in footbridge vibration response.

Perturbation techniques have been applied for the numerical solution of linear
and nonlinear, algebraic and differential equations, by expanding the solution in
terms of certain parameter which is known a prior to be very small with respect to
other terms of the model M (M)] Real structures are usually assumed to
be lightly damped, that is, dissipative forces can be considered much smaller than
inertia and elastic forces. Artificial perturbation of dissipative terms in linear struc-
tural dynamics has been successfully applied mainly for the computation of complex
frequencies and modes of nonclassically viscously [Meirovitch and Ryland | (L‘I_Q_?_Q7

h%ﬂ); (Chung_and Leé (Il%_d); [Peres-Da-Silva._ef_all (|19_9_5|); Chal (|2m15); Lazard
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016)] and nonviscously ﬂDava and Potier-Ferry (I@DJ), Duigou_et_all M),
nd Pérez-Aparici 12!!13); Zoghaib and Mattei 12!!14_}]); Lézard 21!15]2!!13);
Lazaro et al) 12!!1d)] damped structures. In the time domain, techniques based on

asymptotic perturbation are very useful to obtain solutions in nonlinear mechan-

ics Qallagh@ﬂ M), Cochelin et all (IM), Mei et all (I@Djj)] In linear structural
dynamics, Fafard et all M] and |Berrahma-Chekroun et _all M] have devel-
oped asymptotic methods by expanding the transient response in time power series.
However, hardly any references can be found in the literature on asymptotic time-
integration methods for the linear model of Eq. (). This is maybe because they
intrinsically involve two iterative processes: one advancing in the time domain and
the other one along the asymptotic dimension. This fact makes them uncompetitive
with other explicit methods that only involve step-by-step iterations in time.

In this paper, an asymptotic time integration algorithm based on artificial per-
turbation of damping for linear structural dynamics is proposed. A step-by-step
explicit algorithm arises after the sum of the infinite series resulting from asymp-
totic expansion of the response, avoiding consequently a double iteration. Stability,
conditions for convergence of the method will be explored and algorithms for the
computation of the main matrices of the scheme will be developed. The accuracy
of the proposed method is validated through a numerical example. Dependency of
error with damping level and time step size are evaluated and compared to other
implicit and explicit methods. In the usual ranges of damping present in real struc-
tures, the proposed approach shows highly accurate results with respect to the other
existing methods.

2. Homotopy Analysis Based on Artificial Perturbation of
Damping

Most problems of structural dynamics are governed by weak dissipation mechanisms
so that the viscous damping forces are generally small compared to the inertial and
elastic forces. Mathematically, viscously damped terms Cu of Eq. ([l) can be consid-
ered as a perturbation of the undamped case, something that might be reproduced
with an artificial parameter. We propose to modify Eq. () with the paramete, say
e with 0 < € < 1, which multiplies the damping matrix in Eq. () resulting

Mii + ¢ Cit + Ku = £(t). (2)

The solution of Eq. () is then a two-variable dependent array u(t,e). The e-
dependent solution can then be expanded as

u(t,e) = i xMW () e =xOt) +xM(t) e+ xP(t) e+ (3)
n=0

where {x(™(t)}22, € RY is a sequence of functions to be determined. If series (B])
is convergent for 0 < e < 1 then the solution of our problem can be written as

u(t) = u(t,1) = i xM () = xO(t) + xV () +xP(t) +--- . (4)
n=0
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while the lower limit, € = 0, corresponds to the undamped problem,
u(t,0) = x©(¢). (5)

The initial conditions are satisfied by the first iteration x(9)(t), so that x(®)(0) = ug
and x(©(0) = 11g. Thus, the problem for n = 0 can be written as

Mx(© + Kx(©) = (1),
x0(0) = ug, %@ (0) = .

Substituting Eq. @) into Eq. @) and identifying the coefficients of €, the nth
function x(™ (¢) can be determined. After some straight operations it yields

Mx(™ + Kx(" = —Cx(—1,
xM©0)=0, x™0)=0 n>1,

where homogeneous initial conditions have been imposed for n > 1 because the

(6)

(7)

real ones have already been applied for n = 0 in Eq. ([@). Let us see in detail the
derivation of the resulting double iterative scheme, i.e., in the time domain and in
the domain of the asymptotic expansion terms.

2.1. Solution of the first iteration, n = 0

The time domain will be sampled by the time-step At, i.e., {tx, k& > 0}, with
to = 0 and txy1 = t + At. The first iteration (n = 0) at ¢ = ¢, will be denoted
by X(O) =x0) (tx). A recursive scheme is built using the explicit method based on

Green’s functions NM&ILS_UIJ;MLJ (I2Qj)j )] yielding

tht1
x| = G(A)x” + H(AY % + /t t H(tpsr — )M (1) dt,
’ 8
o o e 1 (8)
%0 = Ganx + HAa)x” + /t t G(tprr — )M UE(t) dt.
=tk

The Green’s functions, G(t) and H(t), are the solutions of the following system of
matrix differential equations:

G(t) = -AH(t), H(0)=0,
H(t) = G(), G(0) =1x,
where A = M~ 'K and Iy denotes the identity matrix of order IN. It is straightfor-
ward that both G(t) and H(¢) are solutions of the second-order matrix differential
equations MZ + KZ = 0, where Z(t) € RV*N and hence both functions can be
written as
> 1)]' Al .
G(t) = cos(VAt (7,#] ,
0 =cost/RD =3 S
> —1)7 AJ .
H(t ~1/2 " ( 2041
() = sin(VA) = (2 + 1)

Jj=0
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Sometimes G(t) and H(t) are named step-response and impulsive-response func-
tions |Fung )], respectively. In order to obtain a closed form of the recursive
scheme, the integrals of the nonhomogeneous part must be evaluated in the interval
[tk, tx+1]. For that, we will assume a cubic interpolation of the external applied force
using third-order Lagrange polynomials, namely

4 .
t—1t —1)At
i=1

where the interpolation polynomials in terms of the parameter £ = (¢ — t)/At €
[0,1] are

L) = 3(1- 23013, L2(6) = 5(1 - £)(2 3K,

£5(6) =~ - )1 3006, Lu(6) = 5(1—36)(2 ~ 3.

Plugging Eq. ([I0) into the integrals of Eq. ([8) and after some operations we obtain

brta . i — 1)At
/ H@H4—QNFW@ﬁﬁm§:LmNF1ka+g—§l—),
t i=1

(11)

:tk
4 (12)
tht1 p — 1 At
/ Gt — )M (1) dt ~ ZL’Ui M~ f (fk + %) )
t=ty =1
where
tht1 t—t
w:/ IWH10Q<Af)@
=t (13)
th1 t—t
Lvi:/ G(tk+1_t)£i< Atk> dt, 1<i<4.
t=t;,

Rearranging together displacements and velocities of the dof the same 2/N-size vec-
tor, the iterative process can be summarized as the following relationship:

X =1x” +Lg., k>0, (14)
where
(0)
- [ x-{i). x-[o e
X, g G(At) H(AY)
(15)
and
M-If (tk)
—1
B L, Ly, L, Lu  RENXAN o — M~ (¢, + At/3) RN,
Ly,i Lo Lv3 Ly ’ M-If (tk + 2At/3)
M_lf (tk_;,_l)
(16)
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Integrals of Eq. (I3)) can analytically be determined resulting in power series expres-
sions of matrix A = M~'K. After some straight operations, the matrices T and L
can be written in compact form as

T=> t;(A) @A, L=Y I;(At)® Al (17)
Jj=0 j=0

where ® denotes the Kronecker product and the sequence of At-dependent matrices
{t;(At)}52 € R**? and {l;(At)}52, € R**4, are

1) AL AL A2/(25+1
b (an) = CLZAPT A P (18)
@b |2 At
[(j 4 1)(852 + 187 + 13)At  36(j + 1)2At
(1) A U+ 1)) +185 +13) U+1)
lj(At):W 2j+5 2j+5
J .
(25 +1)(452 + 55 + 3) 9(2j +1)?
9277 +j - DAL 2(1 4 25%)At
27+5 274+5 ] (19)

—9(i —1)(2j+1) 452—45+3

The scheme of Eq. ([[d)) corresponds to the initial iteration (undamped) of the
asymptotic expansion (n = 0). Now it is the turn to obtain the recursive formula
that allows to find the rest of the terms of the expansion (n > 1) for all time samples
(k>0).

2.2. Solution of nth iteration, n > 1

According to Eq. (), the nth iteration of the asymptotic expansion, x(™) (t), is in
turn solution of a forced undamped problem where the applied force is proportional
to the velocities of the previous iteration. Thus, we can use again the Green’s
functions-based approach, yielding

x| = G(A)x + H(A) %"

tr41
—/ H(tp — )M IC x V(1) dt,
t

- (20)
"), = G(At) x| + H(AL) x|
tht1
7/ G(tpyr —tMIC X"V (1) dt,
t=ty,
where xgﬂn) =x"(t,), and Xgﬂn) = %x(™(t3), and the initial conditions x(() ") = x(()n) =

0. Above, x("—1 (t) is not explicitly available, since the solution is being determined
from the scheme at the samples t;, k = 0,1,2,.... Equation (20)) will be transformed
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into an iterative scheme in two stages. First, integration by parts of Eq. (20) in terms
of the displacements field x(*~1 (t) leads to

tht1
7/ H(tpr — ) MIC xD(¢) dt
t

=ty

—HAH)M 'cx\"Y

tht1
f/ Gltryr — ) MIC x" V(4 dt, (21)
t

=t

tht1
—/ Gty —t)M™IC x(" V(1) dt
t

=ty
— 1 (n=1) —1 (n=1)
=-G(0)M "Cx; |’ +G(At)M™ Cx,
tr41
+A/ H[t, 1 —t)M1C x" V(1) dt, (22)
t=ty,

where the relationships between G(t) and H(¢) and their derivatives given by Eq. (@)
have been used. The second stage consist of the approximation of x(*~1) (t) by cubic
splines using both displacements and velocities at ¢ = ¢}, and ¢ = t;4,. Within the

interval [ty, tr41] the dimensionless variable & is defined as
t—t

=—1 0<E<1, t <t <ty (23)

tet1 — g

and the value of x("~1)(#) is approximated by
xD (8) m M) X"+ D€ Arx" T + Na(€) x5 + Da(6) AT,
(24)
where
Ni(€) = (1-8*(1+26), Na(€) = (3-26)¢,
Di(&) = (1 - €)%, Do§) = —(1 - &€

By means of this interpolation, the function and its derivative coincide with those

(25)

evaluated from the approximation at the endpoints of the interval, at t = {tx, tx41}.
After plugging Eq. (24 into Eq. ([ZI]), the integrals can explicitly be written in terms
of the (n — 1)th iteration at ¢; and tx41, yielding

tht1
f/ H(tpr — ) MIC x Y (4) dt
t

=t

= x0T %Y 4 B xgﬂl) + Buw ngfll),

tht1
f/ G(tpyr —t)MIC x= V(1) dt
t

=ty

= o X" e %Y B xUTY + B x0T,
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where the N x N matrices of coefficients are
oy = HAHOMIC — At ;O G[At(1 — )M IC Ny (€) d¢,
s — AP :O GIAK(1 — €] MIC D (€) de,
oy = G(AH)M'C + At A ;0 H[At(1 — &) M 1C N (€) d¢,
oo = A A ;OH[Atu —OIMTICD(€) de,
Buu = —At ;0 G[AH(1 — €] M™'C No(€) de,
B = [ GlAH1 - O]MC1C Du(©)de

(27)

1

Bou = -M7IC+ AtA H[At(1 — &)]M~1C Ny (€) de,

=0
1
Bow = At? A H[At(1 — )] M 'CDy(¢) dé.
€=0

Using the definition of matrix T from Eq. (IT) and the values of the integrals of
Eq. (28], the iterative scheme of Eq. ([20) can be written in compact form as the

following double recursive scheme, both in k£ and n
XMW =TX +aX V48X Y, n>1, k>0, (28)

where the nth state vector and the initial conditions are

(n)
0
x(m — ) XM = n>1 (29)
k . (n) ) 0 0 ) )
Xk

and the block matrices o, 3 € R2N*2N

Qo auv] : ,6 _ [ﬁuu ,Buv‘| ) (30)

o =
avu aUU 6’0'& /B'UU

Integrals of Eq. ([21)) can analytically be solved using the series expansion of G(t)
and H(t) given by Eq. ([@). After some algebra, the matrices & and 3 can be written
as

a=Y a;A)e (AVMIC) = |> aj(A)@ A/ - (T, M'C),
j=0 | =0

5= (a0 e (AM0) = | 8,80 e AT - e M),

Jj=0 Jj=0

(31)
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where I denotes the identity matrix of order 2. Above, the sequences {a;(At)}
and {B;(At)}, 7 > 0, of 2 x 2 matrices are defined as

(LA 1205+ )AL —2(25 + 1) (5 + 1)A¢? o
o (At) = (25 +4)! 1225+ 1)(5 +2) 4j(2j+1)(j+2)m}’ §=01,2,...
(32)
| (—1)IAP [ —12(j + 1At 2(2j + 1)At? o
PiB0 = a5 1205+ 1)G+2) siG+2at] 7 S0z B

Equations ([4)) and (28) provide a well-defined iterative framework that enables
the recursive computation in the k- and n-domains of each one of the asymptotic
expansion terms, i.e., Xé”), starting from X(()O) = U, and X(()") =0, n > 1. The
benefits of the proposed method emerge after summing the resulting asymptotic
series. Let’s see it in the following section

3. Proposed Step-by-Step Explicit Scheme

Reaching n iterations, then the transient solution at t = ¢; can be approximated
by the sequence of partial sums, denoted by Ué”). Namely,

u(n) (tk) u(”)
U(") — — k X(O) + X(l) C 4 X (n) _ X(V 34
k {1'1(”) (tr) (n) Z (34)

The limit of the above sequence at t = t;, provided that it exists, represents the
proposed approximated solution to the transient problem. It will be denoted by

u o0
Uk:{_k}z lim UYY =Y XM, k>0 (35)
uy n—oo "0

It turns out that the above limit can be evaluated leading to an explicit time
integration algorithm. Indeed, writing the n + 1 first iterations, 0 <v <mn

X0 =TxX" +Lg v=0,

BxXY +xM =X pax? =1,

BXIY+x =TX 4+ ax!" v=n.

Summing the left and the rlght side terms of the above equations and taking into
account that U =>"r Xk ), yields

—BUul VUl =TU +aU Y tLg, n>1. (37)

Taking limits now on both sides as n — oo and assuming that Uy = lim,, Ué”)
exists, the following implicit algorithm arises:

(Iox = B8) Upgr = (T + o) Uy + Lg. (38)

2250022-9
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Multiplying both sides of the equation by (Ioy — ﬁ)_l, Eq. (38) can be expressed
as the explicit scheme

Uiy =aUg+bg, £=0,1,2,..., (39)

where the main matrices of the algorithm, a € R2V*2N and by, € R?V, are
a=(Ioy —B) (T +a) € RZVN, (40)
b= Iony —B8) 'Lgr e RN, k=0,1,2,... (41)

The calculation of the inverse matrix does not add any drawback with respect to
the loss of accuracy because, as we will see later, the corresponding Neumann series
can be invoked. Essentially, the iterative procedure shown in Eq. (B9) summarizes
the main contribution of this paper. In the following sections, properties of the
numerical approach will be discussed, indeed:

e In Sec.@and in the conditions for convergence of asymptotic expan-
sion Uy, = >/ X;" will be proved.

e In Sec.[d algorithms for computation of the main matrices of the explicit method,
say a and by, will be proposed.

e In Sec.[G the conditions to ensure the stability of the scheme will be investigated.

e In Sec. [0 the accuracy of the approach and its sensitivity with respect to the

different parameters are studied in detail

4. Analysis of Convergence

The explicit iterative scheme outlined in Eq. [39)) is the result of assuming as true
that the limit of Eq. (33]) exists, i.e., the series of the asymptotic method Uy =
> X;Cn) is convergent. After some straight derivations (see the
terms of the sequence {Xé”), n > 0} are linearly dependent on the previous ones
through the square matrix 3, shown in Eq. (3I]). This leads to the following result:

Theorem 1. The series Uy, = ZZOZO Xén) converges provided that p(B3) < 1, where
p(e) denotes the spectral radius.

A rigorous proof of this proposition can be found in The matrix 3
has already been presented in Eqs. (3I]) and ([B3)) as a power series expansion of the
system matrix A = M~'K. Moreover, in view of the form of the matrix all terms
are proportional to the damping M~!C. The matrix 3 can also be presented under

the form
B=At (I, M~'C) [ lim o (At\/M*1K>} : (42)
where the matrix
m/2 j ; 2j ; 2;
—1)i —12(j + 1) 7% 2(2j + 1)At T
on(m) =2 ﬁ ; ; 2j (i 2 (43)
oo G 1225+ 1) (G +2) 7 /AL 8i(j+2)T

2250022-10
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has 2 x 2 elements as long as the argument 7 € R, but it will be o(7) € R2V*2N
if 7 € RV*N | as shown in Eq. {@2) with 7 = Atv/M~1K. The index m denotes
the maximum order of 7 in the power series expansion. For practical cases, a finite
value for m means the truncation of the series. In such case, Eq. [@2]) represents
somehow a decomposition of matrix 3 into three terms: (i) a direct dependency
of time step At, (ii) the matrix o,,(AtvM~1K) and (iii) the matrix M~'C.
In view of the structure shown in Eq. ([@2]), the higher the damping, the smaller
the time step needed to ensure convergence. For real structures with light or
moderate damping forces, the convergence of the method is guaranteed for most
time-step range used in practice. This point will be discussed in the numerical
example.

5. Algorithms for Computation of Main Matrices

To complete the proposed methodology, specific algorithms are needed to calcu-
late the main matrices of the numerical approach, i.e., from Sec. B, Eq. (39), the
matrix a(At) and the vector by (At). Throughout this section, the dependence of
the parameter At in both matrices will be highlighted. Rewriting both expressions

a(At) = (Ioy — 8) (T + a), (44)
bp(At) = (Iy —8) 'Lgr, k=0,1,2,... (45)

Both a(At) and by (At) are computed from matrices T, a, 8 and L, as well as the
vector of external forces given by gr. Apart from the latter, the rest of matrices
are series expansions in terms of the time step At and of the system matrices,
M, C and K, in particular in terms of A = M~'K and M~'C. Additionally, the
computation of the inverse matrix (Ioy — ﬁ)fl is also required. The condition for
the convergence of the method p(8) < 1 (see Theorem [I]), enables now to use the
Neumann series for its computation by means of the formula

(Ly—B) =) B aby+B+p+ - +4". (46)
r=0

In the following points the algorithms for the efficient computation of both a(At)
and by (At) will be described in detail. Although the same matrix 3 arises in both
Egs. {@4) and ({3, it will be computed differently in both cases, using different
time steps and truncation orders in the series involved.

5.1. Precise computation of matrix a(At)

Accuracy in the evaluation of the main matrix of the algorithm a(At) is a key issue
to achieve satisfactory numerical results. In the absence of external forces it yields

Ugy1 = a(At) Uy. (47)

2250022-11
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Therefore, it is verified then that a(At) = a(At/2)a(At/2) = [a(At/4)]*. Consider
a positive integer p and the reduced time step defined as Aty = At/2P then

2P
alai) = {a (%)] = [a(At)]”". (48)
Moreover, a(Atp) can be expressed in incremental form as
a(Ato) - IQN + §a(At0), (49)

where da(Aty) is a matrix whose values are very small. In fact, it can be stated that
limat—o 6a(At) = 0. The relationship of Eq. [@8]) enables the use of the so-called
2P algorithm, commonly used for the evaluation of exponential matrices [Moler
and Loan (IZD_OESI)} Moreover, from Eq. [@3), this technique can be used on the
incremental part da(At) instead of on the total matrix, improving significantly the
accuracy. Thus, the product a(At/2)a(At/2) = a(At) = Ion + da(At) produces

da(At) = 20a(At/2) + da(At/2) - da(At/2). (50)

Let us consider the reduced time-step introduced above, i.e., Aty = At/2P. The
first step is to compute da(Aty). As pointed out before, this latter is very small
in the sense that |[da(Atg)|] < 1 for any matrix norm. Therefore, the iterative
process of Eq. (B0) results much more effective from a round-off error perspective
than evaluating the total matrices a(At). The iterative process consists of p steps,
namely

sa(At/27~ 1) = 2 5a(At/2P) + da(At/2P) - sa(At/2P),

sa(At/2P7%) = 25a(At/2P71) 4 sa(At/2P~ 1) - sa(At/2P7 1),
(51)
(p times)

da(At) = 20a(At/2) + da(At/2) - da(At/2),

and finally the main matrix of the algorithm is determined as a(At) = Ioy +da(At).
For practical applications, it is sufficient to take p = 20 to obtain results with the
required accuracy.

In order to complete the procedure, it remains to describe how to compute the
incremental matrix da(Aty) = a(Aty) — Ioy. As Eq. (@) shows, the computation
of a(Atp) requires the truncation of two series: (i) those of T, a and B and (ii)
the Neumann series corresponding to (Ioy — 3)~!. This lead us to introduce the
following two parameters

(i) The parameter m, stands for the truncation order of matrices T, «, 3. For the
sake of convenience, we will use a common criterion, that is, fixed the parameter
m, the three series will have the same number of terms. In order to avoid
confusion between the exact values and those approximated by truncation, the
subscript (e), will be used for the latter. Thus, consider any even number
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mg > 2 and let us introduce following approximations in terms o the reduced
time-step Atg
0G,(Aty) H,(Atp)

T~ Ioy + 0T (Aty) = Loy + ;
_AH,(Aty) 6G.(Ato)

ma /2 ; _
o(Atg) = Z 4 (ABA), (52)
H, (Aty) = Aty mza/f G (Az2A)’
= (25 +1)!
me/2 me /2
o og= Z Oéj(Ato) ® (AJ MflC) = Z a]'(Ato) X Al - (IQ ® MflC) R
j=0 =0
(53)
me/2 me/2
Z Bi(Atg) @ (AVM'C)=| > B(Aty) @ A | - (I, M'C),
7=0

where a;(Atg), B;(Aty) € R?*? are defined in Egs. (32)) and B3) for j > 0.
Since the order of Aty grows by two, a truncation up to j = m,/2 means that
the order of Aty will be at least my,.

(ii) The other parameter needed to compute da(Aty) will be designed by r, and
it represents the order of truncation of the Neumann series for (Ioy — B4) 2,
yielding

(Iov — Ba) ' Loy + Ba+ B2+ + 0L = Loy + 0B, (54)
where the matrix 68, = B, + B2 + -+ + Ble

Substituting Eqs. (52)), (B3) and (B4) into Eq. (#4), and after some matrix products

we have

a(Atg) = (Ioy — B) ' (T + @) = (Ioy + 08,) (Loy + 0Ty + @)
=Ty + 0Ty + aa + 880 + 084 0Tq + 084 ) = Loy + da(Aty), (55)

where consequently the incremental part da(Atg) is
da(Aty) =0T, + g + 084 + 084 0T, + 684 aa, (56)

Taking p = 20, then Aty = At/2?° = At/1048576 is a very small quantity so that
it is sufficient to take m, = 2 to achieve a highly precise estimation of da(Aty). In
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addition, the case m, = 2 presents advantages with respect to the stability, as it
will be discussed later in Sec. [6l The form of the matrices is transcribed below for
this particular case (m, = 2).

- 2
A; A AtoIy — A—A
T, = , , (57)
—AtgA + =2 Ato AZ? At —OA
_ 3 2 4
%M*C Ato —SAM~'C fAtOM c+ %AM 1c|
o, = ; ,  (58)
M-I1C — 3AtOAM Ic AtOAM Ic
L 20 20 .
—AQtO o AtOAM e AltZOM o ?SSAM 1c]
ﬁa == 3At2 At ) (59)
-M-1C SAM™IC —0AM-'C
L T30 30 .
5ﬁa == /Ba + 52 + + IBZQ' (60)

Algorithm [[] outlines the steps necessary to obtain the matrix a(At). Since in
general Aty < T, the two parameters m, and r, will be taken as m, = r, = 2. As
will be shown later, the scheme is conditionally stable for these values for systems
with nonzero damping.

5.2. Computation of vector by (At)

The vector by (At) = (Ioy — ﬁ)fl L g;, is directly related to the nonhomogeneous
terms of the transient problem. On one hand, it depends on the inverse matrix
(Ioy — B)~! and, on the other hand, on the matrix L defined above in Eqs. (1)

Algorithm 1. Computation of main matrix a(At)

1: Fix main parameters, At, rqo = 2, mqg = 2

2: Compute matrices M~ 1C, A = M~ 'K

3: Evaluate Atg = At/2P (p = 20)

4: Compute matrix 6T,, Eq. (50

5: Compute matrix aq, Eq. (B8)

6: Compute matrix B,, Eq. (B9)

7: Compute matrix §8, = B¢ + 82, Eq. @0
8: Compute matrix da(Atg) = 6Tq + g + 6Ba + B4 6To + 6Ba e, Eq. (BO)
9: Initialize da := da(Ato)
10: for j=1...q do
11: da=20a+da-da, Eq.El)
12: end for
13: Update da(At) = da
14: Evaluate a(At) = Ion + da(At)

2250022-14



Int. J. Comput. Methods Downloaded from www.worldscientific.com
by 178.237.232.1 on 12/09/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

Damping Perturbation Based Time Integration Asymptotic Method

and (). Both B and L are defined in terms of matrix series and consequently
they must be truncated for numerical practice. For that, let us introduce again two

parameters:

(i)

my, stands for the order of truncation of the matrix series 8 and L. Thus, the
vector by results from the following approximation

by = (Ioxv —B8) 'Lgr~ (Ioy —8) 'Lyge, k=0,1,2,..., (61)
where
mb/2 . mb/2 '
L= > L(AHe A, B,= )Y pjA)e (A/M'C), (62)
j=0 j=0

with 1;(At) and B;(At), 2 x 2 matrices defined in Egs. (I9) and (B3], respec-
tively. It is important to highlight that both L, and 3, are computed using
the time step of the problem At and not the reduced one, Aty. As before, the
parameter m; should be an even number because my/2 denotes the number of
terms to be taken.

r, denotes the order of truncation of the Neumann series associated to the
evaluation of (Iny — Bp) ™' ~ Loy + By + B + -+ + B,". Hence, the final
evaluation of by, leads to

by ~ (Z 5?) Ly gk (63)
n=0

In order to optimize the number of matrix products, the above Neumann series
can be computed using the algorithm

Ly +B+8°+ - +8 +-
=Ly +8+ 3N+ 8+ Ian+B8B+-)), (64)

requiring consequently just 7,/2 matrix products. To ensure that the above
sum converges, we know that the spectral radius of 3, must verify p(8p) <
1. In general, increasing the parameter m; will increase the accuracy of the
results and decrease the spectral radius of B, however it will increase the
computational cost.

In the Algorithm 2]the necessary steps to obtain the matrix by (At) are listed. As
shown by the numerical experiments, the parameters m; and 7, result to be signif-

icant for the accuracy in certain cases, hence no particular value are recommended

here. Later in the numerical examples, a study of the sensitivity of my and r, will

be carried out.
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Algorithm 2. Computation of main matrix by (At)

Fix main parameters, At and 7y, m;p (even numbers)
Compute matrices M~1C, A = M~ 'K
Compute and store matrices A7, j =2,...,my/2
Compute and store matrices AJ(M~1C), j=2,...,my/2
Compute sequence of matrices 1;(At) € R2X4 1 <j<my/2, Eq. @
Compute sequence of matrices 3;(At) € R2X2, 1 < j <m,/2, Eq. B3)
Compute matrix L, Eq. (62)
Compute matrix 3;,, Eq. (62)
9: Compute matrix B =Isny + 8y + ,8%
10: if r, > 4 then
11: forn=2...7,/2 do

12: B212N+ﬁb+ﬁgB
13: end for
14: end if

15: Compute vector g, Eq. (I6)
16: Compute by (At) = BL,gr, Eq. (63)

6. Algorithm Stability

The proposed explicit scheme
Uki1 = a(At) Ug + b (At), k=0,1,2,... (65)

is stable provided that every eigenvalue of the main matrix a(At) is less than unity
in absolute value, something that is ensured provided that

pla(At)] < 1. (66)

To discuss the stability of the method it is sufficient to study the single degree-of-
freedom oscillator of mass M, spring rigidity K and damping coefficient ¢ = 2Mw (.
Where w = \/K/M = 2x /T stands for the undamped natural frequency, T for the
natural period and ( is the damping ratio. The matrices of the system are then
the numbers A = [K/M] = [w?] and M™'C = [2w(]. Since the matrix a(At)
is computed using the 2P algorithm, the stability should be studied when it is
evaluated at the reduced time step Aty = At/2P. As described above, the order of
truncation of the series involved is controlled by both the parameters m, and r,.
The parameter m, denotes the truncation order of matrices T, a and 3 while r,
stands for that of the Neumann series for (I — 3)~!. We can then write

a(Atg) = (I — B) (T + ) (Z ﬂn> ot o), (67)
where the truncated matrices, denoted with the subscript (e),, results

N e
= 2]+1

2i+1 Aty
—72 /Aty 25+ 1]
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o mi/f (—1)i72H1¢ 24(j +1) —4(2j +1)(j + 1) At
g @+ 242 )G 2)/A 825+ 1) +2)
5, mza/f (—1)ir2ti¢ —24(j + 1) 4(25 + 1) Ato (68)
S 24N 242+ 1) +2)/At 165(j +2)
The variable 7 = Atow = 2mwAty/T represents a dimensionless measure of the

reduced time step. Eigenvalues A of matrix a(Aty) can be determined as function
of the nondimensional time step Atg/T = 7/27. As shown in Eq. ([68]), || depends
also on the parameters my, r, and on the damping ratio (. Since the reduced time
step necessary to compute a(Atg) is a very small number, i.e., Aty = At/2P, with
p = 20, then in general the inequality p(B,) < 1 holds and only a few terms in
the Neumann series are necessary. In particular, assuming the lowest value for r,

1.10, . . 110 .

T
(a) ¢=0000, 7, =2 / / (b) ¢ =0.00, 7, =2 / j
1.00 1.00 -
= \/ \ = N
< 090 1 & o9p
g 0.80F mg =2 4 g 0.80F my =2
F —_—=4 r —_— =4
g o070f m, =6 g g 0r0f [ ma=6
& —_—=8 A —_— =8
0.60}- Ma = %0 1 0.601 Ma = 0
0.50 i i 050 i i
107 107 10° 107 10! 107
Ato/T = Atgw/2w Ato/T = Atgw/2m
1.50
(C) ¢ =0.050, 7, = 2
1.25
= =
5 10 4
k] 8
£ 07 ¢
El E
g 050 5
] my = 8 @
025k |——ma=o0 ]
0.00 i . 0.00 i i
1072 107! 10° 1072 107! 109
Ato/T = Atgw/2m Aty/T = Atgw/2m
10t Eigenvalues of 3, 10t Eigenvalues of 3,
e e e e e = e e e
< <
= 107! = 107!
£ 1072 £ 107
& 5 4
210 g 10
1011 ‘ | 10~ | L.
—2 —1 )0 2 1 0
0 WAt/ T = Atgw/2m 0 0 At/ T = Atgw/2m o

Fig. 1. (Color online) Absolute value of eigenvalues of matrix a(Atg) = (Iz — 8)" ' (T + «) in a
single dof system with natural frequency w = /K/M = 27 /T and damping ratio ¢ = ¢/2Mw, for
different cases of damping level: (a) ¢ =0, (b) ¢ = 0.005, (c¢) ¢ =0.05 and (d) ¢ = 0.50. Abscissas
represent the reduced time step Atg/T. Curves for different truncation orders mg are plotted in
colors: mq = 2 (red), mq = 4 (blue), mq = 6 (green), mq = 8 (black), ms, = oo (magenta). The
inverse matrix is approximated by (I — 8)~! ~ I+ Bq + 82 (re = 2). Plots (e) and (f): absolute
value of eigenvalues of matrix B, for two damping cases: (e) ¢ = 0.05, (f) ¢ = 0.50.
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ie., r, = 2, it leads to very accurate results, something that is supported by the
numerical experiments.

Figures [[l(a)I{d) show the absolute value of eigenvalues of matrix a(Aty) cor-
responding to four cases of damping intensity, from ¢ = 0 (undamped case) to
¢ = 0.5, and for several truncation orders from m, = 2 to m, = 8. Intervals of
stability, found as intersections of curves with |[A| = 1, are listed in Table [lin terms
of Aty/T. For the undamped case (¢ = 0), the orders of truncation for m, = 4
and m, = 8 are unstable for small values of Aty. However the case m, = 2 results
to be stable for the undamped case in the range 0 < Aty/T < 0.2757. Therefore,
taking p = 20, the stability extends up to the limits 0 < At/T < 2.89 x 10, much
wider than the usual range of At used to guarantee a minimum of accuracy in real
problems. As Fig. [[l show, dissipative forces are in general favorable for stability in
the proposed scheme. Most conflictive cases in terms of stability are those with null
or very light damping, as for example m, = 4 and m, = 8 (see Table[I]). The case
mg = 2 behaves very favorably, showing conditional stability in an interval that
increases slightly as the damping increases.

In Figs.l(e) and [}f), the absolute value of eigenvalues of matrix 3, are plotted
for two cases of damping ¢ = 0.05 and ¢ = 0.5. Since 3, is directly proportional to ¢,
the spectral radius decreases also proportionally to the damping level. Convergence
interval is the range of Aty/T within which the inequality p(3,) < 1 holds. Hence,
highly damped structures could have an interval of convergence narrower than the
interval of stability, in terms of Aty/T. This is not relevant in practice because of
the very small size of Aty/T.

Table 1. Intervals of stability in terms of Atg/T, found as inter-
sections of curves with |A\| = 1. The reduced time step is Aty =
At/2P, with p = 20. ¢ stands for the damping ratio of the single
dof oscillator of frequency w = 27/T.

Damping ratio  Truncation order Stability boundaries
¢ = 0.000 mg =2 0.0000 < Ato/T < 0.2757
Mg = 0.2964 < Ato/T < 0.5405
mq =6 0.0000 < Ato/T < 0.2808
me =8 0.2749 < Ato/T < 0.7279
¢ = 0.005 mg =2 0.0000 < Ato/T < 0.2791
meg =4 0.0000 < Ato/T < 0.5406
mg = 0.0000 < Ato/T < 0.3741
me = 0.0000 < Ato/T < 0.7287
¢ =0.050 mg =2 0.0000 < Atg/T < 0.3024
mq =4 0.0000 < Ato/T < 0.5421
mq =6 0.0000 < Ato/T < 0.4766
mg =8 0.0000 < Ato/T < 0.7343
¢ = 0.500 me = 0.0000 < Ato/T < 0.3871
mg = 0.0000 < Ato/T < 0.5342
me = 0.0000 < Ato/T < 0.6156
mg =8 0.0000 < Atg/T < 0.7407
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7. Numerical Example

Consider the 12-dof discrete lumped spring-mass system shown in Fig. 2 (top).
Mass, rigidity and damping coefficient are, respectively, M = 1 kg, K = 100 N/m
and C = 2V KM(, where ¢ is a dimensionless parameter used to quantify the
level of damping in the model. The value ( = 0 leads to the undamped state with
natural frequencies given in Table 2 As { increases, the coefficients of the damping
matrix also increase linearly. Table [2] also lists the relationships between the modal
damping ratios and the parameter ¢, i.e., §;/¢, where {; = C}; /2w; and C}; denotes
the jth main diagonal entree of the modal damping matrix, C' = <I’TC<I’. The
minimum period of the structure is T = 0.32 s. Although the damping model is
nonproportional, i.e., C;k %0, j # k, the modal damping ratios represent a good
indicator to measure the dissipative level. The external force f(t) is located at the
third dof and it reproduces a multiharmonic input affected by a Gaussian weight.
The mathematical model and the corresponding graph are shown in Fig.[2 (bottom)

U Uy Uy

rrrmfhrrfrrr

> f(f)

20 T T T T T T T
_(t=tm)?
151 ft)y=e % 3, fisin(Qit)
Lol fi = {0.4,0.6,0.5,0.5} (N) i
— Q; = {0.5,1.2,5.0,20.0} (rad/s)
Z 05k tn=16s,t, =48s h
= 00
S
—0.51 -
71.0_ -
~15 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

t()

Fig. 2. Discrete system of Example 1. (Top) 12-dof sketch of the lumped-mass structure. External
applied force is located at dof # 3. (Bottom) Time function of external force f(t), formed by a
superposition of harmonic functions weighted by a Gaussian function.

Table 2. Example 1. Natural frequencies w; and modal damping ratios §; = C’J’.j/ij
(relative to the damping parameter ().

Mode, j 1 2 3 4 5 6

Natural frequency, w; (rad/s) 1.5482 3.7604 5.4508 6.7428 9.2233 11.0287
Modal damping ratio, C’;-j/QquC 0.0972  0.0979 0.5608 0.7106 0.3382 1.0004

Mode j 7 8 9 10 11 12
wj (rad/s) 11.8809 14.5269 16.8189 17.5123 18.5560 19.6346
C’]’.j/2ij 0.8391 0.3872 1.3389 0.5817 0.1603 1.8695
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and it is formed by four harmonic functions with different amplitudes. The proposed
method will be compared with some existing iterative numerical methods (listed
below). Three implicit schemes (Newmark, Wilson and Bathe) and three explicit
schemes (Modified Precise Integration Method, Runge-Kutta and the proposed one)
have been chosen for the comparison. The time step At is a common parameter for
all the methods.

Newmark method. The Newmark-{ integration scheme ﬂBﬁLb_el (|2D_l_4|), Newmark
)] is based on the application of the extended mean value theorem for the
estimation of displacements and velocities, ugy1, Ux41, from accelerations. For that,

two parameters v and [ are used in the method, which will be taken in our particular
examples as v = 1/2 and 8 = 1/4, guaranteeing the stability.

Wilson method. The Wilson-6 method [Bathe 12!!14); Wilson_et_all (1923)}

assumes a linear change of acceleration within the time range [t,t + 6At]. The

method is implemented in the current numerical examples with § = 1.40 which

ensures the stability of the system [Wilson et all ( l92;§

Bathe method. Bathe’s method i : Bathe and
Noh M)] is an implicit scheme which consists of splitting up the time-step into
two sub-steps of length YAt and (1—)At, respectively, where 7 is a parameter. Two
different approaches are applied within each sub-step: the trapezoidal rule is used for
the first sub-step and the three-point Euler backward method for the second one.
For the current numerical examples, the case v = 1/2 will be considered, which

makes both time sub-steps of equal length, exhibiting in addition unconditional
stability.

Modified Precise Integration Method (MPIM). Wan-Xid (2004): Wang and
Zhou \291)_5]); Zhgmg_andﬂllh_amé ) The Modified Precise Integration Method
combines two techniques: on one hand, it uses the original approach of Zhong Zhong
and Williams (|19_9_4|) for calculating the exponential matrix in the homogeneous
solution based on the 2P algorithm. On the other hand, the integrals of the non-
homogeneous terms are accomplished using the Gauss quadrature method with ¢
integration points ﬂ}M&ug_{md_thﬂ (lZDQﬂ)] In Ref. Wang and Zhol dZ_QOﬂ), simu-
lations are carried out for a number of integration points equal to g = {3,4,5}. So,
in the current paper the same number will be used for comparison.

Runge—Kutta (RK4). The classic fourth-order Runge-Kutta method (RK4,

Burden and Faires (IM), Butcher (IM)]) is not widely used in structural dynam-

ics, but we have found it interesting to include it as example of an explicit method,

with good properties of accuracy but conditionally stable.

Proposed method. As described in the theoretical developments, several param-
eters can be tunned in the proposed method. Along the numerical examples the
main matrix a(At) is computed using m, = r, = 2 since highly accurate results are
achieved for these values, guaranteeing stability for a very wide range of time steps.
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Parameters: my, =8, r, =4, ¢ =0.100, At/T 0750
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Fig. 3. Time-domain numerical solutions for the different methods at dof uq(t) with parmaeters
¢ = 0.10, time-step At = 0.24 s = 0.757. Modified PIM (MPIM) has been implemented with
g = 4 Gauss quadrature points for integration of nonhomogeneous term. Order of truncation in
proposed method in the nonhomogeneous term: m;, = 8 and r, = 4. (a) Displacement at dof-#1,
u1(t), (b) local relative errors of displacements, (c) velocity at dof-#1, w1(t), (d) local relative
error of velocity, (e) and (f) detail plots of displacement and velocity in the range 15 < ¢ < 20 s.

In Fig.Blthe transient problem for the current example has been solved using the six
different approaches presented above. Figures Bla) and Blc) show, respectively, the
simulated response of the first degree of freedom, i.e., displacement w;(¢) and the
velocity 1 (t). The interval of simulation is 0 < ¢ < ty.x = 40 s, with a relative time-
step of At/T = 0.75 s. Damping parameter has been taken ¢ = 0.10, something
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that leads to a set of modal damping ratios in the range 0.97% < §; < 18.69%.
The relationship between the spectral radius of matrices M~1C and vM~1K,
p(M~1C)/p(VM~1K) = 0.815 can be considered as a global measure of the dissi-
pative forces. In order to calculate the relative errors of each numerical approach,
a reference solution has been obtained using At/500 = 4.8 x 10~% s. The relative
errors along the time range have been plotted in Figs. Bl(b) and Bld). Since the
chosen time step is relatively large, in fact At/T ~ 0.75, the methods based on
the discretization of the derivatives (Newmark, Wilson and Bathe) are those ones
that carry more numerical errors. The value of At used in Fig. B lies out of the
stability region of the RK4 method. This can be observed at the first instants of the
simulation, where the marker points of the RK4 (red squares) diverge. The MPIM
and the proposed method have the best agreement with the reference solution. The
parameter m; = 8 has been used for this simulation, leading to a spectral radius
p(By) = 0.8617 < 1, guaranteeing the convergence although with a value very close
to 1. We take r, = 4 terms in the Neumann series noticing that from this value the
errors do not become lower. The number of Gauss integration points for the MPIM
are g = 4, revealing also that for ¢ > 4 the accuracy barely changes. Under this
choice of the parameters, better results are perceived with the proposed method,
reaching relative errors between one and two orders of magnitude lower, both in
displacements and velocities. In Figs. Ble) and B(f), detail windows of the solution
within 15 < ¢t < 20 s are shown. In them, a very satisfactory agreement of the
proposed approach is perceived compared with the rest of the simulated methods.
The differences are especially evident in the evaluation of velocities, where for this
relatively high time step, the other approaches show errors significantly higher than
those recorded with the proposed method.

It is expected that a reduction of the time step will induce an improvement
in the numerical solution for all methods. This effect is shown in Fig @] where the
displacement and velocity response together with the corresponding relative errors
have been plotted for a 10-times smaller time step with respect to that used for
Fig. Bl simulations, i.e., At = 0.024 = 0.0757". The damping level is left as the same
value as before, keeping the value of the dissipative parameter ( = 0.10. With a time
step 10 times smaller, and no change in damping, a reduction in the truncation error
emerges as expected. Therefore, in order to computationally optimize the proposed
algorithm, a smaller value of the truncation parameter m; can be taken. Results
of Fig. M have been simulated using the orders m; = 4 and r, = 4. In general,
the relative errors drop by 2—4 orders of magnitude with respect to those shown in
Fig. Bl Moreover, the RK4 method becomes now stable and shows very accurate
results, even better than those of the MPIM. In the proposed method, the reduction
of the time step leads to a substantial improvement of the predictions. Along the
entire range of time simulation, the proposed approach is visibly the most accurate,
among all the simulated approaches. The error in both displacement and velocity
improve appreciably in all methodologies within the range 30 < ¢ < 40 s, where the
nonhomogeneous terms are reduced to practically zero.
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Parameters: my =4, r, =4, ¢ =0.100, At/T =0.075
T

0.02; , ,
Reference
0.01 o RK4 -
— o Newmark
= A Wilson \
= 0-00 Bathe B
s PIM
—0.01 Proposed | _|

‘u - uref{ / ‘“refl

Fig. 4. Simulation of time-domain response of dof-1. Dimensionless damping parameter ¢ = 0.10.
Time-step At = 0.024 = 0.0757 s. Modified PIM (MPIM) uses g = 4 Gauss quadrature points in
integration of nonhomogeneous term. Order of truncation in proposed method in the nonhomoge-
neous term: 7, = 4, my = 4. (a) Displacement, u1(t), (b) relative error of displacement response,
(c) velocity, 41 (t), (d) relative error of velocity response.

We will now focus on discussing the influence of different parameters in the
global error. Accuracy of the proposed method mainly depends on the following
three relevant parameters:

(i) The time step, At, measured as usual in dimensionless form respect to the
minimum period of the system. For the current example T = 27 /wmax =
0.32 s.
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(ii) The damping level, quantified throughout the entries of the matrix C. There
are several forms of measuring how strong or light are the dissipative forces. In
this example the coefficients of the dampers are proportional to the dimension-
less parameter (. In the results the dimensionless ratio p(M~1C)/p(VM~1K)
will be used as a relative dimensionless measure of the damping level.

(iii) The truncation orders, my, and 7, introduced to construct the nonhomogeneous

term by (At) in Egs. (61 and (63]).

Let us define a measure of the total error (global error) over the entire time range.
Given an interval [0, tmax ], a time step At and a function y(¢) defined at all points
y(tr), 0 < k < kmax, tk = kAL, with kmax = tmax /At. Then we define the following
function-norm ||e|| as

and the global error of the jth dof displacement and velocity can then be defined
as

, _ @) — v @l My (1) = tjres()]]
elwp M) == or 0 WA= mer

The norm defined above will be employed as global measure of the error for each
simulation and for each numerical method. The relationship between the global
error and the time step is shown in Figs. Bla) and Bl(b) show, respectively, the
errors e(ug, At) (displacement) and e(usg, At) (velocity) at degree of freedom #2, for
a relatively low damping, given by a p(M~*C)/p(vVM~1K) = 0.10, corresponding
to ¢ = 0.0123. The left-side plots (low damping) can be compared with those of the
right side (high damping), Figs. Bl(c) and Bl(d), which show the same variables but
for a higher level of damping, i.e., p(M~1C)/p(VM~1K) = 1.00 (obtained with
¢ = 0.123). In view of the results, the proposed method shows evidence of high
accuracy compared to the other methods studied. Moreover, only the proposed
method seems to be sensitive to the changes of the damping level. The plots shown
for the rest of the approaches are hardly changed after increasing the damping
level. The RK4 method shows high accuracy in the simulations, specially for low
time step. However, this method exhibits a limitation by stability, something that
can be observed in Fig. Bl where the RK4 becomes unstable approximately for
At/T > 0.2. The loss of accuracy shown by the proposed method approximately
at At/T =~ 1 is not due to instability but to divergence of the sum of the infinite
series. As shown in Sec. [l the spectral radius p(83) is strongly dependent on the
time-step and on the damping level. The MPIM has been simulated for different
integration points g = {3,4,5}. However, it is appreciated that the global error is
barely sensitive to this parameter. In fact, curves for ¢ = 3, g = 4 and g = 5 show
slight differences between each other only for high time steps.
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Fig. 5. Relationship between global error of dof # 2, e(ugz,At),e(u2, At) and time step
At/T (example 1), for two cases of damping level: (a) and (b) global error plots for
¢ = 0012, p(M~1C)/p(vVM~1K) = 0.10. (c) and (d) global error plots for ¢ = 0.123,
p(M~1C)/p(vVM~1K) = 1.00. Orders of truncation for the proposed method in the nonhomoge-
neous term: my, € {4,24} and r, € {2,12}.

As expected, the error increases with the time step for all methods. However,
for small values of At/T, the global error due to the proposed method is shown to
be approximately insensitive to the time step. For the range of values At/T used in
practice, the proposed method is several orders of magnitude more accurate than
the other schemes. Furthermore, as At increases, the error can be somehow reduced
by increasing the parameters 7, and m; (truncation orders in the computation of
b(At)). In order to identify the influence of these parameters, different simulations
have been carried out for 7, = {2,12} and m;, = {4,24}. An increase in these latter
improves significantly the estimation, as can be seen comparing the results from
ry = 2 to rp, = 12 or those from m, = 4 to my = 24. The results are specially
sensitive as the damping increases, as noticed in Figs. Blc) and Bld).

The trend observed in Fig. Bl makes us wonder how the quality of our proposal
will evolve as we increase the damping level. To this end, Fig. [6l shows the depen-
dency of the global error with the damping intensity, measured by the magnitude
p(M~1C)/p(VM~1K). Left and right side plots of Fig. Bl represent the relative
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Fig. 6. Relationship between global error of dof # 2, e(ua, At),e(u2, At) and damping level, mea-
sured as p(M~1C)/p(VM~1K) (example 1), for two time steps: (a) and (b) global error plots for
At/T = 0.05. (c) and (d) global error plots for At/T = 0.5. Orders of truncation for the proposed
method in the nonhomogeneous term: m;, = 8 and 7, € {2,12}. Dashed black line (no markers)
in global error of displacements denotes the spectral radius of 3y

global error for two time steps, At/T = {0.05,0.50}, respectively. In all performed
simulations, the proposed method still exhibits the most accurate results for lightly
damped systems, say within the range p(M~1C)/p(VM~1K) < 1. In Figs [6(a)
and [6c) the spectral radius p(83p) has also been plotted, showing a linear depen-
dency with damping. Thus, in order to keep the errors bounded, the Neumann
series needs to be updated with more terms as the damping increases. From the
limit p(Bp) = 1 it is useless to increase r}, since the Neumann series is divergent.
It can be seen in the four graphs of fig. [0l the divergence of the method when this
threshold is exceeded. The other methods under study are also insensitive to damp-
ing at low values of p(M~1C). However, above certain limiting values, damping
improves the accuracy of the result slightly, contrary to what is observed with the
current approach. Despite this improvement, the damping affects the stability con-
ditions for the RK4 method and the accuracy for the MPIM. For the time step
At/T = 0.05, the RK4 method becomes unstable for p(M~1C)/p(VM~1K) ~ 8.
On the right plots, for At/T = 0.5, the RK4 is unstable in the whole range of damp-
ing level and MPIM exhibits a pronounced loss of accuracy for high damping levels.
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Newmark, Wilson and Bathe methods show decreasing errors as the damping level
is increased. Effects on the global error of multiplying the time step by 10 can be
observed in Fig. [0l Indeed, from the left plots with At/T = 0.05 in Figs. [6la) and
[6Ib) to the right plots with At/T = 0.50 in Figs. [f(c) and [Bl(d). As expected, all
methods exhibit an increasing error, although the proposed approach for these par-
ticular values still yields the most precise numerical results for light and moderate
damping problems.

In theory, the convergence of the method is conditioned to the time step and
damping level. However, the cases covered in the simulations shown in Figs. Bland [@l
enable convergence to be guaranteed in most practical cases. Moreover, in the usual
case of lightly damped structures, the parameter At/T can be increased significantly
without significant loss of accuracy. Furthermore, transient problems with very high
damping can also be analyzed under the current approach by reducing the time step
and increasing the truncation orders.

8. Conclusions

This paper considers the numerical resolution of transient problems in linear struc-
tural dynamics. Taking advantage that dissipative forces are in general much smaller
than inertia and elastic forces, we propose to artificially perturb the damping terms
to derive an iterative asymptotic procedure. The theoretical developments lead to
the summation of the resulting infinite series culminating in an explicit iterative
process. Convergence of the series, stability of the method and accuracy are stud-
ied in depth. Detailed algorithms for the computation of the main matrices are
also presented. The proposed approach has been validated by means of a numer-
ical example consisting of mass-spring-damper discrete multiple degree-of-freedom
structure. The influence of the error with different parameters such as time step,
damping level and numerical parameters intrinsic to the method is studied. The
results are also compared with other existing methods in the literature, showing
great accuracy both in displacements and velocities for a wide range of time steps.
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Appendix A. Proof of Convergence Conditions

In this Appendix, the conditions for convergence will be discussed. As derived in
Sec. Bl the transient solution for displacements and velocities at instant ¢ = t; is
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the result of the series

u X
U’“{'k} Jim U = Z{%}‘Zxﬁf’, F20. (A)

Uy n=0 Xk n=0

The convergence of this series must be ensured for each £ > 1. For this purpose,
we will deduce a recursive relation in the space of the asymptotic expansion (n-
space) that allows us to explicitly derive the sequence of partial sums. The sequence
{X3 (M} can be determined from the double recursive relation given by Eq. 28,
which is rewritten here as

XMW =TX +aX" V48X, n>1, k>0, (A.2)

Evaluating this equation for n > 2 and for k = {0,1,...,k — 1} yields
XM =1x{" +axi"V+x"Y,

X =TxW +ax" Y 4 gxY,
(A.3)

XMW =X 4 ax" VXY n >0,

Since X = X" = 0 for n > 2, then the first step (k = 0) is reduced to
Xgn = ,BXln 1). The terms Xgn), R X,(Cn_)1 of the right side of each step equation
can be replaced by their corresponding expression of the previous step. Repeating
this process systematically for each step and after some operations, Eq. (A3]) can
be written separating the terms associated to the nth and (n — 1)th iterations in
both sides of equations, i.e.,

(”) ,BX(n 1)
X(n) X(” 1) +ﬁX(n 1)

Xgn) _ T’ngnfl) +7Xgn71) +ﬂX§n71)7

X(TL) ZTk 1— r nfl) +/6X](€n_1) . n > 2,

where v = T3 + a. Rearranging Xgn), .. .,X,(Cn) in one single 2N k—size column
vector denoted by X(™ € R2N¥ and after some algebra, the above relations can be
expressed as

XMW =RX" VD p>2 (A.5)

)
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where the nth iteration array X(™ and matrix R are formed by the blocks

x{™
X () — : € R2Vk,
X"
E: O2n Oon -+ Oy Oay]
Y B Oz -+ Oy O2n
T~ Y B <o Oan Oan
R = . . . , . C | e REVRXENE (A 6)
Th-3~y Th4y Tk5~y ... B Ouy
Th-2y Th3, Thiy ... 3

The first iteration for n = 1 leads to the relationship between X(® and X It can
be derived straightforward when Eq. (AZ3)) is evaluated at n = 1 and taking into
account that X(()l) =0 and X(()O) = Uy. Indeed,

XV =TX{" +aXy’ + X" = X" + a Uy,

Xy =TX{ +aX{” 4+ 58Xy = Ty X[ + 8XY" + Ta Uy,

(A7)
X)X, X, ox)
k—1
=Y Ty XO 4+ XY + T a Uy, 0> 2.
r=1

As before, using some matrix algebra, the following expression can be obtained:

XM =RX® +sU,, (A.8)
where
(8%
T
S = ' € RAVFX2N, (A.9)
TF 1
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We can build the 2Nk-size column vector U™, result of the partial sums of the
first n steps of the asymptotic scheme

X(V)
w5 (X)L
U™ = : — : =y => X, (A.10)
(n n v=0 v v=0
U Sox( X;.
v=0

Using the recursive relations of Eq. (A for n > 2 together with the first iteration
(n =1) from Eq. (AS), the response U™ results

U™ = xO 4 xM 4 x@ 4.4 x(™®)
— X 4 x 1) + rRX® NI Jarle(l)
=XO 4 Ly +R+ -+ +R") XM

=XO 4 (Inp + R+ ++R" ) (RX<0> + SUo)

_ (Z R”) X0 (Z R”> SU,. (A11)

The asymptotic solution considering the infinite perturbation steps, i.e., n — oo is
then

U= lim U™ = lim ZX(”

v=0

n—1
= lim (Z R”) X©@ + lim (Z R”) S Uy. (A.12)
v=0

It is straightforward that the sequence of partial sums is

(Z RY ) (Lnk —R)™! (Ioye —R™), (A.13)

which is convergent provided that

lim R™" =0.

A proof of this result can be found in the book of ], Sec. 55, p. 59)

and in the book of (IHQusgthdQﬂ ﬂl_%_éd], Sec. 2.5, p. 54). Therefore, the necessary
and sufficient condition for this series to be convergent is that all the eigenvalues of

matrix R are strictly smaller than the unit in absolute value ﬂHQllSﬂhQ]dﬁIl );

)]. Therefore, the series is convergent provided that its spectral
radius is less than the unity, i.e., p(R) < 1. The matrix R is a triangular matrix by
blocks as shown in Eq. (A.6). The main block diagonal is formed by the repetition
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of matrix 3. Consequently, the eigenvalues of R are those of 8 and therefore p(R) =
p(B). Hence, the convergence of the method can be ensured provided that

p(B) < 1. (A.14)

Under this condition the sequence of power series {R”}52, tends to zero and a
closed form expression of the solution can be written as

U= (Lyxi —R) (x<°> +S U0> . (A.15)

This closed-form relationship highlights the intrinsic nature of the proposed
approach as an asymptotic expansion-based method. Note that both matrices R
and S are directly proportional to the damping matrix, so that for undamped prob-
lems we have U = X(© (undamped solution).
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