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Abstract – Collective processes in a quasi-classical electron gas are investigated within the frame-
work of the interpolational self-consistent method of moments, which makes it possible to express
the dispersion and decrement of plasma waves, and the dynamic structural factor of the system
exclusively in terms of its static structural factor so that five sum rules are satisfied automatically.
Different models are used of the static structure factor; the stability and robustness of the results
of the moment approach taking into account the accuracy of these models is confirmed and tested
by comparison to the alternative molecular dynamics simulation data.

Copyright c© 2022 EPLA

Introduction. – Recently, one observes a growing in-
terest in the study of warm dense matter, an exotic state
at the boundary between condensed matter and plasmas.
The gas of interacting electrons, enclosed in a homoge-
neous positive background, is the basic theoretical model
of such a system. Despite its apparent simplicity, it offers
many interesting effects, such as collective excitations and
the Wigner crystallization at lower densities. Interest in
such a system arose at least due to its detection in astro-
physical objects [1] and its creation in the context of the
inertial confinement fusion caused by laser pulses [2].

The uniform electron gas (UEG) can be created in a
laboratory [3], and many encouraging theoretical results
have been achieved in recent years [4,5]. On the other
hand, there have been productive attempts to describe the
dynamical characteristics of model plasmas using various
numerical modelling techniques [6,7]. Significant progress
has been achieved lately using the ab initio path-integral
Monte Carlo simulation method, see [8,9] and references
therein. However, due to the long-range interactions, ther-
mal excitations, quantum degeneracy, and the Coulomb
scattering, scarce attention has been paid to the dynami-
cal properties of UEG from the theoretical point of view.

(a)E-mail: syzganbaeva.saule1@gmail.com (corresponding
author)

It is significant that dense warm electron gas is charac-
terized by the values of the coupling

Γ =
βe2

a
(1)

and degeneracy

θ =
kBT

EF
= 2

(
4
9π

) 2
3 rs

Γ
(2)

parameters varying around unity, so that standard pertur-
bative methods are not applicable for its description.

In the previous equations a = (3/4πn)1/3 is the Wigner-
Seitz radius, n is the density of electrons, β = 1/kBT is
the inverse temperature in energy units, EF is the Fermi
energy of the electrons, rS is the Brueckner parameter.

Important information about the nature of the electron
gas can be extracted from the system dielectric function
and its dynamic structural factor. For ideal plasmas the
coupling parameter Γ � 1, i.e., at low densities and/or
sufficiently high temperatures, the random-phase approx-
imation (RPA) [10] gives reliable results for the dielectric
function, since the kinetic energy is dominant. In contrast,
for electron densities corresponding to those of the conduc-
tion band in real metals, the average kinetic and potential
energies of the electrons are of the same order of magni-
tude, and the plasma is moderately coupled so that Γ ∼ 1.
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Under these conditions, RPA gradually becomes inappli-
cable since exchange and correlational corrections to RPA
cannot be accurately calculated, although several approx-
imate expressions of the dielectric function have been pro-
posed [11,12]. This is why an analytical description of the
dynamical properties of dense quasi-classical Coulomb sys-
tems within an alternative non-perturbative mathematical
approach is proposed that can automatically take into ac-
count the converging sum rules.

The moment approach is based on solving the Ham-
burger problem of the theory of moments [13]. Power mo-
ments of the dynamic structural factor in a classical fluid
are actually sum rules that must be satisfied at arbitrary
values of the above coupling and degeneracy parameters
corresponding to the classical statistics conditions. The
essence of the moment approach is that the moments can
be calculated independently from the static structural fac-
tor (SSF) or the radial distribution function (RDF), and
with an appropriate choice of the Nevanlinna parameter
function, which possesses certain mathematical properties,
the values of the dynamic structure factor (DSF) can be re-
constructed, see [14] and references therein. Reducing the
calculation of the DSF to the knowledge of static charac-
teristics (SSF or RDF) only means, in our opinion, the self-
consistency of the moment approach. In previous works, in
particular in [15], we emphasized that the reliability of the
proposed approach in relation to the accuracy of the em-
ployed data on the static structural factor required further
study. In 2020 we showed that the moment approach in
classical one-component plasmas is robust with respect to
the precision of the input static data. It remains to be seen
whether it is true in a quasi-classical or partly degenerate
electron gas or other Fermi systems of charged particles.
Here the “classical” stability is confirmed by comparison
with alternative quasi-classical molecular-dynamics data
of [16], where the exchange and other quantum effects
were indirectly reflected through a specific pseudopoten-
tial. Such an approach is presumably unable to reproduce
consequences of purely quantum characteristics of a Fermi
system correctly directly described by the quantum Monte
Carlo method [8]. Simulations in [16] were carried out at
θ = 50 so that from the point of view of statistics, the
system modelled there can be approximately treated as
a classical one. Application of the self-consistent method
of moments to the description of the dynamical proper-
ties of a quantum UEG is beyond the scope of the present
work. Here we wish to confirm the robustness of the mo-
ment approach in quasi-classical systems of charged par-
ticles. In other words, we want to demonstrate that to
describe in a satisfactory way the dynamical properties of
quasi-classical one-component plasmas in a wide range of
variation of the coupling parameter Γ, it is sufficient to
abandon not only the laborious method of hyper-netted
chains modified by the bridge function, but even avoid
cumbersome adjustments of these data given in the pa-
pers [17] and [18]. To this end, we employ a simple inter-
polation [19] of the results of numerical modeling of the

static structural factor. We will show that the accuracy of
these data is sufficient to obtain quite satisfactory results
with respect to the UEG dynamical properties, especially
concerning the characteristics of the collective modes in
this model Coulomb system. A limited sensitivity of the
dynamic properties, in particular, of the dispersion re-
lations in classical one-component plasmas, was demon-
strated previously in the long-wavelength regime within
the quasi-localized charge approximation (QLCA) and its
modifications/simplifications, please, see refs. [20–22].

Interpolational self-consistent method of mo-
ments. – The knowledge of the dynamic structure factor
S(q, ω) permits to describe both electrodynamical and dy-
namical characteristics of the plasma. Due to the classical
form of the fluctuation-dissipation theorem, DSF is di-
rectly related to the inverse dielectric function (IDF) of
the system, ε−1(k, ω),

− Im ε−1(k, ω)
ω

=
(2πe)2β

k2
S(k, ω). (3)

On the other hand, within the framework of the method
of moments, using Nevanlinna’s theorem, the inverse di-
electric (response or Nevanlinna) function

ε−1(k, z) = 1 +
ω2

p(z + Q)
z (z2 − ω2

2(k)) + Q (z2 − ω2
1(k))

(4)

can be expressed in terms of the non-phenomenological
Nevanlinna parameter function, Q(k, z), which we approx-
imate here, like in [23] and many other publications, by
its static value Q(k, 0) = ih0(k). On the assumption that
DSF has an extremum at the zero frequency, the posi-
tive parameter h0(k) was expressed in [23] in terms of the
characteristic frequencies ω1(k) and ω2(k):

h0(k) =
ω2

2(k)√
2ω1(k)

. (5)

The squares of the latter static characteristics are defined
by the ratios of the DSF moments:

ω2
1(k) =

C2(k)
C0(k)

, ω2
2(k) =

C4(k)
C2(k)

, (6)

Cv(k) = (1/n)
∫ ∞

−∞
ωvS(k, ω)dω, v = 0, 2, 4. (7)

The zero moment is obviously equal to the static structure
factor (SSF), C0(k) = S(k), whereas the second moment
is the f-sum rule:

C2(k) = ω2
p

(
k2

k2
D

)
, (8)

where ωp =
√

4πne2/m is the plasma frequency, kD =√
4πne2β is the inverse Debye screening radius. The

fourth moment in a classical one-component system has
only three contributions:

C4(k) = ω2
p

(
1 +

3k2

k2
D

+ U(k)
)

, (9)
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Fig. 1: The UEG static structure factor for Γ = 140. The
blue (solid) line corresponds to the interpolation of [19], green
(dot-dashed) and orange (dashed) lines represent the results
of HNC [15] and of the modified HNC (MHNC) [24] approx-
imations, respectively, while the circles are the results of the
molecular-dynamics simulations [18].

Fig. 2: As in fig. 1 but for Γ = 60.

where

U(k) =
1

4π2n

∫ ∞

0

[S (p) − 1] f (p; k) p2dp, (10)

is due to the interparticle correlations with

f (p; k) =
5
6

− p2

2k2
+

(
p3

4k3
− p

2k
+

k

4p

)
ln

∣∣∣∣k + p

k − p

∣∣∣∣ , (11)

being the angular-averaging factor, while the second con-
tribution in (10) is the kinetic one. The precision of the
SSF data influences the level of quantitative agreement of
our results with the DSF simulation data. Here we analyze
the influence on our results of three different approaches

Fig. 3: The dynamic structure factor normalized to its max-
imum value at Γ = 100, θ = 50, q = ka = 0.619, obtained
within the present approach using different SSF data: the
green (dot-dashed) line corresponds to the results of HNC [15],
the blue (solid) line corresponds to the interpolation formal-
ism of [19], and the orange (dashed) line to the modified HNC
(MHNC) [24], in comparison with the modelling data [16]
(circles).

Fig. 4: As in fig. 3, but for q = ka = 1.856.

to the calculation of plasma SSFs S(k) in (10), including
both theoretical (the hyper-netted chain approximation
(HNC)) [15], the modified HNC (MHNC) [24] and those
based on the fitting of precalculated data [19]. In what
follows we present graphical material which demonstrates
that except for the higher wave number values, little dis-
crepancy is observed for the plasma dynamic character-
istics calculated with the SSF data obtained within these
approaches. This stability supports the idea of the robust-
ness of the present model. In fig. 1 and fig. 2 various model
SSF graphs are displayed in comparison to the simulation
data of [16].
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Fig. 5: Dispersion of plasma waves (15) within the framework
of the self-consistent method of moments with the SSF data
taken from the interpolation formalism [19] (blue solid line),
found in the HNC [15] (green dot-dashed line) and MHNC [24]
(orange dashed line) approximations and the results obtained
using eq. (10) from ref. [20] with the parameter R estimated
as R ∼ 1.09545 [20] (black dotted line), in comparison to
the modelling data taken as the DSF maxima positions [25]
(triangles).

Fig. 6: The plasma wave decrement (15) calculated within the
present approach for Γ = 100.

Dynamic structure factor (DSF). – Within the mo-
ment approach, we can construct DSF using the Nevan-
linna formula [14,26,27]:

S(k, z) = −n
E3(ω; k) + Q(k, ω)E2(ω; k)
D3(ω; k) + Q(k, ω)D2(ω; k)

. (12)

Here the polynomials Dj(z; k), j = 0, 1, 2, 3 are orthog-
onal with the weight S(k, z), and the corresponding con-
jugate polynomials Ej(z; k), j = 0, 1, 2, 3, are determined
as

Ej(z; k) =
∫ ∞

−∞

Dj(ω; k) − Dj(z; k)
ω − z

S(k, ω)dω. (13)

Fig. 7: Plots of the dispersion of plasma waves obtained
from (A.1) in comparison with numerical simulation data [25].

Fig. 8: Plots of the decrement of plasma waves obtained
from (A.2).

Moreover, all these polynomials have real coefficients,
and their real zeros alternate. The standard Gram-
Schmidt procedure with the same weight applied to the
basis of the space of polynomials

{
1, z, z2, . . .

}
, leads to

the following explicit form for these polynomials indepen-
dent of the DSF:

D0(z; k) = 1, D1(z; k) = z, D2(z; k) = z2 − ω2
1(k),

D3(z; k)=z3 − zω2
2(k), E0(z; k) = 0, E1(z; k)=C0(k),

E2(z; k) = C0(k)z,

E3(z; k) = C0(k)
[
z2 + ω2

1(k) − ω2
2(k)

]
.

Therefore, the DSF found from eq. (12) takes the fol-
lowing form [14]:

S(k, ω) =
n

π
lim
η↓0

Im S(k, ω + iη) =

n

π

S(k)ω2
1

(
ω2

2 − ω2
1

)
h0(k)

[ω (ω2 − ω2
2)]

2 + [h0(k)]2 (ω2 − ω2
1)

2 . (14)
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The graphs of the dynamic structure factor calculated
within the framework of the interpolational self-consistent
method of moments at different values of the coupling pa-
rameter Γ = 100 are presented in fig. 3 and fig. 4 in com-
parison with the numerical modeling results of [16]. Notice
that comparison with these data, as far as we know, has
not been carried out earlier.

Dispersion of plasma waves. – One of the advan-
tages of the self-consistent method of moments is that it
permits to investigate the properties of collective modes in
an electron gas analytically, including, in the five-moment
case, even using Cardano’s formulas. Precisely, we can
solve the cubic dispersion equation stemming from (4) and
the approximation (5),

z
(
z2 − ω2

2(k)
)

+ ih0(k)
(
z2 − ω2

1(k)
)

= 0. (15)

The real parts of the three solutions of eq. (15) provide
the dispersion of the modes, and the imaginary parts give
the decrements of the modes. Observe that the Rayleigh
mode is located at the zero frequency, and we focus here on
the plasma mode, see figs. 5–8. Figure 5 shows that as the
coupling parameter increases, the weight of the negative
correlation contribution in (10) increases and the disper-
sion of plasma waves becomes negative. It is also worth
noting that the static characteristics taken from [19] pro-
vide reliable results for the calculation of DSF for Γ < 100
as well. Considering the opportunities for further studies,
interpolation formulas are constructed for both the disper-
sion and the decrement of the plasma waves, see appendix.

Conclusion. – We present the self-consistent interpo-
lational method of moments and show that to describe
collective processes in a quasi-classical one-component
plasma in a wide range of variation of the coupling pa-
rameter Γ, it is sufficient to use the data of the interpola-
tion [19] of the static structure factor numerical modelling
results. Thus, the robustness of the results of the moment
approach with respect to the accuracy of the static input
data is demonstrated.
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Appendix

These are the interpolation formulae for the dispersion
and the decrement of the quasi-classical UEG plasmon

mode valid for Γ ∈ [1, 150] and q ∈ [0, 3.1]:

ω(Γ, q) =
(−0.01553q3

)
+

(−0.00288q3 ln
(
Γ2

))
+

(
0.01338q3 ln(Γ)

)
+

(
0.13707q2

)
+

(
0.02093q2 ln

(
Γ2

))
+

(−0.11324q2 ln(Γ)
)

+
(−0.00049q2 ln

(
Γ3

))
+

(−0.00001Γ2q
)

+ (0.15192q)
+ (−0.14533q ln(Γ))

+
(
0.05201q ln

(
Γ2

))
+

(−0.00890q ln
(
Γ3

))
+ (0.00279qΓ) + (0.00492 ln(Γ))
+ (0.98468); (A.1)

δ(Γ, q) =
(
0.00051 ln

(
Γ3

))
+

(−0.03716q3
)

+
(−0.00201q3 ln

(
Γ2

))
+

(
0.01840q3 ln(Γ)

)
+

(−0.07158q2 ln(Γ)
)

+
(
0.00132q2 ln

(
Γ3

))
+

(−0.00434 ln
(
Γ2

))
+

(
0.21369q2

)
+ (0.00901 ln(Γ))

+
(−0.00443q ln

(
Γ3

))
+

(
0.036989q ln

(
Γ2

))
+ (−0.07431q ln(Γ)) . (A.2)

These interpolations obtained from the solutions of
eq. (15) using the static structure factor of [19] predict
the onset of the negative dispersion at Γ = 8.6, which is
in a reasonable agreement with the known results. Since
these interpolations are valid in a wide range of variation
of the parameters Γ and q, they do not permit to localize
the onset value of the coupling parameter with a higher
level of precision. It is also clear that this value depends on
the precision of calculation of the static structure factor.
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H. M., Phys. Plasmas, 23 (2016) 023702.
[21] Khrapak S. A. and Khrapak A., IEEE Trans. Plasma

Sci., 46 (2018) 737.
[22] Fairushin I. I., Khrapak S. A. and Mokshin A. V.,

Results Phys., 19 (2020) 103359.
[23] Arkhipov Yu. V., Askaruly A., Davletov A. E.,

Dubovtsev D. Yu., Donko Z., Hartmann P., Ko-

rolov I., Conde L. and Tkachenko I. M., Phys. Rev.
Lett., 119 (2017) 045001.

[24] Young D. A., Corey E. M. and DeWitt H. E., Phys.
Rev. A, 44 (1991) 6508.

[25] Mithen J. P., Daligault J. and Gregori G., Phys.
Rev. E, 85 (2012) 056407.

[26] Akhiezer N. I., The Classical Moment Problem and
Some Related Questions in Analysis (Hafner Publishing
Co., New York) 1965, p. 253.

[27] Adamyan S. V. and Tkachenko I. M., Lectures on the
Physics of Non-Ideal Plasma, Vol. 1 (Odessa State Uni-
versity, Odessa) 1988, p. 66.

11001-p6


