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Resum
Les persones amb dificultats en la pronunciació, sovint derivades de patologies fisio-

lògiques o cognitives, s’enfronten a reptes significatius en l’ús de tecnologies d’interacció
per veu. Les tecnologies d’assistència actuals no aborden adequadament les complexitats
úniques d’aquests reptes, destacant la necessitat de solucions adaptables per a millorar
les capacitats de comunicació i la qualitat de vida.

Aquest projecte té com a objectiu adaptar diversos sistemes de reconeixement auto-
màtic de la parla a un grup demogràfic específic, particularment a individus amb pro-
blemes de pronunciació, especialment aquells amb afàsia. Per a aconseguir-ho, s’aplicarà
un procés de fine-tuning a diferents sistemes de reconeixement de la parla preentrenats,
amb èmfasi en la identificació d’hiperparàmetres òptims per a l’ entrenament així com en
la comparació de resultats utilitzant la mètrica del Word Error Rate (WER).

A més, el projecte integrarà models de reconeixement de la parla amb models de des-
cripció d’imatges per explorar en quina mesura el context visual millora la interpretació i
comprensió del sistema sobre el que els individus amb afàsia estan intentant comunicar.
L’avaluació d’aquests sistemes inclourà avaluacions humanes. Així, aquest projecte bus-
ca crear una solució integral per a ajudar les persones amb afàsia i millorar l’experiència
d’Interacció Persona-Ordinador (HCI) per a aquest grup demogràfic.

Paraules clau: HCI; model de lenguatge; ASR; problemes de dicció; descripció d’ imat-
ges; foundation models.

Resumen
Las personas con dificultades en la pronunciación, a menudo derivadas de patolo-

gías fisiológicas o cognitivas, enfrentan desafíos significativos al utilizar tecnologías de
interacción por voz. Las tecnologías de asistencia actuales no abordan adecuadamente
las complejidades únicas de estos desafíos, lo que destaca la necesidad de soluciones
adaptables para mejorar las capacidades de comunicación y la calidad de vida.

Este proyecto tiene como objetivo adaptar varios sistemas de reconocimiento automá-
tico del habla a un grupo demográfico específico, en particular, a individuos con proble-
mas de pronunciación, especialmente aquellos con afasia. Para lograrlo, se realizará un
proceso de fine-tuning a diferentes sistemas de reconocimiento del habla preentrenados,
con énfasis en la identificación de hiperparámetros óptimos para el entrenamiento y en
la comparación de resultados utilizando la métrica del Word Error Rate (WER).

Además, el proyecto integrará modelos de reconocimiento del habla con modelos de
descripción de imágenes para explorar en qué medida el contexto visual mejora la inter-
pretación y comprensión del sistema sobre lo que los individuos con afasia están tratando
de comunicar. La evaluación de estos sistemas incluirá valoraciones humanas. Así, este
proyecto busca crear una solución integral para ayudar a las personas con afasia y mejo-
rar la experiencia de Interacción Persona-Ordenador (HCI) para este grupo demográfico.

Palabras clave: HCI; modelo de lenguaje; ASR; problemas de dicción; descripción de
imágenes; foundation models.

Abstract
People with pronunciation difficulties, often stemming from physiological or cogni-

tive pathologies, face significant challenges when using voice interaction technologies.
Current assistive technologies do not adequately address the unique complexities of

i



ii

these challenges, highlighting the need for adaptable solutions to enhance communica-
tion abilities and quality of life.

This project aims to adapt various automatic speech recognition systems to a specific
demographic group, particularly individuals with pronunciation problems, especially
those with aphasia. To achieve this, fine-tuning will be applied to different pre-trained
speech recognition systems, with a focus on identifying optimal hyperparameters for
training and comparing results using the Word Error Rate (WER) metric.

Furthermore, the project will integrate speech recognition models with image descrip-
tion models to explore to what extent visual context enhances the system’s interpretation
and understanding of what individuals with aphasia are trying to communicate. Evalua-
tion of these systems will include human assessments. Thus, this project seeks to create a
comprehensive solution to assist people with aphasia and enhance the Human-Computer
Interaction (HCI) experience for this demographic group.

Key words: HCI; language model; ASR; pronunciation problems; image captioning;
foundation models
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CHAPTER 1

Introduction

1.1 Motivation

Speech recognition is the task of detecting spoken language and transcribing it into writ-
ten text. Spoken language constitutes one of the primary avenues of communication used
by a substantial majority of the human population to express themselves and exchange
ideas. This circumstance, in conjunction with the remarkable progress experienced by
technology in recent years, has led to a significant increase in the investigation and ad-
vancement within the field of Automatic Speech Recognition (ASR).

ASR systems have demonstrated their significant utility across diverse domains, in-
cluding chatbots, voice assistants, and translation systems. The advancement in this field
in the recent years, has resulted in the coexistence of current systems ranging from clas-
sical solutions based on Hidden Markov Models and Natural Language Processing, like
the Kaldi project [43], to more contemporary approaches that harness deep learning tech-
niques. Between the systems that use deep learning to address this challenge it is possible
to find open-source solutions, such as whisper [45], wav2vec 2.0 [7], and OpenSeq2Seq
[29] as well as commercial solutions like Google Cloud Speech-to-Text and Microsoft
Azure Speech Services .

The recent expansion of ASR technology has allowed its use as an additional mode
of interaction with a wide range of systems and devices, further emphasizing the impor-
tance of making this technology more accessible to all types of users.

However, there is a percentage of the population, specifically more than 1.4% of the
global population[8], that suffers from some form of speech disorder, making challenging
for them to use speech in a conventional manner to communicate. These difficulties can
lead to the fact that, despite the impressive performance demonstrated by cutting-edge
systems of this kind for the majority of the population, current voice recognition systems
face challenges when transcribing the speech of specific user groups with pronunciation
difficulties. This, among other things, generates frustration among these communities
and restricts their use of these technologies.

Despite advances and research in the field [5, 53], the complexity and variations in
pronunciation continue to pose obstacles to developing an open-access model that guar-
antees a satisfactory transcription experience for people with speech disabilities.

However, fine-tuning of the most recent models, equipped with millions of param-
eters, for specific domains, is yielding highly promising results in terms of adapting
systems to particular user groups. Examples of this phenomenon are evident in [50,
28]. These studies not only invite optimism regarding the possibility of adapting speech
recognition systems to specific groups of individuals with pronunciation difficulties but
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2 Introduction

also suggest the potential development of systems that assist in the communication of
these individuals with pronunciation problems with the rest of the population. That is
why this project will conduct experiments and study the effectiveness of systems that
would not only transcribe what people with pronunciation difficulties are saying but,
with the help of image description systems, would extract the user’s visual context and
use it to interpret what the user is trying to convey with the spoken phrase. This could
serve as assistance for people with communication difficulties to have effective commu-
nication with a wider range of individuals in the general population.

In this project, experiments combining ASR and image description systems using
LLM (Large Language Models) will be conducted, and it will be investigated whether
this combination of systems offers advantages compared to simply adapting ASR sys-
tems.

1.2 Objectives

The primary objective of this project is to enhance the interaction between individuals
with pronunciation difficulties and current speech recognition systems, aiming to im-
prove these systems’ understanding of people facing such challenges.

Specifically, we will compare and seek to enhance the metrics obtained using base
systems adjusted with the AphasiaBank corpus [38], which contains recordings and tran-
scriptions of individuals with aphasia. To achieve this, we will select different models
and perform fine-tuning on them. Additionally, we will also investigate whether the vi-
sual context information of the individual can help better interpret what they intend to
convey with the spoken phrase, potentially improving communication for these individ-
uals with a broader segment of society. To do this, we will employ image description
systems to leverage the visual information that can be obtained from the participant’s
environment. This information, along with the transcriptions from the fine-tuned model,
will be used as input for a large language model. The objective of this multimodal system
is to generate a message that aligns more closely with the speaker’s intention.

To accomplish these primary objectives, we will pursue the following sub-goals:

1. Filtering and collecting the corpus data, including transcriptions and videos of in-
dividuals with Aphasia, stored within the database.

2. Data cleaning that involves adjusting the transcriptions to conform to the input
format required by each model and segmenting both audio and transcriptions into
smaller fragments.

3. Partition the data into distinct subsets: training, test, and validation, and engage in
a discussion about determining the most suitable partitioning strategy.

4. Selecting appropriate ASR models and adjusting model weights to align with tran-
scriptions from individuals encountering challenges in speech articulation.

5. Identify and choose a pertinent system with the capability to generate image de-
scriptions.

6. Examine whether enhancing speech with contextual image descriptions, which de-
pict what the subject might be observing, enhances the overall comprehension of
speech for individuals with pronunciation difficulties.
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1.3 Paper Structure

The following document has been divided into various chapters and sections, so that the
necessary information to comprehend the experiments conducted and to achieve the de-
fined objectives, in addition to the work carried out in this paper, is conveyed efficiently.
Below, the different chapters will be described.

In Chapter 1, the motivation, objectives of the study, and the document’s structure are
explained.

Chapter 2 discusses various language disorders, including aphasia, the type of disor-
der that will be addressed in this study.

In Chapter 3, a review of the state-of-the-art in speech recognition systems will be
conducted, with special emphasis on systems designed for people with disabilities or
those that utilize multimodal approaches to complement transcription.

Subsequently, Chapter 4 will focus on Automatic Speech Recognition (ASR) systems.
It will delve into their evolution, functioning, different approaches, and types of systems.

Chapter 5 covers different ASR systems currently in use, along with an explanation
of the fine-tuning process for such systems.

Chapter 6 will explore image captioning systems and their operation. Additionally, it
will describe some of the most relevant image captioning and Visual Transformer systems
in use today.

As for Chapter 7, it will discuss the evolution and current usage of language models.

Chapter 8 will describe the solution proposed by this study, as well as the dataset that
will be used.

In Chapter 9, the conducted experiments will be elucidated, along with the evaluation
results of the various systems.

Finally, in Chapter 10, a summary of the key points, conclusions, and future work will
be presented.





CHAPTER 2

Language disorders

2.1 Types of language disorders

Language disorders [49] are communication problems that can manifest as difficulties
in language comprehension or expression, and they can affect both spoken and written
language. Below, we will list and briefly explain some of the major language disorders.

Stuttering, commonly known as dysphemia, is a speech disorder in which the indi-
vidual experiences disruptions that interrupt the normal flow of speech. In addition to
repetition, it is possible that in their speech, sounds, syllables, or words last longer than
usual. All of these factors together can lead to a lack of fluency.

On the other hand, there is the mixed receptive-expressive language disorder, which
hinders individuals in their understanding and expression of language. Examples of this
include using simple sentences, having a limited vocabulary, or experiencing compre-
hension difficulties.

Dyslexia is another disorder that involves difficulties in reading, stemming from is-
sues with identifying speech sounds and relating them to letters and words.

Another common problem may be dysarthria. This condition involves muscle-related
issues that interfere with speech production, making it difficult for those with this condi-
tion to articulate words clearly.

Furthermore, there is dysphasia, or specific language impairment, which results from
a lack of coordination in words due to a cerebral injury.

Finally, there is aphasia, a problem caused by damage to the parts of the brain re-
sponsible for language. People suffering from aphasia may also experience other issues,
such as dysarthria or apraxia. Since aphasia is the problem that will be predominantly
discussed in this article, it will be addressed in greater detail in the following section.

2.2 Aphasia

As mentioned earlier, aphasia [16] is a disorder that affects both language comprehen-
sion and expression and is caused by dysfunctions in specific regions of the brain. The
condition manifests as a failure in the bidirectional translation that establishes the cor-
respondence between thoughts and language. In individuals with aphasia, the abil-
ity to accurately convert sequences of non-verbal mental representations that constitute
thought into the symbols and grammatical structures of language is compromised. In
other words, images or representations of thought can no longer be adequately expressed
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6 Language disorders

in words and phrases. Likewise, the reverse process, which involves generating mental
images that correspond to a sentence heard or read, can also be affected in aphasia.

This problem is not limited to languages based on auditory signals but also affects
sign languages. Additionally, it can affect the written code of any type of language,
whether auditory-based like English or ideogram-based like several Asian languages.
Aphasia can compromise multiple aspects of language, including syntax (the grammati-
cal structure of sentences), lexicon (the set of words denoting meanings), and word mor-
phology (the combination of individual speech sounds, known as phonemes, into smaller
meaningful units called morphemes). In many cases, more than one of these aspects is
affected in the same patient. For example, a patient may primarily have difficulties in
sentence comprehension, along with a moderate inability to select the right word to ex-
press their thoughts. In another patient, the difficulty may lie in the inability to construct
the appropriate grammatical structure for the thoughts they are trying to express.

Regarding the types of aphasia, this classification is based on the affected area of the
brain and the symptoms that manifest. Here, some of the main types are described:

• Global Aphasia: This is the most severe type of aphasia and is applied to patients
with significant difficulties in understanding spoken language, or they do not un-
derstand it at all. They may also pronounce few recognizable words and are unable
to read or write.

• Mixed Non-Fluent Aphasia: In this type of aphasia, patients have limited speech
and struggle with oral production. Additionally, their oral comprehension is lim-
ited, and they have a very basic level of reading and writing.

• Broca’s Aphasia: Broca’s aphasia is characterized by reasonable oral comprehen-
sion but significant issues with speech fluency. Individuals with this condition tend
to use very short expressions.

• Wernicke’s Aphasia: In this type of aphasia, the ability to comprehend the meaning
of spoken words is primarily impaired. Although it generally does not affect speech
fluency, the sentences produced often lack coherence. Additionally, reading and
writing are typically severely affected.

• Anomic Aphasia: Anomic aphasia refers to the patients’ inability to find the right
words to express what they want to communicate, especially important nouns and
verbs. While their speech is usually grammatically fluid, they experience difficulty
and frustration in finding the right words. Typically, they have a good understand-
ing of spoken language and adequate reading skills.

A more visual classification of the types of aphasia can be seen in the figure 2.1.
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Figure 2.1: Decision-making tree in aphasic patients [11].





CHAPTER 3

Related Work

Since the shift in the ASR field from purely statistical models to incorporating neural
networks, there has been a significant boom. The most significant change was the re-
placement of Gaussian mixtures in the acoustic model with deep neural networks [32].
However, the current state-of-the-art lies in end-to-end models. These models have rev-
olutionised the field by employing a single neural network for transcribing audio signals
to text.

As will be elucidated in Chapter 4, there are several advantages to using end-to-end
models in the field of ASR. Some of these end-to-end advantages include the fact that they
have a single objective function to optimize. Additionally, having fewer intermediate
components makes the end-to-end solution more compact.

Automatic Speech Recognition is a challenging task, and its accuracy can be influ-
enced by various factors such as ambient noise, speaker characteristics, or the usage of
domain-specific vocabulary. These variations can significantly impact the system’s per-
formance.

Fine-tuning is a strategy that leverages pre-trained models and tailors them to a nar-
rower, more specific domain. During this process, the model’s weights are adjusted. This
technique comes with several advantages. Since the pre-trained model already possesses
prior knowledge, instead of training an entirely new model, this existing knowledge is
harnessed. As a result, adapting a model, rather than starting from scratch, brings about
a reduction in required training time and the volume of necessary data. This fine-tuning
technique empowers models to adjust to specialized domains, delivering solutions that
are more focused and efficacious.

Regarding fine-tuning focused on adapting speech recognition models for individuals
with pronunciation difficulties, there have been several relevant research efforts.

In the research study by Green et al. (2021) [22], speech recognition models were tai-
lored to individuals with speech disorders. Specifically, they evaluated speaker-independent
models, such as Google’s Speech-to-Text API, or end-to-end models based on RNN-T
architecture [47]. The performance of each model was investigated, along with the im-
provements achieved by personalising the latter model to suit a specific participant with
a speech disorder. Notably, through this adaptation process, significant word error rate
reductions of up to 80% were observed in individuals with moderate to severe speech
disorders. However, it is important to highlight that, in this particular study, a distinct
and personalised model was developed for each speaker. In [50], several experiments
finetuning ASR model for people with amyotrophic lateral sclerosis (ALS) and accented
speech being able to reduce WER rater by up to 62% in the case of ALS.

9



10 Related Work

Furthermore, speech is a dynamic and continuous process that is influenced not only
by the linguistic content it conveys but also by the context in which the message is deliv-
ered. Considering the possibility of integrating other systems, such as image description,
to enhance comprehension is a noteworthy aspect to explore.

Several comprehensive studies have been conducted in this domain. Notably, in [30]
an innovative approach that utilizes image captions generated by a system captioning
system as prompts for the task of correcting output texts from Automatic Speech Recog-
nition systems is proposed. The authors introduced two distinct methods to accomplish
this objective.

The first method, termed the "GatedFusion-based method," involves concatenating
the embeddings of image visual features and the ASR transcription text. Subsequently,
this combined information is passed through a decoder to rectify any transcription errors
by leveraging the accompanying visual information.

The second approach, referred to as the "Prompt-based method", departs from em-
bedding the image caption and ASR transcription separately. Instead, both the image
caption and the ASR transcription are employed as prompts to an Encoder-Decoder
model. Through this method, the image caption can effectively correct any inaccuracies
present in the ASR transcription. It is imperative to acknowledge that the study, while
undoubtedly valuable in its scope, focuses exclusively on general spoken English audios
and their corresponding transcriptions. As such, the research investigates and evaluates
the proposed methods based on this particular dataset. Nevertheless, it is essential to
recognize that the study’s findings and conclusions might not be directly representative
for individuals with speech impairments.

In [18], a comprehensive pipeline that addresses various tasks, including speech-to-
text, text-to-speech, image-to-text, and text-to-image. While this pipeline offers a holistic
approach to tackle these tasks, it is particularly noteworthy for its potential applicability
in ASR tasks.

Even in scenarios where voice and text data resources become limited or unavailable,
there remains a promising avenue to enhance ASR performance by leveraging multi-
modal data and exploiting the information provided within the data chain. By incorpo-
rating diverse sources of data, such as images and their associated text, ASR systems can
benefit from the complementary nature of multimodal information, leading to improved
accuracy and robustness.

On the other hand, a error correction model is used and to obtain the final transcrip-
tion, a n-best list of error correction model output is rescored with language model and
visual semantic joint embedding, so visual information is used too to improve the speech
recognition results.

In contrast, in in [13] an error correction model to enhance the performance of speech
recognition systems is introduced. Their approach involves generating an n-best list of
outputs using the error correction model. Subsequently, to obtain the final transcription,
this n-best list is rescored utilizing both a language model and a visual semantic joint
embedding technique. The inclusion of visual information in this process serves as a
means to further improve the accuracy and efficacy of the speech recognition results.

In the case of the aforementioned multimodal systems, the inclusion of visual infor-
mation primarily aims to rectify potential transcription errors. However, within the spe-
cific context of this work, the objective extends beyond that. When developing systems
tailored for individuals with aphasia, in this instance, the goal is not solely to achieve the
most accurate transcription possible. With multimodal systems, where the visual context



11

of an image is incorporated, the aim is also to effectively comprehend what the user is
attempting to communicate.





CHAPTER 4

Automatic Speech Recognition

4.1 ASR evolution

The origins of Automatic Speech Recognition (ASR) can be traced back to around 1952
when initial research and projects began in this field. During that time, the technology
developed by Bell Laboratories in the context of Audrey program showed promising
capabilities in recognizing numerical digits. In the subsequent years, research and work
in speech recognition continued to evolve, and it was in the early 1970s that statistical
models were first applied, thanks to the pioneering efforts of Frederick Jelinek.

However, it was not until the 1980s, when Jack Ferguson introduced the popular use
of Hidden Markov Models (HMMs), that a significant shift occurred in ASR. This marked
a departure from simple pattern recognition methods, which were based on templates
and spectral distance measures, to a more sophisticated statistical approach for speech
processing. HMMs became the state-of-the-art technique in ASR for many years, gain-
ing popularity due to their standardized benchmarking capabilities and their ability to
provide reliable results, as explained in [25].

Furthermore, the availability of large speech corpora for researchers to use in training
and testing models greatly contributed to the advancement of ASR during this period.
Towards the late 1980s, the integration of neural networks with HMMs emerged as a
promising avenue to enhance existing models. This combination allowed for improved
phoneme differentiation and the generation of coherent textual phrases.

In recent years, particularly since 2014, there has been a predominant advocacy for
fully neural approaches with end-to-end systems in the field of Automatic Speech Recog-
nition. This shift is attributed to significant technological advancements, the availability
of large datasets, and the emergence of powerful processing units such as GPUs (Graph-
ics Processing Units). These neural methods have shown remarkable improvements in
accuracy and performance, particularly as they benefit from an increasing abundance of
data.

The adoption of end-to-end systems in ASR has streamlined the overall process, as it
allows for direct mapping from input audio to output text without relying on interme-
diate stages or handcrafted features. Neural networks, especially deep learning models,
have demonstrated their prowess in learning complex patterns and representations from
vast amounts of data, leading to enhanced recognition capabilities. The integration of
end-to-end systems with neural networks has facilitated substantial enhancements in the
performance of statistical models, thus shaping the current state-of-the-art in ASR as can
be seen in [26].

13



14 Automatic Speech Recognition

4.2 Traditional ASR process

A classical Automatic Speech Recognition (ASR) system encompasses several pivotal
stages for the transformation of audio signals into transcriptions. Among the key phases
of the system are feature extraction, acoustic modeling, language modeling, and decod-
ing [39].

Regarding the feature extraction it is the process of extracting features from the audio
recordings. A feature identify specific characteristics of voice such as volume, accent,
pitch.

The audio signal is pre-treated, including noise reduction, or discretized to a specific
frequency (typically 16 kHz, but 8 kHz for telephone calls). The signal is then divided
into frames, to which mathematical transformations such as the Fourier transform are
applied to obtain representative coefficients.

Subsequently, after the feature extraction process, it is the turn of the acoustic model,
which is trained on large volumes of data to enable it to recognise the relationship be-
tween acoustic features and the corresponding phonetic units or sub-word representa-
tions. The model captures and learns the associations between acoustic characteristics
and linguistic units. Regarding the models themselves, they can be based on traditional
techniques such as Markov models or on neural networks such as DNNs or CNNs.

In relation to language models, they are responsible for learning and understanding
the grammar, structure, and context of language, while the acoustic model focuses on
the sounds and pronunciation of speech. Concerning the language model, its task is to
estimate the probability of a sequence of words occurring together, thus aiding in im-
proving the precision of the system’s transcription. In the past, classic approaches used
N-gram models, whereas more recently, neural network-based approaches like RNN or
Transformer have been employed.

At this point, the ASR system needs to decode the audio by combining the outputs
of both models, the acoustic model and the language model, to obtain the most probable
transcription of the input audio. Algorithms such as beam search or dynamic type wrap-
ping are used for this purpose, aligning the outputs of the acoustic and language models
to generate the transcription.

After the decoding process, the generated transcription may undergo post-processing
techniques, which involve the application of additional Natural Language Processing
(NLP) methods to enhance the quality of the transcription. These techniques encompass
various tasks, such as error or grammar correction, sentiment analysis, punctuation in-
sertion, and context-based filtering [41].

Although traditionally, in the field of automatic speech recognition, hybrid models
consisting of previously explained components have been used, recently, end-to-end sys-
tems have been gaining popularity. Regarding hybrid systems, their components were
trained separately and then connected to form the model. However, this methodology
had certain disadvantages, such as the need to adapt different components and technolo-
gies within the hybrid model, as well as the creation of lexicons that mapped phonemes
to words. Additionally, a critical aspect was the alignment of the acoustic model, which
could introduce errors during acoustic training.

To address these limitations, a solution emerged in the form of end-to-end models
[44]. These models are composed of a single unitary block that simultaneously optimizes
all components, namely, the acoustic model and the language model, during the training
process.
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This evolution in the methodology of automatic speech recognition has proven to
be promising by overcoming the inherent drawbacks of hybrid models. By unifying
and optimizing all components in a single training process, end-to-end models have im-
proved the efficiency and accuracy of automatic speech recognition, thereby reducing
errors caused by acoustic model alignment and eliminating the need to create phonetic
lexicons.

Furthermore, research also delves into how these models enhance speed and effi-
ciency. Co-training end-to-end models for speech recognition and endpointing reduces
latency, as demonstrated in Bijwadia’s work [9]. This reinforces the notion that funda-
mentally, the perspective of discarding manual components and concentrating on holistic
optimization underscores the potential of end-to-end models for the evolution of speech
recognition. In addition to this research show that these models excel in addressing chal-
lenges such as noisy or accented speech by directly optimizing the entire system. An ex-
ample of this is the study conducted by Kim in 2020 [27], which highlights the precision
of the end-to-end model in recognizing speech from diverse groups, including children,
the elderly, and those with non-conventional pronunciation.

4.3 Approaches in Automatic Speech Recognition

Among the most popular end-to-end approaches in ASR [33], is Connectionist Temporal
Classification (CTC) [21], which maps the input speech sequence to an output sequence
of words. In such systems, as the length of the output labels is shorter than that of the
input sequence, blank labels are inserted between each output label to construct CTC
paths of the same length as the input sequence.

Another commonly used ASR approach is the Attention-based Encoder-Decoder (AED)
model [12], which is considered a leading solution in the field of end-to-end models,
known for its effectiveness. The AED model consists of an encoder, an attention layer,
and a decoder. It operates by probabilistically generating output sequences by taking
into account previous decoder outputs and the original label sequence. In the training
of the AED model, the goal is to minimize the negative probability associated with the
correct labels, given the input speech sequence.

In a manner akin to the CTC methodology, the encoder facilitates the transforma-
tion of input features into concealed representations. Meanwhile, the attention module
undertakes the calculation of cross-attention weights. These weights establish a linkage
between the decoder’s previous output and the encoder’s output. Through this mecha-
nism, contextual embeddings and labels obtained within the decoder are harnessed by
the encoder to iteratively generate output. Notably, this iterative approach averts any
assumptions of conditional independence.

To foster a more precise alignment between spoken signals and their corresponding
labels, numerous AED models embrace a multi-task learning paradigm. In this scheme,
they undergo optimization alongside a language model, a synergy achieved by sharing
the encoder. However, it is prudent to acknowledge that while AED models excel in ASR
translation, the unbridled application of attention across the entire input can potentially
introduce performance detriments due to notable latency. Consequently, certain AED
systems judiciously restrict attention to select segments of the input signal, a demarcation
achieved through various delineation strategies. While using this latter approach allows
AED to be used for real-time transcription, it still faces challenges regarding latency. For
this reason, RNN Transducer is commonly used for end-to-end speech recognition to
address latency issues.
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RNN Transducer models are widely employed in real-time ASR. In this context, their
output relies on the preceding token outputs and the speech sequence up to the current
time.

The RNN-T (Recurrent Neural Network Transducer) [20] is composed of three key
elements: the encoder, the prediction network, and the joint network.

The encoder processes input feature sequences and generates a high-level representa-
tion. The prediction network uses the model’s previous output to produce another high-
level representation. Subsequently, the joint network combines both representations to
compute the probability of each output token.

Unlike the CTC model, the RNN-T eliminates the assumption of conditional indepen-
dence, leading to enhanced performance. The loss function involves the logarithm of the
sum of all possible alignments mapped to the label sequence.

To achieve low latency, various strategies have been employed, including the re-
stricted alignment approach. This technique restricts the alignment during training within
a real-time delay threshold, resulting in GPU memory savings and accelerated training.
Although other strategies also aim to reduce latency, they may entail a trade-off with
precision.

4.4 ASR Systems

Based on the level of training required for each system, they can be categorised into three
distinct types: speaker dependent, speaker independent, and speaker adaptable.

Speaker-dependent systems necessitate prior specific training before usage, enabling
them to adapt to the specific characteristics of the user utilising the model. These systems
generally perform admirably for the individual on whom their training has focused, but
their accuracy significantly diminishes when faced with a new speaker.

On the contrary, speaker-independent systems do not require prior specific training
to comprehend and adapt to the speaker. The data used to train such systems typically
encompass a vast number of speakers, allowing them to recognise different speakers
accurately even if those individuals were not explicitly included in the training set. While
these systems do not require prior training and achieve acceptable accuracy, they may
exhibit lower precision when transcribing speech from a particular speaker, as compared
to the speaker-dependent counterparts.

Speaker-adaptive systems, akin to speaker-independent ones, do not necessitate prior
training for initial usage. However, they continuously adapt to the speaker’s characteris-
tics throughout their use.

Furthermore,as it can be seen in [60], ASR systems are further classified based on
the input they receive, falling into categories such as isolated/discrete-word recognition,
connected word recognition, and continuous speech recognition.



CHAPTER 5

Use of ASR systems

In this chapter, several of the ASR models currently accessible will be explored. These
models will be chosen for the purpose of finetuning and tailoring them to the specific
problem at hand, as part of the adaptation process.

5.1 Model Discussion

There are many speech recognition models available nowadays; specifically for this project,
we will be focusing on end-to-end systems.

As previously discussed in the section 4.2 end-to-end speech recognition systems of-
fer distinct advantages backed by various studies. Hence, in this project, the discussion
pertaining to the ASR model will predominantly revolve around end-to-end systems. Be-
tween the different ASR models available several models are going to be finetuned with
the data obtained from Aphasia Bank after a data preprocessing. Concretelly the different
experiments will be carried out using whisper[45] as well as wav2vec 2.0[7]. This models
are some of the most popular models in the hugging-face leaderboard.

Several other models also hold promise, such as ESPnet [58], an ASR system written
in Python using PyTorch. It follows a similar approach to Kaldi [43] for data processing
and is designed to be multilingual. Initially, this system was primarily focused on speech
recognition; however, starting from 2020, this framework has expanded its capabilities
to encompass text-to-speech, voice conversion, speech translation, speech enhancement,
beamforming, speech separation, denoising, and dereverberation.

In addition to these, the most widely used current ASR models include Vosk [2], a sys-
tem developed in 2020 with support for 10 languages and 50 MB portable models, and
SpeechBrain [48], which was launched in 2021. SpeechBrain is a PyTorch-based transcrip-
tion toolkit that supports various functions, such as speech-to-text, speaker verification,
speaker diarization, speech separation, and speech enhancement, among others. Next,
we will delve more deeply into the structure of the two models that will be chosen for
fine-tuning.

5.1.1. Whisper

Whisper[45] is a pre-trained model for user speech recognition developed by OpenAI. It
has been trained on 680,000 hours of multilingual and multitask supervised data gath-
ered from the internet. This model enables the transcription of audio in multiple lan-
guages into text, as well as translation.

17



18 Use of ASR systems

In terms of its architecture, Whisper adheres to a classical autoregressive encoder-
decoder structure, resembling the original Transformer architecture[56]. This structure
can be observed in Figure 5.1

Figure 5.1: Structure of whisper model[45].

Whisper takes audio recordings, divides them into 30-second chunks, and converts
the audio signal into Log-mel spectrograms, processing them one by one. Next, the po-
sitional encoding of the input is obtained, and the resulting vector serves as the input to
the encoder. The model comprises several encoder blocks followed by their correspond-
ing decoder blocks. Various models are available, each varying in size (tiny, base, small,
medium, large), chosen to accommodate space and computational constraints. In this
study, we have employed the Whisper-tiny (39 M), Whisper-base (74 M), and Whisper-
small (244 M) models.

5.1.2. Wav2vec 2.0

Wav2Vec 2.0 is a self-supervised learning framework for speech representation devel-
oped by Meta. In this model, four elements stand out from the rest, which are the feature
encoder, context network, quantization module, and the contrastive loss.

The first of these model elements that comes into play is the feature encoder, whose
goal is to reduce the dimensionality of the input audio data. To achieve this, the feature
encoder is composed of a convolutional neural network with 7 blocks, each of which con-
sists of a 1D convolutional layer, a normalization layer, and a GELU activation function1

[23].

1The Gaussian Error Linear Unit (GELU) is a non-linear activation function that amalgamates features
from different activation functions, including ReLU, which scales the input value by zero or one; dropout,
which stochastically scales the input value by 0; and zoneout, which stochastically scales the input value by
one. The central concept is to furnish an activation function that retains non-determinism while preserving
dependency on the input value. This results in an activation function that simultaneously maintains non-
determinism and input-value dependency. In GELU, the input value is scaled based on how much larger it
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In this way, the waveform, after being normalized to a mean of 0 and unit variance,
enters the latent Feature Encoder, where it is transformed into a latent feature vector of
512 dimensions. It’s worth noting that the audio data is encoded at a 16kHz sample rate.

The next element that comes into play is the quantization module, which converts
values from a continuous space into a finite set of values in a discrete space. This element
becomes important because speech has a continuous nature. However, when we focus on
a language, it has a finite number of phoneme pairs. Hence, the idea of creating a kind of
codebook arises, containing all possible pairs of phonemes in a language, which is also a
finite number. However, since the number of all possible sounds is enormous, for training
convenience, Wav2Vec 2.0 creates G codebooks, each composed of V keywords. So, for
quantization, the best keyword from each codebook is selected, and then the vectors from
each codebook are concatenated and processed with a linear transformation.

To choose the best key from each codebook, Wav2Vec 2.0 employs the Gumbel-Softmax
distribution, a continuous distribution with the property that it can smoothly adapt to a
categorical distribution [24]. This distribution offers advantages over the softmax in this
context, such as randomization. The model is more inclined to select different code words
during training and subsequently update its weights. Additionally, the temperature pa-
rameter diminishes the impact of randomization over time. Thus, the final quantized
vectors are obtained in this manner.

The next element to consider in the training process of Wav2Vec is the Transformer
encoder, which is regarded as the core of Wav2Vec 2.0. It takes the latent feature vec-
tors as input, passes them through a layer called feature projection, which expands the
dimensionality of the vectors from 512 to the input dimension expected by the Trans-
former blocks (768 in the base version of Wav2Vec 2.0 or 1,024 in the LARGE version).
Subsequently, it processes this input through 12 Transformer blocks in the base version
and 24 in the large version. It’s noteworthy that in this interpretation of the Transformer
used in Wav2Vec 2.0, positional information is not added to the input vectors, as is done
in the original Transformer. Instead, a new grouped convolutional layer is used to au-
tonomously learn relative positional embeddings.

The final element to consider in Wav2Vec is the training process, which consists of
two phases. Firstly, there is the pretraining phase, during which the model is trained
to learn the latent representation of the input audio. In this phase, a contrastive loss is
employed to measure the similarity between the predicted quantized representation of
the audio data and the actual quantized representation. Pretraining is carried out using a
technique called masking, wherein a random portion of the audio data is removed. The
masked audio data is then fed into the model, which is responsible for predicting the
missing data. This way, the model must learn to identify the important features of the
audio data to predict the missing portions.

Secondly, there is the fine-tuning phase, in which the model is fine-tuned using a
Connectionist Temporal Classification (CTC) loss function with a labeled dataset. This
loss function minimizes the errors between the predicted transcription and the actual
transcription. This phase is employed to enhance the model’s performance in the speech
recognition task by learning the correspondence between audio data and transcriptions.
[7] A diagram of the system can be seen in the figure 5.2.

is in comparison to other inputs. This characteristic introduces smoothness to the activation function when
contrasted with ReLU.
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Figure 5.2: Structure of wav2vec2.0 model[7].

5.2 Finetuning

Fine-tuning represents the procedure of adapting a pre-trained model to a new task or
domain through continuous training with fresh data. This approach has demonstrated
its effectiveness in enhancing model performance.

Within the process of fine-tuning models for speech recognition, the initial critical step
involves dataset preparation using the fine-tuning data and aligning it with the model.
In this context, specific fields from the available data are carefully selected, which, in
the context of this particular study, are limited to audio and its corresponding transcrip-
tions. Subsequently, it becomes imperative to resample the audio to a specific sampling
frequency, typically set at 16 kHz, to adhere to the model’s specifications.

Furthermore, within the fine-tuning procedures, it is customary to execute the ’Chunk-
ing’ process, which involves segmenting audio files into smaller units. This partitioning
serves to optimize memory usage while concurrently increasing the volume of data avail-
able for training. Afterward, is the turn of the tokenization phase, encompassing the seg-
mentation of transcriptions into paragraphs and sentences, further divided into smaller
units known as tokens. This streamlined approach facilitates a more effective assignment
of meaning to individual text components.

Once transcriptions have been tokenized successfully, the next step is the feature ex-
traction phase, a fundamental step that transforms textual data into a more structured
format, thereby facilitating the identification of relevant features. These features hold
paramount significance in empowering the machine learning algorithm to enhance its
performance.

Finally, after processing the dataset, the retraining of the model starts, for this phase
the prepared data is used. The primary objective lies in adjusting the model’s weights in
such a way that, following this second training phase, its speech recognition capabilities
experience an improvement, particularly in the context of speech from individuals with
aphasia. This improvement is achieved by leveraging the foundational training of the
pre-trained model, which had already demonstrated the ability to transcribe the speech
of the majority of the population.

The figure 5.3 shows a diagram of the finetuning process explained above.
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Figure 5.3: Diagram of the Fine-tuning process of an ASR System.

Recently, the term ’foundation models’ [10] has been coined to refer to models trained
on a large amount of data, which can be adapted to a wide variety of tasks. Due to the
significant amount of data and the high computational capacity typically required to train
these models, the approach of acquiring a foundation model as a base and then carrying
out a specific fine-tuning process for the desired task has become increasingly popular.

In this way, the inherent characteristics of foundation models are leveraged during
their pretraining, and their capabilities are adjusted to the specific model during the fine-
tuning process. This allows for promising results to be obtained using extensive architec-
tures with a more manageable amount of data.

The use of foundation models has demonstrated promising results in most fields of
artificial intelligence. In the case of human-computer interaction and, particularly, in the
application aimed at improving communication for people with disabilities, the goals
pursued by this project, it is no exception.





CHAPTER 6

Image captioning

Image description generation models are systems that, upon receiving an image, possess
the capability to construct a description of its content. In the context of this study, such
models emerge as valuable tools to complement the fine-tuning of Automatic Speech
Recognition (ASR) systems, potentially making a substantial contribution to a deeper
understanding of what users, particularly those afflicted with medical conditions such as
aphasia, are endeavouring to communicate or convey. This augmentation in the level of
patient comprehension stands out as a noteworthy facet.

It is worth observing that this broadening of objectives entails a subtle shift in direc-
tion. The exclusive pursuit of achieving the most accurate transcription of a user’s verbal
expressions is no longer the sole aim; rather, an additional stride is being undertaken.
Within this fresh approach, the goal is to discern the intent behind the verbal utterances
of individuals grappling with communication challenges. Moreover, there is a drive to
grasp the concepts or ideas they are alluding to. This expanded approach mirrors a quest
for a more profound and contextually nuanced understanding of the communication ex-
hibited by individuals constrained by impediments in verbal expression.

6.1 Model discussion

Automated generation of textual descriptions for images stands as a dynamic realm
of study that merges computer vision with natural language processing. In its early
stages, this domain’s primary investigations relied upon associating images with cap-
tions grounded in rudimentary attributes [51]. Initial image caption algorithms em-
ployed a variety of classifiers to distill features, subsequently employing lexical frame-
works or specific templates to formulate descriptive text. Regrettably, this original method
exhibited limited adaptability.

Over time, methodologies have evolved, with contemporary approaches embracing
deep learning to craft inventive captions. Recent works have delved into diverse deep
learning techniques for image captioning. A prevailing strategy involves an encoder-
decoder paradigm. The encoder employs a convolutional neural network to distill key
image features, converting them into vectors. In contrast, the decoder, typically lever-
aging Recurrent Neural Networks, generates descriptions through amalgamating image
vector features with semantic information. This approach struggled to effectively trans-
mit vital feature information, conveying all details at the initial decoding stage [57].

Moreover, with the emergence of attention models, these have also been applied to
the field of image captioning. For instance, Zhou et al. [62] introduced a "text-conditional
attention" mechanism, enabling the model to concentrate on specific image attributes
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based on the hitherto generated text, consequently heightening captioning efficacy. Other
attention strategies emerged, such as the "joint attention mechanism," employing multi-
ple LSTMs to concurrently explore diverse image regions derived from visual concept
samples, as exhibited in [15]. Another approach involves an attention-based image cap-
tioning model, utilizing a pre-trained CNN to abstract image features, coupled with an
RNN to formulate captions, as proposed by Agrawal et al. [3].

Furthermore, there is substantial evidence suggesting that the integration of visual
information into automatic speech recognition systems can yield a noteworthy enhance-
ment in their precision. This phenomenon is exemplified by the research of Oualil et
al. [42], who demonstrated that introducing visual context derived from images led to
a 7.8% enhancement in the accuracy of an RNN-based language model’s speech recog-
nition capabilities. As previously mentioned, various other studies, including the work
explained in [30], have also explored the use of image captioning data to facilitate error
correction subsequent to the speech recognition process.

6.2 Image Captioning models

As previously mentioned, the automatic generation of descriptions for images is a com-
plex challenge. It’s not merely about recognizing and listing elements within an image,
but rather comprehending in some manner what is occurring within the captured scene.
This involves considering the spatial relationships among the various elements and being
capable of grasping the context presented in the image.

The process of image captioning extends beyond the mere classification of visible
objects in the image. It necessitates the ability to describe both the elements present in
the image and the interactions unfolding among them. In this regard, the system must
not solely identify the objects, but also capture the relationships and dynamics connecting
them.

Consequently, within this exploration of models, we won’t solely scrutinize approaches
exclusively aimed at image captioning. Instead, we’ll also delve into multimodal models
that encompass image description along with other forms of information.

In the current landscape of image captioning, there exists a diverse range of models,
all dedicated to the core objective of describing images. These models not only strive
to comprehend visual information but also excel in articulating it coherently and under-
standably in natural language. Among the notable options is BLIP [35], a framework that
employs noisy web data for initializing captions and subsequently filtering out lower-
quality instances. BLIP stands out with its cutting-edge performance in tasks like text re-
trieval from images, generating image captions, and answering visual questions (VQA).

Furthermore, a recent enhancement of BLIP has emerged, known as BLIP2 [34]. This
model employs a Lightweight Querying Transformer, which undergoes a two-stage pre-
training process. In the initial stage, it focuses on acquiring visual representation, start-
ing from a pre-trained and frozen image encoder. As for the second stage, it commences
with a large language model (LLM) that is also frozen, aiming for generative learning
of the relationship between vision and language. Consequently, this model manages to
achieve outstanding results in the realm of vision and language, despite having signifi-
cantly fewer trainable parameters compared to similar models.

Additionally, other popular models, such as CLIP-ViT, leverage visual encoders and
language models like GPT as decoders to achieve automatic image description, as evi-
denced in [36].
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Furthermore, recently, visual language models have demonstrated promising results
in terms of image interpretation. These multimodal systems showcase versatility by
incorporating images to respond to queries, generate descriptions, and extract key ele-
ments, among other functionalities. A prominent example in this category is MiniGPT-4
[63], a model introduced in 2023. Anchored in a frozen visual encoder and a language
model named Vicuna, MiniGPT-4 demonstrates a wide range of capabilities. By aligning
these components through a single projection layer, MiniGPT-4 excels in tasks ranging
from generating intricate image descriptions to language translation and informative re-
sponses.

On the other hand, Flamingo [4] is a Visual Language Model (VLM) created by Deep-
Mind, which can receive an image or video and answer questions based on its infor-
mation. In addition to visual question-answering, its tasks include scene or event de-
scription, multiple-choice visual question-answering, and it also supports few-shot learn-
ing and prompting the model with task-specific examples. Flamingo integrates Lan-
guage Model (LLM) with visual representations - each of them pre-trained and sepa-
rately frozen - by incorporating intermediate components. This model has been trained
on multimodal data. It is noteworthy that the largest version of the model boasts up to
80,000 million parameters.

Another noteworthy model is Otter [31], referred to as "A Multi-Modal Model with
In-Context Instruction Tuning." Otter’s proficiency is cultivated through training on the
novel MIMIC-IT dataset, encompassing a vast collection of multimodal instruction-response
pairs. This dataset enhances Otter’s competence in tasks involving instruction-following
and in-context learning. Notably, Otter showcases exceptional aptitude in tasks that re-
quire multimodal perception, reasoning, and contextual comprehension.

In a similar vein, LLaVAR [61] is an enhanced model designed to refine interaction
between Large Language Models (LLMs) and humans via instruction tuning. This pro-
cess fine-tunes a language model’s behavior based on specific instructions to align its
responses with human expectations. Recent progress integrates images as visual in-
puts alongside textual instructions, allowing models to respond to image-based prompts.
LLaVAR enhances the existing visual instruction tuning pipeline by incorporating text-
rich images. By combining Optical Character Recognition (OCR) tools with image cap-
tions, LLaVAR prompts a GPT-4-based model to generate conversations involving text-
rich images, exemplifying advancements in the synergy of text and images.





CHAPTER 7

Large language models

Once the transcriptions from the fine-tuned model and the patient’s contextual descrip-
tion obtained from the image captioning system have been acquired, these will be used
as input for a Language Model (LLM) that will provide the final transcription for the
system. In this case, the strategy of employing prompting has been chosen to supply the
outputs of the two preceding systems, namely, the ASR and the image captioning, to the
LLM.

LLMs (Language Models) are pre-trained models with billions of parameters that em-
ploy deep learning techniques to process and comprehend natural language. These mod-
els are trained on vast amounts of data, enabling them to handle a wide range of tasks
based on the provided prompt. They can even perform tasks for which they were not
specifically trained by providing several examples of the desired task, a concept com-
monly referred to as Few-shot learning [19].

7.1 Evolution of LLM

The initial strides in language model research relied on statistical approaches employ-
ing Markov models. Nevertheless, they encountered a significant challenge due to the
inherent complexity of languages, making it difficult to estimate probabilities for a large
number of transitions.

Over time, a fundamental shift occurred in this domain with the adoption of neural
language models, which used neural networks to represent sequences of words. Initially,
for natural language processing tasks, recurrent neural network (RNN) models were em-
ployed. However, it was discovered that these models struggled to capture long-term
relationships in text.

As an evolution of recurrent networks, Long Short-Term Memory (LSTM) networks
were introduced. The key feature of LSTMs is their ability to retain and recall information
over extended periods. This is achieved through the use of memory units known as
"memory cells." Each LSTM comprises three essential elements: the "Forget Gate," which
decides what to retain or discard in the memory cell, the "Input Gate," which determines
what data to incorporate, and the "Output Gate," which dictates which information will
be used to generate the network’s output at that moment, controlling what is conveyed
to the subsequent step in the sequence.

On the other hand, there are Bidirectional LSTM (BLSTM) networks that process the
input sequence in two directions: forward and backward.
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However, in 2017, a significant breakthrough occurred with the introduction of the
Transformer model. This model introduced an attention mechanism that allowed it to
capture long-term dependencies by considering the impact of each token in the input
sequence in relation to the current token. Furthermore, this structure was highly paral-
lelizable. These features elevated the Transformer model to the state of the art in natural
language processing and have propelled most of the recent research in the field, which is
based on extensions and enhancements of the Transformer model.

7.2 LLM model discussion

In contemporary discourse, when reference is made to "large language models," it is gen-
erally in the context of architectures based on the Transformer framework.

Among the most well-known language models is BERT (Bidirectional Encoder Rep-
resentations from Transformers) [17], developed by Google in 2018. BERT is trained bidi-
rectionally, enabling it to grasp the context of words in both directions. This has proven
highly effective in tasks related to text comprehension and text generation. In the case
of BERT, it consists solely of the encoder from the Transformer architecture. One of the
most well-known models is GPT-3 (Generative Pre-trained Transformer 3), as reported in
[59], released by OpenAI in 2020. which left a profound impression on the community
due to its remarkable 175 billion parameters, establishing a new benchmark for the scale
of language models.

In 2020, Google also launched its T5 (Text-to-Text Transfer Transformer) model [46].
This versatile model is capable of performing various tasks, including text summariza-
tion, language translation, and text classification. Furthermore, T5 was trained on the C4
dataset, a vast corpus comprising 750 GB of clean English text gathered from the internet

Moreover, in 2022, OpenAI introduced ChatGPT, a specialized adaptation specif-
ically designed for dialogue and question-and-answer systems, utilizing the GPT-3.5
model [59]. This particular variant has played a crucial role in increasing awareness re-
garding the capabilities of such models, both in the academic community and throughout
the broader industry.

In 2022, Google introduced the LaMDA [52] dialogue model, which is composed of
an astonishing total of 137 billion parameters. This model possesses the capability to
generate responses for both text-based and image-based inputs across various contexts
and styles.

In that same year, Google launched the PaLM [14] (Pathways Language Model), spe-
cializing in natural language processing tasks and featuring an impressive 540 billion
parameters. This model holds the potential to serve as a foundation for various use cases
in this field.

It is also relevant to mention LLaMA [54], a model trained on texts in 20 different
languages, emphasizing the diversity of linguistic applications.

In the year 2023, Meta, in collaboration with Microsoft, unveiled the successor to the
natural language processing model known as LLaMA, named LLaMA2 [55]. The largest
version of this model boasts up to 70 billion parameters. Furthermore, in comparison to
its predecessor, LLaMA2 was trained using a dataset that is 40% larger.

One of the noteworthy improvements in LLaMA2 is its enhanced ability to consider
a broader context in natural language processing. The length of context that this new
model can comprehend and utilize has doubled in comparison to its predecessor. Ad-
ditionally, this new model has adopted the ’grouped query attention,’ an interpolation
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of multi-query attention that enhances its speed, as well as multi-head attention, from
which it derives its quality.

Another recent model is Falcon [1], an open-source model that offers an option with
an impressive 108,000 million parameters. One interesting aspect of Falcon models is
their utilization of multi-query attention, which, instead of individual keys and values
for each head, shares a single key and value across all heads.

With a similar objective to ChatGPT, Google introduced BARD, a conversational model
specialized in responding to questions, which previously relied on LaMDA, but its new
update, already available in some countries, has been upgraded to use PaLM2 [6].

Currently, in 2023, models with multimodal capabilities are emerging, allowing the
processing of not only text but also a variety of input data types, such as images, audio,
and video. Among these models, GPT-4 [40] by OpenAI stands out for its ability to
accept inputs of both images and text, generating text-based responses with remarkable
precision. It can perform tasks like text generation in different styles, summarization,
translation, song composition, and responses to complex questions.

Furthermore, Google has developed PaLM2 [6], an evolution of its original model,
enabling tasks such as natural language comprehension, generation, and translation, as
well as generating code, audio, video, and images, among others.





CHAPTER 8

Task description and proposed
solution

This chapter presents a meticulous description of the task undertaken, providing a deeper
understanding of the intricacies involved. The selection of the data to be used, which is a
critical aspect, is explained in detail, specifying the criteria and methodology employed
in the selection of a representative data set.

In addition, a detailed analysis of the approach adopted to tackle the task is provided.

8.1 Datasets

In order to adapt a previously trained model to the specific characteristics of the distinct
group comprised of individuals facing pronunciation difficulties, it is imperative to pos-
sess a suitable corpus encompassing an ample collection of speech recordings originating
from individuals afflicted by such issues, accompanied by their corresponding transcrip-
tions.

Following a comprehensive investigation, the repository named "talkbank" was suc-
cessfully identified. In the current context, said repository has been utilized to execute the
fine-tuning process, aiming to tailor the model to the unique demands of this situation.
Talkbank [37] was originally a project led by Carnegie Mellon University, supported by
a collaborative network of hundreds of contributors and numerous collaborators. It en-
compasses repositories spanning 14 distinct research areas, all of which can be accessed
through the links provided on its platform with the objective of advancing fundamental
research in the realm of human communication, focusing particularly on spoken lan-
guage. This repository contains data apported as contributions made by hundreds of
dedicated researchers worldwide, getting data in more than 34 languages.

Between the several research areas data included in talkbank in this work Aphasia
Bank [38] has been used. Aphasia Bank is a database with recordings and transcriptions
in several languages such as Cantonese, Croatian, English, French, German, Greek, Hun-
garian, Italian, Japanese, Mandarin, Romanian and Spanish conceived for the study of
communications in people who suffers from aphasia.

8.2 Data selection and structure

In relation to the data from the Aphasia Bank, both Spanish and English speakers’ datasets
will be selected. The Spanish dataset comprises four videos, each approximately 40 min-

31



32 Task description and proposed solution

utes long, while the English dataset consists of 48 videos, also each lasting around 40
minutes. It is important to note that despite the variation in the number of videos, all of
them follow a similar structure.

Each video consists of three main parts. In the first part, the aphasia patient shares
their experiences and journey with the disease. The second part involves the participant
describing various images, while the third part revolves around the patient discussing
the story of Cinderella.

The audio content is recorded in a dialogue format, and the transcription is provided
in .cha format. Each sentence is tagged with metadata, including information about the
speaker (patient or interviewer), language modifications coded in special tags, times-
tamps, and POS (part-of-speech) tagging. Additionally, for the Spanish dataset, a word-
by-word English translation of each sentence is included.

During the initial phase of data processing, we will focus solely on the sentence tran-
scriptions, disregarding other metadata. Furthermore, we will specifically use the sen-
tences spoken exclusively by the patients with aphasia to train the proposed system,
excluding the utterances voiced by the interviewer. As a result, the total audio length
obtained from each video will be halved, resulting in approximately 15-20 minutes per
video.

To achieve this, we will employ several scripts with regular expressions to filter and
adapt the transcription format, ensuring it aligns with the desired format suitable for
training the selected models. Furthermore, the complete recording will be divided based
on the transcribed sentences and their respective segments of audio files. Subsequent
to this segmentation, the pathway to the sub-audiofiles along with their corresponding
transcriptions will be preserved within a csv file. This meticulous process ensures that
the model receives effective training with relevant patient speech data, enabling it to
effectively address the specific challenges associated with aphasia.

By using only the pertinent sentences and optimising the audio duration, we created
a focused and tailored dataset that will enhance the model’s ability to understand and
interpret speech patterns unique to individuals with aphasia.

8.3 Approach

The proposed approach involves the fusion of different models to address the task.

In the context of this multimodal proposal, three essential components are considered:
a speech recognition model, an image description model, and a large language model.
The diagram in Figure 8.1 provides a visual representation of the entire process.

Firstly, audio recordings are acquired, which are adapted to the input format of the
model. These recordings will be used as a dataset for fine-tuning the selected speech
recognition model.

On the other hand, there are also images representing the user’s visual context. These
images are used as input for an image captioning system. Here, two different approaches
are explored: in one, the image captioning system generates a textual description of the
image, while in the other, it produces a set of keywords. Subsequently, the performance
of both approaches is compared.

Finally, both the audio transcription obtained from the speech recognition system
(after adjusting the weights during fine-tuning to adapt to the set of individuals with
aphasia) and the description or keywords (depending on the approach) of the user’s con-
textual image are input into a large language model. This model determines whether
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adjustments to the transcription are necessary using the visual context information ob-
tained from the image description.

Figure 8.1: Diagram of the complete system.

Upon completing the development of the solution, a comprehensive analysis of the
obtained results will be conducted. This analysis will be divided into two distinct ap-
proaches to assess the effectiveness of the solution. Firstly, an evaluation will be carried
out using solely the speech recognition model (ASR) that has undergone fine-tuning.
During this phase, a comparison among different ASR models will be conducted, and ex-
perimentation with various hyperparameters will aim to achieve the best possible results
in the fine-tuning process.

On the other hand, the previously described complete system will be assessed, which
incorporates the interpretation of environmental descriptions generated by the image
description system. This comprehensive system will be responsible for refining the tran-
scriptions suggested by the speech recognition model based on the environmental de-
scriptions derived from the images.





CHAPTER 9

Evaluation and results

In this section of evaluation, we conduct a series of experiments wherein we adapt vari-
ous systems of different sizes to the specific domain of models dealing with aphasia. Our
objective is to ascertain whether this model adaptation confers an advantage and leads to
improvement compared to the baseline models. Our focus remains on the specific subset
of individuals with aphasia.

To implement these experiments, we employ the programming language Python and
leverage the open-source Tensorflow library, developed by Google, which enjoys sub-
stantial recognition in the field of machine learning.

Our process commences with the retrieval of data from Aphasia Bank. As elaborated
in section 8.2, we procure 4 videos available in Spanish and 48 videos available in English.
These videos, accompanied by transcriptions in .cha format, serve as our primary sources
of information.

Following the data retrieval, we create and execute a Python script to refine the tran-
scriptions, extracting only the relevant information from the .cha files. Additionally, we
convert the videos into audio files in a suitable format in accordance with the model’s
requirements, whether it be wav or mp3. We segment the videos based on time markers
corresponding to the phrases, ensuring precise alignment between each audio snippet
and its associated transcription. This processed information is stored in a CSV document
containing two columns: one indicating the path to the specific audio file within the
system and the other containing the corresponding transcription text. Given that we are
dealing with interviews, we choose to exclude the audio of the interviewer, concentrating
exclusively on segments related to individuals with aphasia.

Subsequently, we randomly shuffle the rows of this CSV and partition it into three
distinct dataframes: "train" containing 75% of the data, "test" with 15%, and "validation"
with 10%.

These data undergo transformation into Datasets and undergo a process of tokeniza-
tion, processing, and feature extraction. In order to do this step, the tokenizer, processor
and feature extractor of the corresponding model and language in huggingface are used
for the transcription task. Finally, we utilize these datasets in the training process to
adapt the pre-trained model to the specific characteristics of the group of individuals
with aphasia.

To evaluate the effectiveness of our adapted models, we implement another script to
compute the Word Error Rate (WER) based on transcribed sentences from the validation
set and the original transcriptions of the sentences.

The initial data partitioning is approached from two different perspectives. Firstly,
we consider a context-independent approach where data segmentation is based on the
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thematic or contextual content of the individuals’ speech. This segmentation allows us
to examine the impact of fine-tuning on transcriptions across various topics. In contrast,
we also implement a speaker-independent approach by dividing the data based solely
on the speaker’s identity, disregarding the underlying context or subject matter of the
discourse.

Additionally, we delve into the influence of context information on transcription qual-
ity. This entails evaluating the potential enhancement in transcription accuracy when
context is incorporated into the analysis. Across this chapter, we will present and ana-
lyze the outcomes of the various test-case experiments.

9.1 Metrics

The Word Error Rate (WER) metric is commonly used to measure the speech recognition
models’ performance. WER is calculated as follows:

WER =
(Substitutions + Insertions + Deletions)

Re f Words
(9.1)

The WER metric involves comparing the model’s hypothesis with the original transcrip-
tion and determining the number of substitutions, insertions, and deletions required to
match the reference sentence. This value is then divided by the number of words in the
reference sentence. Substitution occurs when a particular word is misconstrued, leading
to the use of an alternative word in its place. Insertion, on the other hand, involves the
addition of a word or phrase that was not originally spoken. An example of insertion
is when a single spoken word is mistakenly transcribed as two separate words. Lastly,
deletion takes place when a spoken word is entirely omitted from the transcription. A
lower WER indicates a better-performing model.

9.2 Context independent Tests

Within the realm of context-independent testing, the procedure involves extracting part
of the second of the three segments into which the videos are divided. In this specific
segment, participants undertake the task of describing multiple images, with a particular
focus on the segment where two specific images are being described. This entails the
extraction of this video segment along with its corresponding transcription from all the
videos that constitute both the training and testing sets. This methodology ensures that
the model validation and metrics are computed based on a dataset and context that have
not been previously encountered. It is noteworthy that this step is undertaken initially,
even prior to the transcription cleaning or the creation of the CSV file containing the
videos transformed into audio and segmented.

Subsequent to this segmentation, the process mentiones at the begining of this chapter
is executed to prepare the CSV file and the distinct datasets (training and testing). These
datasets will be employed for the fine-tuning of the pre-trained model. Furthermore, the
same procedure will be applied to the audio files and corresponding transcriptions of the
description of these isolated images, which together constitute the validation set.

It is worth emphasizing that the decision to reserve the portion of dialogue where
images are described for validation was not arbitrary. Given that we possess the pertinent
images being described, they can be employed as context for patients with aphasia in
the second phase of this endeavor. In this subsequent stage, we will harness models
designed for generating descriptions of images, enabling us to articulate what the patient
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is perceiving. In this context, we are specifically referring to the images discussed within
the validation set. By integrating this visual context with the transcriptions generated
by the pre-trained model, we can subsequently incorporate this contextual information
into a language model. Through this approach, we can delve into the extent to which
environmental information contributes to the comprehension and transcription of what
individuals with aphasia are attempting to convey.

Once the data has been suitably prepared, partitioned, and tokenized, and a training
and a test dataset have been created, the pivotal stage emerges: defining the training
parameters for the fine-tuning process of a pre-trained model using the Hugging Face
Transformers library. In this phase, an array of hyperparameters will be established to
steer the model optimization and its tailoring to the specific task.

Among these parameters, the output directory is included, serving as a repository for
trained models and other pertinent elements. Furthermore, the batch size for training is
determined, influencing the quantity of examples processed in each iteration. A pivotal
hyperparameter is the learning rate, which governs the magnitude of weight adjustments
within the model in each training cycle. Essentially, the learning rate designates what
fraction of the gradient is used to update the model’s parameters at each step.

Additionally, the warmup steps are set, governing the gradual increase of the learn-
ing rate from zero to its defined value. The max steps denote the maximum number
of training iterations and are fundamental in controlling the duration and scope of the
process.

In parallel, the frequency at which steps are saved and evaluated during training is
established. This is indispensable for the constant monitoring of progress and the selec-
tion of the best model. Moreover, the maximum length of generated sequences during
the evaluation phase is defined – a pivotal factor in controlling coherence and the extent
of predictions.

With these hyperparameters defined, an object is constructed to encapsulate both
these values and related configurations. This object is enriched with the inclusion of the
pre-trained model, training and test datasets, the data collector, the function responsible
for calculating pertinent metrics, and the appropriate tokenizer for the given task.

Finally, when all is in place, the training process is triggered by invoking the "train()"
method of the trainer object. Throughout this process, the model adapts to the training
data, its weights are fine-tuned through backpropagation, and its performance is evalu-
ated at specific intervals, thus providing continuous feedback on the quality of predic-
tions.

Comprehensive experiments were conducted to ascertain the optimal parameter val-
ues for our model. Specifically, we investigated the effects of different values on the
model’s performance in terms of WER. One of the critical parameters under scrutiny was
the batch size employed during training.

Due to constraints related to data size, model capacity, and GPU size, it was deter-
mined that the maximum viable batch size was 8, as this value allowed computations to
fit within the GPU. Moreover, through various trials, it was observed that a larger batch
size tended to yield improved outcomes in our case. Therefore, considering the GPU-
imposed limitation, we opted to maintain a consistent batch size of 8 for all subsequent
experiments.

It’s worth noting that, owing to time restrictions, hyperparameter tuning was initially
executed on the "whisper-small" model. Subsequently, these same hyperparameters were
applied to the training configurations of other sizes and models. The detailed results for
different hyperparameter values are presented in Table 9.1.



38 Evaluation and results

learning rate Max steps warmup steps WER(%)
10−5 1000 500 72.80
10−5 1500 500 48.27
10−5 2000 500 40.81
10−5 3000 500 33.55
10−5 4000 500 32.43
10−5 1000 300 70.36
10−5 1500 300 36.76
10−5 2000 300 44.48
10−5 3000 300 32.45
10−5 4000 300 31.53
10−5 1000 150 51.05
10−5 1500 150 43.75
10−5 2000 150 45.18
10−5 3000 150 33.09
10−5 4000 150 33.57
10−4 1000 500 152.95
10−4 1500 500 79.76
10−4 2000 500 58.20
10−4 3000 500 59.18
10−4 4000 500 39.27
10−4 1000 300 166.54
10−4 1500 300 54.63
10−4 2000 300 101.24
10−4 3000 300 62.19
10−4 4000 300 38.78

Table 9.1: Adaptation of hyperparameters in the Whisper-Small model using the Aphasia English
dataset and a context-independent approach.

In order to analyse the evolution of the parameters and trends in the results of the
various tests conducted with different hyperparameters more effectively, we have created
a graph that allows us to compare the results visually. As can be observed in the figure 9.1

As evident from both Table 9.1 and Figure 9.1, the most favorable outcomes have
been achieved with a training duration of 4000 steps, a learning rate of 10−5, and 300
’warm-up’ steps. It is also noteworthy that, although the ’warm-up’ step count does not
significantly impact the final WER value at step 4000, the choice of learning rate makes a
substantial difference, with a more favorable WER attained at the rate of 10−5.

Furthermore, it is interesting to observe that when employing a learning rate of 10−5,
the evolution of WER from step 3000 onwards appears to stabilize, showing a more mod-
est improvement. Consequently, this has led to the decision to adopt, for subsequent
trials, a learning rate of 10−5, 300 ’warm-up’ steps, and a maximum of 3000 steps.

Once the most effective values were identified to optimize the Whisper-small model,
these values were employed during the finetuning process in other models.

In the experimentation process concerning the fine-tuning of various systems, we
have selected three sizes of Whisper models (small, base, and tiny), in addition to the
wav2vect2.0 model. For each of these models, we have executed the fine-tuning process
previously elucidated in this same chapter, utilizing the data acquired from Aphasia-
Bank. Subsequently, upon obtaining models with adjusted weights, we proceeded to
compare the WER obtained using the validation dataset. This metric has been calculated
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Figure 9.1: WER evolution depending on the selected hyperparameters during the fine-tuning
process of the Whisper-Small model.

for both the base models (models without the fine-tuning process) and the models fine-
tuned through the fine-tuning process.

The results of WER obtained are presented in Table 9.2. It is imperative to note that
these results stem from data partitioned following the content-independent approach.

It is essential to note that the validation set used to calculate the WER metric consists
of dialogues different from those encountered during the training phase. Therefore, the
validation data represents a distinct audio theme from the training data.

Model WER(%)
Whisper-small 70.36
finetuned Whisper-small 31.53
Whisper-base 52.27
finetuned Whisper-base 31.61
Whisper-tiny 54.69
finetuned Whisper-tiny 45.04
wav2vec 2.0 68.02
finetuned wav2vec 2.0 49.22

Table 9.2: Achieved WER in the experiments with the English test set using the context-
independent approach.

The table demonstrates the impact of fine-tuning the models with domain-specific
data, as opposed to relying solely on the initial model. Lower WER values indicate im-
proved accuracy in transcribing speech-to-text for the given domain.
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As shown in Table 9.2, the Whisper-small model achieved a significant improvement,
with the Word Error Rate decreasing from 70.36 to 31.53. This represents a relative WER
improvement of 55.23%. On the other hand, for the Whisper-base model, the improve-
ment was from 52.27 to 31.61, resulting in a relative improvement of 39.5%.

It’s worth noting that prior to training the various models with the English dataset,
comprised of 48 speakers, from whom approximately 20 minutes of recording each will
be utilized, tests were conducted in Spanish with just 4 speakers and approximately one
hour of audio recordings. In these tests, a direct comparison was made between the
pre-trained "small" Whisper model and the pre-trained ESPnet2 model, along with the
fine-tuned Whisper model.

The hyperparameters employed for conducting the fine-tuning process of the Whis-
per model on the Spanish language dataset encompassed a learning rate value of 10−5, a
batch size of 8, an initial warmup steps count of 500, coupled with a total of 3000 training
steps. The outcomes pertaining to WER for both the pre-trained models and the adapted
model are delineated within table 9.3.

Model WER(%)
ESPnet2 182.33
whisper-small 121.57
Finetuned whisper-small 36.34

Table 9.3: Achieved WER in the experiments conducted with the Spanish test set.

As evidenced in Table 9.3, it is apparent that in the case of tests conducted in Spanish,
there is also a significant disparity between context-adapted models for individuals with
aphasia and merely pre-trained models. For instance, in the case of Whisper, the WER
decreased from 121.57% to 36.34%, signifying a relative improvement of 70.13%.

It is imperative to underscore that, in context-independent testing, the WER value
may be subject to the influence of specific portions of image descriptions selected from
the training dataset used as the validation set. This is because, depending on whether
the chosen image includes elements from a more or less specific vocabulary, the metric’s
results could undergo substantial variations.

As demonstrated in various experiments, particularly in the case of individuals with
speech difficulties, the fine-tuning process assumes significant importance. Upon ana-
lyzing the test case, it is presumed that the improvement primarily pertains to the end-
to-end model component that corresponds to the role played by the acoustic model in
hybrid systems. This is because the fine-tuning process facilitates a more precise under-
standing of the user’s speech patterns.

As a result, a second experiment will be conducted in which the division of training,
testing, and validation sets will be based on speakers rather than content. This approach
aims to further enhance the model’s performance in interpreting diverse speech patterns,
ensuring greater accuracy and ease of use for users facing speech difficulties.

9.3 Speaker independent Tests

After the initial model training utilizing data splitting based on phrase content encoun-
tered certain challenges, an alternative methodology was adopted. In this instance, the
training, testing, and validation sets were partitioned according to the individual speaker,
ensuring that the sentences in the training set were uttered by a distinct speaker from
those present in the validation set. Additionally, efforts were made to maintain speaker
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balance across the various sets, aiming to include an equal representation of both male
and female speakers in the training set as well as in the test and validation one.

In order to obtain the metrics the same validation set has been used for all the experi-
ments. In addition, for this set of tests, more data has been obtained than in the previous
tests due to the addition of recordings of other different speakers available in the aphasia-
Bank. Thus, in this case the training set has around 720 minutes of void while validaition
one has around 105 minutes. The training process has been very similar to the one done
in the previous section. As for the hyperparameters, their selection has also been based
on the criteria outlined in the previous section, keeping the learning rate at 10−5, 300
warm-up steps, and a maximum of 3000 steps.

Model WER(% )
whisper-small 61.25
finetuned whisper-small 35.60
Whisper-base 176.43
finetuned Whisper-base 133.50
Whisper-tiny 219.73
finetuned Whisper-tiny 43.71
wav2vec 2.0 85.49
finetuned wav2vec 2.0 51.27

Table 9.4: Achieved WER of the experiments with the english validation set in speaker-
independent approach.

As depicted in the table, a clear trend is observed in the base models where larger
models, characterized by a higher number of parameters, consistently yield better WER
metrics in this context. It is noteworthy that, in all cases, the fine-tuned model consis-
tently outperforms its counterparts in terms of WER. We observe that the best WER in
this set of tests is also achieved by Whisper-small, with a WER value of 35.60%, achieving
a relative improvement of 41.82% compared to the non-fine-tuned Whisper-small model,
which obtained a WER of 61.25%.

Furthermore, the substantial improvement in the WER of the Whisper-tiny model is
particularly noteworthy, transitioning from a WER of 219.73% to 43.71%. This represents
a relative improvement of 80.02%. It is important to highlight that these values were
obtained through partitions following a different approach from that used in the previous
section. Therefore, the validation set (as well as the training and test sets) is not the same
as that used in the previous section, which explains the differences in the results.

9.4 Multimodal System Test

In this section, a series of tests will be conducted to assess the relevance of contextual
information in our specific case for enhancing transcriptions. To accomplish this, various
tests will be executed using Visual Language Models (VLMs) with a specific focus on
extracting information about the image being observed by the user. This procedure will
yield contextual information. Conversely, we will utilize the fine-tuned model that has
produced the most favorable results. In this particular scenario, given the nature of the
test, we will employ content-independent models.

The rationale for this selection lies in the fact that the forthcoming tests will incor-
porate contextual data sourced from images described by patients in specific recordings
contained within the Aphasia Bank. In order to validate the system, it is imperative
that the context associated with the aforementioned images has not been previously en-
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countered by the system. This precautionary measure is instituted to mitigate the risk of
overfitting.

The effectiveness of this approach is augmented through a meticulously conducted
data partitioning process during the training of context-independent models. To elab-
orate, segments of video content wherein users described the particular images under
consideration have been excised from all video recordings. Consequently, these segments
were not included in either the training or test sets utilized during the fine-tuning process
of the ASR model.

This partitioning strategy entails the extraction of segments from both the training
and test datasets, encompassing instances where users provide descriptions of specific
images. By adhering to this methodology, the pre-trained system will not have encoun-
tered the precise contextual information pertaining to the image designated for valida-
tion.

The forthcoming procedure shall entail the following steps: Initially, the pertinent au-
dio files corresponding to a given image will be procured and subjected to transcription.
This transcription will be conducted employing the fine-tuned model that has demon-
strated superior performance in context-independent experiments. Concurrently, from
the available video archive within the Aphasia Bank dataset, the image referenced within
the sentences of our validation set will be meticulously extracted. Subsequently, this ex-
tracted image shall be introduced as input to our Visual Language Model (VLM). It is
of paramount importance to bear in mind that the video material, from which we ex-
tract these images, has not been incorporated into either the training or test sets utilized
during the model fine-tuning process.

During this phase of employing the Visual Language Models, two discrete approaches
will be undertaken. Initially, the VLM will be instructed to generate an inventory of ele-
ments depicted within the image. Conversely, in another test, the VLM will be assigned
the responsibility of furnishing a detailed narrative elucidation of the image.

Considering that the image under scrutiny follows an illustrated story strip format
and encompasses multiple panels, each panel will be presented individually to the VLM.
Subsequently, the resultant transcriptions from each panel will be merged.

Upon acquisition of the VLM’s response, which may encompass either the list of
elements or the image description, this description shall function as a stimulus for a
Large Language Model (LLM), in conjunction with the transcription produced by the
fine-tuned ASR system. Subsequently, the LLM will be tasked with the identification and
correction of errors it discerns with confidence within the transcription.

As previously mentioned, the objective of this experiment differs from previous goals.
Instead of focusing on achieving the most accurate transcription, the emphasis shifts to-
wards understanding the intended meaning when individuals with aphasia express a
specific phrase. This is because aphasia can lead to various challenges, such as difficulty
in finding the right words to convey what patients want to communicate, speech limi-
tations, the use of short phrases, or the lack of coherence in expressions, as explained in
section 2.2. In some cases, the phrases spoken by individuals may not accurately convey
their intention. Therefore, challenges arise in this context.

The metric that was previously used to compare different transcription systems, the
Word Error Rate, is no longer suitable for our current purpose. This is because obtaining a
transcription that closely resembles the reference phrase does not guarantee grammatical
correctness or a complete reflection of the user’s intention. Consequently, to assess the
effectiveness of this hybrid system, we have adopted a human evaluation methodology.
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Regarding the language model choice, for the sake of convenience and accessibility,
two widely recognized models, GPT-3.5 and LaMDA, have been tested.

In the first experiment, a list of keywords was supplied to the process, while in the sec-
ond experiment, an image description was employed. In both cases, visual information
was obtained through the LLaVAR VLM. In addition to the descriptions, the language
model was provided with the audio transcription, obtained through the previously fine-
tuned ASR system. Specifically, the Whisper-Small fine-tuned system was utilised, as
explained earlier, following the context-independent approach. This choice was made
because Whisper-Small fine-tuned had yielded the most favourable results in previous
experiments. These tests were repeated using GPT-3.5, as well as LaMDA. In Figure 9.2,
it is possible to observe a specific example of the process followed by this multimodal
approach, for one of the phrases that has been tested in various experiments.

Figure 9.2: Example of usage of the complete multimodal system given a specific image and
audio.

To conduct the human evaluation, a survey was administered to various individu-
als. Each survey question included the audio spoken by a person with aphasia, along
with transcriptions generated by the different systems under comparison. These sys-
tems include the fine-tuned Whisper model, the fine-tuned model augmented with the
list of elements from using GPT-3.5 as LLM, the fine-tuned model augmented with the
image description from using GPT-3.5, the fine-tuned model augmented with the list of
elements from using LaMDA as the LLM, and the fine-tuned model augmented with the
image description from using LaMDA.

Regarding the survey conducted as part of the human evaluation process recordings
of audio containing phrases spoken by individuals with aphasia were employed, along-
side transcriptions generated by four hybrid systems and a fifth transcription obtained
through the ASR fine-tuned system. The survey comprised two questions for each of
the seven presented audio segments. The first question aimed to determine which of
the provided transcriptions was more similar, in terms of words, to what the speaker
expressed in the audio. Conversely, the second question sought to identify which of the
transcriptions better aligned with what the speaker genuinely intended to communicate.
An example of these questions can be found in the appendix A.

Fifteen different users participated in this survey, providing their responses to the
questions posed in relation to the seven audio segments. As for the evaluation of re-
sponses, the users’ feedback was consolidated for each audio segment, resulting in a
model percentage. To achieve this, the number of users who determined that a particular
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model performed best in each specific question was summed, separately for each model.
Subsequently, the value obtained for each model was divided by the total number of
votes across all questions to obtain the percentage Table 9.5, shows the survey results
based on the first question posed for each audio, where the most similar transcription to
the audio was requested.

Model Result
original transcription 34.25%
finetuned whisper-small 47.95%
LaMDA with keywords 0%
LaMDA with descripcion 0%
GPT 3.5 with keywords 6.16%
GPT 3.5 with description 11.64%

Table 9.5: Results of human evaluation regarding the system that best reflects word-for-word
transcription of the audio.

As can be observed in the table 9.5, in the survey, we compared the transcriptions of
all the systems mentioned above, as well as the original transcription. It is worth noting
that the system rated highest by the surveyed users in terms of the best transcription is
the Whisper fine-tuning, with 47.95% of users. It is noteworthy and has surprised us that
this system has, overall, received an even higher rating than the original transcription,
which was voted as the best system by 34.25% of users.

Regarding the rest of the systems, we observe that, in this case, the systems using GPT
as their language model receive higher ratings from users compared to the system using
LaMDA. Additionally, for the surveyed users, systems that have incorporated image de-
scriptions seem to provide transcriptions that are closer to their expectations compared
to those relying solely on a list of elements present in the image, which we refer to as
’keywords’ in the table.

With regard to the second question, in which users are asked to express their opin-
ion about what the speaker is referring to in the sentences, the results vary significantly
compared to the previous experiment, even though this question involves the same au-
dio recordings and presents the same options. These results can be seen in the Table 9.6.
Furthermore, in the same figure, one can observe a bar chart that visually presents these
results.

In relation to this survey question, we have added the same systems evaluated in the
previous experiment as possible choices. The inclusion of the original transcription of the
audio included in the dataset has been of particular interest in this experiment, with the
aim of assessing to what extent a multimodal system can enhance its ability to accurately
reflect the possible intention of the user conveyed in the reference phrase extracted from
the dataset.

In this context, we observe that the system that achieves the best performance, ac-
cording to 33.85% of the surveyed users, is GPT 3.5 as a language model, to which audio
transcriptions and a list of elements present in the visual environment of the user are
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added as input. The second most highly rated system turns out to be the one employing
LaMDA as a language model, to which transcriptions and a list of the main elements
in the image are provided, garnering 19.23% support. The third position is held by the
system utilizing GPT 3.5 as a language model, which receives visual information from
the environment in the form of an image description, receiving a 13.85% preference from
users.

It is noteworthy that, overall, the surveyed users consider that the transcriptions pro-
vided by these three models convey the speaker’s intention more accurately compared to
the original audio transcription found in the dataset. Only 12.3% of the users believe that
the original audio transcription is the model that best interprets what the user wishes to
express.

Model Result
Original transcription 12.30%
finetuned whisper-small 10%
LaMDA with keywords 19.23%
LaMDA with descripcion 10.77%
GPT 3.5 with keywords 33.85%
GPT 3.5 with description 13.85%

Table 9.6: Results of human evaluation concerning the system that best reflects what the speaker
intends to refer to.

As can be observed in this second conducted experiment, generally speaking, the
systems to which visual context information has been provided through a list of key
elements from the context are the ones yielding the most favorable results. In this case, it
is not only the systems using ’keywords’ that outperform their counterparts, namely, the
systems employing the same language model but with a description, but also the system
to which a list of keywords is provided are the ones that users have rated more positively
overall.

This phenomenon can be attributed, among other reasons, to the fact that having
only the main elements can provide the crucial context information without introducing
grammatical information that may confuse the system and alter the initial transcription.





CHAPTER 10

Conclusions

In this chapter, we will summarise the main contributions of this work, the experiments
conducted, and the results obtained. Additionally, we will address future work.

The objective of this project has been to provide solutions to enhance user interac-
tion with pronunciation problems, specifically aphasia, in relation to automatic speech
recognition systems. To achieve this, experiments were conducted using fine-tuning of
various models. Furthermore, a multimodal system was introduced and tested, wherein
transcriptions from the fine-tuned models and descriptions of an image representing the
user’s visual context are used as input to a language model. This model will attempt to
generate a sentence that best reflects what the speaker with aphasia tried to convey when
pronouncing the original sentence.

To address this project, we began by familiarising ourselves with some of the most
common speech disorders, focusing in particular on the case of aphasia, a disorder caused
by damage to the brain areas responsible for language, which affects the communication
of those who suffer from it, as explained in Chapter 2.

Subsequently, we undertook a thorough search of state-of-the-art projects with objec-
tives akin to ours. Moreover, we carried out a review of the evolution and present-day
methodologies employed in the realm of automatic speech recognition. We also intro-
duced the domains of image captioning and large language models, offering an overview
of some of the most prominent contemporary models in each domain. Furthermore, we
detailed the dataset used in our study.

Regarding the experiments and systems developed in this project, in the first part re-
lated to fine-tuning ASR models to adapt them to the subfield of transcribing individuals
with aphasia, we pursued two approaches based on data partitioning. On one hand, we
performed partitions based on context, and on the other hand, we conducted partitions
based on the speaker.

In the experiments carried out in the context-based data partitioning approach, we
compared the Whisper-small, Whisper-base, and Whisper-tiny models with Wav2Vec
2.0. Additionally, we fine-tuned these models to tailor them to our specific domain. In
the case of the best-performing model, Whisper-small, we achieved a Word Error Rate of
31.53%, representing a relative improvement of 55.23% compared to the base model with-
out the fine-tuning process. In the Spanish version, Whisper-small also experienced a sig-
nificant relative improvement after fine-tuning, with a reduction in WER from 121.57%
to 36.34%.

Finally, in the case of fine-tuning ASR models following the "speaker-independent"
approach, the model that yielded the best results among those analyzed was also Whisper-
small, with a relative improvement of 42.82% in its training, reducing the Word Error
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Rate (WER) from 61.25% to 35.60%. As mentioned earlier, this latter result was the best
achieved in this set of experiments.

These results confirm the effectiveness of the fine-tuning process in adapting pre-
trained models, which, despite having very low WER rates in the general population, ex-
hibited much more limited performance when used by individuals with speech problems
such as aphasia. As we have seen, adapting the weights of these models with domain-
specific data from people with aphasia has led to a significant improvement in the error
rate, yielding very promising results in this regard.

Furthermore, the work also addressed the objective of not only transcribing but also
effectively conveying what users with oral communication problems wish to communi-
cate. Our experiments combined the transcription obtained from the best fine-tuned ASR
system with visual information provided by a computer vision model (VLM) and a large
language model (LLM).

In these experiments, LLaVAR was used as the Visual Language Model (VLM), Whisper-
small fine-tuned as the ASR model, and the results were compared between GPT 3.5 and
LaMDA as Large Language Models (LLM). Furthermore, tests were conducted both us-
ing the VLM to obtain a transcription of the image as visual context information and
using a list of the key elements of the image as visual context, also obtained with the
VLM. In this case, human evaluation was employed, and 33.85% of the users specified
that, concerning the system that best reflects the speaker’s intention, GPT 3.5 using a list
of the most important elements as contextual information was the preferred choice. On
the other hand, users who participated in the human evaluation were also asked which
system they believe transcribes the user’s speech word-for-word better. In this case, the
most part of the users agreed that the fine-tuned Whisper-small performed best.

In conclusion, the initial objectives of this work have been successfully achieved. We
have significantly enhanced the performance of pre-trained ASR systems in their inter-
action with individuals facing aphasia. Furthermore, we have developed systems that
aim to more accurately reflect what users wish to communicate, thereby improving their
expressive abilities. The results of human evaluations support the effectiveness of these
systems.

The outcomes of this study provide grounds for optimism regarding the potential for
future systems to more effectively harness the multimodal information available from
users. This could contribute to enhancing communication and fostering the inclusion
of individuals with disabilities such as aphasia. Moreover, these results inspire us to
continue exploring the use of foundational models, fine-tuning, and the amalgamation
of different models to leverage user information and context, with the aim of enhancing
the quality of interaction among individuals and with technology.

Regarding future work, it is suggested that the possibility of expanding the datasets
through collaboration with organizations serving people with disabilities be considered.
This could provide a more extensive corpus and enrich the fine-tuning of the systems
with a greater diversity of data. Additionally, the incorporation of gestural information
from speakers to assess its impact on interpreting user intent could be explored, opening
up new avenues for research in this field.



APPENDIX A

Human evaluation survey

In the following appendix, a more detailed presentation will be provided regarding the
type of survey questions used for the human evaluation of the different systems that
combined transcription with visual context information.

As explained earlier in Chapter 9, the survey comprises 7 audio clips, with 2 questions
for each audio. The first of these questions, as depicted in Figure A.1, requests the classi-
fication of systems based on the most accurate word-for-word transcription. Regarding
the possible options for classification, these correspond to transcriptions obtained from
the systems under evaluation: GPT-3.5 with image description, the same with key visual
elements as visual context, LaMDA with description, as well as its version with image
elements, the fine-tuned Whisper transcription, and the original transcription.

It is worth noting that in some questions, instead of six options for classification, there
are fewer due to instances where multiple systems yield the same transcription.

Figure A.1: The first type of question in the survey conducted regarding the best transcription of
the presented audio.
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As we can see in Figure A.2, the second question corresponding to each audio follows
a similar structure and involves the same systems. However, in this case, respondents are
asked to rank them based on what they believe the speaker intends to convey.

Figure A.2: The second type of question in the survey conducted concerning the best interpreta-
tion of the speaker’s intention.

To access the audio, participants were required to click on the provided link, which
would open a new tab featuring an audio player for playback.

The primary challenge encountered by survey participants was that, as individuals
with pronunciation difficulties and considering the audio language was English, a profi-
cient level of English proficiency was expected for evaluation. Nevertheless, some par-
ticipants faced challenges in transcribing certain audio due to the speaker’s underlying
medical condition, which added complexity to the transcription task.

The comprehensive survey can be accessed via the following link: https://forms.
gle/zDwVJXbwZrb7PYr66.

The image that is input into the VLM to obtain transcription hypotheses for evaluat-
ing the different systems in the survey can be seen in Figure A.3.

Regarding the prompts employed to introduce input into the LLM for transcription
generation during the survey, we employed two distinct prompts.

In the first prompt, the key image elements obtained by the VLM are presented along-
side the phrase transcribed by the ASR model, using the following prompt:

"Given these keywords about the user environment: ’cartoon’, ’woman’, ’child’, ’umbrella’,
and ’rain’ and given these transcriptions of the sentences said by an individual with aphasia: ’he
wants me he take his to to to school ’ you are an expert in aphasia transcription, return the same
transcriptions of the individual modifying if you see any mistake in the transcription only if you
are sure if not just return the same transcription sentence".

https://forms.gle/zDwVJXbwZrb7PYr66
https://forms.gle/zDwVJXbwZrb7PYr66
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Figure A.3: The image input into the VLM LLaVAR to obtain transcriptions of the phrases in the
survey conducted for human evaluation.

With regard to the second prompt, it includes a description of the image obtained by
the VLM along with the transcription of the audio obtained by the ASR model, as shown
below.

"Given this description about an image with a story told in 6 different cartoons the user is
looking at and trying to describe: ’The image is a black and white cartoon of a woman and a child.
The woman is holding an umbrella and a pencil, while the child is wearing a backpack. They
appear to be interacting with each other, possibly sharing a moment or engaging in an activity.
The image is a black and white cartoon depicting a woman and a child standing near each other.
The woman is holding an umbrella, while the child appears to be reaching out to her or holding
their hand out towards the umbrella. The woman seems to be interacting with the child, possibly
teaching them about the umbrella or sharing a moment together. The image is a cartoon of a boy
standing outside in the rain The image shows a cartoon of a boy with a backpack walking in the
rain. He is wearing a backpack and holding an umbrella to protect himself from the rain. The boy
appears to be looking up, possibly observing the raindrops or listening to the sound of the rain In
the image, there is a woman and a young boy standing next to each other. The woman is on the left
side, and the boy is on the right. The woman is taller than the boy and appears to have her arms
crossed. The boy is looking downwards, and there is a backpack near him. The image seems to have
a white background. The image depicts a cartoon boy with a backpack walking in the rain while
holding an umbrella to protect himself from the downpour.’, and given these transcriptions of the
sentences said by an individual with aphasia: ’he wants me he take his to to to school’, you are an
expert in aphasia transcription, return the same transcriptions of the individual modifying if you
see any mistake in the transcription only if you are sure if not just return the same transcription
sentence "
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