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Abstract
Random events make multiobjective programming solutions vulnerable to changes in 
input data. In many cases statistically quantifiable information on variability of rel‑
evant parameters may not be available for decision making. This situation gives rise to 
the problem of obtaining solutions based on subjective beliefs and a priori risk aver‑
sion to random changes. To solve this problem, we propose to replace the traditional 
weighted goal programming achievement function with a new function that considers 
the decision maker’s perception of the randomness associated with implementing the 
solution through the use of a penalty term. This new function also implements the 
level of a priori risk aversion based around the decision maker’s beliefs and percep‑
tions. The proposed new formulation is illustrated by means of a variant of the mean 
absolute deviation portfolio selection model. As a result, difficulties imposed by the 
absence of statistical information about random events can be encompassed by a mod‑
ification of the achievement function to pragmatically consider subjective beliefs.
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1 Introduction

Weighted goal programming (WGP) is one of the major goal programming 
variants that allows normalised, unwanted deviations from goals to be traded‑
off directly (Jones and Tamiz 2010). Typically, a linear programming solution 
algorithm will be used to solve linear WGP models, resulting in an extreme 
point solution. This solution is, by its nature, vulnerable to small changes in 
the model parameters that can leave the proposed solution either infeasible or 
sub‑optimal (Ignizio 1999). In many real‑life applications random events pre‑
vent the planned solution from being implemented, namely, the WGP deter‑
ministic solution should be viewed as a desirable average affected by random 
variability.

Previous approaches to deal with random variability of model parameters 
in WGP usually implies the existence of some statistically quantifiable knowl‑
edge by assuming either an uncertainty set or a given probability distribution. 
Robust goal programming approaches (Kuchta 2004; Ghahtarani and Najafi 
2013; Hanks et  al. 2017), are usually based on probabilistic guarantees (e.g., 
a symmetric bounded distribution) for random parameters within well‑defined 
uncertainty sets (Matthews et  al. 2018). Stochastic programming relies on 
the conversion of a stochastic program into a deterministic one by consider‑
ing the expected value of the objective function and by imposing that restric‑
tions are fulfilled with a minimum probability threshold (Abdelaziz et al. 2007, 
2009; Masri 2017). Stochastic multiobjective programming problems are also 
addressed by interactive procedures based on reference‑points (Muñoz and Ruiz 
2009; Muñoz et  al. 2010). Finally, fuzzy goal programming proposals (Díaz‑
Madroñero et al. 2014; Messaoudi et al. 2017; Jiménez et al. 2018), are based 
on the concept of fuzzy numbers to express the uncertainty levels due to lack of 
knowledge of input data.

However, statistical information on variability of relevant parameters is not 
usually available to the decision maker (DM). This gives rise to the problem of 
how to obtain a prudent WGP deterministic solution that takes into account the 
DM’s beliefs and risk aversion relating to the random changes that may occur in 
the implementation process. In this case, a ‘prudent solution’ is defined as one 
with which the DM would be satisfied as being more likely to be implementable 
in practice, although potentially slightly worse with respect to objectives than the 
deterministic solution without randomness taken into account.

In this paper, we propose a deterministic WGP model whose objective function 
(or achievement function) is established by the DM from his/her beliefs on the 
variability of goals in the day‑to‑day implementation process as well as his/her a 
priori risk aversion for this variability. It should be pointed out that the proposed 
model is not stochastic. In fact, the model does not rely on statistically observable 
data but it relies on subjective values (beliefs, psychological aversion) disclosed 
by the DM. The main purpose of the paper is to obtain prudent deterministic 
solutions influenced by these subjective values. To this end, we replace the tra‑
ditional WGP achievement function by a new function that takes into account the 
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decision maker’s perception of the randomness associated by means of a penalty 
term bounded by a maximum value. This penalty term is ultimately related to the 
concept of absolute risk aversion introduced by Arrow (1965) and risk premium 
through the Pratt (1964) approximation and a power utility function (Ballestero 
1997). Summarising, two main contributions can be highlighted: 

1. We propose a pragmatic approach to WGP based on a subjective penalty param‑
eter as a proxy for believed variability when statistically quantifiable information 
is not available.

2. We establish a link between this penalty parameter and risk premium through the 
concept of Arrow’s absolute risk aversion coefficient.

To illustrate our proposal, we consider a portfolio selection problem where the DM 
aims to find the percentage of a given budget that is allocated to each one of a set of 
available assets. More precisely, we reformulate the mean‑absolute‑deviation portfo‑
lio selection model proposed by Konno and Yamazaki (1991) to incorporate subjec‑
tive beliefs in the objective function. The main implication that can be derived from 
our proposal and the case study is that the difficulties imposed by the absence of 
statistical information about random events can be alleviated by the modification of 
the achievement function within the context of WGP.

The remainder of this paper is organised as follows. In Sect. 2, the state of the 
art is reviewed. Section 3 deals with the proposed method. Section 4 provides a dis‑
cussion through some illustrative portfolio selection examples, this being completed 
with sensitivity analyses and comparisons of results with respect to the classical 
WGP model. The paper closes with concluding remarks.

2  State of the art

2.1  On goal programming

Various extensions to the original Charnes et  al. (1955) goal programming model 
have been proposed to account for the fact that there may be a level of uncertainty or 
imprecision around the parameters of the goal programming model in some applica‑
tions. These have mainly concentrated on uncertainty or imprecision regarding the 
set of weights associated with the penalisation of the unwanted deviations and of 
the target values. A model is proposed by Charnes and Collomb (1972) that allows 
interval targets for goals for which both deviations on both sides of the target are 
unwanted. Another proposal by Gass (1986) suggests the use of the analytic hierar‑
chy process to determine a weight set .

More recently, stochastic goal programming gives a formal methodology for han‑
dling randomness when the probabilities associated with the uncertain parameters 
are known or can be estimated. Recent proposals on stochastic goal programming 
include generalised models (Aouni and La Torre 2010) and several applications in 
the fields of portfolio selection, resource allocation, project selection, healthcare 
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management, transportation and marketing (Aouni et al. 2012; Masri 2017). Fuzzy 
goal programming formulate imprecision in the relevant data by using (Zadeh 1965) 
concept of fuzzy numbers. Relevant applications can be found in materials require‑
ment planning (Díaz‑Madroñero et al. 2014) group decision methods (Bilbao‑Terol 
et  al. 2016) and portfolio selection (Messaoudi et  al. 2017; Jiménez et  al. 2018). 
Other extensions of goal programming consider the presence of strict priority levels 
under a lexicographical structure (Choobineh and Mohagheghi 2016) and the use of 
goal programming as a method to combine alternative perspectives in voting sys‑
tems (González‑Pachón and Romero 2016; González‑Pachón et al. 2019).

Summarising, there have been various methods proposed to deal with the uncer‑
tain and sometimes subjective nature of weight determination in goal programming. 
The above are methods for handling imprecision around specific sets of parameters 
which can be statistically quantified and hence managed via specific techniques. 
Thus, we can classify them as formal methods. However, Jones and Tamiz (2010) 
conclude that the process of setting weights in a goal programming is either a formal 
or informal process of interaction with DMs and Jones (2011) proposes a pragmatic 
algorithm that explores the weighting space to aid in this process. As a departure 
from existing approaches, we here propose a method to deal with uncertainty of a 
more general nature that cannot be statistically quantified and hence an approach 
based on the beliefs and risk aversion levels of the DM is proposed.

2.2  On risk aversion

This concept was introduced by Arrow (1965) and Pratt (1964) with the following 
meaning: (a) it is not a measure of risk, but a psychological parameter to character‑
ise how much the DM fears risk of changes in a result, which is of interest to the 
DM; (b) it derives from the DM’s utility function concerning that result. In Arrow’s 
theory the DM’s utility function relies on certain topological assumptions (Debreu 
1960). They are rather unrelated to concepts such as value function, additive value 
theory, multi‑attribute value theory and multi‑attribute utility theory (MAUT), 
which appeared later in time since 1970. To avoid confusion, the fact that Arrow’s 
utility function is a departure from value functions and other concepts cited above 
should be pointed out, although relationships between topological assumptions and 
solvability assumptions have been discussed by Krantz et al. (1971).

Approaches to balanced scorecard problems such as those proposed, e.g., by 
Grigoroudis et al. (2012) and Xu and Yeh (2012) based on additive utility functions 
and multiattribute decision making models are a departure from the present paper, 
which relies on Arrow’s utility theory and risk aversion. There is a critical advan‑
tage of using Arrow’s utility and risk aversion to underpin GP. Arrow’s theory is 
a paradigm in economic analysis and therefore, GP based on Arrow’s theory could 
become a convincing method for economists. Risk aversion is sometimes related to 
expected utility (see, e.g. Schechter (2007)), but the problem of estimating risk aver‑
sion and risk premium without the expected utility assumption is also developed in 
decision theory (Langlais 2005).
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Determining Pratt’s coefficient when the DM utility function is virtually unknown 
is a critical issue addressed by McCarl and Bessler (1989). There is a wide range 
of literature on risk aversion (related to utility). These papers deal with a range of 
managerial and economic applications, e.g. dynamic portfolios and consumption 
(Bhamra and Uppal 2006; Kihlstrom 2009), cost‑effectiveness (Elbasha 2005), one‑
period models (Cheridito and Summer 2006), pricing and options (Ewald and Yang 
2008), water use planning (Bravo and Gonzalez 2009) and consumption over time 
(Johansson‑Stenman 2010), to cite a few examples. Expected value‑stochastic goal 
programming by Ballestero (2001) and socially responsible investment methods by 
Ballestero et al. (2012)) also rely on Arrow’s‑Pratt’s utility, but in a different way 
from the model proposed in this paper.

3  Reformulating the objective function from the DM’s beliefs 
and risk aversion

Let us start with a classical WGP formulation (Charnes and Cooper 1957):

with w+
j
+ w−

j
= 1 , for all j =, 1, 2,… , n and 

∑n

j=1
wj = 1 , and subject to the follow‑

ing constraints:

together with the non‑negativity conditions xi, d+j , d
−
j
≥ 0 . Note that if we make 

W+
j
= wjw

+
j
 and W−

j
= wjw

−
j
 , then objective function (1) becomes

where the sum of weights turns out to be equal to one. In the previous equations the 
symbols have the following meaning:

– xi is the i‑th output (decision variable).
– aij is the per unit cost of the i‑th output for the j‑th goal.
– bj is the target or aspiration level for the j‑th goal.
– d+

j
 and d−

j
 are the j‑th positive and negative deviations, respectively, from the j‑th 

target.
– wj , w+

j
 and w−

j
 , or equivalently, W+

j
 and W−

j
 , are the preference weights to be 

attached to the j‑th deviation. They satisfy the above standard relationships.

(1)min D =

n
∑

j=1

wj(w
+
j
d+
j
+ w−

j
d−
j
)

(2)
m
∑

i=1

aijxi = bj + d+
j
− d−

j
, j =, 1, 2,… , n,

(3)min D =

n
∑

j=1

(W+
j
d+
j
+W−

j
d−
j
)
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In the previous formulation, we do not use percentage normalisation by means of 
targets bj , to avoid the limitation of the model when targets are zero. However, it is 
important to note that normalisation will be required if goals measured in different 
units are summed directly.

For mathematical convenience (see below) we will use objective function (1) 
instead of its equivalent form (3). Equation (1) can be viewed as a disutility function 
D whose arguments are deviations behaving “the more the worse”. Disutility D can 
be converted into utility U by converting its arguments into “the more the better” 
variables. There are different procedures to carry out this conversion, one of them 
being the following:

where Mj is a sufficiently large number, and kj is some normalisation constant, 
together with qj ≥ 0 . Some kind of normalisation is required if goals measured in 
different units are summed directly. Percentage normalisation is a particular case of 
Eq. (4) when Mj = 1 and kj equals the target value for the jth goal:

Note that percentage normalisation requires non‑zero targets bj . This requirement 
may be an issue when, e.g., decision‑makers aim to minimise cost deviations above 
a target that is set to zero. In addition, the conversion of disutility to utility requires 
that deviations are limited to 100% of target value to avoid negative utility when 
(w+

j
d+
j
+ w−

j
d−
j
) > bj . In what follows, we use the general case described in Eq. (4) 

to overcome these numerical limitations. A further advantage of this choice is its 
generality since Eq. (4) can also be used in conjunction with multiple different nor‑
malisation schemes. As a result, we transform the minimisation objective function 
(1) in the next maximisation expression:

Let (x10, x20,… , xi0,… , xm0) be the solution vector obtained from deterministic 
model encoded in Eqs. (1) and (2). This solution should be implemented in the day‑
to‑day routine of the activity. For example, suppose that x10 = 45 units, x20 = 32 
units, and so on are quantities of products in an agricultural planning model to be 
produced and sold on the market weekly, such as model (1) and (2) has recom‑
mended. Obviously, the farm cannot produce and sell these units exactly every 
week, as random events will affect the implementation process giving rise to sales 
variability for an assumed perishable product. Faced with this implementation pro‑
cess, the farm fears the consequences of these random changes on its utility. Then, 
achievement qj given by Eq. (6) is reduced by a penalty term Vj as follows:

(4)qj = Mj − (w+
j
d+
j
+ w−

j
d−
j
)∕kj

(5)qj = 1 − (w+
j
d+
j
+ w−

j
d−
j
)∕bj.

(6)max U =

n
∑

j=1

wjqj.

(7)Qj =
1 − Vmax

1 − Vj

(

Mj − (w+
j
d+
j
+ w−

j
d−
j
)∕kj

)
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where Qj is the achievement after penalty. Penalty term Vj is defined as the believed 
variability (%) in the achievement of the j‑th goal, due to random events affecting 
the day‑to‑day implementation process. This value is assumed by the DM from his/
her beliefs. Penalty term Vj is the subjective expression of some statistically unquan‑
tifiable randomness. It is the way that a DM can encompass either uncertainty or 
randomness when he/she is not able to define in statistical terms by means of a given 
probability distribution, an uncertainty set or fuzzy numbers. To solve this limita‑
tion, the DM’s beliefs with respect to the random changes that may occur are rep‑
resented by a penalty term for each goal. This penalty term is the way to incorpo‑
rate the consequences of these random changes in the resulting utility. In addition, 
penalty terms can be determined by means of the common interactive process in 
multiple criteria decision making in which penalty terms selection and optimisation 
stages are repeated until a satisfactory solution is obtained (Miettinen et al. 2008). 
Following with our example in agricultural planning in this section, the farm can 
periodically adjust its utility achievement function according to its beliefs regard‑
ing weather forecasts, price expectations and many other factors. Finally, Vmax is an 
upper limit (less than 100%) for penalty term Vj . Then, for all j, we have:

In the language of Arrow’s 1965 utility theory, the DM has risk aversion for such 
variability in the implementation stage. A classical measurement of risk aversion is 
stated by the Arrow’s (p.94 Arrow (1965)) absolute risk aversion (ARA) coefficient 
rAj , namely:

where U is the DM’s utility function.

Remark 1 Using WGP objective function with achievement (7) involves using a lin‑
ear utility function. Then, in Eq. (9), the second derivative equals zero. Therefore, 
from Eq. (9) we have rAj = 0 . This means that the DM is not a risk averter at all, but 
a risk neutral. As most DMs are risk averters, an ARA non‑linear utility function 
should be used in our context instead of a linear objective function. By using addi‑
tive power utility, we have:

where exponent �j is a parameter characterising the power utility function 
( 0 < 𝛽j < 1 ). Exponent �j ≤ 0 has no sense as utility should increase with the 
increase of Qj achievement (see, e.g., Kallberg and Ziemba (1983)). Non‑linear‑
ity in Eq. (10) may impose some limitations due to the computational burden in 
large‑scale problems. The use of evolutionary algorithms (Branke et al. 2008) is a 

(8)
1 − Vmax

1 − Vj

≤ 1.

(9)rAj =
−�2U∕�Q2

j

�U∕�Qj

, j = 1, 2,… n.

(10)maxU =

n
∑

j=1

wjQ
�j

j
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potentially suitable option to overcome this limitation as long as suboptimality in 
the calculation of solutions is of the same order of magnitude than possible errors in 
the input data.

One may ask if any other type of utility function with second derivative not 
equal to zero such as either logarithmic or exponential functions can be used 
instead of power utility functions such as the one described in Eq. (10). It is 
shown elsewhere (Ballestero 1997; Ballestero and Romero 1998) that the n‑
th derivative of usual utility functions such as the exponential, logarithmic and 
power functions presents the same mathematical structure. By setting the appro‑
priate parameters in this structure, one may derive the same results that we next 
do for the case of power utility functions due to the simplicity of mathematical 
notation.

Our problem now is to specify each power utility function by determining the 
respective Vj and �j , so that the DM’s utility reflects their risk aversion for random 
changes in the day‑to‑day implementation process.

3.1  Specifying power utility in our context

To this end, a relationship between each power utility function and the DM’s risk 
aversion for randomness in the implementation process is needed. From Eq. (9), 
Arrow’s relative risk aversion RRj (Arrow 1965) is calculated for each power util‑
ity function as follows:

Remark 2 From Eq. (11), the lower the RRj relative risk aversion the higher the �j 
exponent. Minimum RRj = 0 corresponds to �j = 1 . Highest levels of relative risk 
aversion RRj close to 1 correspond to lowest �j exponents close to zero.

To elicit the relative risk aversion coefficient (11), the concept of risk premium, 
which is defined as “the maximum amount of money � that one is ready to pay 
to escape a pure risk” (Gollier 2001) is used. More generally, it is the amount of 
achievement that a risk averse DM is willing to give up in exchange for zero ran‑
domness, namely, in exchange for a risk‑free scenario. Risk premium �j is obtained 
by the following Pratt (1964) approximation:

Equation (12) is characterised by saying that the risk premium is proportional to the 
following factors: 

(a) A statistical measure of randomness, namely, the variance �2

j
 of random changes 

affecting the j‑th goal in the day‑to‑day implementation process. This variance 

(11)RRj = rAj ⋅ Qj = 1 − �j.

(12)�j = 0.5 ⋅ rAj ⋅ �
2

j
= 0.5 ⋅ (RRj∕Qj) ⋅ �

2

j
.
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is unknown in our context, as no statistical information on random changes is 
generally available to the DM.

(b) A psychological factor, namely, the risk aversion coefficient, which is established 
by the DM.

As variance �2

j
 is unknown, Eq. (12) should be converted into an equivalent equa‑

tion where a proxy for variability such as Vj (based on beliefs) is used instead of 
the variance. To this end, Eq. (12) is written as follows:

It is sensible to assume that the DM uses their beliefs on percentage variability 
(namely, Vj ) instead of the unknown �j∕Qj coefficient of variation. Thus, Eq. (13) 
turns into:

From Eqs. (11) and (14), we get:

3.2  Eliciting risk premium and computing the ˇj exponents

In the context of this paper, the risk premium is established by the DM from their 
beliefs on percentage variability in the j‑th goal due to random changes in the day‑
to‑day implementation process of the deterministic WGP solution. A sensible rule 
is as follows: the greater the believed variability the larger the risk premium. If zero 
variability is assumed, there is no reason to establish a risk premium. To help the 
DM elicit the risk premium for each believed variability concerning the j‑th goal and 
compute the respective �j exponent of the power function, Table 1 is constructed for 
each goal. Columns of the table have the following meaning and application.

– First column A wide sample of potential levels of believed variability is dis‑
played. These levels are ordered from 0% to 90%.

– Second column For each believed variability Vj , the DM is invited to disclose 
their risk premium in percentage terms with respect to utility Qj.

– Third column For each believed variability and the respective risk premium, the 
RRj relative risk aversion coefficient is computed by Eq. (14). For the sake of 
coherence, the risk premium succession in the second column should lead to a 

(13)RRj =
�j∕Qj

0.5 ⋅ (�j∕Qj)
2
.

(14)RRj =
�j∕Qj

0.5 ⋅ V2

j

.

(15)�j = 1 −
�j∕Qj

0.5 ⋅ V2

j

.



5694 M. Bravo et al.

1 3

succession of increasing RRj in the third column. If not, the DM should be invited 
to reconsider their risk premium values.

– Fourth column From the third column, the �j exponent for each row is computed 
by Eq. (11).

– Fifth column For each row, the upper limit for the risk premium (%) is here 
recorded. If the DM has disclosed a risk premium value greater than (or equal to) 
the respective upper limit, then the �j exponent turns out to be less than (or equal 
to) zero, which is inappropriate (see Remark 2). In this case, the analyst may 
invite the DM to reconsider their risk premium values. Alternatively, the analyst 
may take a very low �j level, such as �j = 0.01.

4  Case study

To illustrate our proposal, we consider a portfolio selection problem where the DM 
aims to find the percentage of a given budget that is allocated to each one of a set of 
available assets. The classical bicriteria approach, as proposed by Markowitz (1952), 
includes the joint maximisation of returns and the minimisation of risk through the 
well‑known mean‑variance portfolio selection model. The portfolio optimisation 
problem is still an ongoing issue and different approaches such as fuzzy goal pro‑
gramming (Messaoudi et  al. 2017; Jiménez et  al. 2018), stochastic goal program‑
ming (Masri 2017), and generalised data envelopment analysis and statistical mod‑
els (Tsionas 2019) have been recently proposed. In this case study, we reformulate a 
variant of the classical portfolio selection model proposed by Konno and Yamazaki 
(1991), which is known as the mean‑absolute‑deviation (MAD) model to incorpo‑
rate subjective beliefs as described in the previous section. Instead of variance as a 

Table 1  Relative risk aversion RRj and exponent �j for each believed variability

Variability per‑
centage ( Vj)

Risk premium percent‑
age (100�j∕Qj)

Relative risk aver‑
sion ( RRj)

�j exponent Limit risk 
premium 
(%)

0 0 0 1 –
2 �2% 50.0000�2% 1 − 50.0000�2% 0.0200
5 �5% 8.0000�5% 1 − 8.0000�5% 0.1250
10 �10% 2.0000�10% 1 − 2.0000�10% 0.5000
15 �15% 0.8889�15% 1 − 0.8889�15% 1.1250
20 �20% 0.5000�20% 1 − 0.5000�20% 2.0000
25 �25% 0.3200�25% 1 − 0.3200�25% 3.1250
30 �30% 0.2222�30% 1 − 0.2222�30% 4.5000
40 �40% 0.1250�40% 1 − 0.1250�40% 8.0000
50 �50% 0.0800�50% 1 − 0.0800�50% 12.5000
70 �70% 0.0408�70% 1 − 0.0408�70% 24.5000
90 �90% 0.0247�90% 1 − 0.0247�90% 40.5000
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measure of risk, the MAD model uses the absolute deviation of returns with respect 
to the mean. This fact motivates the selection of the MAD model in our WGP con‑
text. A further advantage of the use of the MAD model with respect to the mean‑
variance model is that the assumption of normality of returns is not required.

In order to analyse the impact of market trends in the performance of the MAD 
model, we use three different data sets for weekly returns in the Spanish Stock 
Exchange (IBEX 35) as summarised in Table 2. More precisely, we identify three 
different trends: 1) bull market (from 2005 to 2008) with an average weekly return 
of 0.062%; 2) sideways trend (from 2014 to 2019) with an average weekly return of 
−0.001%; and 3) bear market (from 2008 to 2012) with an average weekly return 
of −0.189%. Interested readers can obtain the data themselves at http:// es. finan ce. 
yahoo. com.

To solve these portfolio selection optimisation models, we use the open‑source 
library SciPy in Python (Version 3.6.4) and Jupyter Notebooks (Kluyver et al. 2016) 
and the SLSQP (Sequential Least Squares Programming) method originally imple‑
mented by Kraft (1988).

4.1  Performance of the MAD model

The MAD formulation is based on T previous observations returns from a set of m 
available assets. A formulation of the MAD model adjusted to the approach described 
in this paper is as follows:

(16)max
[

w1 ⋅ Q1 − w2 ⋅ Q2

]

(17)Q1 = �

(18)
m
∑

i=1

ri ⋅ xi ≥ �

(19)Q2 =

(

w+
2

T
∑

t=1

d+
2t
+ w−

2

T
∑

t=1

d−
2t

)

∕T

Table 2  Data sets summary (Avg Ret: Average weekly return for IBEX 35)

Data set Initial date Final date Weeks Assets Avg ret

Bull market 14/01/2005 19/12/2008 206 38 0.062%
Sideways trend 27/04/2014 07/04/2019 259 43 −0.001%
Bear market 06/01/2008 12/08/2012 241 41 −0.189%

http://es.finance.yahoo.com
http://es.finance.yahoo.com
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where � is the desired return for the portfolio, ri is the average return for the i‑th 
asset, rit is the return of asset i in time period t, and d+

2t
 and d−

2t
 are, respectively, the 

positive and negative deviation of returns from target � . Then, Q1 measures the aver‑
age return of the portfolio and Q2 measures the mean absolute deviation of returns 
from the desired return.

Using normalised returns and deviations for the three data sets described in 
Table 2, we first obtain optimal portfolios for 20 different levels of returns between 
the minimum and maximum returns among all assets and data sets. Then, we com‑
pare performances in terms of returns and absolute deviations by solving the clas‑
sical MAD model encoded between Eqs.  (16) and (23) as shown in Fig.  1. In all 
three cases, we identify a zone of dominated portfolios where low returns are not 
rewarded with low deviations. In these cases, there is a better alternative (higher 
return for a similar deviation) available for investors. This behaviour is similar to the 

(20)
m
∑

i=1

rit ⋅ xi = d+
2t
− d−

2t
+ �

(21)
m
∑

i=1

xi = 1

(22)xi, �, d
+
2t
, d−

2t
≥ 0

(23)t = 1, 2,… , T ,

Fig. 1  Expected normalised returns and absolute deviations using the classical MAD model for three dif‑
ferent market trends
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well‑known bullet‑shape in the mean‑variance model (Ballestero and Pla‑Santama‑
ria 2004).

As expected, the performance of the MAD model in the bear market is poorer 
than in the bull market and the sideways trend for all portfolios except for one. Inter‑
estingly, the best performance of the MAD model does not correspond to the bull 
market case but to the sideways trend. A reasonable explanation for this behaviour is 
that bull market trends are expected to be characterised by larger deviations than in 
the case of a sideways trend.

4.2  Performance of the adjusted MAD model

Since based on past data, the MAD model is deterministic. However, investors can 
express their beliefs and risk aversion by means of penalty term Vj and exponent �j 
for each goal, namely, returns and mean absolute deviations from average returns. For 
instance, an investor may do the following reasoning: “Due to economic uncertainty 
derived from political instability in Spain, my beliefs on percentage variability with 
respect to the average returns is 2% and with respect to mean absolute deviations of 
returns is 5%”. For each believed variability, the investor is invited to disclose their 
risk premium in percentage terms with respect to achievement Qj for each goal j. Let 
us assume that the investor assessment of risk for each believed variability is common 
for all goals as it summarised in Table 3. As a result, exponent �j for each goal j can be 
computed using Eq. (15) for a given range of believed variabilities. Note that the higher 
the believed variability, the higher the risk premium attached to an account and the 
lower exponent �j , hence reducing achievement Qj.

Then, we can reformulate of the MAD model according to the subjective beliefs of 
our investor as follows. From Table 3, we obtain Vmax = 15% and exponents �1 = 0.90 
and �2 = 0.76 for a believed variability of V1 = 2% for returns and V2 = 5% for mean 
absolute deviations. As a result of the investor’s beliefs and risk aversion utility derived 
from returns in Q1 is reduced and disutility produced by deviations in Q2 is increased. 
Then, the adjusted MAD model to be solved is as follows:

(24)max

[

w1 ⋅ Q
�1
1
− w2 ⋅ Q

�2
2

]

Table 3  Exponent of the power 
function from the numerical 
risk premium established by 
an investor for each believed 
variability

Variability percentage 
( Vj)

Risk premium percentage 
(100�j∕Qj)

�j exponent

0 0 1
2 0.2 0.90
5 3 0.76
10 20 0.60
15 47.5 0.58
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It is well known that the optimal solution of a GP might be Pareto inefficient when 
DMs are too pessimistic when setting target levels. In our porfolio selection context, 
both the MAD and the adjusted MAD model are built with the ultimate goal of max‑
imising the difference between returns and the absolute deviations of returns. As a 
result, target � is only used as a reference to compute absolute deviations of returns. 
However, we must recall that in case that Pareto inefficiency is detected, several res‑
toration techniques have been proposed in the literature (Romero 1991; Tamiz and 
Jones 1996; Jones and Tamiz 2010).

The adjusted MAD model provides a formulation that implements subjective 
beliefs about uncertainty without increasing complexity. With respect to stochas‑
tic goal programming, there is no need to assume a probability distribution for 
returns. Fuzzy goal programming goes one step further in the search for a better 
way of implementing beliefs about the level of satisfaction by means of fuzzy 
goals and fuzzy restrictions. This implementation is achieved using fuzzy num‑
bers and membership functions as mathematical representation of the linguistic 
description of returns and risk targets imprecision made by the DM. Our approach 
goes even further in reducing complexity by relying on subjective beliefs imple‑
mented in the portfolio selection model by means of a single penalty term for 
each of the goals under consideration.

Using again our data sets with weekly returns from the Spanish Stock 
Exchange (IBEX 35) in three different market trends, we derive a new set of opti‑
mal portfolios by solving the adjusted MAD model program encoded between 
Eqs. (24) and (31). The combined bicriteria performance in terms of expected 

(25)Q1 =
1 − Vmax

1 − V1

⋅ �

(26)
m
∑

i=1

ri ⋅ xi ≥ �

(27)Q2 =
1 − V2

1 − Vmax

⋅

(

w+
2

T
∑

t=1

d+
2t
+ w−

2

T
∑

t=1

d−
2t

)

∕T

(28)
m
∑

i=1

rit ⋅ xi = d+
2t
− d−

2t
+ �

(29)
m
∑

i=1

xi = 1

(30)xi, �, d
+
2t
, d−

2t
≥ 0

(31)t = 1, 2,… , T .
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return and deviations is shown in Fig.  2. By comparing the portfolios derived 
from the MAD model in Fig.  1 with those obtained form the adjusted MAD 
model in Fig. 2, we note that returns are limited by the beliefs and risk aversion 
of the decision maker. Consequently, she/he has to accept more risk to achieve 
the same desired level of returns.

On average, a similar level of performance measured in terms of the features 
of non‑dominated portfolios for the MAD model and the adjusted MAD model is 
observed as shown in Table 4. However, this level of performance is achieved in 
exchange for diversification, particularly in the Sideways market scenario. Here, 
we measure diversification by means of the reciprocal (1 − H) of the Herfindahl’s 
concentration index (H) computed as the sum of the squares of the share allocated 
to each asset (Woerheide and Persson 1993). This index H ranges in the interval 
[0, 1], the higher the value of H, the less diversified portfolio. Then, the recipro‑
cal 1 − H is a measure of diversification.

Fig. 2  Expected returns and absolute deviations using the adjusted MAD model for three different mar‑
ket trends

Table 4  Feature comparison of 
non‑dominated portfolios for the 
MAD model and the adjusted 
MAD model

Data set Model Min share Max share Diversi‑
fication 
(1 − H)

Bull market MAD 0.22 0.78 0.30
adj‑MAD 0.21 0.79 0.29

Sideways market MAD 0.29 0.69 0.39
adj‑MAD 0.29 0.78 0.31

Bear market MAD 0.26 0.74 0.36
adj‑MAD 0.25 0.75 0.33
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However, the internal structure of the non‑dominated portfolios from the 
adjusted MAD model is different to those obtained using the MAD model for all 
three market trends. To evaluate the impact of the adjusted MAD model in the 
internal construction of portfolios, we computed: 1) the average sum of abso‑
lute changes in percentages of each asset; and 2) the average number of changes 
in percentages of assets observed. For instance, when comparing two portfo‑
lios p1 = (0.4, 0.3, 0.3) and p2 = (0.5, 0.2, 0.3) , the sum of absolute changes is 
|0.4 − 0.5| + |0.3 − 0.2| + |0.3 − 0.3| = 0.2 , and the number of changes is 2 since 
the first and the second asset’s percentages have changed. The results of the compar‑
ison of the MAD model and the adjusted MAD model for all non‑dominated port‑
folios and the three market scenarios are summarised in Table 5. More precisely, we 
find more important changes in the case of the bull market. The average number of 
changes in assets is slightly lower than two in both the bull and the bear market case, 
and above two in the sideways trend case. As a result, this feature shows the utility 
of our adjusted model: if there is an impact of beliefs and risk aversion on the opti‑
mal solutions, investors should have a tool to elicit the adjusted portfolios to those 
beliefs. The adjusted GP model described in this paper is an example of such a tool.

4.3  Sensitivity analysis

In this subsection, we perform a sensitivity analysis to explore the impact that the 
variation of the two key parameters of the adjusted MAD model has on the struc‑
ture of non‑dominated portfolios. More precisely, we compute average values of 
non‑dominated portfolios for both the minimum and maximum share allocated to 
each asset and the Herfindahl concentration index (Woerheide and Persson 1993). 
Along the lines of our case study, we consider three different scenarios represented 
by the data sets summarised in Table  2, namely, bull market, sideways trend and 
bear market.

Recall from Sect.  3, that for each believed variability Vj , the DM is invited to 
disclose their risk premium in percentage terms 100�j∕Qj with respect to utility Qj . 
Later, from Vj and �j∕Qj , the �j exponent is computed through Eq. (15) to build the 
modified objective function (24). It can reasonably be assumed that the greater the 
believed variability the larger the risk premium. As a result, we should find a bal‑
ance between parameters Vj and �j∕Qj and computations since some areas of the 
parameter space may lead to inconsistent solutions from the DM’s point of view 
Jones (2011). As an example, consider the extreme case when the choice of Vj and 

Table 5  Changes in percentage 
of assets produced by the 
adjusted MAD‑model in non‑
dominated portfolios

Data set Absolute change Number of changes
(Sum) (Average)

Bull market 0.78 1.86
Sideways trend 0.35 2.30
Bear market 0.44 1.83
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�j∕Qj results in a value of �j close to zero. Then power utility function (24) remains 
almost invariant to changes in achievement Qj . Similarly, when �j is close to one, the 
power utility function (24) becomes linear.

This sensitivity analysis follows two alternative means of experimentation. In the 
first one, we study the impact on non‑dominated portfolio structure of variations of 
the believed variability for returns V1 and for deviations V2 . In Table 6, we summarise 
the minimum, the maximum share and the reciprocal of the Herfindahl’s concentra‑
tion index for the three groups of believed variability. Risk premiums are established 
following to the rule: the greater the believed variability the larger the risk premium. 
Otherwise, the extreme case mentioned above may lead to an inconsistent solution. 
By analysing Table 6, we conclude that an increase in variability leads in general to 
an increase in the minimum share in all three scenarios. No significant changes were 
observed in the maximum share and in the diversification index.

In the second set of sensitivity results given in Table 7, we explore the impact on 
the non‑dominated portfolio structure of variations of the risk premium disclosed by 
the DM. Again, there exist different groups of experiments increasing the respective 
risk premium percentages 100�1∕Q1 and 100�2∕Q2 while maintaining invariant the 
believed variabilities V1 and V2 . On average, we also observe a general increase in 

Table 6  Believed variability sensitivity analysis (H: Herfindahl concentration index)

Data set V
1

V
2

100�
1
∕Q

1
100�

2
∕Q

2
Min share Max share 1 − H

Bull market 2 5 0.2 3 0.21 0.79 0.29
Sideways 2 5 0.2 3 0.22 0.78 0.31
Bear market 2 5 0.2 3 0.26 0.74 0.34
Bull market 5 10 3 20 0.42 0.78 0.29
Sideways 5 10 3 20 0.25 0.75 0.34
Bear market 5 10 3 20 0.28 0.72 0.35
Bull market 10 15 6 40 0.35 0.79 0.29
Sideways 10 15 6 40 0.24 0.76 0.33
Bear market 10 15 6 40 0.26 0.74 0.34

Table 7  Risk premium sensitivity analysis (H: Herfindahl concentration index)

Data set V
1

V
2

100�
1
∕Q

1
100�

2
∕Q

2
Min share Max share 1 − H

Bull market 2 5 0.2 3 0.21 0.79 0.29
Sideways 2 5 0.2 3 0.22 0.78 0.31
Bear market 2 5 0.2 3 0.26 0.74 0.34
Bull market 2 5 0.4 6 0.21 0.79 0.30
Sideways 2 5 0.4 6 0.22 0.78 0.30
Bear market 2 5 0.4 6 0.27 0.73 0.35
Bull market 2 5 0.8 9 0.56 0.76 0.29
Sideways 2 5 0.8 9 0.27 0.73 0.38
Bear market 2 5 0.8 9 0.24 0.76 0.32
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the minimum share and no significant changes were observed in the maximum share 
or the diversification index. However, in this case there is a remarkable change in the 
minimum share in the Bull market case in the third group of experiments. A closer 
look at the experimental results show that in this case the number of non‑dominated 
portfolios is lower than the rest, hence provoking this numerical change. This occur‑
rence may be caused by a low �2 value that leads to numerical issues in the power 
utility function as mentioned above.

The sensitivity analysis described in this section provides further insights about 
the expected pros and cons of the adjusted MAD model. In general, we observe 
that the structure of the optimal portfolios is not remarkably affected by changes 
in believed variabilities and risk premiums. Even though there are some changes 
when focusing in a extreme measure such as the minimum share, a more synthetic 
measure such as the Herfindahl concentration index shows almost no change. As a 
result, we conclude that the stability of the portfolio structure is not affected by the 
reasonable changes considered in our experiments. On the other hand, both analysts 
and DMs must be cautious on the parameter setting process due to possible incon‑
sistencies that may arise due to the effects of extreme values of �j exponents. In this 
sense, an interactive process between the analyst and the DM in which parameter 
setting and optimisation stages are repeated until a satisfactory solution is obtained 
may be of help.

Summarising, one of the main points of this paper is to show the advantages of 
the adjusted MAD model when incorporating subjective beliefs to deal with statisti‑
cally unquantifiable randomness. The classic MAD portfolio selection model deals 
with uncertainty by considering expected returns and deviations. On the contrary, 
the adjusted MAD model allows decision makers to obtain solutions according to 
their beliefs by means of a subjective penalty term. The trade‑off for the advantage 
of more accurate modelling of the decision maker’s subjective beliefs in the adjusted 
MAD model is the necessity of a non‑linear objective function, which may prove 
more computationally challenging to solve. However, the case study in Sect. 4 of this 
paper has demonstrated the solution of reasonable sized models without difficulty.

An alternative way to deal with uncertainty in portfolio selection is by consider‑
ing fuzzy goal targets. Our method deals with uncertainty on a much more funda‑
mental level than simply making the goal target value fuzzy. We replace the tradi‑
tional weighted goal programming achievement function with a new function that 
considers the decision maker’s perception of the randomness associated with imple‑
menting the solution through the use of a penalty term. Furthermore, a fuzzy goal, 
by its nature, is quantifiable by means of a fuzzy number whereas our method deals 
with unquantifiable randomness. As a result, difficulties imposed by the absence of 
statistical information about random events can be encompassed by a modification 
of the achievement function to incorporate pragmatically subjective beliefs.
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5  Conclusions

The problem of adapting a weighted goal programming solution to account for the 
presence of randomness has been addressed in this paper. A pragmatic methodology 
has been adopted that has assumed that the randomness cannot be quantified statisti‑
cally. Therefore, the method proposed has relied upon the decision maker’s beliefs 
and risk aversion for variability as well as his/her preferences in order to produce 
solutions that take into account both the need to reach the goals as closely as possi‑
ble and the need to have a solution that is implementable in practice.

The application of this methodology has been illustrated by means of a variant of 
the mean absolute deviation portfolio selection model in three different contexts for 
the Spanish Stock Exchange IBEX35: bull market, bear market and sideways trend. 
The utility of our adjusted model is demonstrated by the finding that the internal 
structure of optimal portfolios vary when beliefs and risk aversion are integrated in 
a portfolio selection model. By implementing the adjusted model described in this 
paper, decision makers have now the possibility to derive optimal solutions accord‑
ing to their beliefs and a priori risk aversion.

The methodology proposed in this paper should be applicable to the wide range 
of goal programming applications that have some form of statistically unquantifi‑
able randomness affecting their solutions. In addition to the agricultural planning 
and portfolio selection examples described above, our proposal is particularly 
interesting in contexts where forecasts are based on beliefs about the near future. 
An example of this application is the use of beliefs about the economic context to 
derive cash management policies (Salas‑Molina et al. 2018) or to evaluate corpo‑
rate social responsibility by means of goal programming (Oliveira et al. 2019). In 
addition, this paper has discussed the linear weighted goal programming case but 
there is the potential for future research to extend the methodology to other goal 
programming variants.

Since weight and parameter setting may provoke some difficulties in the applica‑
tion of any multiple objective programming variant, we believe that an interactive 
process is a suitable way to deal with this topic. As a result, the design of any type of 
algorithm or interactive process to facilitate the task of setting the parameters of our 
model is an interesting future line of work.
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