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Abstract
In this survey we report about recent work on weighted Banach spaces of analytic functions
on the unit disc and on the whole complex plane defined with sup-norms and operators
between them. Results about the solid hull and core of these spaces and distance formulas are
reviewed. Differentiation and integration operators, Cesàro and Volterra operators, weighted
composition and superposition operators and Toeplitz operators on these spaces are analyzed.
Boundedness, compactness, the spectrum, hypercyclicity and (uniform) mean ergodicity of
these operators are considered.
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1 Introduction

Given a strictly positive continuous weight v on an open connected subset of the complex
plane, an analytic function f belongs to the weighted Banach space H∞

v if v| f | is bounded
in the open set. The norm is defined as the supremum of v| f |. The author published in 2003
his survey article [40] in which he collected many results obtained a few years before about
weighted Banach spaces H∞

v of analytic functions of type H∞ and inductive limits of them,
interpolation and sampling and composition, multiplication and differentiation operators
between them. Since that time much progress has been obtained by many authors, and it is
my feeling that it might be time to review, at least part, of all this work. In this sense, this
article could be considered as a continuation of [40]. The selection of material reflects the
research interests of the author. There are certainly many important related results which are
not included here, and I apologize to those authors whose work is not mentioned. Despite
the necessary selection, the list of references is enormous. I am also sorry about that, but it
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seems unavoidable. The author hopes that this survey might be informative for the reader,
and that it might show how many interesting results have been obtained recently and, at the
same time, that some questions remain open in this area of research.

We briefly describe the content of the article. Precise statements can be seen at the right
place in the paper. No proofs are given in the survey. The interested reader should look
at the original articles. Precise references are given. After the notation and terminology in
the next section, we recall the notion of associated weight in Sect. 3. Associated weights
were introduced and studied in [36] and they have played a significant role in characterizing
properties of weighted Banach spaces H∞

v . Two important results due to Abakumov and
Doubtsov [3] characterizing those radial weights which are equivalent to their associated
weight are stated in Theorems 2 and 3. In Sect. 4 we report on our joint work with Vukotic
[69] about conditions on a non-negative function v : G → [0,∞), not necessarily bounded
or strictly positive, defined on an open connected domain G in the complex plane, to ensure
that the semi-normed space H∞

v (G) is in fact normed and complete. Section 5 is dedicated
to review some results of Lusky, Taskinen and the author about the solid hull and core of
H∞

v . A distance formula from an element f ∈ H∞
v to the closed subspace H0

v , which is the
closure of the polynomials, was obtained by Perfekt [141, 142]. A direct, elementary proof
was presented in [57] and it is explained in Sect. 6.

Necessary definitions about bounded and linear operators, spectrum, hypercyclicity, power
boundedness and (uniform)mean ergodicity are briefly recalled in Sect. 7. They are important
in the second part of the article. The operators of differentiation and integration are treated
in Sect. 8. We first state characterizations of boundedness and compactness due to Haru-
tyunyan and Lusky [110] and to Abanin and Tien [6]. Then we include a few results about
the spectrum, mean ergodicity and hypercyclicity of these two operators when they act on
weighted Banach spaces of entire functions, see [30]. The proper closed invariant subspaces
of the integration operator on H0

v were determined by Abanin and Tien [7]. Their statement
is presented in Theorem 39. In Sect. 9 we collect some results of Albanese, Ricker and the
author [9] about the Cesàro operator on weighted Banach spaces for standard weights. A
few results about the Volterra integral operator are collected in Sect. 10. Several questions
about weighted composition operators on H∞

v spaces are discussed in Sect. 11: boundedness,
(weak) compactness, invertibility, the spectrum, (uniform) mean ergodicity and hypercyclic-
ity. We briefly report on the deep work of many authors. Section 12 presents a few results
by Boyd and Rueda [76, 77] and by Vukotic and the author [68] concerning superposition
operators on H∞

v of analytic functions on the disc. Lusky, Taskinen and the author have
investigated bounded Toeplitz operators acting on H∞

v in the case of the disc in the papers
[60, 61]. Some of these results are stated in Sect. 13. The final Sect. 14 includes a few results
about the Hilbert matrix operator, the Libera operator and the Hausdorff operators.

2 Notation and preliminaries

Let G be an open subset of the complex plane C. A general weight v : G → R is a
continuous and strictly positive function on G. We define the following weighted Banach
spaces of analytic functions on G

H∞
v (G) := { f ∈ H(G); ‖ f ‖v := sup

z∈G
v(z)| f (z)| < ∞},

H0
v (G) := { f ∈ H(G); v| f | vanishes at ∞ on G}.
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Recall that a function g vanishes at infinity on G if for every ε > 0 there is a compact
subset K of G such that |g(z)| < ε if z /∈ K . If G is an open subset ofC, we denote by H(G)

the Fréchet space of all analytic functions on G endowed with the topology τco of uniform
convergence on the compact subsets of G.

We are mainly interested in the case of radial weights defined on the unit disc or the whole
complex plane. To be more precise, we fix some notation and terminology in this case.We set
R = 1 (for the case of analytic functions on the unit disc) and R = +∞ (for the case of entire
functions). A weight v is a continuous function v : [0, R[→]0,∞[, which is non-increasing
on [0, R[ and satisfies limr→R rnv(r) = 0 for each n ∈ N. Observe that in the case of
R = ∞, the condition limr→∞ rnv(r) = 0, for each n ∈ N, is equivalent to the fact that
H∞

v (C) contains the polynomials, and also to the fact that H0
v (C) contains the polynomials.

We extend v to D if R = 1 and to C if R = +∞ by v(z) := v(|z|). For an analytic function
f ∈ H({z ∈ C; |z| < R}) and r < R, we denote M( f , r) := max{| f (z)| ; |z| = r}. Using
the notation O and o of Landau, f ∈ H∞

v (G) if and only if M( f , r) = O(1/v(r)), r → R.
For these radial weights, it is known that the closure of the polynomials in H∞

v (G) coincides
with theBanach space H0

v (G), which is the set of those analytic functions on {z ∈ C; |z| < R}
such that M( f , r) = o(1/v(r)), r → R, see e.g. [35]. It was proved in [37] that, under the
present conditions on the radial weight v on the disc or the complex plane, the space H∞

v (G)

is canonically isometric to the bidual of H0
v (G).

It will be clear from the context in the rest of the article when we refer to analytic functions
on the disc or entire functions. Hence, we might write simply H∞

v and H0
v . Anyway, if it

is necessary to distinguish at some point, we will use the notations H∞
v (D) and H∞

v (C),
respectively.

We recall some examples of weights:
For R = 1,

(i) v(r) = (1 − r)γ with γ > 0, which are the standard weights on the disc,
(ii) v(r) = exp(−b(1 − r)−a), a, b > 0, which are called exponential weights, and
(iii) v(z) = (log e

1−r )
−α, α > 0, which are called logarithmic weights.

For R = +∞,

(i) v(r) = exp(−r p) with p > 0,
(ii) v(r) = exp(− exp r), and
(iii) v(r) = exp

( − (log+ r)α
)
, where α > 1 and log+ r = max(log r , 0).

Banach spaces of the type mentioned above appear naturally in the study of growth con-
ditions of analytic functions and have been considered in many papers. We refer to [35–37,
151]. Composition operators on weighted Banach spaces of this type when G = D have
been studied in [49, 52, 88, 137, 155]. Pointwise multiplication operators were considered in
[50], and sampling and interpolation in these spaces in [92]. Lusky presented in [125–127] a
complete isomorphic classification of the spaces H∞

v and H0
v . We reported about these and

related results in our survey [40]. Much progress has been done recently about these spaces
and operators between them. We present some of the new interesting developments in the
next pages.

The Banach spaces H∞
v (D) and H0

v (D) for the standard weight v(r) = (1− r)γ , γ > 0,
are the growth spaces of Korenblum type A−γ and A−γ

0 , which are also denoted H∞
γ and H0

γ .
They play an important role in connection with the interpolation and sampling of analytic
functions, [111, Ch.4 and 5]. Observe that, since (1 − r)γ ≤ (1 − r2)γ ≤ 2γ (1 − r)γ , for
0 < r < 1, these weights define the same spaces (with an equivalent norm).
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The space H∞
v (C) is denoted as the weighted Fock space Fφ∞ of order infinity (i.e. with

sup-norms) with v(z) = exp(−φ(|z|)), and φ : [0,∞[→]0,∞[ is a twice continuously
differentiable increasing function. See for example [84, 166].

For each 0 < p < ∞, the Bloch space of order p is

Bp =
{

f ∈ H(D) : sup
z∈D

(1 − |z|2)p| f ′(z)| < ∞
}

,

and the little Bloch space of order p is

B0
p =

{
f ∈ H(D) : lim|z|→1

(1 − |z|2)p| f ′(z)| = 0

}
.

It is a well-known fact that Bp is a Banach space when it is endowed with the norm

‖ f ‖p = | f (0)| + sup
z∈D

(1 − |z|2)p| f ′(z)|,

and that B0
p is a closed subspace of Bp for each p > 0. For p = 1, the spaces B1 and B0

1
are called the classical Bloch space and the little Bloch space, and they are denoted by B
and B0 [165]. All these spaces are continuously embedded in H(D). The Bloch spaces are
closely related to weighted Banach spaces of analytic functions. In fact, f ∈ Bp if and only
if f ′ ∈ H∞

vp
(D) for vp(z) = (1 − |z|2)p and p > 0. We have the isometric identification

of Bp with the �1-sum H∞
vp

⊕�1 C, via g → (g′, g(0)). With this identification, several
operators on Bloch type spaces can be treated as operators on H∞

v (D) spaces; in particular,
composition operators onBloch spaces can be considered asweighted composition operators.
See for example [56, 88]. We will not state in this survey all the possible consequences for
Bloch type spaces, and refer to the original papers. Moreover, we will not report here about
important, related work on weighted Hardy and Bergman spaces.

Our notation for complex analysis, functional analysis and operator theory is standard.
We refer the reader to [96, 112, 131, 146]. If E is a Hausdorff locally convex space space,
for example a Banach space, its topological dual is denoted by E ′. The weak topology on
E is denoted by σ(E, E ′) and the weak* topology on E ′ by σ(E ′, E). The linear span of a
subset A of E is denoted by span(A). In what follows, we set N0 := N ∪ {0}.

3 The associated weight and the characterization of essential weights.

Let G be an open connected subset of C and let v : G → R be a general weight on G. We
assume in what follows that the norm ||δz || of the Dirac measure, δz( f ) := f (z), z ∈ G as
an element of H∞

v (G)′ is strictly positive.
The associated weight ṽ of v is defined by

ṽ(z) := 1/‖δz‖H∞
v (G)′ .

By our assumption above, ṽ(z) is finite for every z ∈ G. Moreover v ≤ ṽ onG, 1/ṽ is contin-
uous and subharmonic, and the Banach spaces H∞

v (G) and H∞
ṽ

(G) coincide isometrically.
A weight v is called essential if there is C ≥ 1 such that v ≤ ṽ ≤ Cv on G. Associated
weights were thoroughly studied in [36, 52].

Example 1 (1) If G = D or G = C and v is radial, then ṽ is also radial.
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(2) If G = D or G = C, v is radial and limr→R rnv(r) = 0 for each n ∈ N, then
limr→R rn ṽ(r) = 0.

(3) The following weights are essential: (i) v(r) = (1 − r)α, 0 ≤ r < 1, with α > 0, (ii)
v(r) = exp(−b(1 − r)−a), a, b > 0, and (iii) v(z) = (log e

1−r )
−α, α > 0 for the unit

disc; and (iv) v(r) = exp(−rn) with n ∈ N, for C. See [36, Example 1.7].
(4) ( [49]) A radial and non-increasing weight v onD is essential if and only if it is equivalent

to a log-convex radial weight w on D. We recall that the radial weight w is log-convex
on G = D or G = C if the function t → − logw(et ) is convex. The associated weight
to a radial weight is log-convex.

(5) Every normal weight on D in the sense of Shields and Williams is essential. We refer the
reader to [92, 151].

A thorough investigation of essential radial weights on the discD or the complex planewas
undertaken byAbakumov andDoubtsov [1–3].We recall their main results. A few definitions
are necessary. We consider in the rest of this section only radial, non-increasing, continuous,
strictly positive weights v : G → R for G = D or G = C.

Given two functions f , g : X → (0,+∞), we write f ≈ g if there are positive constants
A, B > 0 such that A f (x) ≤ g(x) ≤ B f (x) for each x ∈ X .

A weight v is called approximable by a finite sum of moduli if there exist f1, . . . , fs ∈
H(G) such that 1/v(z) ≈ | f1(z)|+ · · ·+ | fs(z)|, z ∈ G, it is said to be approximable by the
maximum of an analytic function modulus if there is f ∈ H(G) such that 1/v(r) ≈ M( f , r)
for each r ∈ (0, R), it is approximable by power series with positive coefficients if there
exist ak ≥ 0, k = 0, 1, 2, . . . such that

∑∞
k=0 akr

k ≈ 1/v(r) for each r ∈ (0, R).
The norm of a monomial zk, k = 0, 1, 2, . . . in the space H∞

v (G) is given by
‖zk‖v = sup0≤r<R r

kv(r). We set Pv(r) := supk∈N0
rk/‖zk‖v, 0 ≤ r < R. Clearly

Pv(r) ≤ 1/v(r), 0 ≤ r < R. We say that v is approximable from below by monomials
if there is C > 0 such that 1/v(r) ≤ CPv(r) for each 0 ≤ r < R. It was proved in [49] that
every essential weight on the unit disc is approximable frombelow bymonomials. Abakumov
and Doubtsov used a result of Erdös and Kövári to show in [3, Lemma 1] that the associate
weight ṽ of a radial, non-increasing, continuous, strictly positive weight v on C such that
limr→∞ rn ṽ(r) = 0 for each n ∈ N satisfies Pv(r) ≤ 1/ṽ(r) ≤ 6Pv(r), 0 ≤ r < ∞.

Theorem 2 (Abakumov, Doubtsov [3]) The following conditions are equivalent for a radial,
non-increasing, continuous, strictly positive weight v : D → R on the unit disc such that
limr→1− v(r) = 0:

(i) v is essential.
(ii) v is equivalent to a log-convex radial weight w on D.
(iii) v is approximable by a finite sum of moduli of (two) analytic functions.
(iv) v is approximable by the maximum of an analytic function modulus.
(v) v is approximable by power series with positive coefficients.
(vi) v is approximable from below by monomials.

It follows from [36, Example 3.3] that there exist log-convex, radial, non-increasing,
continuous, strictly positiveweights v : C → R on the complex planewith limr→∞ rnv(r) =
0 for each n ∈ N, which are not approximable by a finite sum of moduli of entire functions.
Accordingly condition (ii) in Theorem 2 does not imply (iii) for weights on the complex
plane. We have the following result.

Theorem 3 (Abakumov, Doubtsov [3]) The following conditions are equivalent for a radial,
non-increasing, continuous, strictly positive weight v : C → R on the complex plane such
that limr→∞ rnv(r) = 0 for each n ∈ N.
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(i) v is essential.
(ii) v is approximable by a finite sum of moduli of analytic functions.
(iii) v is approximable by the maximum of an analytic function modulus.
(iv) v is approximable by power series with positive coefficients.
(v) v is approximable from below by monomials.

Each of these conditions imply that v is equivalent to a log-convex radial weight w on C.

The following example is taken from [3, Example 1].

Proposition 4 Let α > 1 and let vα be a weight on the complex plane such that vα(r) :=
exp(−(log r)α), e ≤ r < ∞. The weight vα is essential if α ≥ 2 and not essential if
1 < α < 2.

4 The seminormed space H∞
v (G) for non-negative weight v, not

necessarily bounded or strictly positive

Vukotic and the author investigated in [69] some necessary and some sufficient conditions on
a non-negative function v : G → [0,∞[, not necessarily bounded or strictly positive, defined
on an open connected domain G in the complex plane, to ensure that the semi-normed space
H∞

v (G) is in fact normed and complete. The completeness of weighted Bergman spaces
was studied by Arcozzi and Björn [19]. They obtained complete characterizations when the
weight v(z) = χE (z), z ∈ G, is the characteristic function χE of a subset E of G in [19,
Theorem 2.1]. We review here some of the results in [69].

For a non-negative function v : G → [0,∞[, the space H∞
v (G) associated with v is also

defined by

H∞
v (G) :=

{
f ∈ H(G) ; ‖ f ‖v = sup

z∈G
v(z)| f (z)| < +∞

}
,

and it is endowed with the natural seminorm ‖ f ‖v := supz∈G v(z)| f (z)|.
We use the following notation in this section:

Ev := {z ∈ G ; v(z) > 0}.
Proposition 5 Let v : G → [0,∞[ be a weight on a planar domain G. Then the space
H∞

v (G) is normed if and only if Ev is not a discrete set (that is, it has a limit point in G).
Moreover, if H∞

v (G) is normed, then the inclusion map J : H∞
v (G) → (H(G), τco) has

closed graph.

Proposition 6 Assume that the space H∞
v (G) is normed. The following conditions are equiv-

alent:

(i) The space H∞
v (G) is a Banach space.

(ii) The inclusion map J : H∞
v (G) → (H(G), τco) is continuous. (Equivalently, every

sequence in H∞
v (G) bounded in the norm is a normal family.)

(iii) The closed unit ball B∞
v of H∞

v (G) is bounded in (H(G), τco).
(iv) For each z ∈ G, the point evaluation functional δz( f ) := f (z), z ∈ G, satisfies

δz ∈ H∞
v (G)′ and, moreover, supz∈K ‖δz‖′

v < ∞ for each compact subset K of G.

Theorem 7 Let v : G → [0,∞[ be a bounded weight on a planar domain G such that the
space H∞

v (G) is normed. The space H∞
v (G) is complete if and only if there is a bounded,

continuous, strictly positive weight ṽ on G such that H∞
v (G) = H∞

ṽ
(G).
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Proposition 8 Let v : G → [0,∞[ be a weight on a planar domain G. If H∞
v (G) is a Banach

space containing non-zero functions, then the boundary ∂G is contained in the closure Ev

of Ev in C.

Corollary 9 Let v : G → [0,∞[ be a weight on a planar domain G (other than the plane
itself) such that H∞

v (G) is normed and it contains non-zero functions.

(1) If Ev is contained in a convex closed proper subset A of G, then H∞
v (G) is not a Banach

space.
(2) If the closure of Ev in C is a compact subset of G, then H∞

v (G) is not a Banach space.

As a consequence of Corollary 9 one easily deduces the following example: the weight
v(z) = max{0,Re z} is continuous on the unit disc D, vanishes in the left-hand half of the
disc, it is strictly positive in the remaining open right semi-disc, and H∞

v (D) is not a Banach
space.

Proposition 10 Let v : G → [0,∞[ be a weight on a planar domain G. Suppose that for
each z ∈ G there is a bounded open set U ⊂ G such that z ∈ U, ∂U ⊂ Ev , and v is bounded
away from 0 on ∂U. Then H∞

v (G) is a Banach space

Corollary 11 Let v : G → [0,∞[ be a continuous weight on a planar domain G such that
G\Ev is discrete, i.e., the zeros of v are isolated. Then H∞

v (G) is a Banach space.

As a consequence of Corollary 11, if F ∈ H(G) is a non-zero analytic function on a
planar domain G and v(z) := |F(z)|, z ∈ G, then H∞

v (G) is a Banach space.

Corollary 12 Let v : G → [0,∞[ be a weight on a planar domain G such that G\Ev is a
compact subset of G. If inf z∈K v(z) > 0 for each compact subset K ⊂ G\(G\Ev), then
H∞

v (G) is a Banach space.

Corollary 13 Let G = D (resp. G = C). Let v be a bounded radial weight on G. The space
H∞

v (G) is a Banach space if and only if Ev is not compact in G or, equivalently, if and only
if there is an increasing sequence (rk)k in ]0, 1[ tending to 1 (resp. (rk)k in ]0,∞[ tending
to ∞) such that v(rk) > 0 for each k ∈ N.

In particular, if v(z) := |F(|z|)|, z ∈ G, for a non-zero function F ∈ H(G), then H∞
v (G)

is a Banach space.

Let v be the weight on D defined by v(z) := an > 0 if |z| = 1 − (1/n), and v(z) = 0
otherwise. Then H∞

v (G) is a Banach space by Corollary 13. Observe that the sequence
(an)n ⊂]0,∞[ need not be bounded. Similar examples can be obtained by replacing D by C
and 1 − (1/n) by n, n ∈ N.

Proposition 14 Let F ∈ H(G) be a non-zero function on a planar domain G. Define v(z) :=
0 if F(z) = 0 and v(z) := 1/|F(z)| if F(z) 
= 0. Then H∞

v (G) is a Banach space that
coincides with the set of all f ∈ H(G) such that there is C = C( f ) > 0 with | f (z)| ≤
C |F(z)| for each z ∈ G.

Example 15 (1) Let q > 0 and v(z) = |Re z|q , z ∈ D. Then the normed space H∞
v (D) is

complete.
(2) Let v be a weight on D such that there is a strictly increasing sequence (rn)n of positive

numbers tending to 1 such that for each n there is an > 0 such that v(rneiθ ) ≥ an almost
everywhere in [0, 2π ]. Then the normed space H∞

v (D) is complete.
(3) Let w be a continuous weight on G such that H∞

w (D) is a Banach space. Let v be a
weight on G such that {z ∈ G ; v(z) = w(z)} is dense in G (note that this implies that
Ev is not discrete, so that H∞

v (D) is normed). Then H∞
v (D) is actually a Banach space.
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5 Solid hull and solid core of the space H∞
v

In this section we identify an analytic function f (z) = ∑∞
n=0 anz

n on D or C with the
sequence of its Taylor coefficients (an)∞n=0. Let A and B be vector spaces of complex
sequences containing the space of all the sequences with finitely many non-zero coordi-
nates. The space A is solid if a = (an) ∈ A and |bn | ≤ |an | for each n implies b = (bn) ∈ A.
The solid hull of A is

S(A) := {(cn) : ∃(an) ∈ A such that |cn | ≤ |an | ∀n ∈ N}.
The solid core of A is

s(A) := {(cn) : (cnan) ∈ A ∀(an) ∈ �∞}.
It is easy to see that the Fréchet spaces H(D) and H(C) of analytic functions on the unit

disc and on the whole complex plane are solid.
In [18], the solid hull Svect(A) of a space A of analytic functions on D is defined as

the intersection of all solid vector spaces of analytic functions on D containing A. Clearly,
S(A) ⊂ Svect(A) in general. In all the known examples of the solid hull of a space of analytic
functions it turns out that it is already a vector space.

We refer the reader to [97, 165] for information about Hardy spaces. The solid hull of
the Hardy spaces S(H p) = H2, 2 ≤ p ≤ ∞ is known. The proof for H∞ depends on the
following deep result of Kislyakov from 1981.

Theorem 16 (Kislyakov) There is C > 0 such that for each (b j )
m
j=n, 0 < n < m, there

is a polynomial P(z) = ∑m
j=n c j z

j such that |b j | ≤ |c j |, j = n, . . . ,m and ‖P‖∞ ≤
C(

∑m
j=n |b j |2)1/2.

The solid hull S(H p) for 1 ≤ p < 2 seems to be unknown. The solid core of the Hardy
spaces s(H p) = H2, 1 ≤ p ≤ 2, is known. Moreover s(H∞) = �1. In particular, the space
H∞ is not solid. The disc algebra A(D) is also not solid. It is an open problem to describe
the solid core s(H p) for 2 < p < ∞.

Bennet, Stegenga and Timoney in their paper [34] determined the solid hull and the solid
core of the weighted spaces H∞

v (D) when the weight v is doubling. Recall that the weight v
on D is doubling if there is M > 0 such that v(1− r) ≤ Mv(1− (r/2)) for each 0 < r < 1.
Exponential weights v(r) = exp(−a/(1−r)b)with a, b > 0 are not doubling. The solid hull
and core of spaces of analytic functions on the disc has been investigated by many authors. In
addition to those mentioned above, Anderson, Dostanić, Blasco, Buckley, Jevtić, Pavlović,
Ramanujan, Shields and Vukotić, among many others. We refer the reader to the book [117].

In the case of a standard weight vα(z) = (1 − |z|2)α , where α ≥ 0, we recall that
A−α = H∞

vα
(D). The solid hull of A−α is known:

S
(
A−α

) =

⎧
⎪⎨

⎪⎩
(bm)∞m=0 : sup

n∈N0

⎛

⎝
2n+1−1∑

m=2n
|bm |2(m + 1)−2α

⎞

⎠

1/2

< ∞

⎫
⎪⎬

⎪⎭
.

This is Theorem 8.2.1 of [117]. Moreover, the solid core s
(
A−α

)
can also be characterized,

see Theorem 8.3.4 of [117]:

s
(
A−α

) =
⎧
⎨

⎩
(bm)∞m=0 : sup

n∈N0

⎛

⎝
2n+1−1∑

m=2n
|bm |(m + 1)−α

⎞

⎠ < ∞
⎫
⎬

⎭
.
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In our joint article [58] with Lusky and Taskinen we extended previous work in [66, 67]
and determined the solid hull and solid core of weighted Banach spaces H∞

v , both in the
case of the analytic functions on the disc and on the whole complex plane, for a very general
class of radial weights v. The case of Bergman spaces was treated later in [59]. We present
some of these results here.

Recall that a sequence (en)∞n=1 of elements of a separable Banach space X is a Schauder
basis, if every element f ∈ X can be presented as a convergent sum

f =
∞∑

n=1

fnen,

where the numbers fn ∈ K are unique for f ∈ X .
We denote by � = {zk : k = 0, 1, 2, . . .} the sequence of monomials.

Theorem 17 If S(H∞
v ) = H∞

v , then � is a Schauder basis of H0
v .

By a theorem of Lusky [126], � is never a basis for H0
v (D). This implies the following

consequence.

Corollary 18 In the case of analytic functions on the disc D, one always has S(H∞
v (D)) 
=

H∞
v (D) and s(H∞

v (D)) 
= H∞
v (D).

Lusky [126] proved that the monomials � = {zk : k = 0, 1, 2, . . .} are a basis of H0
v (C)

for the weight v(r) = exp(−(log(r))2). In the case of weighted spaces of entire functions
we have the following result to be found in [59].

Theorem 19 Let v be a weight on the complex plane satisfying condition (b) (given later).
The space H∞

v is solid if and only if � is a Schauder basis of H0
v .

Now we present the solid hull and solid core of weighted Banach spaces H∞
v for concrete

weights on the disc and on the complex plane.

Theorem 20 For v(r) = exp(−1/(1 − r)) the solid hull of H∞
v (D) is

⎧
⎨

⎩
(bm)∞m=0 : sup

n
exp(−2n2)

(n+1)4∑

m=n4+1

|bm |2
(
1 − 1

n2

)2m

< ∞
⎫
⎬

⎭
,

and the solid core is
⎧
⎨

⎩
(bm)∞m=0 : sup

n
exp(−n2)

(n+1)4∑

m=n4+1

|bm |
(
1 − 1

n2

)m

< ∞
⎫
⎬

⎭
,

Theorem 21 Let v be the weight v(r) = exp(−ar p) on C, where a > 0 and p > 0 are
constants. Then, the solid hull of H∞

v (C) is
⎧
⎨

⎩
(bm)∞m=0 : sup

n∈N

∑

pn2+1<m≤p(n+1)2

|bm |2e−2n2n4m/p(ap)−m/p < ∞
⎫
⎬

⎭
.

and the solid core is
⎧
⎨

⎩
(bm)∞m=0 : sup

n∈N

∑

pn2+1<m≤p(n+1)2

|bm |e−n2n2m/p(ap)−m/2p < ∞
⎫
⎬

⎭
.
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These results are a consequence of a general theorem. To state it, we need a few definitions.
Let rm ∈]0, R[ be a global maximum point of the function rmv(r) for any m > 0. The
weight v is said to satisfy the condition (b) if there exist numbers b > 2, K > b and
0 < m1 < m2 < . . . with limn→∞ mn = ∞ such that

b ≤
(

rmn

rmn+1

)mn v(rmn )

v(rmn+1)
,

(
rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn )
≤ K .

Theorem 22 If the weight v satisfies condition (b), we have

S(H∞
v ) =

⎧
⎪⎨

⎪⎩
(bm)∞m=0 : sup

n
v(rmn )

⎛

⎝
∑

mn<m≤mn+1

|bm |2r2mmn

⎞

⎠

1/2

< ∞

⎫
⎪⎬

⎪⎭
,

and

s(H∞
v ) =

⎧
⎨

⎩
(bm)∞m=0 : sup

n
v(rmn )

⎛

⎝
∑

mn<m≤mn+1

|bm |rmmn

⎞

⎠ < ∞
⎫
⎬

⎭
.

The proof is mainly based on results and techniques of Lusky [127] and methods due to
Bennet, Stegenga and Timoney [34], in particular Theorem 16 of Kislyakov. We recall the
main technical result of Lusky, since it is important in other contexts, for example in the
study of Toeplitz operators.

Let h(z) = ∑∞
k=0 bkz

k , and put M∞(h, r) = sup|z|=r |h(z)|. For the numbers mn as in
condition (b) set

(Rnh)(z) =
mn−1∑

k=0

bkz
k +

∑

mn−1<k≤mn

[mn] − k

[mn] − [mn−1]bkz
k .

Define the operators Vn = Rn − Rn−1 for n ∈ N.

Theorem 23 (Lusky) The norms

‖h‖v and sup
n

sup
rmn−1≤r≤rmn+1

M∞(Vnh, r)v(r)

are equivalent.
Moreover, the operators Vn are uniformly bounded on H∞

v and there are c1 > 0 and
c2 > 0 with

c1 sup
n

‖Vnh‖v ≤ ‖h‖v ≤ c2 sup
n

‖Vnh‖v for all h ∈ H∞
v .

Here is the explicit calculation of the sequence mn for concrete weights. They are needed
to deduce Theorems 20 and 21 from Theorem 22.

(1) For the complex plane. Let v(r) = exp(−ar p), r ∈ [0,∞[, a > 0, p > 0 and let b > 2.
The weight v satisfies condition (b) for the sequence mn := p(log b)n2 with K = b5.

(2) For the unit disc. Let v(z) = exp
(

− a
(1−r)b

)
. The weight v satisfies condition (b) for

the sequence mn = b1+1/ba−1/bn2+2/b − bn2. In particular, for v(z) = exp
(

− 1
(1−r)

)
,

one can take mn = n4 − n2. It can be shown that one can also take mn = n4 in this case.
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The investigation of solid hull and cores of spaces of type H∞ has been continued by
Schindl in [147]. He observed that some of the weights which appear in the descriptions
given above arise frequently in the theory of ultradifferentiable and ultraholomorphic func-
tion classes. This connection enabled him to see which growth behaviour must satisfy the
sequences (mn) which appear in the descriptions and also to study when these numbers can
exist. New examples were obtained.

6 Distance formulas

Lusky, Taskinen and the author investigated in [57] the distance d( f , H0
v ) = infg∈H0

v
‖ f −

g‖v of a function f ∈ H∞
v to the closed subspace H0

v . Perfekt in Example 4.4 of [141]
had proved that d( f , H0

v ) = lim supr→R M( f , r)v(r) for each f ∈ H∞
v . This result is

obtained by him as a consequence of an abstract result [141, Theorem 2.3] with an argument
using duality and measures. Moreover, H0

v is a proximinal subspace of H∞
v ; that is, for

each f ∈ H∞
v the distance d( f , H0

v ) is attained at a point g ∈ H0
v . The proximinality

in Theorem 24, i.e. the existence of the minimizer g, also appears in Perfekt [142] as a
consequence of the fact that H0

v is an M-ideal of H∞
v . Our approach gave an elementary,

direct proof of the formula of the distance. Consequences about Bloch type spaces were
obtained, but will not be stated here.

Theorem 24 For every f ∈ H∞
v there is g ∈ H0

v with

d( f , H0
v ) = ‖ f − g‖v = lim sup

r→R
M( f , r)v(r).

Our proof depends on a technical lemma, which could be of independent interest, in which
we use the following notation. Given an analytic function f on D or C, we denote by σn f
the n-th Cesàro mean of f ; i.e. the arithmetic mean of the first n Taylor polynomials of f .
In this case, one has M(σn f , r) ≤ M( f , r) for each 0 < r < R.

Lemma 25 Let f ∈ H∞
v and assume that there is 0 < τ < 1 with

τ‖ f ‖v ≤ lim sup
r→R

M( f , r)v(r).

Then, for each ε > 0 and m ∈ N there is n ∈ N, n > m, such that with ρ = (1− τ)/(1+ τ)

we have
(

1 + τ

2(1 + ε)

)
‖ f − ρσn f ‖v ≤ lim sup

r→R
M( f , r)v(r) = lim sup

r→R
M( f − ρσn f , r)v(r).

The following simple examples show that the distance d( f , H0
v ) can be attained at many

points of H0
v for a given function f ∈ H∞

v .

(1) Consider the weight v(r) = e−r , r ∈ [0,∞[, on the complex plane and the analytic

function f (z) = ez, z ∈ C. Clearly f ∈ H∞
v and ‖ f ‖v = 1. Set Pn(z) = ∑n

k=0
zk
k! for

each n ∈ N. We have, for each n, Pn ∈ H0
v and

‖ f − Pn‖v = sup
r>0

e−r
∞∑

k=n+1

rk

k! = 1 = d( f , H0
v ).
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(2) Now define the weight v(r) = 1 − r , r ∈ [0, 1[, on the unit disc. The function f (z) =
1

1−z = ∑∞
k=0 z

k belongs to H∞
v and ‖ f ‖v = 1. Set Pn(z) = ∑n

k=0 z
k for each n ∈ N.

We have, for each n, Pn ∈ H0
v and

M( f − Pn, r) =
∞∑

k=n+1

rk = rn+1

1 − r
.

Therefore

‖ f − Pn‖v = sup
r∈[0,1[

(1 − r)M( f − Pn, r) = 1 = d( f , H0
v ).

7 A few definitions concerning bounded linear operators

We recall a few definitions concerning operator theory, mean ergodic operators and linear
dynamics which will be used in the rest of the article.

Let X , Y be Banach spaces. Let L(X , Y ) denote the space of all continuous (or bounded)
linear operators from X into Y . When X = Y , we denote byL(X) the space of all continuous
linear operators from a Banach space X into itself. An operator T ∈ L(X , Y ) is called
(weakly) compact if the image T (BX ) of the unit ball BX of X is relatively (weakly) compact
in Y . If T ∈ L(X , Y ) is an operator on a Banach space X , the essential norm ‖T ‖e,X ,Y of T
is the distance to the space of compact operators from X into Y . If X = Y , we write ‖T ‖e,X ,
and if the space is clear from the context, we simply write ‖T ‖e. The operator T ∈ L(X , Y )

is said to be Fredholm if ker T and Y/ImT are finite dimensional. An operator T is Fredholm
if and only if there are S ∈ L(Y , X) and compact operators K1 ∈ L(X) and K2 ∈ L(Y ) such
that ST = I + K1 and T S = I + K2

For T ∈ L(X), the resolvent set ρ(T ) of T consists of all λ ∈ C such that R(λ, T ) :=
(λI − T )−1 exists in L(X). The set σ(T ) := C\ρ(T ) is called the spectrum of T . The point
spectrum σpt (T ) of T consists of all λ ∈ C such that (λI − T ) is not injective. If we need to
stress the space X , then we also write σ(T ; X), σpt (T ; X) and ρ(T ; X). Given λ,μ ∈ ρ(T )

the resolvent identity R(λ, T ) − R(μ, T ) = (μ − λ)R(λ, T )R(μ, T ) holds.
The essential spectrum σe(T , X) of an operator T ∈ L(X) on the Banach space X is the

set of all λ ∈ C such that λI − T is not Fredholm. The essential spectral radius is

re,X (T ) := sup{|λ| ; λ ∈ σe(T , X)}.
It can be calculated as follows

re,X (T ) = lim
n→∞(‖T n‖e,X )1/n .

An operator T ∈ L(X) is mean ergodic if its sequence of Cesàro averages

T[n] := 1

n

n∑

m=1

Tm, n ∈ N, (1)

converges to some operator P ∈ L(X) in the strong operator topology τs , i.e.,
limn→∞ T[n]x = Px for each x ∈ X , [96, Ch.VIII]. It follows from (1) that T n

n =
T[n] − n−1

n T[n−1], for n ≥ 2. Hence, τs-limn→∞ T n

n = 0 whenever T is mean ergodic

and, in particular, supn
‖T n‖
n < ∞. According to [96, VIII Corollary 5.2, p.662], when T is

mean ergodic one has the direct decomposition

123



Weighted Banach spaces of analytic functions with… Page 13 of 40   184 

X = Ker(I − T ) ⊕ Im(I − T ). (2)

An operator T ∈ L(X) is called uniformly mean ergodic if there exists P ∈ L(X) such
that limn→∞ ‖T[n] − P‖ = 0. It is then immediate that necessarily limn→∞ ‖T n‖

n = 0. A

result of Lin, [120, Theorem 2.1], states that T ∈ L(X) satisfying limn→∞ ‖T n‖
n = 0 is

uniformly mean ergodic if and only if Im(I − T ) is a closed subspace of X .
An operator T ∈ L(X) is called power bounded if supn∈N ‖T n‖ < ∞. Since T[n](I−T ) =

1
n (T − T n+1) for n ∈ N, it follows that

lim
n→∞ T[n]x = 0, x ∈ Im(I − T ), (3)

whenever T is power bounded.
An operator T ∈ L(X), with X a separable Banach space, is called hypercyclic if there

exists x ∈ X such that the orbit {T nx : n ∈ N0} is dense in X . If, for some z ∈ X , the
projective orbit {λT nz : λ ∈ C, n ∈ N0} is dense in X , then T is called supercyclic. Clearly,
hypercyclicity implies supercyclicity. The operator T is called chaotic if it is hypercylic and
has a dense set of periodic points.

More details for mean ergodic operators can be seen in [96, 120], and for linear dynamics
in [26, 106].

8 The differentiation and integration operators

8.1 Continuity of differentiation and integration operators

The differentiation operator D( f ) := f ′ is continuous on the Fréchet space H(G) of all
analytic functions. A detailed study of continuity of the differentiation operator D( f ) := f ′
acting in the space H∞

v for a radial weight function on the disc or the complex plane was
conducted by Harutyunyan and Lusky in [110]. They used methods developed by Lusky in
[127], which were mentioned briefly in Sect. 5. As was observed by Abanin and Tien [6],
the weights were assumed implicitly to be log-convex in [110]. This is a natural assumption
as was explained in Sect. 3. In this section we first state some results of Abanin and Tien [6,
8]. They used a more direct approach than Harutyunyan and Lusky.

We assume that the radial weight v : [0, R[→]0,∞[ is continuous, non-increasing on
[0, R[ and satisfies limr→R rnv(r) = 0 for each n ∈ N.

Every increasing log-convex weight on (0, R) has a right derivative everywhere on its
domain of definition. Accordingly, we state the results for differentiable weights v.

Theorem 26 (Abanin and Tien [6, 8]) Let v be a radial, log-convex weight on C.

(a) The following conditions are equivalent.

(i) The operator D : H∞
v (C) → H∞

v (C) is continuous.
(ii) − log v(r) = O(r) as r → ∞.
(iii) lim supr→∞v(r)(1/v)′(r) < ∞.

(b) The following conditions are equivalent.

(i) The operator D : H∞
v (C) → H∞

v (C) is compact.
(ii) − log v(r) = o(r) as r → ∞.
(iii) limr→∞ v(r)(1/v)′(r) = 0.
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The differentiation operator D is continuous and surjective on H∞
v (C) for v(r) =

e−αr , α > 0, it is continuous but not surjective for v(r) = exp(−(log r)2) and it is not
continuous for v(r) = exp(−er ). See also [110, Theorems 4.1 and 4.2].

Theorem 27 [6, 8, 110] The following conditions are equivalent for a radial, log-convex
weight v on D.

(i) The operator D : H∞
v (D) → H∞

w (D), with w(r) = (1 − r)v(r) is continuous.
(ii) v(r)(1 − r)−α is increasing on [r0, 1) for some α > 0 and some r0 > 0.
(iii) lim supr→1

( − (1−r)v′(r)
v(r)

)
< ∞.

(iv) supn
v(1−2−n)

v(1−2−n+1)
< ∞.

(v) v(r2) = O(v(r)) as r → 1.

If these equivalent conditions hold, then the continuous operator D : H∞
v (D) → H∞

w (D)

is not compact.

Theorem27 can be considered as an extension of a classical result ofHardy andLittlewood
[97, Theorem 5.5]: f ∈ H(D) satisfies supz∈D(1−|z|)γ | f (z)| < ∞ if and only if supz∈D(1−
|z|)γ+1| f ′(z)| < ∞.

The integration operator J f (z) = ∫ z
0 f (ζ )dζ, z ∈ G, is also well-defined and continuous

on the Fréchet space H(G) for G = D and G = C. The continuity of J on spaces of type
H∞

v was also investigated in [6, 110]. We recall some results.

Theorem 28 Let v be a radial, log-convex weight on C.

(a) The following conditions are equivalent.

(i) The operator J : H∞
v (C) → H∞

v (C) is continuous.
(ii) lim supr→∞v(r)

∫ r
0

1
v(t)dt < ∞.

(iii) lim infr→∞v(r)(1/v)′(r) > 0.

(b) The following conditions are equivalent.

(i) The operator J : H∞
v (C) → H∞

v (C) is compact.
(ii) limr→∞ v(r)

∫ r
0

1
v(t)dt = 0.

(iii) limr→∞ v(r)(1/v)′(r) = ∞.

As a consequence, the integration operator J is continuous on H∞
v (C) for v(r) =

e−αr , α > 0.

Corollary 29 Let v be a radial, log-convex weight on C. The following conditions are equiv-
alent.

(i) The operator D : H∞
v (C) → H∞

v (C) is continuous and surjective.
(ii) 0 < lim infr→∞v(r)(1/v)′(r) ≤ lim supr→∞v(r)(1/v)′(r) < ∞.
(iii) There are A,C ≥ 1 such that, for all 0 ≤ r < ∞,

1

A
e−Cr ≤ v(r) ≤ Ae−r/C .

Theorem 30 Let v be a radial, log-convex weight onD andw(r) := v(r)/(1−r), 0 ≤ r < 1.
The following conditions are equivalent.

(i) The integration operator J : H∞
w (D) → H∞

v (D) is continuous.
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(ii) v(r)(1 − r)α is increasing on [r0, 1) for some α > 0 and some r0 > 0.
(iii) lim infr→1

( − (1−r)v′(r)
v(r)

)
> 0.

(iv) There is k ∈ N such that lim supn→∞
v(1−2−n−k )
v(1−2−n)

< 1.

(v) There is γ > 1 such that lim supr→1
v(rγ )
v(r) < 1.

Corollary 31 Let v be a radial, log-convex weight onC andw(r) := v(r)/(1−r), 0 ≤ r < 1.
The differentiation operator D : H∞

v (D) → H∞
w (D) is continuous and surjective if and only

if

0 < lim infr→1

(
− (1 − r)v′(r)

v(r)

)
≤ lim supr→1

(
− (1 − r)v′(r)

v(r)

)
< ∞.

Remark 32 The integration and differentiation operators are continuous on H∞
v if and only

if they are continuous on H0
v . See e.g. [30, Lemma 2.1].

Examples are given in [6, 8] to show that the requirement that the weight is log-convex in
the results in this section is really essential. Related results about continuity of differentiation
and integration type operators in generalized Fock spaces can be seen in [132, 134].

8.2 Spectrum, mean ergodicity and linear dynamics

We survey now some results about the behaviour of the differentiation and the integration
operators when they act on some weighted Banach spaces of entire functions of type H∞

v (C)

and H0
v (C). These results are taken from [30, 44]. The spectrumof the differentiation operator

on weighted Banach spaces of entire functions had been studied by Atzmon and Brive [24].
In this subsection, when v(r) = e−αr (α > 0) we write H∞

α (C) and H0
α (C) for the

weighted Banach spaces and denote their norm by ‖ ·‖α . The operators D and J are bounded
on these spaces. See Sect. 8.1. In what follows, if T ∈ L(H∞

v (C))) we write ‖T ‖v instead of
‖T ‖L(H∞

v (C)) = ‖T ‖L(H0
v (C)) and σv(T ) for the spectrum. The notation ‖T ‖α, σα(T ) refers

to the case v(r) = e−αr .

Theorem 33 Assume that the differentiation operator D : H0
v (C) → H0

v (C) is continuous.
The following conditions are equivalent:

(1) D has a dense set of periodic points.
(2) D has a periodic point different from 0.
(3) limr→∞ v(r)er = 0.

Theorem 34 Assume that the differentiation operator D : H0
v (C) → H0

v (C) is continuous.
The following conditions are equivalent:

(1) D is hypercyclic on H0
v (C).

(2) lim infn→∞ ‖zn‖v

n! = 0.

Proposition 35 The operator J is never hypercyclic on H0
v (C) and it has no periodic points

different from 0 in H∞
v (C).

Corollary 36 Let v be a weight such that the differentiation operator D : H0
v (C) → H0

v (C)

is continuous. Then

(1) If there is A > 0 such that 1/v(r) ≤ Ar−1/2er , r > 0, then D is not hypercyclic
on H0

v (C). In particular D is not hypercyclic for v(r) = exp(− log2 r) or for v(r) =
exp(−αr), 0 < α < 1.
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(2) If there are B > 0, α ≥ 1, r0 > 0 such that v(r) ≤ B exp(−αr) for each r ≥ r0, then D
is hypercyclic on H0

v (C). In particular, D is hypercyclic for v(r) = exp(−αr), α ≥ 1.
(3) The differentiation operator on H0

α (C) is not hypercyclic and has no periodic point
different from 0 if α < 1, it is hypercyclic and has a dense set of periodic points if α > 1
and it is hypercyclic but has no periodic point different from 0 if α = 1.

Theorem 37 (1) The differentiation operator D satisfies

(i)

‖Dn‖α = n!
(eα
n

)n
, n ∈ N.

(ii) It is power bounded if and only if α < 1.
(iii) The spectrum of D is the closed disc of radius α.
(iv) It is uniformly mean ergodic on H∞

α (C) and H0
α (C) if α < 1, not mean ergodic if

α > 1, and it is not mean ergodic on H∞
1 (C) and not uniformly mean ergodic on

H0
1 (C).

(2) The integration operator J satisfies

(i) ‖Jn‖α = 1/αn, n ∈ N.

(ii) It is power bounded if and only if α ≥ 1.
(iii) It is never hypercyclic on H0

α (C).
(iv) The spectrum of J is the closed disc of radius 1/α.
(v) If α > 1, then J is uniformly mean ergodic on H∞

α (C) and H0
α (C), and it is not

mean ergodic on these spaces if α < 1.
(vi) If α = 1, then J is not mean ergodic on H∞

1 (C), and mean ergodic but not uniformly
mean ergodic on H0

1 (C).

Extensions of these results for more general weighted Banach spaces of entire functions
were obtained by Beltrán [27], Bonilla and the author [46] and Mengestie, Worku and the
author in [64]. The case of differentiation and integration operators acting on Hörmander
algebraswas studied in [31]. Tien investigated in [157] the dynamical properties of translation
operators on weighted Hilbert and Banach spaces of entire functions.

8.3 Invariant subspaces of the integration operator

Abanin and Tien in [7] described the proper closed invariant subspaces of the integration
operator on various scales of weighted Banach spaces of analytic functions on the unit disc
and the complex plane. We include some of their results for H0

v .
Let E be a Banach space of analytic functions on the open unit discD or the complex plane

Cwhich contains the polynomials and such that the inclusion map E ⊂ H(G) is continuous.
For each N ∈ N, we set

AN (E) := { f ∈ E ; f ( j)(0) = 0, 0 ≤ j < N }.
If the integration operator J : E → E, J f (z) := ∫ z

0 f (ζ )dζ, f ∈ E, is continuous, then
each AN (E) is a proper closed subspace of E which is invariant for J , that is, J (AN (E)) ⊂
AN (E). The question is whether there are other closed proper invariant subspaces for J on
E .
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Lemma 38 Let E be a Banach space of analytic functions on the open domain G = D or
G = C, such that the inclusion map E ⊂ H(G) is continuous and the polynomials are
contained and dense in E. For each N ∈ N we have

AN (E) = span({z j ; j ≥ N }).
Theorem 39 (Abanin, Tien [7]) Let v be a radial, continuous, non-increasing, log-convex
weight v : [0, R[→ (0,∞[, which satisfies limr→R rnv(r) = 0 for each n ∈ N, with R = 1
for the disc and R = +∞ for the complex plane. Assume that the integration operator
J : H0

v → H0
v is continuous. Moreover, in the case of the complex plane assume that

lim infr→∞
rv(r)(1/v)′(r)

− log v(r)
> 1.

Then every proper closed invariant subspace for J on H0
v is of the form

AK (H0
v ) = { f ∈ H0

v ; f ( j)(0) = 0, 0 ≤ j < K }
for some K ∈ N.

The weight v(z) := exp(−|z|α), α > 1, on the complex plane satisfies the assumption of
Theorem 39. Galbis and the author utilized the results of Abanin and Tien to describe in [53]
the proper closed invariant subspaces of the integration operator when it acts continuously
on countable intersections and countable unions of weighted Banach spaces of analytic
functions on the unit disc or the complex plane, in particular for Korenblum type spaces and
for Hörmander algebras of entire functions.

9 The Cesàro operator of growth Banach spaces for standard weights

The classical Cesàro operator C is given by

f �→ C( f ) : z �→ 1

z

∫ z

0

f (ζ )

1 − ζ
dζ, z ∈ D\{0}, and C( f )(0) = f (0), (4)

for f ∈ H(D). It is a Fréchet space isomorphism of H(D) onto itself. In terms of the Taylor

coefficients f̂ (n) := f (n)(0)
n! , for n ∈ N0, of functions f (z) = ∑∞

n=0 f̂ (n)zn ∈ H(D) one
has the description

C( f )(z) =
∞∑

n=0

(
1

n + 1

n∑

k=0

f̂ (k)

)

zn, z ∈ D.

It is known that there are many classical Banach spaces X of analytic functions on D

such that the Cesàro operator C acts continuously from X into itself; for instance, the Hardy
spaces H p(D), 1 ≤ p < ∞, the Bergman and the Dirichlet spaces, etc. See for example
[14, 143] and the references therein. On the other hand, C fails to act in H∞(D) since
C(1)(z) = (1/z) log(1/(1 − z)), for z ∈ D.

We collect in this section several results about the behaviour of the Cesàro operator C
when it acts on growth Banach spaces A−γ and A−γ

0 , for γ > 0. We denote the norm in
these spaces by

‖ f ‖−γ := sup
z∈D

(1 − |z|)γ | f (z)|, f ∈ A−γ .
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The spectrum of C on A−γ and A−γ
0 was obtained by Aleman and Persson [14, 143]. We

keep the notations Cγ,0 : A−γ
0 → A−γ

0 and Cγ : A−γ → A−γ for the Cesàro operator when
it acts in the corresponding spaces.

Theorem 40 Let γ > 0. The Cesàro operator Cγ,0 : A−γ
0 → A−γ

0 is continuous and it has
the following properties.

(i) σpt (Cγ,0) = { 1
m : m ∈ N, m < γ }.

(ii) σ(Cγ,0) = σpt (Cγ,0) ∪ {λ ∈ C : |λ − 1
2γ | ≤ 1

2γ }.
(iii) If |λ − 1

2γ | < 1
2γ (equivalently Re

( 1
λ

)
> γ ), then Im(λI − Cγ,0) is a closed subspace of

A−γ
0 and has codimension 1.

Moreover, the Cesàro operator Cγ : A−γ → A−γ is continuous and it satisfies

(iv) σpt (Cγ ) = { 1
m : m ∈ N, m ≤ γ }, and

(v) σ(Cγ ) = σ(Cγ,0).

Now we present several results obtained in collaboration with Albanese and Ricker [9].

Theorem 41 (i) Let γ ≥ 1. Then ‖Cnγ ‖ = ‖Cnγ,0‖ = 1 for all n ∈ N.
(ii) Let 0 < γ < 1. Then ‖Cnγ ‖ = ‖Cnγ,0‖ = 1/γ n for all n ∈ N.

Theorem 42 (i) Let 0 < γ < 1. Both of the operators Cγ and Cγ,0 fail to be power bounded
and are not mean ergodic. Moreover,

Ker(I − Cγ ) = Ker(I − Cγ,0) = {0},
and Im(I − Cγ ) (resp. Im(I − Cγ,0)) is a proper closed subspace of A−γ (resp. of A−γ

0 ).
(ii) Both of the operators C1 and C1,0 are power bounded but not mean ergodic. Moreover,

Im(I − C1) (resp. Im(I − C1,0)) is not a closed subspace of A−γ (resp. of A−γ
0 ).

(iii) Let γ > 1. Both of the operators Cγ and Cγ,0 are power bounded and uniformly mean
ergodic. Moreover, Im(I − Cγ ) (resp. Im(I − Cγ,0)) is a proper closed subspace of A−γ

(resp. of A−γ
0 ). In addition,

Im(I − Cγ ) = {h ∈ A−γ : h(0) = 0}. (5)

Moreover, with ϕ(z) := 1/(1− z), for z ∈ D, the linear projection operator Pγ : A−γ →
A−γ given by

Pγ ( f ) := f (0)ϕ, f ∈ A−γ ,

is continuous and satisfies limn→∞(Cγ )[n] = Pγ in the operator norm.

Proposition 43 The Cesàro operator Cγ,0 is not supercyclic and hence, also not hypercyclic,

in each space A−γ
0 , for γ > 0.

This follows from the fact that C is not supercyclic on H(D), since A−γ
0 is dense in H(D).

A vector space X ⊆ H(D) is called aBanach space of analytic functions onD if it contains
the polynomials and it is a Banach space relative to a norm for which the natural inclusion of
X into H(D) is continuous. Since evaluation at points of D are continuous linear functionals
on H(D), this is equivalent to each evaluation functional δz : f �→ f (z) at a point z ∈ D

being an element of the dual Banach space X ′ of X .
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The optimal domain of the Cesàro operator C when it acts on a Banach space of analytic
functions X on D is defined by

[C, X ] := { f ∈ H(D) : C( f ) ∈ X},
which is a Banach space for the norm

‖ f ‖[C,X ] := ‖C( f )‖X , f ∈ [C, X ]. (6)

If C acts on X , then X ⊆ [C, X ] and the natural inclusion map is continuous. Moreover,
[C, X ] is the largest of allBanach spaces of analytic functionsY onD thatCmaps continuously
into X .

Theorem 44 Let γ > 0 and ϕ(z) := 1/(1 − z) for z ∈ D.
The optimal domain [C, A−γ ] of Cγ : A−γ → A−γ is isometrically isomorphic to A−γ

and is given by

[C, A−γ ] = { f ∈ H(D) : f ϕ ∈ A−(γ+1)}. (7)

Moreover, the norm ‖ · ‖[C,A−γ ] is equivalent to the norm f → ‖ f ϕ‖−(γ+1) and the
containment A−γ ⊆ [C, A−γ ] is proper.

A similar result holds for the optimal domain [C, A−γ
0 ] of Cγ,0 : A−γ

0 → A−γ
0 .

The behaviour of the Cesàro operator on the Korenblum space A−∞ and related Fréchet
and (LB)-spaces of analytic functions on the unit disc was investigated by Albanese, Ricker
and the author in [10]. The spectrum is completely determined and some consequences
concerning mean ergodicity are deduced.

10 Volterra operators

The Volterra integral operator is defined on the space of analytic functions of G = D or
G = C in the following way. Given g ∈ H(G), we set

Vg( f )(z) :=
∫ z

0
f (ζ )g′(ζ )dζ (z ∈ D).

The analytic function g is called the symbol of Vg . Clearly Vg : H(G) → H(G) is continu-
ous.

The Volterra operator for holomorphic functions on the unit disc was introduced by Pom-
merenke [144] and he proved that Vg is bounded on the Hardy space H2, if and only if
g ∈ BMOA. Aleman and Siskakis [15] extended this result for H p, 1 ≤ p < ∞, and they
considered later in [16] the case of weighted Bergman spaces. Volterra operators on weighted
Banach spaces H∞

v (D) of holomorphic functions on the disc of type have been investigated
in [25], thus extending results in [113, 153]. Lin [122] obtained some further results in this
direction.

Contreras, Peláez, Pommerenke and Rättyä [87] studied thoroughly the boundedness,
compactness and weak compactness of the operators Vg : X → H∞ from a Banach space of
analytic functions X into H∞. They obtained general results which they applied to particular
choices of X. Smith, Stoljarov and Volberg [152] presented a necessary and sufficient condi-
tion for the operator of integration to be bounded on the space of bounded analytic functions
on a simply connected domain, thus solving a conjecture in [17] about the boundedness of
Vg with values on H∞ when the function g is univalent. A counterexample to the general
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case of the conjecture about the boundedness of Vg is also included in [152]. Motivated by
the results of this article, Abakumov and Doubtsov [5] characterized the boundedness of
Vg : H∞

v → H∞
w for general weights v,w and a univalent symbol g. In the article [100] the

authors characterize the continuity and (weak) compactness of Vg : H∞
v (D) → H∞ when

v(z) = (1 − |z|2)α is a standard weight and g is univalent.
Aleman, Constantin, Peláez and Persson [11, 13, 14] investigated the spectra of Volterra

and Cesàro operators on several spaces of holomorphic functions on the disc. The spectra
of Volterra operators acting on growth spaces has been investigated by Malman [128]. Con-
stantin started in [83] the study of the Volterra operator on spaces of entire functions. She
characterized the continuity of Vg on the classical Fock spaces and investigated its spec-
trum. Constantin and Peláez [84] characterize the entire functions g ∈ H(C) such that Vg is
bounded or compact on a large class of Fock spaces induced by smooth radial weights. See
also [4, 38, 39, 65]. The investigation of the spectrum of the Volterra operator for weighted
spaces of entire functions was continued in [43, 84]. Volterra operators on Korenblum type
Fréchet and (LB)-spaces and on Hörmander algebras are studied in [42, 43].

The first result is a consequence of more general Theorems [25, Theorems 1 and 2].

Proposition 45 Let g ∈ H(D) be an analytic function and let α > 0 and β > 0.

(i) The operator Vg : A−α → A−β is continuous if and only if Vg : A−α
0 → A−β

0 is
continuous and if and only if

sup
z∈D

(1 − |z|)β−α+1|g′(z)| < ∞.

(ii) If α < β, then Vg : A−α → A−β is continuous if and only if Vg : A−α
0 → A−β

0 is
continuous and if and only if g ∈ A−(β−α).

(iii) The operator Vg : A−α → A−β is compact if and only if it is weakly compact if and

only if Vg : A−α
0 → A−β

0 is compact and if and only if it is weakly compact. Moreover,
these conditions are equivalent to

lim|z|→1
(1 − |z|)β−α+1|g′(z)| = 0.

Theorem 46 (Abakumov and Doubtsov [5]) Let g ∈ H(D) be a univalent function and let v
and w be weight functions.

(i) The operator Vg : H∞
w (D) → H∞

v (D) is bounded if and only if

sup
0≤θ≤2π

sup
0≤r<1

v(r)
∫ r

0

|g′(teiθ |
w̃(t)

dt < ∞.

(i) The operator Vg : H∞
w (D) → H∞

v (D) is compact

lim
ρ→1

sup
r≥ρ

sup
0≤θ≤2π

v(r)
∫ r

0

|g′(teiθ |
w̃(t)

dt = 0.

The proof of Theorem 46 uses methods of [152] and Theorem 2.

Lemma 47 Let X ⊂ H(D) be a Banach space that contains the constants and such that
the inclusion X ⊂ H(D) is continuous. Assume that Vg : X → X is continuous for some
non-constant entire function g such that g(0) = 0. Then

{0} ∪ {λ ∈ C\{0} ; e
g
λ /∈ X} ⊂ σ(Vg, X).
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The corresponding result is valid for Banach spaces X ⊂ H(C) containing the constants
and such that the inclusion X ⊂ H(C) is continuous.

Theorem 48 (Malman [128]) Let g ∈ H(D), g(0) = 0, and let α > 0.

(i) If g ∈ H∞ or g ∈ B0, then σ(Vg, A−α) = σ(Vg, A
−α
0 ) = {0}.

(ii) If g(z) = c log(1/(1 − wz)), z ∈ D with c, w ∈ C, c 
= 0, |w| = 1, then Vg : A−α →
A−α, α > 0, is continuous and σ(Vg, A−α) = {λ ∈ C ; Re( c

λ
) ≥ α}.

In the notation of Theorem 48, we understand 0 ∈ {λ ∈ C ; Re( c
λ
) ≥ α}. With this in

mind, this set coincides with the disc {λ ∈ C ; |λ − c
2α | ≤ |c|

2α }.
Proposition 49 [65] Assume that v(r) = exp(−αr p), α > 0, p > 0.

(i) Vg : H∞
v (C) → H∞

v (C) is continuous if and only if g is a polynomial of degree less
than or equal to the integer part of p.

(ii) Vg : H∞
v (C) → H∞

v (C) is compact if and only if g is a polynomial of degree strictly
less than p.

Theorem 50 [43] Assume that v(r) = exp(−αr p), α > 0, p > 0. Let g be a polynomial of
degree n ∈ N less than or equal to the integer part of p with g(0) = 0.

(i) If the degree n of g satisfies n < p, then σ(Vg, H∞
v (C)) = {0}.

(ii) If p = n and g(z) = βzn + k(z), k a polynomial of degree strictly less than n, then
σ(Vg, H∞

v (C)) = {λ ∈ C ; |λ| ≤ |β|/α}.
Moreover, we have σ(Vg, H∞

v (C)) = {0} ∪ {λ ∈ C\{0} ; e
g
λ /∈ H∞

v (C)}.

11 Weighted composition operators

Weighted composition operators on various spaces of analytic functions on the unit disc or
the complex plane have been studied very thoroughly by a number of authors. For the unit
disc, the books of Cowen, MacCluer [89] and Shapiro [150] are standard references. In this
section we mainly concentrate on composition operators on the spaces H∞

v (D) and H0
v (D)

and we mention a few results about spaces of entire functions.

11.1 Continuity, (weak) compactness, isometries

We consider a non-constant self map ϕ ∈ H(D) satisfying ϕ(D) ⊂ D and a function ψ ∈
H(D) which is not identically equal zero. They induce the weighted composition operator

Wϕ,ψ f := ψ( f ◦ ϕ).

This operator is continuous on H(D) for the topology of uniform convergence on the
compact subsets of D.

If ψ = 1, then as usual we denote the composition operator Wϕ,1 by Cϕ

Cϕ f := f ◦ ϕ.

And if ϕ(z) = z, z ∈ D, then Wϕ,ψ is the multiplication operator

Mψ f := ψ f .
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We first mention some results about continuity, compactness and the essential norm from
[49, 52, 88, 116, 137]. All the weights we consider are radial, non-increasing and tending to
zero at the boundary.

Theorem 51 Let v and w be weights on D.

(a) The following conditions are equivalent.

(1) Wϕ,ψ(H∞
v (D)) ⊂ H∞

w (D).
(2) Wϕ,ψ : H∞

v (D) → H∞
w (D) is continuous.

(3) supz∈D
|ψ(z)|w(z)

ṽ(ϕ(z)) < ∞.

(4) supn∈N0

‖ψϕn‖v

‖zn‖v
< ∞.

In this case, ψ ∈ H∞
w and ‖Wϕ,ψ‖ = supz∈D

|ψ(z)|w(z)
ṽ(ϕ(z)) . Moreover, this norm is compa-

rable with the supremum which appears in (4).
(b) The following conditions are equivalent.

(1) Wϕ,ψ(H0
v (D)) ⊂ H0

w(D).
(2) Wϕ,ψ : H0

v (D) → H0
w(D) is continuous.

(3) ψ ∈ H0
w and supz∈D

|ψ(z)|w(z)
ṽ(ϕ(z)) < ∞.

In this case, ‖Wϕ,ψ‖ = supz∈D
|ψ(z)|w(z)

ṽ(ϕ(z)) .

Theorem 52 Let v and w be weights on D. If the operator Wϕ,ψ : H∞
v (D) → H∞

w (D) is
continuous, then its essential norm satisfies

‖Wϕ,ψ‖e = lim
s→1

sup
|ϕ(z)|>s

|ψ(z)|w(z)

ṽ(ϕ(z))
= lim supn→∞

‖ψϕn‖v

‖zn‖v

.

In particular, Wϕ,ψ is compact if and only if

lim
s→1

sup
|ϕ(z)|>s

|ψ(z)|w(z)

ṽ(ϕ(z))
= lim

n→∞
‖ψϕn‖v

‖zn‖v

= 0.

Theorem 53 Let v and w be weights on D. If the operator Wϕ,ψ : H0
v → H0

w is continuous,
then its essential norm satisfies

‖Wϕ,ψ‖e = lim sup|z|→1
|ψ(z)|w(z)

ṽ(ϕ(z))
.

In particular, Wϕ,ψ is compact if and only if

lim sup|z|→1
|ψ(z)|w(z)

ṽ(ϕ(z))
= 0.

Theorem 54 Let v and w be weights on D.

(1) Assume that the operator Wϕ,ψ : H∞
v (D) → H∞

w (D) is continuous. Then Wϕ,ψ is either
compact or an isomorphism on a subspace isomorphic to �∞.

(2) Assume that the operator Wϕ,ψ : H0
v (D) → H0

w(D) is continuous. Then Wϕ,ψ is either
compact or an isomorphism on a subspace isomorphic to c0.
In particular, Wϕ,ψ is compact if and only if it is weakly compact in both cases.

Proposition 55 Let ϕ be given. The following holds:
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(1) Cϕ : H∞
v (D) → H∞

v (D) is continuous for all radial non-increasing weights v if and
only if there is 0 < s < 1 such that |ϕ(z)| ≤ |z| for all |z| ≥ s.

(2) Cϕ : H∞
v (D) → H∞

v (D) is compact for all radial non-increasing weights v if and only
if ϕ(D) ⊂ sD for some 0 < s < 1.

Proposition 56 A radial non-increasing weight v satisfies that the operator Cϕ : H∞
v (D) →

H∞
v (D) is continuous for every ϕ if and only if the weight ṽ satisfies the condition

(L1) sup
n

ṽ(1 − 2−n)

ṽ(1 − 2−n−1)
< ∞.

If ϕ(z) = (z + 1)/2, z ∈ D, and v(z) = exp(−1/(1 − |z|)), z ∈ D, the composition
operator Cϕ is not continuous on H∞

v (D).
We refer to Lusky [125, 127] for the relevance of condition (L1) in connection with the

isomorphic classification of spaces H∞
v . Some conditions of various types that are equivalent

to (L1)were stated in [6, Lemma 2.6]. Interesting extensions of Proposition 56were obtained
by Bourdon [72].

The characterization of nuclear weighted composition operators Wϕ,ψ : H0
v (D) →

H0
w(D) under some conditions on the weights has been obtained in [55]. This result was

inspired and motivated by the characterization of nuclear weighted composition operators on
Bloch spaces due to Fares and Lefèvre [101].

Fredholmweighted composition operators on H∞
v and H0

v were investigated in [102, 105,
115].

Theorem 57 Let Wϕ,ψ : H0
v (D) → H0

w(D) be continuous.

(a) The following conditions are equivalent.

(i) Wϕ,ψ : H∞
v (D) → H∞

w (D) is Fredholm.
(ii) Wϕ,ψ : H0

v (D) → H0
w(D) is Fredholm.

(iii) ψ ∈ H∞, there is ε > 0 such that |ψ(z)| > ε for all |z| ≥ 1 − ε, and ϕ is an
automorphism.

(b) The following conditions are equivalent.

(i) Wϕ,ψ : H∞
v (D) → H∞

w (D) is invertible.
(ii) Wϕ,ψ : H0

v (D) → H0
w(D) is invertible.

(iii) ψ and 1/ψ belong to H∞, and ϕ is an automorphism.

As a consequence a continuous composition operator Cϕ : H0
v → H0

w is Fredholm if and
only if it is invertible and if and only if ϕ is an automorphism. These conditions are also
equivalent to Cϕ : H∞

v (D) → H∞
w (D) being invertible or Fredholm. A general result about

invertible weighted composition operators is due to Bourdon [73]. Extensions of these results
have been obtained recently by Mas and Vukotić [130].

Martín and Vukotić [129] analyzed when composition operators on the Bloch space are
(not necessarily surjective) isometries, and they show that every thinBlaschkeproduct induces
an isometric composition operator on the Bloch space. Motivated by these results, together
with Lindström and Wolf, we characterize in [56] isometric weighted composition operators
on H∞

v (D). As a consequence a composition operator Cϕ of H∞
vp

(D) for a standard weight
vp(z) = (1−|z|)p, p > 0, is an isometry if and only if ϕ is a rotation. Boyd and Rueda [78]
present a detailed study of the question of under which conditions a given isometry between
weighted spaces of holomorphic functions is surjective.
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Boyd and Rueda have obtained interesting related results on isometries on weighted
Banach spaces H∞

v (U ) of holomorphic functions defined on an open subset U of Cn . We
refer the reader to their papers [74, 75] and the references therein. They explain how the
isometries of a weighted space of holomorphic functions are determined by a subgroup of
the automorphisms of a subset of the domain, called the v-boundary of U . The relation
between this group and the weight is investigated for bounded and unbounded domains.
Examples are presented.

11.2 The spectrum

The following result was obtained in [164]. It extends theorems due to Aron, Lindström [23,
54].

Theorem 58 Suppose ϕ is not an automorphism and has fixed point a ∈ D. Then

σ(Wψ,ϕ, H∞
v (D)) = {λ ∈ C : |λ | ≤ re,H∞

v
(Wψ,ϕ)} ∪ {ψ(a)ϕ′(a)n}∞n=0.

A similar result holds for H0
v (D).

Further extensions and related results can be seen in [98, 99, 103, 104].
Let ϕ be an analytic self map on D which is not an automorphism and has a (necessarily

unique) fixed point a ∈ D. By Koenigs’ Theorem [150, Chapter 6], if ϕ′(a) = 0, the equation
f ◦ ϕ = λ f has a non-trivial solution if and only if λ = 1 and the constant functions are the
only solutions. On the other hand, if ϕ′(a) 
= 0, then (i) the equation f ◦ ϕ = λ f has a non-
trivial solution if and only if λ = ϕ′(a)n, n ∈ N0, (ii) there is a unique function σ ∈ H(D),
called the Koenigs’ eigenfunction of ϕ, such that σ ◦ ϕ = ϕ′(w)σ, σ ′(w) = 1, and (iii) a
function f ∈ H(D) satisfies f ◦ ϕ = ϕ′(a)n f for some n ∈ N0 if and only if f = cσ n for
some c ∈ C.

As a consequence of Schwarz Lemma, an analytic self map ϕ on D which is not an
automorphism and has a fixed point a ∈ D satisfies ϕ′(a) 
= 0 if and only if 0 < |ϕ′(a)| < 1.
Moreover, in this case, the Koenigs’ eigenfunction of ϕ can be obtained as the limit of the
sequence (σn)n with σn := ϕn/ϕ

′(a)n, n ∈ N, which converges to σ uniformly on the
compact subsets of D. Here ϕn = ϕ ◦ · · · ◦ ϕ is the n-fold composition of ϕ.

The spectrum and essential spectrum of the composition operator Cϕ : H(D) → H(D)

for an analytic selfmapϕ onDwhich is not an automorphism and has a fixed point a ∈ Dwith
0 ≤ |ϕ′(a)| < 1 have been determined recently in [20]: σ(Cϕ, H(D)) = {0}∪ {ϕ′(a)n ; n ∈
N0}, and its essential spectrum reduces to {0}. The proofs are based on explicit formulas for the
spectral projections associated with the point spectrum found by Koenigs. As a consequence,
information on the spectrum for bounded composition operators induced by a symbol as
above on Banach spaces of analytic functions continuously embedded in H(D) is obtained.
The definitions of spectrum and essential spectrum for an operator on a locally convex space
coincide with those given in Sect. 7. Recall that an operator between locally convex spaces is
compact if it maps a neighbourhood of the domain into a relatively compact set in the image.
The case of composition operators induced by rotations was analyzed in [41].

In [54, 98] it was investigated how the essential spectral radius of Cϕ on both H∞
v (D)

and H0
v (D) determines whether the Koenigs eigenfunction σ of ϕ belongs to H∞

v (D) and
H0

v respectively. Let ϕ be an analytic self map on D which is not an automorphism such
that ϕ(0) = 0 and 0 < |ϕ′(0)| < 1. Bourdon [71] proved that σ ∈ H0

vp
(D), for vp(z) =

(1−|z|)p, p > 0, if and only if |ϕ′(0)| > re,H0
vp
. Examples given in [54] show that Bourdon’s
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characterization does not hold for more general radial weights. On the other hand, by [98,
Theorem 3.1], σ ∈ H∞ if and only if re,H∞(Cϕ) = 0.

Proposition 59 [98] Let ϕ be an analytic self map on D which is not an automorphism such
that ϕ(0) = 0 and 0 < |ϕ′(0)| < 1. Let v be a radial weight on D. Then

(i) The Koenigs’ eigenfunction σ belongs to H∞
v (D) if and only if the sequence σn :=

ϕn/ϕ
′(0)n, n ∈ N, is bounded in H∞

v (D).
(ii) Assume that ϕ is univalent. The Koenigs’ eigenfunction σ belongs to H0

v (D) if and only
if limn→∞ ‖σn − σ‖v = 0.

Hyvärinen, Lindström,Nieminen andSaukko [115], using ideas ofKamowitz andGunatil-
lake, calculated the spectrum of the invertible weighted composition operator Wϕ,ψ for an
automorphic symbol ϕ on a wide class of analytic function spaces; in particular for spaces
of type H∞

v (D). The analysis of the spectral behaviour depends on the type of the symbol ϕ,
that is, if it is an elliptic, parabolic or hyperbolic automorphism.

An automorphism ϕ ∈ Aut(D) is an injective analytic function onD such that ϕ(D) = D.
As a consequence of Schwarz Lemma, we get ϕ ∈ Aut(D) if and only if there are a ∈ D and
λ ∈ C, |λ| = 1 such that ϕ(z) = λ a−z

1−az . For z, a ∈ D, ϕa(z) := a−z
1−az is the automorphism

of D which interchanges 0 and a. An automorphism ϕ ∈ Aut(D) is called

• elliptic if it has one fixed point in D and one outside D, which could be in the infinity
point of the Riemann sphere.
Example: ϕ(z) = i z. Fixed points: 0 and ∞.

• hyperbolic if it has two different fixed points in the boundary D.
Example: ϕ(z) = z+0,5

1+0,5z . Fixed points: 1 and −1.
• parabolic if it has one fixed point in the boundary of D with multiplicity 2.

Example: ϕ(z) = (1+i)z−i
i z+1−i . Fixed point: 1.

Theorem 60 (Theorem of Denjoy–Wolff) If ϕ ∈ H(D) is a self map onD with no fixed point
in D (for example if ϕ ∈ Aut(D) is parabolic or hyperbolic), then there is a unique point
w in the boundary of D, called the Denjoy–Wolff point of ϕ, such that (ϕn)n converges to w

uniformly on the compact subsets of D.
If ϕ ∈ H(D) is a self map on D that fixes a point p ∈ D, and is not a conformal

automorphism, then (ϕn)n converges to p uniformly on the compact subsets of D.

An elliptic automorphism has one fixed point in D. A hyperbolic automorphism has two
fixed points in the boundary ∂D of D, one is attractive and the other one repulsive, and
a parabolic automorphism has one fixed point in the boundary of D with multiplicity 2.
See more details in [79], [89] and [150]. Recall that the disc algebra A(D) is the space of
continuous functions on the closed unit disc D which are analytic on D. It is a Banach space
endowed with the supremum norm on D.

Theorem 61 [115] Let vp = (1 − |z|2)p, p > 0 and let Wϕ,ψ : H∞
vp

(D) → H∞
vp

(D) be
continuous. Assume that ψ ∈ A(D) is bounded away from zero on D. Then

(i) If ϕ is a parabolic automorphism with Denjoy–Wolff point a ∈ ∂D, then

σ(Wϕ,ψ , H∞
vp

(D)) = {λ ∈ C ; |λ| = |ψ(a)|}.
(ii) If ϕ is a hyperbolic automorphism with attractive fixed point a ∈ ∂D and repulsive

fixed point b ∈ ∂D, such that |ψ(b)/ϕ′(b)p| ≤ |ψ(a)/ϕ′(a)p|, then

σ(Wϕ,ψ , H∞
vp

(D)) =
{
λ ∈ C ; |ψ(b)|

ϕ′(b)p
≤ |λ| ≤ |ψ(a)|

ϕ′(a)p

}
.
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(iii) If ϕ is an automorphism such that there is a j ∈ N such that ϕ j (z) = z for each z ∈ D,
then, for the smaller such n ∈ N, we have

σ(Wϕ,ψ , H∞
vp

(D)) =
{

λ ∈ C ; λn =
n−1∏

m=0

(ψ ◦ ϕm)(z), z ∈ D

}

.

(iv) Ifϕ is an automorphism such thatϕn does not coincidewith the identity function id(z) =
z for each n ∈ N, and a ∈ D is the unique fixed point of ϕ, then σ(Wϕ,ψ , H∞

vp
(D)) =

{λ ∈ C ; |λ| = |ψ(a)|}.
Further results can be seen in [103, 104]. Many questions remain open about the spectrum

of weighted composition operators.

11.3 Hypercyclicity andmean ergodicity

Miralles and Wolf [135] investigated hypercyclic continuous composition operators Cϕ :
H0

v (D) → H0
v (D) for an analytic self map ϕ on D and a radial weight on D satisfying the

usual assumptions (non-increasing approaching 0 at the boundary).

Proposition 62 If Cϕ : H0
v (D) → H0

v (D) is a continuous hypercyclic operator, then ϕ has
no fixed point in D and it is injective.

Theorem 63 If ϕ is an automorphism which fixes no point in D and Cϕ : H0
v (D) → H0

v (D)

is continuous, then Cϕ is hypercyclic.

We refer to the book of Shapiro [150] for linear fractional transformations of the unit disc.

Theorem 64 Let ϕ be a linear fractional transformation of D such that Cϕ : H0
v (D) →

H0
v (D) is continuous. If ϕ is a hyperbolic non-automorphism, then Cϕ is hypercyclic.

Proposition 65 Let v(z) = (1 − |z|)1/2 for every z ∈ D. If ϕ be a linear fractional trans-
formation of D which is a parabolic non-automorphism, then Cϕ : H0

v (D) → H0
v (D) is not

hypercyclic.

These results were extended to the case of weighted composition operators of the form
λCϕ, λ ∈ C, by Liang and Zhou [121]. Colonna and Martínez-Avendaño [82] extend some
of these results and present an informative brief summary of the literature on hypercyclic
composition operators on Banach spaces of analytic functions.

Power bounded and (uniformly)mean ergodic composition operators on H(G),G an open
connected subset of C, were investigated by Domanski and the author in [47]. This research
was continued later for operators on spaces of real analytic functions in [48]. These papers
triggered quite an amount of research. The study of mean ergodic weighted composition
operators on H(G) was done by Beltrán, Gómez-Collado, Jordá and Jornet in [33]. They
continued their work in [32] about mean ergodicity of composition operators on the Banach
spaces H∞ and the disc algebra A(D).

A systematic study of powers of (weighted) composition operators on Banach spaces of
analytic functions on the unit disc has been done byArendt, Chalendar, Kumar and Srivastava
[21, 22], Jordá and Rodríguez [118] and Tien [158]. See the references in these papers for
more related work in this direction. We state some results for composition operators Cϕ on
H∞

v (D) and H0
v (D).
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Proposition 66 Let v be a log-convex weight on D satisfying condition (L1). Let ϕ be an
elliptic automorphism with fixed point z(0) ∈ D. Then

(i) If ϕ is equivalent to a rational rotation, then Cϕ is uniformly mean ergodic on H∞
v (D)

and H0
v (D). Moreover, there is k ∈ N such that ((Cϕ)[n])n converges to (1/k)(Cϕ +

· · · + (Cϕ)k).
(ii) If ϕ is equivalent to a irrational rotation, then Cϕ is not uniformly mean ergodic on

H∞
v (D) and H0

v (D).
(iii) If ϕ is equivalent to a irrational rotation, then Cϕ is mean ergodic on H0

v (D), and
((Cϕ)[n] f ) converges to Cz(0) f = f (z(0)) for each f ∈ H0

v (D).

Theorem 67 Let v be a log-convex weight onD satisfying condition (L1). Let ϕ be a self map
on D with Denjoy–Wolff point 0. Then the sequence (Cϕn f )n converges to f (0) in H0

v (D)

for each f ∈ H0
v (D).

Tien proves in [158, Theorem 4.8 (b)] that, under some mild assumption, the sequence
(Cϕn )n converges to the operator C0( f ) := f (0) in L(H∞

v (D)). Moreover, he gives an
example of a weight v and self map ϕ with Denjoy–Wolff point 0 such that Cϕ is power
bounded, (Cϕn )n does not converge even in the weak operator topology on H∞

v (D), but it
converges in the strong operator topology on H0

v (D). This operator Cϕ is mean ergodic and
not uniformly mean ergodic on H0

v (D), and not mean ergodic on H∞
v (D).

Theorem 68 Let ϕ be a self map onDwith Denjoy-Wolf point z(0) in the boundary of the unit
disc. Let v be a log-convex weight on D satisfying condition (L1) such that − log(1 − r) =
O(1/v(r)) as r → 1−. Then Cϕ is not power bounded and not mean ergodic on H∞

v (D).

11.4 Weighted composition operators on spaces of entire functions

Many properties of composition operators on spaces of entire functions have also been inves-
tigated. For instance, in the frame of Fock spaces, in 2003, Carswell, MacCluer and Schuster
[81] characterized bounded and compact composition operators on the classical Fock spaces
F p, 0 < p < ∞. We refer to [166] for Fock spaces. They showed that only the class of
affine mappings ψ(z) = az + b, |a| ≤ 1 and b = 0 whenever |a| = 1 induce bounded
composition operators. Compactness of Cψ was described by the strict requirement |a| < 1.
In 2008, Guo and Izuchi [107] studied various aspects of the composition operators on Fock
type spaces.

In analogy to the notion of associated weights for weighted spaces of analytic functions
with sup-norms, Mangino and the author introduced in [63] p-associated weights for spaces
of entire p-integrable functions, 1 ≤ p < ∞. As an application, necessary conditions for
the boundedness of composition operators acting between general Fock type spaces were
proved.

Seyoum,Mengestie and the author [149] proved that every bounded composition operator
Cϕ defined by an analytic symbol ϕ on the complex plane when acting on generalized Fock
spaces F p

ϕ , 1 ≤ p ≤ ∞, and p = 0, is power bounded. Mean ergodic and uniformly mean
ergodic bounded composition operators on these spaces are characterized in terms of the
symbol. The behaviour for p = 0 and p = ∞ differs. The set of periodic points of these
operators is also determined. This research is continued for weighted composition operators
in [148].

Ueki [161, 162] investigated the boundedness, compactness and essential norm of
weighted composition operators Wϕ,ψ on Hilbert Fock spaces of several variables in terms
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of a certain integral transform.Weighted composition operators on Fock spaces were investi-
gated byHai and Khoi [108], and between different Fock type spaces by Tien andKhoi [160].
The characterizations of the boundedness and compactness of these operators in the Fock
space setting required that the symbol ϕ and the multiplier ψ satisfy certain uniform condi-
tions. Carroll and Gilmore [80] present a more explicit characterization of bounded weighted
composition operators, as well as compact weighted composition operators, on Fock spaces
in terms of the order and type of the multiplier, and obtain a complete description of zero-free
multipliers that admit bounded or compact operators. An explicit asymptotics for the iter-
ates of the operator is also given. As an application it is shown that a weighted composition
operator acting on Fock spaces cannot be supercyclic.

Tien [159] completely solves several problems, such as boundedness and compact-
ness, topological structure, ergodic and dynamical properties, for composition operators
on weighted Banach spaces of entire functions with sup-norms.

The dynamics of weighted composition operators on weighted Banach spaces of entire
functions H∞

v (C) and H0
v (C) has been investigated by Beltrán in [28]. The continuity and

compactness are characterized. Moreover, in the case of affine symbols and exponential
weights, it is analyzed when the operator is power bounded, (uniformly) mean ergodic
and hypercyclic. This work was continued by Beltrán and Jordá [29] to investigate power
boundedness, (uniform) mean ergodicity and hypercyclicity of certain weighted composition
operators on spaces of entire functions of exponential and infraexponential type.

12 Superposition operators

The purpose of this section is to present a few results about superposition operators f → ϕ◦ f
defined between weighted Banach spaces H∞

v = H∞
v (D) of holomorphic functions on the

disc by means of an entire function ϕ. If X and Y are linear spaces of holomorphic functions
on the unit discD of the complex plane and ϕ is an entire function, the superposition operator
Sϕ : X → Y with symbol ϕ is defined by Sϕ( f ) := ϕ ◦ f . Since X and Y are assumed to be
linear spaces, the operator Sϕ is linear if and only if ϕ is a linear function that fixes the origin.
The central question concerning superposition operators is to characterize those symbols ϕ

such that the superposition operator maps X into Y . In case X and Y are Banach spaces, it is
also important to determine when Sϕ is bounded, in the sense that it maps bounded subsets
of X into bounded subsets of Y , when Sϕ is continuous or when it is compact, in the sense
that it maps bounded sets into relatively compact sets.

We refer the reader to the introduction of [68] and to the survey [163] for references about
superposition operators on different spaces of analytic functions on the disc. Superposition
operators on weighted spaces of type H∞

v (D) have been investigated in [68, 76, 77, 93, 145].

Lemma 69 (Boyd, Rueda) Let u and v be weights. If the entire function ϕ satisfies that the
superposition operator Sϕ maps H∞

u into H∞
v and is bounded, then Sϕ : H∞

u → H∞
v is

continuous.

Theorem 70 Let u and v beweights, such that u is strictly decreasing. (a) If the entire function
ϕ satisfies the following condition:

∀ε ∈]0, 1[ ∃C > 0 ∃R0 > 0 ∀R ≥ R0 :
v

(
u−1

(
1

εR

))
max|w|=R

|ϕ(w))| ≤ C,

then the superposition operator Sϕ maps H∞
u (D) into H∞

v (D) and is bounded.
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(b) If the entire function ϕ satisfies the following condition:

lim
R→∞ v

(
u−1

(
k

R

))
M(ϕ, R) = 0

for each k ∈ N, then Sϕ : H∞
u (D) → H∞

v (D) is compact.

Proposition 71 Let u(z) = (1 − |z|)α , α > 0, v(z) = (1 − |z|)β , β > 0.

(1) The following conditions are equivalent for an entire function ϕ:

(i) ϕ is a polynomial of degree at most the integer part [β/α] of β/α.
(ii) The superposition operator Sϕ maps H∞

u (D) into H∞
v (D).

(iii) The superposition operator Sϕ maps H∞
u (D) into H∞

v (D) and it is bounded.

(2) The following conditions are equivalent for an entire function ϕ:

(i) ϕ is a polynomial of degree k less than β/α.
(ii) The superposition operator Sϕ maps H∞

u (D) into H∞
v (D) and it is compact.

Proposition 72 Let u(z) = (1− |z|)α, z ∈ D and v(z) = exp(− 1
(1−|z|)β ), α, β > 0. Let ϕ be

an entire function. The following conditions are equivalent:

(i) The function ϕ is of order less than β/α or of order β/α and type zero.
(ii) For all 0 < ε < 1 there are C ≥ 1, R0 > 0 such that |ϕ(z)| ≤ C exp(ε|z|β/α) for all

z ∈ C with |z| ≥ R0.
(iii) The superposition operator Sϕ maps H∞

u (D) into H∞
v (D).

(iv) The superposition operator Sϕ maps H∞
u (D) into H∞

v (D) and it is bounded.

Theorem 73 Let u(r) = (log e
1−r )

−α and v(r) = (1 − r)β with α, β > 0. The following
statements are equivalent for an entire function ϕ:

(i) The function ϕ is of order less than 1/α or of order 1/α and type zero.
(ii) For all 0 < ε < 1 there are C > 0, R0 > 0 such that |ϕ(z)| ≤ C exp(ε|z|1/α) for all

z ∈ C with |z| ≥ R0.
(iii) The superposition operator Sϕ maps H∞

u into H∞
v .

(iv) Sϕ is a bounded operator from H∞
u (D) into H∞

v (D).
(v) Sϕ is a compact operator from H∞

u (D) into H∞
v (D).

Proposition 74 Let u(r) = (log e
1−r )

α , α > 0, v(r) = (log e
1−r )

β , β > 0.

(1) The superposition operator Sϕ maps H∞
u (D) into H∞

v (D) and is bounded if and only if
ϕ is a polynomial of degree at most [β/α].

(2) The superposition operator Sϕ maps H∞
u (D) into H∞

v (D) and is compact if and only if
ϕ is a polynomial of degree less than β/α.

Proposition 75 Let u(r) = exp(−(1 − |z|)−α), α > 0 and let ϕ be an entire function.

(1) If there exist C > 0 and R0 > 0 such that |ϕ(w)| ≤ C exp((log |w|)γ ) for |w| ≥ R0,
then for each c > 1 the superposition operator Sϕ maps H∞

u (D) boundedly into the
space H∞

vc
(D), where vc(r) = exp(− c

(1−|z|)αγ ).

(2) If the superposition operator Sϕ maps H∞
u (D) into H∞

v (D), v(r) = exp(− 1
(1−|z|)β ),

β > 0, then for every c > 1 there exist C > 0 and R0 > 0 such that |ϕ(w)| ≤
C exp(c(log |w|)β/α) for |w| ≥ R0.

If γ > 1, there exist entire transcendental functions ϕ satisfying the assumptions of
Proposition 75.
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13 Toeplitz operators

Lusky, Taskinen and the author studied boundedness and compactness of Toeplitz operators
on H∞

v (D) in [60] and [61] for general weights on the unit disc, in particular for exponential
weights v(r) = exp(−α/(1 − r)β), α, β > 0. Toeplitz operators on spaces of analytic
functions have been investigated by many authors. We refer the reader to [165] and, for
example, to the introduction of [60] or to the survey article [156]. We recall the necessary
definitions to state some results.

Given a weight v on D, we set

L∞
v = {

h : D → C : h measurable , ‖h‖v := ess sup
z∈D

|h(z)|v(|z|) < ∞}
.

Let μ be the Lebesgue area measure on D endowed with v as density, i.e. dμ(reiϕ) =
v(r)rdrdϕ and denote the weighted L p- and Bergman spaces by

L p
v =

{
g : D → C : g measurable, ‖g‖p

p,v :=
∫

D

|g|pdμ < ∞
}

and

Ap
v = {h ∈ L p

v : h holomorphic},
where 1 ≤ p < ∞. In the unweighted case v is omitted in the notation.

In the Hilbert spaces L2
v and A2

v , with inner product 〈 f , g〉 = ∫

D

f g dμ, the functions

ek(z) = �
−1/2
2k zk, k ∈ N0, with

�k = 2π
∫ 1

0
rk+1v(r)dr for k ∈ N0,

form an orthonormal basis of A2
v .

Since the convergence in the space A2
v implies pointwise convergence, we find the repro-

ducing kernel, i.e. a family of functions Kz ∈ A2
v , z ∈ D, such that

g(z) = 〈g, Kz〉 =
∫

D

g(w)Kz(w) dμ(w)

for all g ∈ A2
v . The integral operator defined by the right-hand side can be extended to L2

v ,
and it actually defines the orthogonal projection from L2

v onto A2
v , i.e. the Bergman projection

Pv; see [85, 94]. Using the orthonormal basis we can write, for all z ∈ D,

Pvg(z) =
∞∑

k=0

〈g, ek〉ek(z) =
∫

D

∞∑

k=0

zkwk

�k
g(w)dμ(w).

Moreover, the Bergman kernel Kz satisfies |Kz(w)| ≤ Cz, w ∈ D.

Let f : D → C be a function in L1. The Toeplitz operator T f with symbol f is defined
on H∞

v (D) by

T f (h) =
∫

D

f (w)h(w)Kz(w) dμ(w).
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The integral converges for all z ∈ D and for all h ∈ H∞
v (D), since hv ∈ L∞. Even if T f h is

a well defined analytic function, it is not necessarily an element of H∞
v (D) and T f need not

be a bounded operator.
If h ∈ H∞

v (D) is such that f · h ∈ L2
v , we also have

(T f h)(z) =
∞∑

n=0

〈 f · h, en〉en(z) =
∞∑

n=0

zn

�2n

∫

D

f (w)h(w)wnv(w)d A , (8)

where the series converges in L2
v . However, the formula also holds for all h ∈ H∞

v (D) and
the sum converges uniformly for z in compact subsets of the disc. More details can be seen
in the introduction of [60].

If the symbol f is analytic, the operator T f is the multiplier M f , and in this case M f is
bounded on H∞

v (D) if and only if f ∈ H∞, see [50]. The situation for harmonic symbols is
different.

Theorem 76 There is a bounded harmonic function f : D → C such that T f : H∞
v (D) →

H∞
v (D) is not a bounded operator for any weight v on D.
As a consequence, the Bergman projection Pv is not a bounded mapping L∞

v → L∞
v for

any weight under consideration.

Dostanic [94] showed that for the exponential weight v(z) = exp(−1/(1 − |z|)), the
orthogonal projection L2

v → A2
v is bounded in L p

v if and only if p = 2. Recent research
about the continuity of the Bergman projection can be seen in [62, 84, 114, 140].

A general, abstract necessary and sufficient condition for the boundedness and for the
compactness of theToeplitz operatorT f : H∞

v (D) → H∞
v (D)waspresented in [60,Theorem

3.6], when f is a radial symbol in L1, when the weight v satisfies a certain condition (B),
which was introduced by Lusky in [127]. This condition (B) is closely related to condition
(b) described in Sect. 5 and it is satisfied by standard and exponential weights, but not by
logarithmic weights. The proof of [60, Theorem 3.6] is based on the deep work of Lusky.

Since the conditions for boundedness of T f might be hard to evaluate, in [61] we prove
sufficient conditions, which are easier to formulate and control, for the boundedness and
compactness of Toeplitz operators T f on H∞

v (D) when the weights v and symbol f are
assumed to be radial functions onD, and v has condition (B) of Lusky. Here are some results
in this directions.

Theorem 77 Let v satisfy condition (B). If the symbol f is radial and continuously differen-
tiable on [0, 1], then T f : H∞

v (D) → H∞
v (D) is bounded.

Theorem 78 Let v be a standard weight.

(i) If f ∈ L1 is radial and satisfies

lim sup
r→1

| f (r) log(1 − r)| < ∞,

then T f : H∞
v (D) → H∞

v (D) is a bounded operator.
(ii) If f satisfies lim supr→1| f (r) log(1 − r)| = 0, then T f is compact on H∞

v (D).

Theorem 79 Let v(r) = exp(−α/(1 − r)β) be an exponential weight.

(i) Assume that f ∈ L1 is radial and

lim sup
r→1

| f (r)|(1 − r)−1/2−β/4 < ∞.

Then, T f : H∞
v (D) → H∞

v (D) is a bounded operator.
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(ii) If

lim sup
r→1

| f (r)|(1 − r)−1/2−β/4 = 0,

then T f is compact on H∞
v (D).

14 Other classes of operators

14.1 Hilbert matrix

The Hilbert matrix H with entries ai, j = 1/(i + j + 1), i, j ∈ N, induces an operator on
sequences

H((an)n) :=
( ∞∑

k=0

ak
n + k + 1

)

n

,

which is continuous on the sequence space �p, 1 < p < ∞ by Hilbert’s inequality, with
exact norm π

sin
(

π
p

) . The Hilbert matrix can be also considered as an operator on spaces of

analytic functions on the unit disc, acting on the Taylor coefficients of f (z) = ∑∞
k=0 akz

k

as follows:

H( f )(z) :=
∞∑

n=0

( ∞∑

k=0

ak
n + k + 1

)

zn .

This operator admits also the following integral representation, see [91]:

H( f )(z) =
∫ 1

0
Tt ( f )(z)dt, z ∈ D,

where Tt ( f )(z) = ωt (z) f (φt (z)) for 0 < t < 1, ωt (z) = 1
(t−1)z+1 and φt (z) = t

(t−1)z+1 .

Let α > 0. In this subsection it is useful to denote by A−α and A−α
0 the Korenblum type

growth spaces for the weight v(r) = (1 − r)α and by H∞
α and H0

α the weighted spaces
defined for the weight w(r) = (1 − r2)α . Clearly A−α = H∞

α , A−α
0 = H0

α with equivalent
norms. Aleman, Montes-Rodríguez and Sarafoleaunu [12, Theorem 2.1] proved that the
Hilbert matrix operatorH is bounded on A−α and A−α

0 if (and only if) 0 < α < 1. The exact
calculation of the norm of an operator in these spaces depends on the norm, hence on the
selected weight. In recent years there has been much interest in computing the exact norm
of the Hilbert matrix operator on different spaces of analytic functions. We refer the reader
to the informative introduction of [124]. This paper also mentions open questions.

Theorem 80 Let 0 < α < 1.

(i) [124] The exact norm ||H||A−α of H : A−α → A−α is π
sin(απ)

.
(ii) [123] If 0 < α ≤ 2/3, then the exact norm ||H||H∞

α
of H : H∞

α → H∞
α is π

sin(απ)
.

(iii) [90] There is an exact value α0 with 2/3 < α0 < 1 such that ||H||H∞
α

= π
sin(απ)

if
0 < α ≤ α0 and this norm is strictly greater than π

sin(απ)
if α0 < α < 1.
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14.2 Libera operator

Let H(D) be the space of germs of analytic functions on the closed unit disc D, that is,
the functions analytic g on an open neighbourhood of D, which depends on g. The Libera
operator L is defined on H(D) by

Lg(z) := 1

1 − z

∫ 1

z
g(ζ )dζ.

Equivalently, for g(z) = ∑∞
n=0 akz

k ∈ H(D),

Lg(z) :=
∞∑

n=0

( ∞∑

k=n

ak
k + 1

)

zn .

The space H(D) can be identified with the topological dual of the Fréchet space H(D). With
this identification, the Libera operator coincides with the transpose of the Cesàro operator
which was studied in Sect. 9.

The Libera operator cannot be extended to H(D). Indeed, the sequence of polynomials
gn(z) = ∑n

k=0 z
k, n ∈ N, converges to g(z) = 1/(1 − z) on H(D), and the sequence

(Lgn(0))n diverges to ∞. In particular, this shows that the Libera operator is not defined on
the growth spaces A−α for α ≥ 1. On the other hand, Pavlovic [139] proved the following
result.

Theorem 81 [139]

(i) The Libera operator L acts as a bounded operator from A−α into A−α if and only if
0 < α < 1.

(ii) If 1/2 ≤ α < 1, then there is g(z) = ∑∞
n=0 akz

k ∈ A−α such that |an | ≥ c(n + 1)α−1/2

for all n and some c > 0, and L acts as a bounded operator from A−α into A−α .

More results about the Libera operator on Banach spaces of analytic functions can be seen
in [138, 139] and the references therein.

14.3 Hausdorff operators

We gave in [45] a few results about Hausdorff operators on weighted Banach spaces of
holomorphic functions of type H∞, both in the case of spaces of entire functions, in which
the operator is defined as in [154], and in the case of the disc, where it is defined as in
[136]. Hausdorff type operators have been investigated by many authors, especially in the
one-dimensional case, starting with the work of Hardy and Littlewood. The question of what
is the “correct” definition of Hausdorff operators on Euclidean spaces is in a certain sense
open. Some clarification was presented in the recent paper by Karapetyants and Liflyand
[119].

Letμ be a positive Radonmeasure on the unit discD and let K be aμ-measurable function
on D. For w ∈ D, we denote by ϕw the automorphism of the disc defined by

ϕw(z) = w − z

1 − wz
, z ∈ D.

Mirotin [136] defines the Hausdorff operator associated with μ and K on the disc D by

HK ,μ( f )(z) :=
∫

D

K (w) f (ϕw(z))dμ(w), z ∈ D,
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for an analytic function f ∈ H(D) on the unit disc. He obtained conditions to ensure that
the operator acts continuously on the Bloch, Bergman and Hardy spaces.

Theorem 82 Let v be a radial weight on D satisfying condition (L1). If the function w ∈
D → K (w)‖Cϕw‖ belongs to L1(μ), then the operators

HK ,μ : H∞
v (D) → H∞

v (D),

and

HK ,μ : H0
v (D) → H0

v (D),

are continuous. In this case, we have

‖HK ,μ‖ ≤
∫

D

|K (w)| ‖Cϕw‖dμ(w).

Corollary 83 (1) Letv(r) = (1−r2)γ withγ > 0. If the functionw ∈ D → K (w)/(1−|w|)γ
belongs to L1(μ), then HK ,μ : H∞

v (D) → H∞
v (D) is continuous.

(2) Let v(r) = (log e
1−r2

)−α, α > 0. If the function w ∈ D → K (w) log(1 − |w|) belongs
to L1(μ), then HK ,μ : H∞

v (D) → H∞
v (D) is continuous.

We now turn our attention to the case of spaces of entire functions. Let μ be a positive
measure on (0,∞). Stylogiannis and Galanopoulos [154] consider formally the Hausdorff
operator induced by the measure μ defined by

Hμ( f )(z) :=
∫ ∞

0

1

t
f
( z
t

)
dμ(t), z ∈ C,

where f ∈ H(C) is an entire function. The operator Hμ is studied in [154] on Fock spaces
F p

α , 1 ≤ p ≤ ∞, α > 0.

Proposition 84 Let v be a weight on C.

(1) If the operator Hμ : H∞
v (C) → H∞

v (C) is continuous, then

sup
n∈N0

∫ ∞

0

1

tn+1 dμ(t) ≤ ‖Hμ‖ < ∞, (9)

and the operator Hμ : H0
v (C) → H0

v (C) is also continuous.
(2) If the operator Hμ : H0

v (C) → H0
v (C) is continuous, then (9) holds.

(3) If the operator Hμ : H∞
v (C) → H∞

v (C) is compact, then

lim
k→∞

∫ ∞

0

1

tk
dμ(t) = 0.

Theorem 85 Let α > 0 and β > 0. Let v be the weight on C defined by v(r) = exp(−βrα).
The following conditions are equivalent.

(i) Hμ : H∞
v (C) → H∞

v (C) is continuous.
(ii) Hμ : H0

v (C) → H0
v (C) is also continuous.

(iii) supn∈N
∫ ∞
0

1
tn+1 dμ(t) < ∞.

In this case, we have

‖Hμ‖ ≤ sup
n∈N

∫ ∞

0

1

tnα+1 dμ(t).
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Proposition 86 Letα > 0 andβ > 0. Let v be theweight onC defined by v(r) = exp(−βrα).
If the sequence

( ∫ ∞
0

1
tk
dμ(t)

)
k∈N is in �1, then the operatorHμ is compact on H∞

v (C) and

on H0
v (C).

Some questions seems to be open concerning the operators mentioned in this last section.

Acknowledgements This research was partially supported by the project MCIN PID2020-119457GB-I00-
/AEI/10.13039/501100011033.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abakumov, E., Doubtsov, E.: Reverse estimates in growth spaces. Math. Z. 271(1–2), 399–413 (2012)
2. Abakumov, E., Doubtsov, E.: Moduli of holomorphic functions and logarithmically convex radial

weights. Bull. Lond. Math. Soc. 47(3), 519–532 (2015)
3. Abakumov, E., Doubtsov, E.: Approximation by proper holomorphic maps and tropical power series.

Constr. Approx. 47(2), 321–338 (2018)
4. Abakumov, E., Doubtsov, E.: Volterra type operators on growth Fock spaces. Arch.Math. (Basel) 108(4),

383–393 (2017)
5. Abakumov, E., Doubtsov, E.: Univalent symbols of Volterra operators on growth spaces. Anal. Math.

Phys. 9(3), 911–917 (2019)
6. Abanin, A.V., Tien, P.T.: Differentiation and integration operators on weighted Banach spaces of holo-

morphic functions. Math. Nachr. 290(8–9), 1144–1162 (2017)
7. Abanin, A.V., Tien, P.T.: Invariant subspaces for classical operators on weighted spaces of holomorphic

functions. Integral Equ. Oper. Theory 89(3), 409–438 (2017)
8. Abanin, A.V., Tien, P.T.: Compactness of classical operators on weighted Banach spaces of holomorphic

functions. Collect. Math. 69(1), 1–15 (2018)
9. Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in growth Banach spaces of analytic

functions. Integral Equ. Oper. Theory 86(1), 97–112 (2016)
10. Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator on Korenblum type spaces of analytic

functions. Collect. Math. 69(2), 263–281 (2018)
11. Aleman, A., Constantin, O.: Spectra of integration operators on weighted Bergman spaces. J. Anal.

Math. 109, 199–231 (2009)
12. Aleman, A., Montes-Rodríguez, A., Sarafoleanu, A.: The eigenfunctions of the Hilbert matrix. Constr.

Approx. 36(3), 353–374 (2012)
13. Aleman, A., Peláez, J.A.: Spectra of integration operators and weighted square functions. Indiana Univ.

Math. J. 61, 1–19 (2012)
14. Aleman, A., Persson, A.-M.: Resolvent estimates and decomposable extensions of generalized Cesàro

operators. J. Funct. Anal. 258, 67–98 (2010)
15. Aleman, A., Siskakis, A.G.: An integral operator on H p . Complex Var. Theory Appl. 28, 149–158

(1995)
16. Aleman,A., Siskakis,A.G.: Integration operators onBergman spaces. IndianaUniv.Math. J. 46, 337–356

(1997)
17. Anderson, A., Jovovic, M., Smith, W.: Some integral operators acting on H∞. Integral Equ. Oper.

Theory 80, 275–291 (2014)
18. Anderson, J.M., Shields, A.L.: Coefficient multipliers of Bloch functions. Trans. Am. Math. Soc. 224,

255–265 (1976)

123

http://creativecommons.org/licenses/by/4.0/


  184 Page 36 of 40 J. Bonet

19. Arcozzi, N., Björn, A.: Dominating sets for analytic and harmonic functions and completeness of
weighted Bergman spaces. Math. Proc. R. Ir. Acad. 102A, 175–192 (2002)

20. Arendt, W., Célariès, B., Chalendar, I.: In Koenigs’ footsteps: diagonalization of composition operators.
J. Funct. Anal. 278(2), 108313 (2002)

21. Arendt,W., Chalendar, I., Kumar,M., Srivastava, S.: Asymptotic behaviour of the powers of composition
operators on Banach spaces of holomorphic functions. Indiana Univ. Math. J. 67(4), 1571–1595 (2018)

22. Arendt, W., Chalendar, I., Kumar, M., Srivastava, S.: Powers of composition operators: asymptotic
behaviour on Bergman, Dirichlet and Bloch spaces. J. Aust. Math. Soc. 108(3), 289–320 (2020)

23. Aron, R., Lindström, M.: Spectra of weighted composition operators on weighted Banach spaces of
analytic functions. Isr. J. Math. 141, 263–276 (2004)

24. Atzmon,A.,Brive,B.: Surjectivity and invariant subspaces of differential operators onweightedBergman
spaces of entire functions, Bergman spaces and related topics in complex analysis, pp. 27–39, Contemp.
Math., vol. 404. Amer. Math. Soc., Providence (2006)

25. Basallote, M., Contreras, M.D., Hernández-Mancera, C., Martín, M.J., Paúl, P.J.: Volterra operators and
semigroups in weighted Banach spaces of analytic functions. Collect. Math. 65(2), 233–249 (2014)

26. Bayart, F.,Matheron, É.: Dynamics of Linear Operators. CambridgeUniversity Press, Cambridge (2009)
27. Beltrán-Meneu,M.J.: Dynamics of differentiation and integration operators on weighted spaces of entire

functions. Studia Math. 221(1), 35–60 (2014)
28. Beltrán-Meneu,M.J.: Dynamics of weighted composition operators onweighted Banach spaces of entire

functions. J. Math. Anal. Appl. 492(1), 124422 (2020)
29. Beltrán-Meneu, M.J., Jordá, E.: Dynamics of weighted composition operators on spaces of entire func-

tions of exponential and infraexponential type. Mediterr. J. Math. 18(5), Paper No. 212 (2021)
30. Beltrán-Meneu, M.J., Bonet, J., Fernández, C.: Classical operators on weighted Banach spaces of entire

functions. Proc. Am. Math. Soc. 141(12), 4293–4303 (2013)
31. Beltrán-Meneu, M.J., Bonet, J., Fernández, C.: Classical operators on the Hörmander algebras. Discrete

Contin. Dyn. Syst. 35(2), 637–652 (2015)
32. Beltrán-Meneu, M.J., Gómez-Collado, M.C., Jordá, E., Jornet, D.: Mean ergodic composition operators

on Banach spaces of holomorphic functions. J. Funct. Anal. 270(12), 4369–4385 (2016)
33. Beltrán-Meneu, M.J., Gómez-Collado, M.C., Jordá, E., Jornet, D.: Mean ergodicity of weighted com-

position operators on spaces of holomorphic functions. J. Math. Anal. Appl. 444(2), 1640–1651 (2016)
34. Bennet, G., Stegenga, D.A., Timoney, R.M.: Coefficients of Bloch and Lipschitz functions. Ill. J. Math.

25, 520–531 (1981)
35. Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on bounded domains.

Mich. Math. J. 40, 271–297 (1993)
36. Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Studia

Math. 127, 137–168 (1998)
37. Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Aust.

Math. Soc. 54, 70–79 (1993)
38. Blasco, O.: Operators on Fock-type and weighted spaces of entire functions. Funct. Approx. Comment.

Math. 59(2), 175–189 (2018)
39. Blasco, O.: Boundedness of Volterra operators on spaces of entire functions. Ann. Acad. Sci. Fenn.

Math. 43(1), 89–107 (2018)
40. Bonet, J.: Weighted spaces of holomorphic functions and operators between them. Seminar of Mathe-

matical Analysis (Malaga/Seville, 2002/2003), pp. 117–138, Colecc. Abierta, vol. 64. Univ. Sevilla Secr.
Publ., Seville (2003)

41. Bonet, J.: A note about the spectrum of composition operators induced by a rotation. Rev. R. Acad.
Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(2), 63 (2020)

42. Bonet, J.: The spectrum of Volterra operators on Korenblum type spaces of analytic functions. Integral
Equ. Oper. Theory 91(5), Paper No. 46 (2019)

43. Bonet, J.: The spectrum of Volterra operators on weighted spaces of entire functions. Q. J. Math. 66(3),
799–807 (2015)

44. Bonet, J.: Dynamics of the differentiation operator on weighted spaces of entire functions. Math. Z.
261(3), 649–657 (2009)

45. Bonet, J.: Hausdorff operators on weighted Banach spaces of type H∞. Complex Anal. Oper. Theory
16(1), Paper No. 12 (2022)

46. Bonet, J., Bonilla,A.:Chaos of the differentiation operator onweightedBanach spaces of entire functions.
Complex Anal. Oper. Theory 7, 33–42 (2013)
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