
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Dept. of Computer Systems and Computation

Automatic speaker diarization based on deep learning and
its application to audiovisual subtitling

Master's Thesis

Master's Degree in Artificial Intelligence, Pattern Recognition and
Digital Imaging

AUTHOR: Cano Caravaca, Vicent

Tutor: Juan Císcar, Alfonso

Cotutor: Silvestre Cerdà, Joan Albert

ACADEMIC YEAR: 2022/2023

i
i

“output” — 2023/9/11 — 9:53 — page ii — #2 i
i

i
i

i
i

i
i

“output” — 2023/9/11 — 9:53 — page iii — #3 i
i

i
i

i
i

Abstract / Resum / Resumen

Abstract

Speaker Diarization is a constantly evolving research field. It focuses on the devel-
opment of automatic systems capable of segmenting acoustic signals according to the
speakers who intervene in them. This task is commonly explained, in a simple way, as
being able to respond to the question: "Who spoke when?". This field has been based,
for many years, on the use of classical audio processing techniques to perform the sub-
tasks which composed Speaker Diarization. This fact has been changing during these
last years due to the rise in popularity experienced by neural networks and, nowadays,
Speaker Diarization systems are mainly based on deep learning techniques [1], such
as Recurrent Neural Networks.

This work aims to explore the state of the art of Speaker Diarization in order to
select some of the most promising techniques and adapt them to audiovisual media
subtitling in Valencian and Spanish. The experimental evaluation is based on tasks
and data used by the Machine Learning and Language Processing Group (MLLP) in
recent projects and challenges. In particular, it is conducted with data from Radio y
Televisión Española (RTVE) and Corporació Valenciana de Mitjans de Comunicació
(CVMC).

iii

i
i

“output” — 2023/9/11 — 9:53 — page iv — #4 i
i

i
i

i
i

Resum

La diferenciació automàtica de locutors (SD, per la seua denominació en anglés:
Speaker Diarization) és una àrea de recerca en constant evolució. Es centra en el
desenvolupament de sistemes de segmentació automàtica de senyals acústics en funció
dels locutors que hi intervenen. Esta tasca s’explica habitualment, de manera simple,
en ser capaç de respondre a la pregunta: "Qui ha parlat en cada moment?". Durant
anys aquest camp s’ha basat en la utilització de tècniques clàssiques de processament
d’àudio per a les diferents subtasques que componien la diferenciació automàtica de
locutors. Açò ha anat canviant durant els últims anys amb l’augment de la populari-
tat de les xarxes neuronals i, actualment, els sistemes de diferenciació automàtica de
locutors es basen en tècniques d’aprenentatge profund [1], com ara xarxes neuronals
recurrents.

En aquest treball es proposa fer una revisió de l’estat de l’art en diferenciació
automàtica de locutors per tal de seleccionar algunes de les millors tècniques actuals i
adaptar-les a la subtitulació de mitjans audiovisuals en valencià i castellà. L’avaluació
experimental es basa en tasques i dades en les quals ha treballat recentment el Machine
Learning and Language Processing Group (MLLP). En particular, es fa amb dades
de Radio y Televisión Española (RTVE) i de la Corporació Valenciana de Mitjans de
Comunicació (CVMC).

iv DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page v — #5 i
i

i
i

i
i

Resumen

La diarización de locutores (SD, por su denominación en inglés: Speaker Diarization)
es una área de investigación en constante evolución. Se centra en el desarrollo de
sistemas de segmentación automática de señales acústicas en función de los locutores
que intervienen en ellas. Esta tarea se explica habitualmente, de manera simple, en ser
capaz de responder a la pregunta: "¿Quién ha hablado en cada momento?". Durante
años este campo se ha basado en la utilización de técnicas clásicas de procesamiento
de audio para las distintas subtareas que compońıan la diarización de locutores. Esto
ha ido cambiando durante los últimos años con el aumento de la popularidad de las
redes neuronales y, actualmente, los sistemas de diarización de locutores se basan en
técnicas de aprendizaje profundo [1], como redes neuronales recurrentes.

En este trabajo se propone hacer una revisión del estado del arte en diarización
de locutores para aśı seleccionar algunas de las mejores técnicas actuales y adaptarlas
a la subtitulación de medios audiovisuales en valenciano y castellano. La evaluación
experimental se basa en tareas y datos en las cuales ha trabajado recientemente el
Machine Learning and Language Processing Group (MLLP). En concreto, se hace
con datos de Radio y Televisión Española (RTVE) y de la Corporació Valenciana de
Mitjans de Comunicació (CVMC).

DSIC, UPV v

i
i

“output” — 2023/9/11 — 9:53 — page vi — #6 i
i

i
i

i
i

i
i

“output” — 2023/9/11 — 9:53 — page vii — #7 i
i

i
i

i
i

Contents

Abstract / Resum / Resumen iii

Acronyms xii

1 Introduction 1
1.1 What is Speaker Diarization? . 1
1.2 Motivation . 2

1.2.1 The importance of subtitles . 2
1.2.2 The need of SD in audiovisual production 2
1.2.3 The MLLP(UPV)-CVMC agreement 3

1.3 Problem Description . 3
1.4 Goals . 4
1.5 Structure of the work . 4

2 Fundamentals of Speaker Diarization 7
2.1 Machine Learning . 7

2.1.1 Supervised Machine Learning 7
2.1.2 Unsupervised Machine Learning 8

2.2 Neural Networks . 9
2.2.1 Perceptron . 9
2.2.2 Feed Forward Neural Networks 9
2.2.3 Recurrent Neural Networks . 10
2.2.4 Long Short-Term Memory Networks 11
2.2.5 Bidirectional Long Short-Term Memory Networks 11
2.2.6 Convolutional Neural Networks 11

2.3 Clustering . 11
2.4 Automatic Speech Recognition . 13

2.4.1 Definition . 13
2.4.2 Evaluation . 13

2.5 Speaker Diarization . 14
2.5.1 Evaluation . 14
2.5.2 Conventional Speaker Diarization systems 15
2.5.3 A review of speaker recognition technology used in SD 16
2.5.4 End-to-End Neural Speaker Diarization (EEND) 19
2.5.5 The state-of-the-art toolkit: PyAnnote 19

vii

i
i

“output” — 2023/9/11 — 9:53 — page viii — #8 i
i

i
i

i
i

Contents

3 Datasets 21
3.1 PyAnnote Database standard . 21

3.1.1 Annotation RTTM files . 21
3.1.2 Annotated region (.uem) files 22
3.1.3 List files . 23
3.1.4 Audio files . 24

3.2 RTVE2018 Database - Albayzin Challenge 24
3.3 À Punt dataset . 25

3.3.1 Manually annotating interventions 25
3.3.2 La Cuina de Morera . 26
3.3.3 Electoral debates . 26
3.3.4 La Cuina de Morera and electoral debates mixed task 27

4 Baseline System: The PyAnnote pretrained pipeline 29
4.1 The segmentation model . 29
4.2 The local embedding model . 30
4.3 Global clustering . 30
4.4 Final Aggregation . 31
4.5 Hyper-Parameters . 31

4.5.1 Segmentation threshold (θ) . 31
4.5.2 Clustering threshold (δ) . 31
4.5.3 Minimum cluster size . 31
4.5.4 Minimum duration off (∆) . 32

5 Experiments and results 33
5.1 First baseline experiment: RTVE2018 - Albayzin 33
5.2 Baseline over À Punt datasets . 33
5.3 Initial pipeline hyperparameter optimization 34

5.3.1 La Cuina de Morera . 34
5.3.2 Electoral debate . 37
5.3.3 La Cuina de Morera + Electoral debate 39

5.4 Finetuning the segmentation model . 41
5.4.1 La Cuina de Morera . 41
5.4.2 Electoral debate . 42
5.4.3 La Cuina de Morera + Electoral debate 43

5.5 Hyper-parameter tuning in inference 43
5.5.1 La Cuina de Morera . 44
5.5.2 Electoral debate . 45
5.5.3 La Cuina de Morera + Electoral debate 47

5.6 Final systems . 48

6 Conclusions and future work 49

Bibliography 52

List of Figures 57

viii DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page ix — #9 i
i

i
i

i
i

Contents

List of Tables 59

Agräıments 61

DSIC, UPV ix

i
i

“output” — 2023/9/11 — 9:53 — page x — #10 i
i

i
i

i
i

i
i

“output” — 2023/9/11 — 9:53 — page xi — #11 i
i

i
i

i
i

Acronyms

AI Artificial Intelligence. 25

ASR Automatic Speech Recognition. 1–3, 5, 7, 13, 19, 25, 50

BLSTM Bidirectional Long Short-Term Memory. 11, 19, 30

CNN Convolutional Neural Network. 11, 17

CV Computer Vision. 11, 17, 50

CVMC Corporació Valenciana de Mitjans de Comunicació. iii–v, 3, 4, 25, 29, 49,
50

DER Diarization Error Rate. 14, 15, 33–36, 38–44, 46–50

DL Deep Learning. 10

DNN Deep Neural Network. 9, 16, 30

ECAPA Emphasized Channel Attention, Propagation and Aggregation. 17, 30, 49,
50

EEND End-to-End Neural Speaker Diarization. 30, 49, 50

FA False Alarm Rate. 14, 15

FNN Feed Forward Neural Network. 9, 10

ID Identification. 1, 4

JER Jaccard Error Rate. 14

LSTM Long Short-Term Memory. xi, 11, 19, 30

MFA Multi-layer Feature Aggregation. 17

ML Machine Learning. 1, 3, 5, 7–10, 13, 19, 25, 50

MLE Maximum Likelihood Estimation. 8

MLLP Machine Learning and Language Processing Group. iii–v, 3, 4, 24–26, 49, 50

xi

i
i

“output” — 2023/9/11 — 9:53 — page xii — #12 i
i

i
i

i
i

Acronyms

MT Machine Translation. 2, 3, 50

NLL Negative Log Likelihood. 8

NLP Natural Language Processing. 1, 15

NN Neural Network. iii, xii, 5, 9–11, 13, 16, 17, 19

ResNet Residual Neural Network. 17

RNN Recurrent Neural Network. iii, 10, 11

RTTM Rich Transcription Time Marked. 15, 21–24, 31

RTVE Radio y Televisión Española. iii–v, 24

SA Self-Attention. 17, 19, 50

SAD Speech Activity Detection. 15, 29

SD Speaker Diarization. iii–v, 1–5, 7, 13–16, 19, 21, 24–27, 29, 30, 43, 50, 51

SE Squeeze-Excitation. 17

TDNN Time Delay Neural Network. 16, 17, 30, 49, 50

UEM Unpartitioned Evaluation Map. 22, 23

UPV Universitat Politècnica de València. 3

WDER Word Diarization Error Rate. 14

WER Word Error Rate. 13, 14

xii DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 1 — #13 i
i

i
i

i
i

Chapter 1

Introduction

1.1 What is Speaker Diarization?

The understanding of the title of this master’s thesis is fundamental, so before deep-
ening any further into this work, a few paragraphs will be dedicated to this purpose.

The vast majority of words in the title of this work can be easily understood by
everyone. However, two words in it, “Speaker Diarization”, will be unfamiliar even
for readers with a relatively broad knowledge of Machine Learning and even Natural
Language Processing.

To diarize is to take note of something in a diary. When talking about Speaker
Diarization, the thing that gets “recorded in the diary” is who is speaking at each
moment. This is why SD is informally defined as the task of asking the question:
“Who spoke when?”

Speaker Diarization has been defined more formally in many papers, one of the
most popular definitions being: “The task of labeling audio or video recordings with
classes that correspond to speaker identity” [1].

One vital nuance to clarify the given definition is that the concept “speaker iden-
tity” does not usually refer to a specific physical person’s identity with name and
surname but to an ID given by the SD systems to each speaker in an audio or video
track that is used to distinguish them from the others appearing in it, without stor-
ing any more information about the speaker. This is the case of all the Speaker
Diarization systems that will be presented in this work.

Although Speaker Diarization was first seen as just a way to improve Automatic
Speech Recognition and Natural Language Processing systems, SD has much value
on its own and many applications. In this work, we explore the application of SD to
TV audiovisual productions.

1

i
i

“output” — 2023/9/11 — 9:53 — page 2 — #14 i
i

i
i

i
i

Chapter 1. Introduction

1.2 Motivation

1.2.1 The importance of subtitles

According to the World Health Organization (WHO), in 2021, more than 1.5 billion
people were affected by hearing loss. Furthermore, these statistics are expected not
to improve in the future but to worsen with demographic changes, with predictions
by WHO expecting hearing loss to affect ∼2.5 billion people in 2050 [2].

Adapting audiovisual content is essential for the inclusion of people suffering from
hearing loss, and audiovisual subtitling is vital to do this. This is why developing new
techniques using the latest technologies is imperative to make subtitling viable and
easy for any company or person producing audiovisual content.

Moreover, subtitles are helpful not only to those affected by hearing loss but, com-
bined with translation, are also a significant asset for making content understandable,
relatively cheaply, for people who do not understand the language in which media con-
tent was initially produced, without the need to dub this content, which would be
more complex and expensive.

1.2.2 The need of SD in audiovisual production

To understand the need of SD in audiovisual production, it is necessary first to under-
stand that a subtitle, to have good quality and to be actually helpful for people with
hearing loss, needs more than just the transcription of what is said in the audiovisual
content. It is also crucial to let the viewer know who is saying each word or phrase
when multiple speakers appear on the screen.

To achieve this, audiovisual subtitles must have colors. There are multiple laws
and standards that regulate how these colors should be. In this work, we will use as
reference the “Norma Española de subtitulado para sordos” (UNE-153010:2012) by
“Asociación Española de Normalización”.

However, to apply colors to subtitles, it is first necessary to know who is speaking
at each fragment of time, and, as it was explained in Section 1.1, this is just what
Speaker Diarization tries to answer.

To understand the need of Speaker Diarization in this context, it is also essential
to consider the massive rise in audiovisual production. While some decades ago this
activity was limited to TV channels, film corporations, and other big companies due
to the technical requirements it had, nowadays, this has changed radically. Anyone
with a smartphone and basic notions about audiovisual production can do it at home.

With this quantity of media produced daily, it is nearly impossible to make ade-
quate subtitles for every piece. Even only considering the content offered by big media
corporations, doing this with a traditional approach, that is, manually, is extremely
difficult and costly.

For all these reasons, Automatic Speech Recognition, Machine Translation and,
what is most relevant to this work, Speaker Diarization are becoming essential tools
that help to handle this problem.

2 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 3 — #15 i
i

i
i

i
i

1.3. Problem Description

1.2.3 The MLLP(UPV)-CVMC agreement

Once the motivation for working in SD in general has been explained in subsections
1.2.1 and 1.2.2, it is also important to explain the specific context that motivated this
work. This master’s thesis has been done while working at the Machine Learning and
Language Processing Group (MLLP), a research group of the Universitat Politècnica
de València (UPV), and, specifically for the MLLP-Corporació Valenciana de Mitjans
de Comunicació (CVMC) agreement: “Subtitulacio Assistida Per Ordinador en Temps
Real i Basada en la Intel·ligencia Artificial, de Continguts Audiovisuals”.

This agreement, as his name suggests, aims to develop Machine Learning systems
to provide CVMC with subtitles for their audiovisual content. Until this work was
started, these systems were Automatic Speech Recognition and Machine Translation
systems. With these ML systems, the CVMC was being provided with subtitles and
its translations, but not with colors to differentiate speakers.

Being this as relevant as explained in the previous subsections, both parties agreed
on the importance of developing a Speaker Diarization system in the context of this
agreement.

This was the final motivation to aim this master’s thesis to the development of
Speaker Diarization systems for “À Punt” (the main TV channel and webpage of
CVMC).

1.3 Problem Description

As it was stated in Section 1.2, the problem to solve in this master’s thesis is the
study of different Speaker Diarization techniques based on Machine Learning and the
posterior implementations of some of them, creating one or more SD systems able
to obtain good results determining “Who spoke when?” in the context of audiovi-
sual production, and, more specifically, that focus on the performance on “À Punt”
(CVMC) media.

After reviewing the state of the art, it can be thought that experimentation with
the different systems is the next step to take. However, an essential part of the problem
to solve before doing this is to have good input data and to have it formatted the way
the developed systems require.

Considering this, to tackle the problem, the next thing to do will be analyzing
how the chosen techniques need to have the input data formatted and labeled.

Studying whether there are already available datasets with the required format
within the application field of audiovisual production and, if this is the case, perform-
ing some experiments before starting to work on the “À punt” data can also be part
of dividing the problem into smaller steps to make it more approachable. It can be
an excellent way to get familiarized with the systems.

However, the truly crucial step regarding data will be to pre-process the “À punt”
data to meet the requirements of the SD systems.

After reviewing the state of the art and pre-processing the data, the step to solve
the problem is to design the baseline system. It has already been explained what is,

DSIC, UPV 3

i
i

“output” — 2023/9/11 — 9:53 — page 4 — #16 i
i

i
i

i
i

Chapter 1. Introduction

in general, Speaker Diarization, but to profile the problem correctly, it is necessary
to specify in an exact way the desired output.

The designed baseline system to solve the problem should be able to give as output
a file containing, for each intervention of any speaker in the media file:

• A speaker ID (which does not contain any information about the specific speaker,
only to link it with their other interventions)

• The starting time of the intervention

• The duration of the intervention

To solve the problem in the most effective way possible, it is also necessary for the
developed system to be able to detect overlapping interventions. Figure 1.1 shows a
graphical representation of an output from a SD system.

Figure 1.1: Example of output timeline, representing the interventions of three speakers:
A(), B() and C().

1.4 Goals

Having in mind the motivation and the problem which will be addressed in this
master’s thesis, the following goals were set and summarized on the two following
points:

• Implementing a baseline system from the state of the art and applying it to the
MLLP-CVMC context.

• Adapting the baseline system to different tasks of the MLLP-CVMC context in
order to get improved systems with better results.

1.5 Structure of the work

This master’s thesis will be structured in the following way:

4 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 5 — #17 i
i

i
i

i
i

1.5. Structure of the work

In Chapter 2 the fundamentals of the technology used in this work will be reviewed.
A particular emphasis will be put on Machine Learning (ML), Neural Network (NN),
Automatic Speech Recognition (ASR) and Speaker Diarization (SD). Of this last
concept, an overview of its state-of-the-art will be presented.

Chapter 3 is the one that explains the different datasets used in the development
of this work, as well as the standard file formats employed in Speaker Diarization in
which those datasets are based.

In Chapter 4 the implemented baseline system is explained, presenting a review
of its fundamentals and features. This chapter tries to tackle the first goal presented
in Section 1.4.

Following, Chapter 5 presents the experiments performed in order to achieve the
second goal presented in Section 1.4. It includes explanations of the ideas behind
those experiments as well as their results.

To conclude, Chapter 6 reviews again the goals proposed in Section 1.4 to check
whether they have been reached in the previous two chapters and draw conclusions
from this. Moreover, future work is proposed based on these conclusions and potential
improvement ideas.

DSIC, UPV 5

i
i

“output” — 2023/9/11 — 9:53 — page 6 — #18 i
i

i
i

i
i

Chapter 1. Introduction

6 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 7 — #19 i
i

i
i

i
i

Chapter 2

Fundamentals of Speaker
Diarization

2.1 Machine Learning
To be able to understand the fundamentals of ASR and SD, it is essential to have a
clear idea of what is Machine Learning. For this reason, a brief review of this basic
concept is provided in what follows.

Machine Learning can be defined as a set of methods that can automatically
detect patterns in data and then use the uncovered patterns to predict future data or
to perform other kinds of decision-making under uncertainty [3].

However, if an even more formal definition is wanted, ML can also be defined as:

A computer program is said to learn from experience E with respect to
some class of tasks T , and performance measure P , if its performance at
tasks in T , as measured by P , improves with experience E [4].

There are many different Machine Learning algorithms, but they are all divided
into two big groups: supervised learning and unsupervised learning. Both will be
explained in Subsections 2.1.1 and 2.1.2 since the two of them will be used in this
master’s thesis. There is another group of ML algorithms, Reinforcement Learning,
but it will not be reviewed since it is irrelevant to this work.

2.1.1 Supervised Machine Learning
Supervised ML algorithms are those based on learning the relationship between some
input and some output from previously labeled data.

That relationship can be formalized as a mapping f from the inputs x ∈ X to the
outputs y ∈ Y [5] and has to be learned.

The algorithm will be able to learn this relationship from a “training set”, that is,
a set of data in which input is labeled with its corresponding output. That is, a set
of N input-output pairs D = {(xn, yn)}Nn=1 [5].

7

i
i

“output” — 2023/9/11 — 9:53 — page 8 — #20 i
i

i
i

i
i

Chapter 2. Fundamentals of Speaker Diarization

2.1.1.1 Classification

One kind of supervised Machine Learning is classification, also known as pattern
recognition.

Suppose the term classification is used without further detail. In that case, the
task is to assign one class label c ∈ C, with C > 2, to each input x, which is known
in the bibliography as multiclass classification. However, other kinds of classification
exist, such as binary classification, in which the task is the same but with C = 2, and
multi-label classification, in which more than one c ∈ C can be assigned to each input
x [3].

Classifiers are trained to perform this task in supervised learning, adjusting their
parameters. The set of parameters of a classifier can be defined as θ.

To train the model, that is, to adjust θ, the empirical risk has to be minimized.
The classifier’s goal is to minimize errors, giving particular attention to those with
a higher degree of negative impact. Hence, the empirical risk can be defined as seen
in Equation 2.1, where ℓ is a loss function that penalizes errors according to their
negative impact.

L(θ) ≜ 1

N

N∑
n=1

ℓ(cn, f(xn; θ)) (2.1)

It is common to use the negative log probability as the loss function, as shown in
Equation 2.2:

ℓ(c, f(x; θ)) = − log(p(c|f(x; θ))) (2.2)

The average negative log probability of the training set is the Negative Log Like-
lihood (NLL), defined in Equation 2.3

NLL(θ) = − 1

N

N∑
n=1

log(p(cn|f(xn; θ))) (2.3)

Minimizing it, as shown in Equation 2.4, will get the Maximum Likelihood Esti-
mation (MLE).

θ̂mle = argmin
θ

NLL(θ) (2.4)

This is a prevalent way to train classifiers [5].

2.1.2 Unsupervised Machine Learning
Nowadays, when someone is speaking about Machine Learning, everyone, but espe-
cially those with a shallower knowledge of ML, will tend to think about Supervised
Machine Learning. They will not be wrong often since it is now the most popular
type of ML.

However, Unsupervised Machine Learning not only exists but is very useful and
relevant, as will be seen later in this master’s thesis.

8 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 9 — #21 i
i

i
i

i
i

2.2. Neural Networks

Contrary to what happens in Supervised ML, in Unsupervised Machine Learning,
there is no training set formed by input-output pairs D = {(xn, yn)}Nn=1 to learn a
mapping from. In this case, the goal is also to learn a mapping from the inputs to
some output. However, it will be done having only the inputs D = {xn : n = 1 : N},
without any corresponding output yn [5].

This can be seen as a more difficult task. Nonetheless, it is also fascinating since it
makes the application of ML algorithms without the need to collect and label massive
training datasets. That is usually very costly and sometimes even impossible.

There are many types of Unsupervised Machine Learning. Nevertheless, the one
that will be used in this master’s thesis will be clustering.

2.2 Neural Networks

As stated before, the most common form of ML is supervised learning. Within this
scope, the most popular techniques are those based on Deep Neural Network (DNN).

Artificial Neural Networks, as their name suggests, are supervised Machine Learn-
ing models inspired by the human brain’s neuronal structure. They consist of a bunch
of artificial networks organized into layers.

2.2.1 Perceptron

Artificial neurons are based on the Perceptron [6]. The perceptron is a deterministic
linear binary classifier. The perceptron concept mathematically represents a function
that maps an input x to an output f(x). That function can be seen in Equation 2.5.

f(x) = H(wTx+ b > 0) (2.5)

In Equation 2.5, w represents a vector of learnable weights, x is the input, a feature
vector, and b is a learned bias. Finally, H(x) represents the Heaviside step function,
shown in Equation 2.6 [5].

A diagram of the perceptron can be seen in Figure 2.1.

H(a) ≜ I(a > 0) ≜

{
1 if a > 0

0 otherwise
(2.6)

2.2.2 Feed Forward Neural Networks

Feed Forward Neural Networks are the most basic type of Neural Networks. They
are just a bunch of perceptrons organized in layers. These layers, except the first and
last one, always get the previous layer’s output as input.

At the output of each neuron, as perceptrons are linear functions, a non-linearity
or activation function is applied to its output before passing it to the next layer in
order to be able to handle problems that are not linearly separable.

Some of the most popular activation functions are ReLU, Sigmoid, and Softmax [7].

DSIC, UPV 9

i
i

“output” — 2023/9/11 — 9:53 — page 10 — #22 i
i

i
i

i
i

Chapter 2. Fundamentals of Speaker Diarization

x0

.

.

.
xN

 ∑w0

wN

y

b

Figure 2.1: Perceptron diagram

The first layer is called the input layer and is the one getting the feature vector.
The last one is known as the output layer. To conclude, the rest of the layers are
named hidden layers.

This type of network can solve many problems, including non-linearly-separable
binary and multiclass classification.

A diagram of a Feed Forward Neural Network (FNN) can be seen in Figure 2.2.

x1

x2

x3

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

y

Figure 2.2: Example of Feed Forward Neural Network with an input layer of three
neurons, two hidden layers of five neurons each and an output layer with one neuron.

2.2.3 Recurrent Neural Networks
Recurrent Neural Networks [8] are a type of artificial neural network used in Machine
Learning and Deep Learning. They are specifically designed to handle sequential data,
such as time series, text, speech, and more. The main advantage of RNNs over Feed
Forward Neural Networks lies in their ability to capture and work with sequential
dependencies in data.

To be able to do this, the basic idea is that their prediction y does not only depend
on the input x, but also in a hidden state h, able to store information from previous
steps.

10 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 11 — #23 i
i

i
i

i
i

2.3. Clustering

2.2.4 Long Short-Term Memory Networks

Despite the fact that original Recurrent Neural Networks handled sequential data,
they were pretty limited, struggling when processing long sequences of data. For this
reason, an improved recurrent neural architecture was designed, the Long Short-Term
Memory (LSTM) [9].

This new architecture was able to handle long sequences way better. The main
idea of this new architecture was to add three types of gates to control the propagation
of the information in the network:

• Forget gates: Determine which previous information should be kept and which
one should be discarded from the cell memory.

• Input gate: Decides which new input information should be stored in the cell
memory.

• Output gate: Decides which stored information should be used to compute
the output.

2.2.5 Bidirectional Long Short-Term Memory Networks

Long Short-Term Memories solved the problem of long sequence handling. However,
the power of understanding the context was not being used entirely because they were
only capable of storing past information.

Bidirectional Long Short-Term Memorys [10] solved this problem by joining two
different simple LSTMs, one processing data in the forward direction and another one
doing so in the backward direction.

2.2.6 Convolutional Neural Networks

Convolutional Neural Networks are a type of Neural Network initially developed for
processing grid-like data, such as images. Their popularity in Computer Vision (CV)
made them quickly and widely applied to other fields.

Their main contribution is the convolutional layers. These layers apply small
filters, also called kernels, to local regions of their input data and slide these kernels
across the entire input to learn features.

An example of convolution can be seen in Figure 2.3.
Another relevant feature of CNNs are the pooling layers, which aggregate infor-

mation from the neighboring regions of structured inputs. The most common pooling
operations are average pooling and max pooling.

2.3 Clustering
Clustering is a type of unsupervised machine learning (explained in Section 2.1.2) in
which, as its name suggests, the goal is to find clusters of similar data. That is, to
divide the k-dimensional space into regions containing seemingly related points.

DSIC, UPV 11

i
i

“output” — 2023/9/11 — 9:53 — page 12 — #24 i
i

i
i

i
i

Chapter 2. Fundamentals of Speaker Diarization

1 1 1 0 0 0 1
0 0 0 1 0 0 0
0 0 1 1 1 0 0
1 0 1 1 0 0 0
0 1 0 0 1 0 1
0 1 0 0 0 1 1
1 0 0 1 0 0 0

Input

∗
0 1 0
1 1 1
0 1 0

Kernel

=

1 3 2 1 0
1 3 5 2 1
3 3 3 3 0
2 2 2 1 3
2 1 1 2 2

Input ∗Kernel

0 1 0
1 1 1
0 1 0

×0 ×1 ×0

×1 ×1 ×1

×0 ×1 ×0

Figure 2.3: Convolution example over 2D data.

The clustering technique itself does not have a “correct” number of clusters since
it only tries to find similar points, and the definition of similar can be more or less
strict, allowing to increase or reduce the complexity of the model. However, a certain
number of clusters can be desired in specific tasks, and clustering algorithms can be
adapted to find that number of clusters.

Many clustering algorithms exist, including k-means, spectral clustering, hierar-
chical agglomerative clustering [5], Bayesian hidden Markov model clustering, etc.

An example of k-means clustering can be seen in Figure 2.4 where k-means is
applied to find three clusters in a two-dimensional space. It is essential to notice that
even though we can see that the points in Figure 2.4a belong to three different classes,
clustering algorithms do not classify. However, the formed clusters can be classified
after the clustering ends. That is one of the cases where there exists a desired number
of clusters.

(a) 3 classes forming clusters in two
dimensions: Class A(), Class B() and Class

C().

(b) Result of k-means clustering algorithm
which predicted: Cluster 1(), Cluster 2() and

Cluster 3().

Figure 2.4: Example of clustering using k-means over two dimensions.

12 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 13 — #25 i
i

i
i

i
i

2.4. Automatic Speech Recognition

2.4 Automatic Speech Recognition
Although Automatic Speech Recognition is not the primary field of study for this
master’s thesis, it must be briefly introduced in it for a few reasons.

The first reason is that Speaker Diarization was born as a way to improve Au-
tomatic Speech Recognition. Now, SD constitutes its own field of research with its
standalone systems, but the trace and essence of ASR can still be seen in many aspects
of it, with these two fields having a lot in common.

On top of that, in this work, every goal is centered just in the development of a
Speaker Diarization system, but as it has been explained in Section 1.2, the developed
system will later be deployed together with a large ASR system.

2.4.1 Definition
Automatic Speech Recognition (ASR) is a field inside Machine Learning (ML) and
Natural Language Processing, aiming to convert spoken language into text automat-
ically.

However, it is essential to provide a more formal definition:
Let X = {x1, x2, ..., xT } be an acoustic signal.
From a probabilistic point of view, an ASR system is a system which, given the

acoustic signal X tries to obtain the most probable sequence of words Ŵ . That can
be approached using the posterior probability as seen in Equation 2.7, where L is the
vocabulary of the system and L∗ the set of all possible sequences of words (sentences)
of L.

Ŵ = argmax
W∈L∗

P (W |X) (2.7)

In the latest approaches, Equation 2.7 is directly modeled using end-to-end Neural
Network (NN). However, the traditional approach has separated the ASR task into
two different models by applying Bayes Theorem as shown in Equation 2.8.

Ŵ = argmax
W∈L∗

P (W |X) = argmax
W∈L∗

P (X|W)P (W)

P (X)
= argmax

W∈L∗
P (X|W)P (W) (2.8)

In the last step of Equation 2.8, P (X) has been removed from the equation since
it is a constant. After that, the equation has two terms P (X|W), modeled by the
acoustic model, and P (W), modeled by the language model.

2.4.2 Evaluation
The standard metric used to evaluate Automatic Speech Recognition systems is the
Word Error Rate (WER). The WER is a distance metric, derived from the Levenshtein
distance [11], and calculated as shown in Equation 2.9.

DSIC, UPV 13

i
i

“output” — 2023/9/11 — 9:53 — page 14 — #26 i
i

i
i

i
i

Chapter 2. Fundamentals of Speaker Diarization

WER =
I +D + S

R
∗ 100 (2.9)

In Equation 2.9, I, D, and S are, respectively, the number of word insertions,
deletions, and substitutions that have to be made in order to make the predicted
sequence of words Ŵ equal to the pronounced sequence of words. Also, R is the
number of pronounced words.

2.5 Speaker Diarization

With the formal definition of Speaker Diarization presented in Section 1.1, and after
reading Section 2.1.1.1, it is clear that Speaker Diarization is indeed a classification
problem, even though it involves other subtasks which make the problem more com-
plex than a simple classification.

Depending on the needs and resources available in each case, diarization systems
can or can not handle speaker overlaps, that is, two or more people speaking simul-
taneously and being recognized by the diarization system.

When there is no overlap, the classification task is a multiclass classification.
Nonetheless, when diarizing overlapping speakers is part of the task, the problem
becomes more challenging and is a multi-label classification problem.

2.5.1 Evaluation

Before explaining different kinds of Speaker Diarization systems, it is crucial to have
a clear view of how they will be evaluated.

In the literature, different metrics are used to evaluate SD like Jaccard Error Rate
(JER), Word Diarization Error Rate (WDER), and Diarization Error Rate (DER).
The latter is the most popular one and the one that will be used in this master’s
thesis [1].

Diarization Error Rate is the standard metric for evaluating SD systems and is an
edit distance metric. It is highly similar to Word Error Rate, but it uses spoken time
instead of using words as base units. Both are metrics derived from the Levenshtein
distance [11].

The Diarization Error Rate [1, 12] sums the time of False Alarm Rate (FA) (when
the system determines someone is speaking and there is no one speaking), the missed
time (time where the system concludes no one is speaking and someone is doing so)
and the speaker confusion (when the SD system labels a period as spoken by one
speaker and in reality a different speaker is the one speaking). Later, it divides this
sum between the total time. The formula can be seen in Equation 2.10 [1]:

DER =
FA+Missed+ Speaker confusion

Total time
∗ 100 (2.10)

14 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 15 — #27 i
i

i
i

i
i

2.5. Speaker Diarization

2.5.2 Conventional Speaker Diarization systems

There have been many approaches to Speaker Diarization systems. However, the
vast majority of them followed a similar structure and the same essence before the
recent advances in Deep Learning that revolutionized every field of Natural Language
Processing.

Usually, Speaker Diarization systems have been formed by many independent
sub-modules. Each contributed to the overall process of distinguishing and labeling
different speakers within an audio recording and could be tuned.

The first step to diarize any track conventionally was to preprocess the raw audio
signal. This preprocessing aimed to enhance the audio quality by mitigating various
issues such as background noise, speech enhancement, and the removal of echoes or
reverberations. The subsequent modules could more accurately analyze and differen-
tiate speech segments by optimizing the audio quality upfront.

Following the preprocessing step, the next module was the Speech Activity De-
tection (SAD), whose task, as its name suggests, was to determine if someone was
talking at a given moment or not. This module played a significant role in influencing
both the False Alarm Rate (FA) and “Missed” errors, which are integral components
of the Diarization Error Rate formula (Equation 2.10). However, the preceding pre-
processing module naturally impacted these errors as well.

The subsequent module in the traditional Speaker Diarization system was respon-
sible for segmentation. The term “segmentation” has been vastly used in the speech
recognition community to describe many different tasks, and even in Speaker Diariza-
tion bibliography, it has slight differences in goals and implementation. Despite this
fact, generally speaking, the segmentation module of a traditional SD system does
separate the parts in which there is speech into different segments according to who
is talking at each time. Another way to see it is that they detect speaker change and
split the speech part of the audio according to it.

The next vital step is to create embeddings of each segment. In Machine Learning,
embedding refers to a representation of data that transforms high-dimensional input
into a lower-dimensional space while retaining the original data’s most relevant and
discriminative features. This transformation is typically achieved through a mathe-
matical function that captures patterns, relationships, and other information present
in the data. Embeddings are very useful tools in various Machine Learning tasks, as
they can help alleviate computational complexity, enhance model performance, and
reveal hidden structures within the data. However, these embeddings usually relied
on handcrafted features in traditional SD systems.

Subsequently, a clustering algorithm is applied to the previously generated embed-
dings, thereby forming clusters or groups of speaker interventions. Concurrently, a
classification task is undertaken to assign these clusters to distinct speaker identities.
It is important to note that these speaker identities do not inherently carry specific
information about the speakers themselves; they merely serve as labels for differenti-
ation and can be freely interchanged without any adverse effects on the process.

Finally, the clustering and classification can be refined in a post-processing stage
or module, obtaining a RTTM file with the diarization results as output.

DSIC, UPV 15

i
i

“output” — 2023/9/11 — 9:53 — page 16 — #28 i
i

i
i

i
i

Chapter 2. Fundamentals of Speaker Diarization

Figure 2.5: Conventional speaker diarization system [1].

2.5.3 A review of speaker recognition technology used in SD

2.5.3.1 Deep Neural Network speaker recognition: x-vectors

As discussed in Section 2.5.2, one crucial step in the Speaker Diarization process is the
creation of speaker embeddings, and in conventional SD systems, these relied mainly
on handcrafted features.

In 2018, [13] introduced the concept of x-vectors, which are fixed-dimensional
embeddings extracted from a Deep Neural Network.

The concept was created for standalone speaker identification. Nevertheless, its
ability to create embeddings that represented speaker information better than con-
ventional ones made them very useful in the Speaker Diarization context.

The original X-Vectors were extracted from a Neural Network, whose features
were 24-dimensional filter banks.

To understand this NN, assume that the input is an audio segment with T frames.
The network has five initial layers using a Time Delay Neural Network architecture

[14, 13, 15], which works at frame-level, that is, takes a frame t and some context of
k frames before and after t. The first layer starts with a [t − 2, t + 2] context, and
when the information arrives at the fifth layer, it has a total context of 15. After
the fifth layer, a “statistics pooling” was applied, aggregating all the T frame-level
outputs from the fifth layer and allowing the network to start working at the segment
level. The X-Vector is extracted from the first segment level layer before applying the
ReLU nonlinearity. The complete architecture is shown in Table 2.1.

Table 2.1: The original embedding DNN architecture. x-vectors are extracted at layer
segment6, before the nonlinearity. The N in the softmax layer corresponds to the number

of training speakers [13].

Layer Layer context Total context Input x output
frame1 [t-2, t+2] 5 120x512
frame2 t-2, t, t+2 9 1536x512
frame3 t-3, t, t+3 15 1536x512
frame4 t 15 512x512
frame5 t 15 512x1500

stats pooling [0,T) T 1500Tx3000
segment6 0 T 3000x512
segment7 0 T 512x512
softmax 0 T 512xN

16 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 17 — #29 i
i

i
i

i
i

2.5. Speaker Diarization

2.5.3.2 Improving speaker embeddings: ECAPA-TDNN

The success of x-vectors [13] made the creation of speaker embeddings and speaker
verification using Time Delay Neural Network vigorous areas of investigation. This
resulted in many x-vectors improvements [16, 17, 18, 19], one of the most relevant
improvements for the TDNN was the inclusion of elements from the Residual Neural
Network (ResNet) architecture [16, 20].

On top of all those advances, a paper [16] was published to improve the creation of
speaker embeddings and the recognition of speakers. This was achieved by modifying
the TDNN architecture and the statistical layer of the architecture proposed in the
original x-vectors paper [13].

The ECAPA-TDNN proposes the extension of Self-Attention used in previous x-
vectors improvements [21, 22], which proved to obtain better results, further to the
channel dimension [16].

Another key feature of the proposed architecture was the use of 1-Dimensional
Convolutional Neural Networks based on ResNet together with the introduction of
1-Dimensional Squeeze-Excitation (SE) Res2Blocks. These blocks proved in the Com-
puter Vision (CV) field to successfully model global channel interdependencies, and,
because of this, it seemed like an excellent way to rescale frame-level features given
global properties of the audio, similar to the global context of the previously explained
SA [16].

The final important feature of ECAPA-TDNN is that the output of each SE-
Res2Block is concatenated and later processed by the Multi-layer Feature Aggregation
(MFA), a dense layer which generates features for the attentive statistics pooling [16].

More interesting for this work is the extraction of speaker embeddings, which is
done from the final fully connected layer. The entire structure of the ECAPA-TDNN,
together with the structure of its particular SE-Res2Block can be seen in Figure 2.6.

2.5.3.3 Deep Neural Network speaker recognition: SincNet

When talking about speaker recognition in Section 2.5.3.1, it has been seen that
many systems in this area developed before the rise of deep learning were based on
handcrafted features, which was not the optimal way to proceed.

In opposition, when Neural Networks and especially Convolutional Neural Net-
works became increasingly popular, researchers started focusing their efforts on devel-
oping systems based on them. This led to a lot of promising results [23, 24, 25, 26, 27].

Despite this, [23] describes some problems with feeding raw waveforms to convo-
lutional layers. First, this approach made the convolutional layers handle very high
dimensional data. Secondly, the first convolutional layers of previous approaches were
quite sensitive to the vanishing gradient problem. Finally, when assuming that the
convolutional layers were modeling filters, many were taking noisy and chaotic shapes,
which did not seem to help the network achieve a good performance.

For this reason, this paper presented SincNet, a modification of Convolutional
Neural Networks in which instead of learning a full convolutional filter of length L
from scratch, a predefined filter was provided, leaving only some parameters of it (θ)
to be learned by the Neural Network.

DSIC, UPV 17

i
i

“output” — 2023/9/11 — 9:53 — page 18 — #30 i
i

i
i

i
i

Chapter 2. Fundamentals of Speaker Diarization

(a) The SE-Res2Block of the ECAPA-TDNN
architecture. The standard Conv1D layers have

a kernel size of 1. The central Res2Net [20]
Conv1D with scale dimension s = 8 expands

the temporal context through kernel size k and
dilation spacing d [16].

(b) Network topology of the ECAPA-TDNN.
We denote k for kernel size and d for dilation

spacing of the Conv1D layers or
SE-Res2Blocks. C and T correspond to the

channel and temporal dimension of the
intermediate feature-maps, respectively. S is

the number of training speakers [16].

Figure 2.6: Architecture of ECAPA-TDNN and its SE-Res2Block [16].

Those predefined filters could have taken many forms, but in the SincNet original
paper, they took the form of rectangular bandpass filters inspired by classical digital
signal processing. This choice made the learned parameters θ only two: The low and
high cutoff frequencies (f1 and f2 respectively).

The SincNet filters not only solved the initial problems stated in the paper but
also brought with them more advantages, mainly reflected in the computational com-
plexity of the model. In the first place, the number of learnable parameters reduced
drastically, from LF , being F the number of filters and L its length, to just 2F .
Moreover, the proposed SincNet filters are also symmetrical, so the convolution can

18 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 19 — #31 i
i

i
i

i
i

2.5. Speaker Diarization

be performed using only one side of the filter and reducing by 50% the number of
computations it needs. All this leads to a quicker convergence of the network.

2.5.4 End-to-End Neural Speaker Diarization (EEND)
In recent years, with the increase in computing power and the popularization of new
Machine Learning models and architectures, end-to-end models have been on the rise
in every field, from ASR to SD.

In contrast to the conventional SD systems, composed of many blocks, as explained
in Section 2.5.2, in 2019, a group of Hitachi researchers published a paper [28], propos-
ing an end-to-end structure for SD and quickly becoming the state-of-the-art.

This paper proposed a solution in which the input is a T -length observation se-
quence X = (xt ∈ RF |t = 1, ..., T) of audio. Given this input, the goal is to predict
a speaker label sequence Y = (yt|t = 1, ..., T) where yt = [yt,c ∈ {0, 1}|c = 1, ..., C]
denoting C speakers. Having yt,c = 1 and yt,c′ = 1 while c ̸= c′ means that both c
and c′ are talking at the same time, generating an overlap.

For this reason, the most probable speaker label sequence Ŷ should be selected as
shown in Equation 2.11.

Ŷ = argmax
Y ∈Y

(P (Y |X)) (2.11)

Then, using the conditional independence assumption, P (Y |X) can be factorized
as in Equation 2.12.

P (Y |X) =
∏
t

P (yt|y1, ..., yt−1, X) ≈
∏
t

P (yt|X) ≈
∏
t

∏
c

P (Yt,c|X) (2.12)

Finally, by assuming that P (yt,c|X) is conditioned on all inputs and that each
speaker presence is independent, P (yt,c|X) is estimated using a Neural Network
either based on Bidirectional Long Short-Term Memory networks BLSTM or Self-
Attention [1, 28, 29].

2.5.5 The state-of-the-art toolkit: PyAnnote
PyAnnote, specifically pyannote.audio, is an open-source toolkit that provides state-
of-the-art speech processing tools. It specializes in Speaker Diarization, for which it
provides many modular blocks to create SD pipelines and even preconfigured pipelines.

It incorporates many versions of state-of-the-art technologies as its default blocks,
such as the ones explained in Subsection 2.5.4.

The different blocks used in the development of the experiments of this work will
be further explained in Chapter 4

DSIC, UPV 19

i
i

“output” — 2023/9/11 — 9:53 — page 20 — #32 i
i

i
i

i
i

Chapter 2. Fundamentals of Speaker Diarization

20 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 21 — #33 i
i

i
i

i
i

Chapter 3

Datasets

3.1 PyAnnote Database standard
PyAnnote Database is a versatile Python library designed to help manage and orga-
nize multimedia datasets for various machine learning tasks, particularly those related
to Speaker Diarization, even though it can be used for other Speech Processing tasks.
It provides a structured framework for handling metadata, annotations, and associ-
ated audio or video files effectively. This structure improves dataset organization and
helps maintain clarity and control over data.

Of course, one of the main strengths of PyAnnote Database is that it is part of the
PyAnnote ecosystem, which is really useful in this work since PyAnnote is the main
library that will be used for conducting different experiments and trying to achieve
the goals established in Section 1.4.

PyAnnote Database promotes consistency and reproducibility in research endeav-
ors. Establishing a standardized dataset management format ensures that the re-
search community can faithfully reproduce, validate, and share experiments. This
standardization looks for more transparent research practices and facilitates the reli-
able advancement of knowledge.

The subsequent sections (3.1.1, 3.1.2, 3.1.3 and 3.1.4) will examine the parts of
this standard that carry the highest significance for the development of this work.

3.1.1 Annotation RTTM files
Rich Transcription Time Marked (RTTM) files are among the most critical files for
Speaker Diarization in the PyAnnote Database standard. In this specific context,
they are used to annotate the different speaker interventions in the multiple dataset
files.

Rich Transcription Time Marked files are space-delimited files containing one turn
per line, where ten fields form each line:

• Field 1 (Type): This field contains the type of segment stored in this line. In
this work, it will always be set to “SPEAKER”.

21

i
i

“output” — 2023/9/11 — 9:53 — page 22 — #34 i
i

i
i

i
i

Chapter 3. Datasets

• Field 2 (File ID): The second field contains the audio file name where the speaker
is intervening, without path names or extensions.

• Field 3 (Channel ID): The third field stores the audio channel. In the case of
this work, this value will always be 1.

• Field 4 (Beginning time): As its name suggests, the fourth field of the lines of
RTTM files contains the beginning time of the “object”, which, in the context
of this work, is a speaker intervention. This time will be indicated in seconds
elapsed from the start of the audio file.

• Field 5 (Duration): The fifth field of each line contains the duration of the
“object”, that is, in our case, the duration of the speaker intervention, also in
seconds.

• Field 6 (Ortography field): This field is used for storing orthographic represen-
tations of some “objects”. However, for SPEAKER, and hence, in this work,
this field will always be <NA>.

• Field 7 (Subtype): The seventh file should contain the subtype of the “object”.
For this work, this field will always be <NA>.

• Field 8 (Name): In this field, a name will be given to the “object”. It will be
used to identify which speaker has intervened in each line and will be a unique
speaker ID.

• Field 9 (Confidence): The last field contains the confidence that the object
information is correct. Again, this field will not be used in this work, so it will
always stay fixed to <NA>.

A RTTM file example can be seen in Table 3.1.

Table 3.1: Exemple of RTTM file extracted from the “Debates” dataset, showing five
speaker interventions.

1 2 3 4 5 6 7 8 9
SPEAKER autonomic 1 7509.57 4.61 <NA> <NA> 3 <NA>
SPEAKER autonomic 1 7755.85 1.29 <NA> <NA> 3 <NA>
SPEAKER autonomic 1 7757.98 57.93 <NA> <NA> 3 <NA>
SPEAKER autonomic 1 886.47 14.16 <NA> <NA> 4 <NA>
SPEAKER autonomic 1 901.11 15.94 <NA> <NA> 4 <NA>

3.1.2 Annotated region (.uem) files

Unpartitioned Evaluation Map (UEM) files will be the ones that will be used to
indicate which parts of the different audio files on the dataset are annotated.

22 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 23 — #35 i
i

i
i

i
i

3.1. PyAnnote Database standard

This is very useful to prevent errors in the evaluation due to the system detecting
speaker activity where there really is but has not been annotated and also errors
in the annotation RTTM files, removing any part of the annotation outside of the
annotated region set in these UEM files.

The UEM files can also be employed to use different parts of the same audio file
in different dataset partitions. For instance, a third of an extensive audio file can be
used for train, another for dev, and another for test.

UEM files contain the information of the annotated region of one audio file in each
line, are space-delimited files, and are formed by four fields [30]:

• Field 1 (File ID): The first field contains the audio file name where the speakers
are intervening, without path names or extensions.

• Field 2 (Channel ID): The second field stores the audio channel. In the case of
this work, this value will always be NA.

• Field 3 (Start time): The third field contains the start time of the annotated
region. This time will be indicated in seconds elapsed from the start of the
audio file.

• Field 4 (End time): The fourth and last field contains the end time of the
annotated region. This time will be indicated in seconds elapsed from the start
of the audio file.

A UEM file example can be seen in Table 3.2.

Table 3.2: Example of UEM file extracted from the “Debates” dataset.

File ID Channel ID Start time End time
autonomic NA 4343.000000 7994.780000

3.1.3 List files

Another simple but critical type of file in the PyAnnote Database library are list files.
These are simple text files containing a “resource” name in each line.

In this work, they will be used to give PyAnnote a list of the files that contain
each subset of the dataset (train, dev, and test).

They contain the filename of the “resource”, without any extension. By doing it
this way, PyAnnote can use the list files to locate both RTTM, UEM, and audio files
using only a list file. It is important to note that every file of the “resource” should
have the name appearing in the list file plus its corresponding extension (.rttm, .uem,
.flac, .wav, etc.).

DSIC, UPV 23

i
i

“output” — 2023/9/11 — 9:53 — page 24 — #36 i
i

i
i

i
i

Chapter 3. Datasets

3.1.4 Audio files

Another vital type of file in the PyAnnote Database library is, of course, audio files.
These will be the files later used to train the Speaker Diarization model, perform
inference and adjust hyperparameters, and test and evaluate the final system.

During the development of this work, both .flac, .aac and .wav audio files have
been used.

3.2 RTVE2018 Database - Albayzin Challenge

As mentioned in the Abstract of this master’s thesis, with the goal to adapt Speaker
Diarization (SD) systems to audiovisual production, it could be interesting to ex-
periment over the Radio y Televisión Española (RTVE) datasets that the Machine
Learning and Language Processing Group (MLLP) has available.

Specifically, the “RTVE2018 Database” used for the “Albayzin Challenge” was
available since it was used in recent MLLP projects. This database is a collection of
TV programmes from RTVE, which were broadcasted between 2015 and 2018. The
database is divided into four partitions and has two of them where Speaker Diarization
(SD) labeled data is available.

The first partition with Rich Transcription Time Marked (RTTM) files, containing
speaker diarization information, is the “dev2” partition. The second one was the
“test” partition. Their duration and composition can be seen in Tables 3.3 and 3.4,
respectively.

Table 3.3: Duration of each program of the RTVE2018 Database “dev2” partition [31].

Program Duration
Millennium 7h 42m 44s

La noche en 24H 7h 26m 41s
Total 15h 09m 25s

On the one hand, the shows of the “dev2” dataset, as shown in Table 3.3, are
“Millenium”, a debate show which discusses everyday events, and “La Noche en 24H”,
a talk show analyzing the events that happened the day it is emitted.

Table 3.4: Duration of each program of the RTVE2018 Database “test” partition [32].

Program Duration
España en Comunidad 8h 09m 32s

La Mañana 1h 36m 31s
La Tarde en 24H (Tertulia) 8h 52m 20s

Latinoamérica en 24H 4h 06m 57s
Total 22h 45m 20s

24 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 25 — #37 i
i

i
i

i
i

3.3. À Punt dataset

On the other hand, the programmes composing the “test” dataset are four: “España
en comunidad”, which offers reports and information about the Spanish autonomous
communities, “La Mañana”, which is a live magazine, “La Tarde en 24H”, a talk
show about political and economic news, and “Latinoamérica en 24H”, which provides
analysis and information focused on Ibero-America.

3.3 À Punt dataset

As it has been explained in Sections 1.2 and 1.3, this master’s thesis aligns with the
MLLP-CVMC agreement, and both parties emphasized the need to develop a SD
system, driving this work.

Therefore, the primary dataset used in this work will be one containing “À Punt”
content.

3.3.1 Manually annotating interventions

One of the most important steps when developing any Machine Learning system is
always to gather good data. In fact, this, combined with massive computing power,
is one of the principal motors of the swift evolution AI has been experimenting this
last year. It is also what differentiates big players from more modest researchers.

This work was no exception to this rule, and one of the biggest and most time-
consuming challenges this work has faced was to get annotated data.

While the Corporació Valenciana de Mitjans de Comunicació (CVMC) had a lot of
previously annotated data for developing Automatic Speech Recognition systems in
the context of the MLLP-Corporació Valenciana de Mitjans de Comunicació (CVMC)
agreement, it was not the case for Speaker Diarization data.

This reality was caused by the fact that many TV programs already had subtitles
that a team of people had manually written for many years. It was not the case for
subtitles separating the speaker interventions. Some available subtitles had colors and
looked like they could have been used for this task. However, after exploring them
at the beginning of this work, some crucial problems showed up, making their use
impossible.

In the first place, the available subtitles with colors only represented the four most
relevant speakers in each program. To be specific, the following scheme of colors:

• Yellow, for the most relevant speaker.

• Green, for the second most relevant speaker.

• Cyan, for the third most relevant speaker.

• Magenta, for the fourth most relevant speaker.

This was a problem since, as it has already been explained multiple times, Speaker
Diarization systems do not identify the speakers. For this reason, it is impossible to

DSIC, UPV 25

i
i

“output” — 2023/9/11 — 9:53 — page 26 — #38 i
i

i
i

i
i

Chapter 3. Datasets

ask a SD system to recognize these speakers only, causing a very high error rate in
inference.

Moreover, all the programs with colored subtitles had way more speakers than
available Speaker Diarization systems can handle with an acceptable error rate for
state-of-the-art systems.

For all these reasons, it was decided to invest a major part of the development
of this project into manually annotating “À Punt” programs. This was done using
an editor developed by MLLP, which allows the creation and edition of subtitles by
using a web interface.

Two different TV programs were annotated, forming two independent datasets
and one mixed dataset. These three datasets will be further explained in subsections
3.3.2, 3.3.3 and 3.3.4.

3.3.2 La Cuina de Morera

“La Cuina de Morera” is a cuisine TV program where there are two main protagonists:
The cook and a nutritionist. On top of that, usually, there are three more speakers:
A narrator, some guest who explains or advertises something for a few minutes, and
a viewer who sends an audio with some sort of doubt to the program.

In developing a cutting-edge Speaker Diarization system, “La Cuina de Morera”
presents a unique opportunity. With a diverse cast of five distinct voices, this show
provides an ideal testing ground for contemporary state-of-the-art diarization systems.

It is worth highlighting that the key speakers to identify for generating accurate
colored subtitles are primarily the two main speakers. This aspect somewhat simplifies
the task. Nonetheless, their conversational style is informal and unscripted, resulting
in a lot of overlaps. These overlapping segments pose a significant challenge for state-
of-the-art SD systems.

The dataset used for developing the Speaker Diarization is formed by three episodes
of the shows, one for train, one for dev, and another one for test, which duration can
be seen in Table 3.5.

Table 3.5: Duration of each part of the “La Cuina de Morera” dataset.

Subset Duration
train 0h 42m 10s
dev 0h 40m 18s
test 0h 43m 18s

3.3.3 Electoral debates

The second dataset intended for utilization in this work is focused on political debates.
Whenever a significant election is imminent, “À Punt” typically organizes political

debates involving the candidates. Due to the distinct and well-defined turns, these

26 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 27 — #39 i
i

i
i

i
i

3.3. À Punt dataset

debates seemed promising as a Speaker Diarization application field. These made the
debates task look very suitable for achieving notable performance.

This dataset is basically the entire electoral debate of the candidates for the presi-
dency of the “Generalitat Valenciana” for the autonomical elections celebrated on the
28th of May of 2023.

This debate showcased six candidates, each representing one of the six most in-
fluential political parties participating in the electoral process. The proceedings were
further guided by the presence of two moderators of the debate, summing up a total
of eight speakers.

This number is inside the boundaries of speakers state-of-the-art Speaker Diariza-
tion systems can handle but is close to the maximum number the literature analyzes.
It is widely acknowledged that accommodating a larger number of speakers tends to
strain the accuracy of diarization, potentially diminishing its quality.

Despite the structured conversational turns that typified this electoral debate,
the occurrence of multiple interruptions introduced instances of overlapping speech
segments also in this dataset. This, in turn, introduced a certain degree of intricacy
to the diarization task, augmenting the complexity of accurate speaker attribution.

The autonomical debate was separated into different parts to create a train, a dev,
and a test subset. The duration of these parts is shown in Table 3.6

Table 3.6: Duration of each part of the “debates” dataset.

Subset Duration
train 1h 00m 51s
dev 0h 27m 17s
test 0h 27m 17s

3.3.4 La Cuina de Morera and electoral debates mixed task
After the creation of both “La Cuina de Morera” and “debates” datasets, a specific
Speaker Diarization system could have been created using them.

This was one of the main goals. Nonetheless, it was also interesting to try creating
a more general SD system by combining both datasets and comparing it to the specific
task-adapted systems.

For these reasons, both datasets were combined, achieving a dataset with the
length shown in Table 3.7.

Table 3.7: Duration of each part of the “La Cuina de Morera” + “debates” mixed dataset.

Subset Duration
train 1h 43m 01s
dev 1h 07m 35s
test 1h 10m 35s

DSIC, UPV 27

i
i

“output” — 2023/9/11 — 9:53 — page 28 — #40 i
i

i
i

i
i

Chapter 3. Datasets

28 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 29 — #41 i
i

i
i

i
i

Chapter 4

Baseline System: The
PyAnnote pretrained

pipeline

As explained in Section 2.5.5, PyAnnote is an open-source toolkit that provides re-
searchers and developers with state-of-the-art speech processing modules, specializing
in Speaker Diarization.

Among other features, PyAnnote provides a pre-trained and preconfigured SD
pipeline, and this pipeline is the Speaker Diarization system that will be used as the
baseline in this master’s thesis.

On top of that, several modified and optimized versions of this initial pre-trained
pyannote.audio pipeline will be developed in the experiments showcased in this section
to obtain a state-of-the-art Speaker Diarization system specifically adapted to the
CVMC tasks, as stated in Section 1.4.

For both these reasons, it is a requisite to understand how the pyannote.audio
pre-trained pipeline works and its different components and parameters.

4.1 The segmentation model

The first module of the pyannote.audio Speaker Diarization pretrained pipeline is the
segmentation module presented in [33].

As explained in Section 2.5.2, the word “segmentation” has been used for describing
a wide variety of tasks across speech processing. However, when it is used inside the
field of Speaker Diarization, segmentation refers to the task of splitting a conversation
in an audio file into speaker turns. In conventional SD, the segmentation task was
usually divided into three subtasks:

• Speech Activity Detection (SAD): To detect whether there is anyone speaking
at time t or not.

29

i
i

“output” — 2023/9/11 — 9:53 — page 30 — #42 i
i

i
i

i
i

Chapter 4. Baseline System: The PyAnnote pretrained pipeline

• Speaker Change Detection: As its name suggests, to identify when one speaker
c stops speaking and another one c′ being c ̸= c′ starts doing so. Sometimes,
this subtask alone was also called “segmentation” at the time.

• Overlapped Speech Detection: The task to detect whether two speakers c and
c′ being c ̸= c′ were talking at the same time. Not every conventional Speaker
Diarization system considered this possibility; hence, not all of them performed
this subtask.

In contrast, the aforementioned paper proposed to train an end-to-end model for
performing the entire segmentation task. This segmentation model was inspired in the
original End-to-End Neural Speaker Diarization (EEND) [28, 29] approach explained
in Section 2.5.4.

The main differences with the original EEND implementation are that this model
works on 5s audio chunks at a high temporal resolution (every 16ms) and that these
chunks are passed to SincNet [23] convolutional layers, which have been explained in
Subsection 2.5.3.3. These layers maintained the original SincNet configuration except
for the first one, where the stride was set to 10.

Then four layers of Bidirectional Long Short-Term Memory (BLSTM) and two
FF-DNN layers of 128 units each work at frame-level, and the output of the second
fully connected layer is passed to the final classification layer [33, 34].

4.2 The local embedding model

After the segmentation has been performed, the next step of the pyannote.audio
pipeline is the creation of local, that is, intra-window, speaker embedding.

The embedding model can be changed, but the one provided by default by the
pipeline is the Speechbrain [35] implementation of ECAPA-TDNN [16], which archi-
tecture has been explained on Subsubsection 2.5.3.2.

This Speechbrain model has been trained on Voxceleb 1 [36] and Voxceleb 2 [37].

4.3 Global clustering

After creating the local speaker embeddings using ECAPA-TDNN, the next step
performed by the pipeline is a clustering step that aims to create global clusters from
the local speaker embeddings (see Section 2.3).

This is done using classical agglomerative hierarchical clustering with centroid
linkage. Centroid linkage is a method used to measure the distance between clusters
by computing the Euclidian distance between its centroids. The centroid of a cluster
is the average of the individual feature values of each data point in a given cluster.

30 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 31 — #43 i
i

i
i

i
i

4.4. Final Aggregation

4.4 Final Aggregation
The final step of the pyannote.audio pipeline is to join the results of the three previous
ones to get the final diarization output from which a RTTM file can be extracted.

This final aggregation consists of three, and optionally four, steps [34]:

• Frame number of speakers estimation: For each frame f the number of active
speakers Kf is estimated based on the output of the segmentation model.

• Instantaneous cluster score estimation: Each cluster is evaluated, and a score is
assigned by summing the local speaker segmentation.

• Top cluster selection: The Kf clusters with higher scores are selected, and the
frame index is converted to the temporal domain.

• Gap filling: This step is optional and consists of filling those intra-speaker gaps
that are shorter than what is considered normal.

4.5 Hyper-Parameters

4.5.1 Segmentation threshold (θ)
The segmentation threshold(θ) is the most important parameter of the pyannote.audio
pipeline.

The output of the segmentation model explained in 4.1 before applying the seg-
mentation threshold (θ) is the probability of each speaker being active at each time t
(every 16ms) of the window, being this probability a real value between 0 and 1.

The segmentation threshold θ is in the same range, θ ∈ [0, 1]. It is used to binarize
the output, keeping only those speakers whose probability goes above it at each step
of the window, assigning to those speakers the value one and to those who do not go
above θ the value zero.

4.5.2 Clustering threshold (δ)
The clustering threshold (δ) is the stopping criterion for the agglomeration process of
the applied global hierarchical agglomerative clustering explained in Subsection 4.3.

Agglomerative clustering is based on starting with each data point being its own
cluster and then iterating, finding the two closest clusters at each iteration, and
merging them. Before this merge step, it is checked if the distance between the two
clusters is greater than the clustering threshold (δ). If it is, the agglomeration process
stops.

The clustering threshold (δ) takes values in the range [0, 2].

4.5.3 Minimum cluster size
This parameter sets a number of data points below which a smaller cluster is assigned
to the most similar large cluster.

DSIC, UPV 31

i
i

“output” — 2023/9/11 — 9:53 — page 32 — #44 i
i

i
i

i
i

Chapter 4. Baseline System: The PyAnnote pretrained pipeline

The min_cluster_size can be any integer greater than one.

4.5.4 Minimum duration off (∆)
This parameter is used on the last optional step of the pipeline, explained in Subsec-
tion 4.4. Its goal is to fill intra-speaker gaps that are smaller than its value, that is,
that are considered not normal.

This parameter can have a relatively relevant effect on the diarization output if
the pre-trained pipeline is used. However, if the segmentation model is finetuned,
these gaps tend to disappear just because of the training with an in-domain dataset,
so this parameter becomes not very relevant. For this reason, and in order to adapt
to the time restrictions of this master’s thesis, this parameter will not be explored.

The min_duration_off can take any positive value.

32 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 33 — #45 i
i

i
i

i
i

Chapter 5

Experiments and results

5.1 First baseline experiment: RTVE2018 - Albayzin

To test the chosen baseline, the first approach was to use the dataset that was available
since the start of this work, without any need for manual annotation, the RTVE2018
- Albayzin dataset presented in Section 3.2.

To do this, the “test” partition of the dataset was evaluated using the pyannote.audio
pretrained pipeline.

The result of this experiment was discouraging. The Diarization Error Rate ob-
tained by the system was 6.2%. This result was too good.

The results of the Albayzin Challenge evaluation over this dataset were way
higher [32]. Even considering that the technology could have improved in the last
years, the result was breaking those of the state-of-the-art for the number of speakers
that the audio files in this dataset had.

This anomaly led to the decision of abandoning the experiments with this dataset
since it seemed to yield misleading results.

5.2 Baseline over À Punt datasets

To set a baseline for the “À Punt” datasets, the test partition of each task was pro-
cessed with pyannote.audio 2.1, using the pre-trained pipeline with the default hyper-
parameters (segmentation_threshold = 0.4442333667381752, cluster_threshold =
0.7153814381597874 and cluster_size = 15)

As a result, this experiment set the test Diarization Error Rate (DER) to beat for
each dataset, as seen in Table 5.1.

These results have been obtained executing the aforementioned pipeline in a sys-
tem with 62GB of RAM and an NVIDIA GeForce GTX 1080 Ti with 11264MiB of
vRAM.

The results presented in Table 5.1 are sensible compared with those appearing in
the literature of the state-of-the-art.

33

i
i

“output” — 2023/9/11 — 9:53 — page 34 — #46 i
i

i
i

i
i

Chapter 5. Experiments and results

Table 5.1: DER obtained by the pyannote.audio pretrained speaker diarization pipeline
over the dev and test partitions of the three “À Punt” datasets.

Dataset DER(dev) DER(test)
La Cuina de Morera 10.3% 19.2%

Debates 6.3% 3.4%
La Cuina de Morera + Debates 8.6% 13.1%

It can be clearly seen that the best result is initially obtained in the “Debates”
dataset. This can be explained because, even though the number of speakers is higher
than in “La Cuina de Morera”, speaker interventions are longer, more organized, and
less spontaneous, leading to fewer overlaps and speaker changes.

The dataset from “La Cuina de Morera” shows a worse performance. However,
this performance is still within the boundaries of what state-of-the-art considers ap-
propriate for a dataset with its challenging features.

To conclude this section, the mixed dataset: “La Cuina de Morera” + “Debates”,
shows a result that is in between the other two, as expected.

5.3 Initial pipeline hyperparameter optimization

The pyannote.audio pretrained pipelines offer several hyper-parameters that can be
adjusted to optimize the results in the inference stage.

From these parameters, three of them seem to have a remarkable importance on
the final diarization result. For this reason, this section will explore these hyper-
parameters, analyzing their implications over the dev partition of the tree “À Punt”
datasets by setting each other parameter to the default values and changing them in
an isolated way.

5.3.1 La Cuina de Morera

Our first experiments were carried out on the “La Cuina de Morera” dataset. The
result of this exploration is shown in Figure 5.1.

5.3.1.1 Segmentation Threshold

The first hyperparameter that will be explored will be the segmentation_threshold.
The Diarization Error Rate (DER) has been represented on the Y-axis depend-

ing on the segmentation_threshold (θ) on the X-axis and computed over the “dev”
partition of “La Cuina de Morera” dataset, creating a line plot that can be seen in
Subfigure 5.1a.

Taking a look at this subfigure, it can be seen that the Diarization Error Rate is
very high in lower values, starting at 23.2% when the segmentation_threshold takes
0.05 as the value. This is the expected result since setting a very low threshold will

34 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 35 — #47 i
i

i
i

i
i

5.3. Initial pipeline hyperparameter optimization

(a) Line plot of the DER over “La Cuina de
Morera” dev() dataset depending on

segmentation_threshold.

(b) Line plot of the DER over “La Cuina de
Morera” dev() dataset depending on

clustering_threshold.

(c) Line plot of the DER over “La Cuina de
Morera” dev() dataset depending on

cluster_size.

Figure 5.1: Line plot of the DER over “La Cuina de Morera” dev() dataset depending
on inference hyperparameters.

lead to the system considering as active way more speakers than those who are really
talking.

From there, the DER rapidly decreases. When arriving at the values that ap-
proach, from the lower side to the range’s ([0, 1]) center, this decrease becomes lighter
but continues until arriving at segmentation_threshold = 0.6, where we find the
lowest Diarization Error Rate, being it 9.9%.

Then, the DER starts increasing again. First, in a slow way and from the θ =

DSIC, UPV 35

i
i

“output” — 2023/9/11 — 9:53 — page 36 — #48 i
i

i
i

i
i

Chapter 5. Experiments and results

0.8 more rapidly. This trend is also expected since being too strict when selecting
the active speakers will increase the misses, that is, the errors in which the system
considers a speaker is not intervening and he is.

5.3.1.2 Clustering Threshold

To see the effect of the clustering_threshold on the Diarization Error Rate (DER),
those two values have been represented on a line plot.

The DER, computed over the “dev” partition of “La Cuina de Morera” dataset, is
represented on the vertical axis, and the clustering_threshold, of which the first one
depends, on the horizontal axis. This line plot can be seen in Subfigure 5.1b.

The Diarization Error Rate over the dev part of the dataset stars being very high
(DER = 45.2%), and continues being very high until the cluster size takes a 0.45 value
(included). Selecting a very low distance where the agglomeration process stops can
leave the process with too many clusters.

From there, the DER decreases extremely quickly, lowering to 10.7% in only two
steps. This is probably caused by the fact that most points that should belong in the
same clusters are separated at a distance near this value.

Then the DER becomes very stable until clustering_threshold = 0.85, with the
lowest value within the clustering_threshold range being 10.06%.

At clustering_threshold = 0.9 the Diarization Error Rate takes a considerable
step up, reaching the value of 43%. This is believed to be caused by the fact that points
that should belong to different clusters are not further than this distance between
them.

5.3.1.3 Cluster Size

The last parameter that will be analyzed in a line plot for “La Cuina de Morera” “dev”
dataset is the clustering_size. This line plot can be seen in Figure 5.1c.

The analysis will start at clustering_size = 2 and end at clustering_size = 30,
two times the default value clustering_size = 15.

The Diarization Error Rate (DER), is represented on the Y-axis, opposed to the
cluster_size, on the X-Axis.

From the starting point, the DER decreases quickly and constantly until arriving
at a value of 10.3% when clustering_threshold = 11. This value keeps constant until
clustering_threshold = 13.

After that value, the Diarization Error Rate value takes another significant step
down, arriving at 10.1%, and after that, it keeps nearly constant.

The constant decrease in the line indicates that the vast majority of clusters of
10 points or less do not represent speakers correctly. The fact that the value keeps
constant from 14 means that the incorrect clusters are smaller than this number, and
the correct ones are bigger than 30.

36 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 37 — #49 i
i

i
i

i
i

5.3. Initial pipeline hyperparameter optimization

5.3.2 Electoral debate

The second dataset in which hyperparameter exploration will be performed will be
the “debates” dataset. The result of this exploration is shown in Figure 5.2.

(a) Line plot of the DER over “debates”
dev() dataset depending on

segmentation_threshold.

(b) Line plot of the DER over “debates”
dev() dataset depending on

clustering_threshold.

(c) Line plot of the DER over “debates”
dev() dataset depending on cluster_size.

Figure 5.2: Line plot of the DER over “debates” dev() dataset depending on inference
hyperparameters.

DSIC, UPV 37

i
i

“output” — 2023/9/11 — 9:53 — page 38 — #50 i
i

i
i

i
i

Chapter 5. Experiments and results

5.3.2.1 Segmentation Threshold

First, Subfigure 5.2a shows the evolution of DER (vertical axis) with respect to the
Segmentation Threshold parameter (horizontal axis), computed over the “dev” set of
“Debats”.

Examining it, a trend in the DER values as the segmentation threshold changes
can be rapidly noticed. Starting at an initial segmentation threshold of 0.05, the DER
is notably high, reaching a value of 42.6%. Again, this is the expected behavior since
a very low segmentation threshold is way too permissive, and any hint of intervention
is taken as an intervention, when the vast majority of the time, such minor signs are
misleading.

However, a significant reduction in Diarization Error Rate is witnessed as the
segmentation threshold increases, indicating improved diarization performance. This
reduction continues as we incrementally raise the segmentation threshold to 0.4, where
the Diarization Error Rate stabilizes at around 6%.

Notably, the Diarization Error Rate remains relatively consistent in this range,
with a very slight downtrend, reaching the minimum DER at segmentationthreshold =
0.8, where the DER is 5.5%, indicating a robust performance plateau. However, a
slight upward trend in Diarization Error Rate can be observed as the segmentation
threshold is pushed further to the higher end. Again, this behavior shows the fact
that a very high segmentation threshold causes the rise of missed interventions.

5.3.2.2 Clustering Threshold

The line plot confronting the clustering threshold (horizontal axis) versus the Diariza-
tion Error Rate (vertical axis) over the “Debates” dev dataset, as we have also seen
with the “La Cuina de Morera” dataset in Subfigure 5.1b, starts in a very high po-
sition, at 84.7% in this case, and keeps constant until clustering_threshold = 0.25.
Again, this shows that points separated less than this value should belong to the same
cluster.

When the clustering threshold reaches the 0.3 value, the Diarization Error Rate
(DER) starts a very steep fall until reaching clustering_threshold = 0.4. After that,
a slight increase is seen at clustering_threshold = 0.45 breaking the downtrend, but
this is only an exception since this trend continues after this data point until reaching
the clustering threshold of 0.6 where the DER is the lowest one in the plot, 5.6%. The
slight increase in DER during the fall can be attributed to the fact that stopping there
still stops agglomerating clusters that are together in the optimal configuration but
joins some clusters that, in fact, are different and were not joined with the previously
tried distance.

To end, at clustering_threshold = 0.85, the DER suddenly reaches again over
80%, and that plateau continues until the end of the range. Again, this can be at-
tributed to the fact that clusters that should not be together have a smaller separation
than this value.

38 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 39 — #51 i
i

i
i

i
i

5.3. Initial pipeline hyperparameter optimization

5.3.2.3 Cluster Size

Taking a look at the line plot of the Diarization Error Rate (Y-axis) versus the
cluster_size (X-axis) over the “Debates” “dev” dataset, plotted at Subfigure 5.2c, it
can easily be seen that, again, the DER starts at a pretty high value compared to the
one on the rest of the parameter range. However, in this case, this high value is only
7.35%, which is low compared to the results over the “La Cuina de Morera” dataset,
which line plots can be seen in Figure 5.1. Still, the reason behind this is expected to
be the same: The clusters with smaller sizes are, in general, not correct as standalone
speaker clusters.

From that point, the Diarization Error Rate decreases every time the cluster size
increases until reaching 13, where it seems to stabilize, getting a very similar value
around 5.7%. Then, at clustering_size = 24 it takes a little step down again and
stabilizes until the end of the studied range around DER = 5.5%. This shows that
processing this dataset, bigger incorrect clusters appear, some of them even with 23
points, that should be joined with the bigger ones.

5.3.3 La Cuina de Morera + Electoral debate

5.3.3.1 Segmentation Threshold

In this last segmentation_threshold exploration, the Diarization Error Rate (DER)
is presented through another line plot on the vertical axis, depicting its relationship
with various segmentation thresholds across the “La Cuina de Morera” + “Debates”
“dev” dataset in the vertical axis. The plot is displayed in Subfigure 5.3a.

Upon examination of the subfigure, a discernible trend is observed in the Di-
arization Error Rate values as the segmentation threshold is adjusted. At the lowest
threshold of 0.05, a substantial elevation in DER is noted, peaking at 31.3%. Again,
we see that, like in the two previously analyzed datasets, setting a very permissive
threshold causes a lot of false alarm errors.

However, an appreciable reduction in DER becomes evident as the segmentation
threshold is incrementally raised. A significant decrease occurs when the threshold
reaches 0.15, with the DER plummeting to a mere 11.6%

Nevertheless, an upward trend in DER is observed as the segmentation threshold
is pushed beyond this optimal range. At a threshold of 0.9, the DER breaks back the
9% barrier and further increases to 11.87% at 0.95, probably due to increased missed
interventions.

5.3.3.2 Clustering Threshold

Regarding the clustering threshold for this combined “dev” dataset, the line plot
exploring its range of possible values is shown on the horizontal axis of Subfigure
5.3b.

It can be seen again that the Diarization Error Rate, represented on the vertical
axis, for the first few points starts at a very high value. If a closer look is taken, it
can be figured out that the value that appears in this case, 61.8%, is a value between

DSIC, UPV 39

i
i

“output” — 2023/9/11 — 9:53 — page 40 — #52 i
i

i
i

i
i

Chapter 5. Experiments and results

(a) Line plot of the DER over “La Cuina de
Morera” + “debates” dev() dataset depending

on segmentation_threshold.

(b) Line plot of the DER over “La Cuina de
Morera” + “debates” dev() dataset depending

on clustering_threshold.

(c) Line plot of the DER over “La Cuina de
Morera” + “debates” ’ dev() dataset

depending on cluster_size.

Figure 5.3: Line plot of the DER over “La Cuina de Morera” + “debates” dev()
dataset depending on inference hyperparameters.

the ones seen in the two separate datasets, as it can be seen in subfigures 5.1b and
5.2b.

At clustering_threshold = 0.3 the characteristic quick fall starts, stopping at
0.45 to show a peak that was also seen in 5.2b, and then continuing until reaching
the clustering threshold of 0.55 when the Diarization Error Rate goes under 10% for
the first time. After that, the lowest value at 0.75 with a 8.2% DER. Finally, the
clustering threshold goes up again, reaching the initial values, and keeps at that level

40 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 41 — #53 i
i

i
i

i
i

5.4. Finetuning the segmentation model

for all the remaining range values.
It can be clearly seen that the behavior of the line is a combination between those

shown in Figures 5.1b and 5.2b, and, hence, can be explained with the same reasons.

5.3.3.3 Cluster Size

This last line plot of the first hyperparameter exploration, which can be seen in
Subfigure 5.3c, shows the cluster size on the horizontal axis and the DER on the
vertical axis. It has been computed over the combined “dev” dataset of “La Cuina de
Morera” + “Debates”, and it is the one among those representing the cluster size with
more plateaus appearing.

As always, when analyzing this parameter, the Diarization Error Rate starts being
high and quickly and progressively decreases until reaching a plateau.

In this case, the first reached plateau is tiny, consisting of only two data points, the
ones in which the cluster size is 11 and 12, giving a DER of 8.4%. Then, it takes two
points to reach the next plateau, which is the bigger one, starting at cluster_size = 15
and ending at cluster_size = 23. At 24, the value of the Diarization Error Rate
decreases slightly again, reaching the plateau of the lowest DER, 8.2%.

The plateaus shown are a combination of the ones shown in the two previous
sections and can be explained by the same reasons.

5.4 Finetuning the segmentation model

The segmentation model can be finetuned in an isolated way, and this can be done
even with a small quantity of training data. By doing this, the segmentation explained
in Subsection 4.1 is expected to improve, reducing the Diarization Error Rate (DER).

Moreover, finetuning the segmentation model of the pyannote.audio pipeline makes
the false gaps between intra-speaker turns nearly disappear, making exploring the
minimum duration off hyperparameter (∆) unnecessary, as explained in Subsubsec-
tion 4.5.4.

For these reasons, the segmentation model will be finetuned using a variety of
batch sizes and learning rate values. These values will be a few ones that are close to
the ones recommended by the pyannote.database, since they are supposed to be the
best for this architecture.

The finetuning has been performed for 30 iterations with early stopping set to a
patience of 10.

The used partitions of the datasets will be the “train” partition to finetune the
model and the “dev” partition to determine whether to stop and the best model
generated among those created for each iteration.

5.4.1 La Cuina de Morera

The finetuning of the segmentation model for the “La Cuina de Morera” dataset has
been done using three different values of learning rate and another three values of

DSIC, UPV 41

i
i

“output” — 2023/9/11 — 9:53 — page 42 — #54 i
i

i
i

i
i

Chapter 5. Experiments and results

Figure 5.4: Heatmap of DER over “La Cuina de Morera” dev dataset depending on
Learning Rate and Batch Size

batch size. By performing a grid search, the total number of finetuned models has
been nine, which have been separately evaluated over the dev partition of the dataset.

The result of these evaluations is shown on the heat map that can be visualized
in Figure 5.4, with the learning rate on the horizontal axis and the batch size on the
vertical one.

By looking at this figure, it can be seen that no clear trend can be appreciated. The
models which have been finetuned with a batch size of 32 show a stable Diarization
Error Rate of 9.50%. Those trained with a batch size of 16, the smaller one tried,
delivered a relatively lousy performance with values of 9.60% and 9.70%.

The best result appears when training the model with a batch size of 64. This,
combined with a 0.0001 learning rate, achieves a DER of only 9.30%. However, the
batch size of 64 seems to be less stable, having also the worst result when combined
with the lowest learning rate and, when combined with the highest learning rate, a
result equal to those of batch size 32.

5.4.2 Electoral debate

The second finetuning of the segmentation model has been done using the “Debates”
dataset, and the nine finetuning processes performed, with the same parameters ap-
plied to “La Cuina de Morera” dataset, have produced the results shown in 5.5, for
the “dev” partition. The learning rate is represented on the X-axis, and the batch size
is on the Y-axis.

The majority of the values of this heatmap are around 6% Diarization Error Rate,
appearing this value three times, 5.9% three more times, and 6.1% two times, which
are the worst values of DER over this dataset, and appear for the 32 a 64 batch sizes

42 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 43 — #55 i
i

i
i

i
i

5.5. Hyper-parameter tuning in inference

Figure 5.5: Heatmap of DER over “Debates” dev dataset depending on Learning Rate
and Batch Size

combined with the 5e-05 learning rate.
The best value is the one obtained when finetuning the segmentation model with

a batch size of 16 and a learning rate of 0.0001, and it is a Diarization Error Rate of
5.7%.

5.4.3 La Cuina de Morera + Electoral debate

The last finetuning was performed with both “La Cuina de Morera” and “Debates”
datasets combined. Again, it has been evaluated over the “dev” partition and repre-
sented on a heat map, with the learning rate on the horizontal axis and the batch size
on the vertical one.

Figure 5.6 shows that finetuning the model with a batch size of 16 does not bring
the best results. Every value obtained using this batch size exceeds 8% Diarization
Error Rate.

Once the batch size is increased to 32, the first DER not greater than 8% appears,
showing precisely that 8% as value when the learning rate is set to 5e-05.

To end, the greater batch size tried, 64, yields the best results. Those improve
when the learning rate increases, starting at 8.10% DER when it is 5e-05, bringing
the first value under 8% when the learning rate is 0.0001 and finally giving the best
result (of 7.8% Diarization Error Rate) with the biggest batch size, 0.0005.

5.5 Hyper-parameter tuning in inference
The last step to find the best Speaker Diarization system for each of the three analyzed
datasets is to adapt the hyper-parameters of the finetuned pipeline to the specific

DSIC, UPV 43

i
i

“output” — 2023/9/11 — 9:53 — page 44 — #56 i
i

i
i

i
i

Chapter 5. Experiments and results

Figure 5.6: Heatmap of DER over “La Cuina de Morera” + “Debates” dev dataset
depending on Learning Rate and Batch Size

features of each dataset in order to reduce the Diarization Error Rate (DER) as much
as possible, taking the development subset as reference.

As it has already been explained in Subsection 4.5, there are two hyperparameters
that, when correctly tuned, can reduce the DER of the diarization system in a very
relevant way.

These are the segmentation threshold and the clustering size, in this order. For
this reason, they will be analyzed using a grid search process, and the different com-
binations of values will be shown in one heatmap per dataset. After that, the data
plotted in them will be commented.

To end, the clustering size has been explored over the finetuned models, and the
best values for the segmentation and clustering threshold.

5.5.1 La Cuina de Morera

The hyper-parameter tuning has been performed to the pipeline with the segmentation
model finetuned for “La Cuina de Morera” dataset. It can be seen in Figure 5.7.

The grid search of the segmentation threshold and clustering threshold has been
done within the best-performing ranges discovered for this dataset in Subsection 5.3.1.
Specifically, for both parameters, the range has been set by choosing the values that
yielded less than 11% Diarization Error Rate (DER). These ranges are:

• segmentation_threshold ∈ [0.35, 0.8]

• clustering_trheshold ∈ [0.55, 0.85]

Looking at the heatmap, where the segmentation threshold and clustering thresh-
old have been represented on the horizonal and vertical axes respectively, it can be

44 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 45 — #57 i
i

i
i

i
i

5.5. Hyper-parameter tuning in inference

Figure 5.7: Heatmap of DER over “La Cuina de Morera” dev dataset depending on
segmentation and clustering threshold used in inference with its finetuned segmentation

model

easily noted that the worst results generally appear for the lowest clustering threshold,
0.55.

It is also essential to notice a clear trend when changing the segmentation thresh-
old. The best values for this hyperparameter are those close to the center of the
exploration. One column excels over the other ones, the one which represents the
segmentation threshold equal to 0.55.

In that column, every value is around 8.5%, and the best value of that column
is also the lowest value obtained in the experiment and is the product of choosing a
clustering threshold of 0.6. However, the difference with other values on the column
is so slight that nearly every system on it could perform well.

5.5.2 Electoral debate

The second heatmap exploring hyper-parameters in a grid search has been performed
over the pipeline with its segmentation model trained with the “Debates” dataset. It
can be seen in Figure 5.8. The segmentation threshold has been represented on the
X-axis, and the clustering threshold is on the Y-axis.

The selected range for the grid search exploration gathers the values that produced

DSIC, UPV 45

i
i

“output” — 2023/9/11 — 9:53 — page 46 — #58 i
i

i
i

i
i

Chapter 5. Experiments and results

Figure 5.8: Heatmap of DER over “Debates” dev dataset depending on segmentation and
clustering threshold used in inference with its finetuned segmentation model

a Diarization Error Rate over the development subset under 6%. Those values are:

• segmentation_threshold ∈ [0.5, 0.85]

• clustering_trheshold ∈ [0.6, 0.8]

This heatmap shares some features with the one obtained in the previous sub-
section for “La Cuina de Morera” system. In the first place, the lower value for the
segmentation threshold, in this case 0.6, shows the worst results. Secondly, there is a
column that concentrates on the best results.

However, in this case, this column is not in the center of the exploration range
but is skewed to the higher part of it. This column is the one where the segmentation
threshold is 0.75.

It is also worth noting that there is more than one single best value. Two segmenta-
tion and clustering threshold combinations give the same lowest DER: the segmenta-
tion threshold in the column with the best results (segmentation_threshold = 0.75)
and the clustering threshold set to either 0.7 or 0.75. Again, there are other values
around 5.1%, which could have been splendid systems since the difference is very
small.

46 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 47 — #59 i
i

i
i

i
i

5.5. Hyper-parameter tuning in inference

5.5.3 La Cuina de Morera + Electoral debate

Figure 5.9: Heatmap of DER over “La Cuina de Morera” + “Debates” dev dataset
depending on segmentation and clustering threshold used in inference with its finetuned

segmentation model

The last grid search over the inference hyperparameters has been performed over
“La Cuina de Morera” + “Debates” combined dataset. The heatmap with its result is
shown in Figure 5.9. As always, the segmentation threshold appears on the horizontal
axis and the clustering threshold on the vertical one, and the DER has been computed
over the “dev” part of the dataset.

The range for the grid search, in this case, is formed by the values that produced
a Diarization Error Rate over the development subset under 9%. Those values are:

• segmentation_threshold ∈ [0.35, 0.85]

• clustering_trheshold ∈ [0.6, 0.8]

In this heatmap, the worst values are not concentrated in one clustering threshold
row like in the previous systems but in a segmentation threshold column. Specifically,
in the one with the biggest value for this hyperparameter, this value 0.85.

Like in the two previous datasets, there is a column that sets a segmentation
threshold as the best one, showing a relatively good performance for nearly each value

DSIC, UPV 47

i
i

“output” — 2023/9/11 — 9:53 — page 48 — #60 i
i

i
i

i
i

Chapter 5. Experiments and results

of the clustering threshold. In this case, the segmentation threshold for achieving this
is 0.6.

In this column, the three best values, which are a tie, appear for the clustering
thresholds of 0.6, 0.7, and 0.75. As well as in the two previous sections where a
hyperparameter grid search is performed, there are systems around this value which
were also valid candidates to be a final system, with DERs near 7.1%.

5.6 Final systems
To conclude the experimentation phase, it is essential to try the developed systems
over the test partitions of each dataset to see whether the improvements observed in
the dev partition while developing the systems reflect, as expected, in better results
also for this test partition.

To do that, three Python scripts were developed to use each dataset’s respective
finetuned segmentation model and the segmentation and clustering threshold values
found in Section 5.5. The cluster size was set to 30 as this value proved to be consis-
tently excellent in Section 5.3.

Table 5.2: DER obtained by the pyannote.audio speaker diarization pipeline over the test
partition of the three “À Punt” datasets, before (baseline), and after (final) adapting it to
each one by finetuning the segmentation model and tuning its inference hyper-parameters.

Dataset Baseline DER(test) Final DER(test)
La Cuina de Morera 19.2% 10.1%

Debates 3.4% 2.4%
La Cuina de Morera + Debates 13.1% 7.2%

In Table 5.2, the Diarization Error Rates of the three baseline systems are com-
pared to the DERs of the final improved systems.

In the “La Cuina de Morera” dataset test split, the DER has reduced from 19.2%
to 10.09%, which implies a relative improvement of 47% of the error rate.

Following, in the “Debates” test subset, the Diarization Error Rate has seen a
relative improvement of 29% by going from a DER of 3.4% to one of only 2.4%.

To finish, the “La Cuina de Morera” - “Debates” mixed dataset had a 13.1% Di-
arization Error Rate when processed by the baseline system. After finetuning its
segmentation model and its inference hyperparameters, it now yields a DER of only
7.2%. This means a relative improvement of 45%.

48 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 49 — #61 i
i

i
i

i
i

Chapter 6

Conclusions and future
work

In this chapter, different parts of this master’s thesis will be reviewed and summa-
rized to obtain conclusions. The goals set in Section 1.4 will be taken into account,
and the results obtained in Chapter 5 will be analyzed in order to determine if the
aforementioned goals have been accomplished. To close this chapter, some interesting
future work will be proposed, taking the systems developed in this work and their
result as the foundation.

If one thing is vital in this chapter, it is to remark that the two goals set in Section
1.4 have been both achieved.

The first goal (“Implementing a baseline system from the state of the art and
applying it to the MLLP-CVMC context”) was accomplished on Chapter 4. In this
section, the pyannote.audio pre-trained pipeline was selected as the baseline system.
This pipeline uses state-of-the-art technologies, as established on the goal, such as the
EEND diarization models [28, 29, 33] and ECAPA-TDNN embeddings [16] (Explained
in Subsection 2.5.4 and Subsubsection 2.5.3.2 respectively). The baseline was used
to process the different datasets that were relevant to the MLLP-CVMC agreement,
and from that, the Diarization Error Rate to beat for each dataset was set in Table
5.1.

Regarding the second goal: “Adapting the baseline system to different tasks of the
MLLP-CVMC context in order to get improved systems with better results”, many
adaptations have been performed to the original system with the three datasets of
the MLLP-CVMC context.

In Section 5.3, a general overview and exploration of the hyperparameters have
been performed to later adapt the pipeline.audio to the different “À Punt” datasets.

After that, a first adaptation of the baseline to the desired context has been done
by finetuning the segmentation model of the pyannote.audio pretrained pipeline.

To conclude the system’s adaptation, a more specific tuning of the most relevant
hyperparameters has been executed for every previously adapted system, employing
a grid search involving the segmentation and clustering threshold.

49

i
i

“output” — 2023/9/11 — 9:53 — page 50 — #62 i
i

i
i

i
i

Chapter 6. Conclusions and future work

With these three steps, it can be claimed that the baseline has been adapted to
the different tasks of the MLLP-CVMC context as the goal told.

Whether these adaptations led to improved systems with better Diarization Error
Rates, this has been clarified in Section 5.6. In that section, it has been seen that the
adaptations for each dataset have brought relevant reductions of their DERs. The
systems adapted to “La Cuina de Morera”, “Debates”, and “La Cuina de Morera” +
“Debates” datasets caused relative improvements of, respectively 47%, 29%, 45% as
it can be seen in Table 5.2.

Once the goals have been reviewed and marked as achieved, some proposals for
future work can be made.

It will be really interesting to try to improve the effect of finetuning the segmen-
tation model, which seems to still have some potential to extract. As it has been
mentioned multiple times in this document, one of the most time-consuming tasks
performed in this work was data annotation to obtain the datasets. However, it is
likely that labeling more videos of each program to use as training and to make the de-
velopment and test sets even more representative of any other episode of the program
will unlock the full potential of finetuning the segmentation model.

Going a step further, if the quantity of labeled data gets to be big enough, the
finetuning of the embedding ECAPA-TDNN [16] can also be tried. To show improve-
ments, this process needs way more data than was available for the development of
this master’s thesis.

Another thrilling task to propose as future work is to explore the potential of
transformers [38] in the Speaker Diarization field.

As it is widely known in the Machine Learning research community, transform-
ers [38] have brought a huge revolution to many application fields such as Machine
Translation, Automatic Speech Recognition or Computer Vision.

However, in the Speaker Diarization field, despite the fact that a light use of
attention and Self-Attention has been done, and has proved to improve some specific
models used in SD such as End-to-End Neural Speaker Diarization [29] or ECAPA-
TDNN [16]; transformers [38] potential has not been extensively explored.

For this reason, it will be worth investing time in researching the application of
this technology to the Speaker Diarization field. Moreover, its results on Automatic
Speech Recognition, which, as seen in Chapter 2, is a field that has many features
similar to those found in SD, have been excellent and a significant improvement over
previous systems. This can lead to thinking that a similar improvement can be seen
in Speaker Diarization if enough research is done.

The use of transformers [38] seems to have a vast potential to create embeddings
that encapsulate information in an outstanding way. This could be a very attractive
alternative to the ECAPA-TDNN embeddings if developed.

Also, in the segmentation model, to extract the features from raw waveforms,
instead of using SincNet [23], as the pyannote.audio segmentation model does at the
moment, transformers [38] can be tried.

In conclusion, exploring transformers [38] is an exciting task to set as future work.
It must be noted that this work is only focused on offline Speaker Diarization;

that is, the developed systems need an audio file as input and can not work with live

50 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 51 — #63 i
i

i
i

i
i

audio streaming. Online SD systems are a challenging but very interesting field of
research for the audiovisual industry. Taking this into account, another interesting
future work can be trying to develop online SD systems.

DSIC, UPV 51

i
i

“output” — 2023/9/11 — 9:53 — page 52 — #64 i
i

i
i

i
i

Chapter 6. Conclusions and future work

52 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 53 — #65 i
i

i
i

i
i

Bibliography

[1] Tae Jin Park, Naoyuki Kanda, Dimitrios Dimitriadis, Kyu J. Han, Shinji Watan-
abe, and Shrikanth Narayanan. A Review of Speaker Diarization: Recent Ad-
vances with Deep Learning, November 2021.

[2] Shelly Chadha, Kaloyan Kamenov, and Alarcos Cieza. The world report on
hearing, 2021. Bulletin of the World Health Organization, 99(4):242–242A, April
2021.

[3] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT
Press, 2012.

[4] T.M. Mitchell. Machine Learning. McGraw-Hill International Editions. McGraw-
Hill, 1997.

[5] Kevin P. Murphy. Probabilistic Machine Learning: An Introduction. The MIT
Press, 2022.

[6] F. Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386–408, November
1958.

[7] Johannes Lederer. Activation Functions in Artificial Neural Networks: A Sys-
tematic Overview, January 2021.

[8] Alex Sherstinsky. Fundamentals of Recurrent Neural Network (RNN) and
Long Short-Term Memory (LSTM) Network. Physica D: Nonlinear Phenom-
ena, 404:132306, March 2020.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735–1780, November 1997.

[10] Anupama Ray, Sai Rajeswar, and Santanu Chaudhury. Text recognition using
deep BLSTM networks. In 2015 Eighth International Conference on Advances
in Pattern Recognition (ICAPR), pages 1–6, January 2015.

[11] Владимир Иосифович Левенштейн. Двоичные коды с исправлением
выпадений, вставок и замещений символов. In Доклады Академии наук, vol-
ume 163, pages 845–848. Российская академия наук, 1965.

[12] Jonathan G. Fiscus, Jerome Ajot, Martial Michel, and John S. Garofolo. The
Rich Transcription 2006 Spring Meeting Recognition Evaluation. In Steve Re-
nals, Samy Bengio, and Jonathan G. Fiscus, editors, Machine Learning for Mul-
timodal Interaction, Lecture Notes in Computer Science, pages 309–322, Berlin,
Heidelberg, 2006. Springer.

53

i
i

“output” — 2023/9/11 — 9:53 — page 54 — #66 i
i

i
i

i
i

Bibliography

[13] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and Sanjeev
Khudanpur. X-Vectors: Robust DNN Embeddings for Speaker Recognition. In
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5329–5333, April 2018.

[14] David Snyder, Daniel Garcia-Romero, Daniel Povey, and Sanjeev Khudanpur.
Deep Neural Network Embeddings for Text-Independent Speaker Verification.
pages 999–1003, August 2017.

[15] Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudanpur. A time delay neural
network architecture for efficient modeling of long temporal contexts. pages 3214–
3218, September 2015.

[16] Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. ECAPA-TDNN:
Emphasized channel attention, propagation and aggregation in TDNN based
speaker verification. In Interspeech 2020. ISCA, October 2020.

[17] David Snyder, Daniel Garcia-Romero, Gregory Sell, Alan McCree, Daniel Povey,
and Sanjeev Khudanpur. Speaker recognition for multi-speaker conversations
using X-vectors. In ICASSP 2019 - 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5796–5800, 2019.

[18] Daniel Garcia-Romero, Alan McCree, David Snyder, and Gregory Sell. Jhu-
HLTCOE system for the voxsrc speaker recognition challenge. ICASSP 2020 -
2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 7559–7563, 2020.

[19] Hossein Zeinali, Shuai Wang, Anna Silnova, Pavel Matějka, and Oldřich Plchot.
BUT system description to VoxCeleb speaker recognition challenge 2019, 2019.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition, 2015.

[21] Koji Okabe, Takafumi Koshinaka, and Koichi Shinoda. Attentive statistics pool-
ing for deep speaker embedding. In Interspeech 2018. ISCA, September 2018.

[22] Yingke Zhu, Tom Ko, David Snyder, Brian Mak, and Daniel Povey. Self-attentive
speaker embeddings for text-independent speaker verification. In Proc. Inter-
speech 2018, pages 3573–3577, 2018.

[23] Mirco Ravanelli and Yoshua Bengio. Speaker Recognition from Raw Waveform
with SincNet, August 2019.

[24] Dimitri Palaz, Mathew Magimai-Doss, and Ronan Collobert. Analysis of CNN-
Based Speech Recognition System Using Raw Speech as Input.

[25] George Trigeorgis, Fabien Ringeval, Raymond Brueckner, Erik Marchi, Mi-
halis A. Nicolaou, Björn Schuller, and Stefanos Zafeiriou. Adieu features? End-
to-end speech emotion recognition using a deep convolutional recurrent network.

54 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 55 — #67 i
i

i
i

i
i

Bibliography

In 2016 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 5200–5204, March 2016.

[26] Pegah Ghahremani, Vimal Manohar, Daniel Povey, and Sanjeev Khudanpur.
Acoustic Modelling from the Signal Domain Using CNNs. In Interspeech 2016,
pages 3434–3438. ISCA, September 2016.

[27] Jee-Weon Jung, Hee-Soo Heo, Il-Ho Yang, Hye-Jin Shim, and Ha-Jin Yu. A
Complete End-to-End Speaker Verification System Using Deep Neural Networks:
From Raw Signals to Verification Result. In 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 5349–5353, April
2018.

[28] Yusuke Fujita, Naoyuki Kanda, Shota Horiguchi, Kenji Nagamatsu, and Shinji
Watanabe. End-to-End Neural Speaker Diarization with Permutation-Free Ob-
jectives, September 2019.

[29] Yusuke Fujita, Naoyuki Kanda, Shota Horiguchi, Yawen Xue, Kenji Nagamatsu,
and Shinji Watanabe. End-to-end neural speaker diarization with self-attention,
2019.

[30] David Van Leeuwen and Jos Bouten. The NFI/TNO Forensic Speaker Recogni-
tion Evaluation Plan.

[31] Eduardo Lleida, Alfonso Ortega, Antonio Miguel, Virginia Bazan, Manuel
Gomez, and Alberto de Prada. RTVE2018 Database Description. 2018.

[32] Eduardo Lleida, Alfonso Ortega, Antonio Miguel, Virginia Bazán-Gil, Carmen
Pérez, Manuel Gómez, and Alberto de Prada. Albayzin 2018 Evaluation: The
IberSpeech-RTVE Challenge on Speech Technologies for Spanish Broadcast Me-
dia. Applied Sciences, 9(24):5412, January 2019. Number: 24 Publisher: Multi-
disciplinary Digital Publishing Institute.

[33] Hervé Bredin and Antoine Laurent. End-to-end speaker segmentation for overlap-
aware resegmentation, 2021.

[34] Herve Bredin. PYANNOTE.AUDIO 2.1 SPEAKER DIARIZATION PIPELINE:
PRINCIPLE, BENCHMARK, AND RECIPE.

[35] Mirco Ravanelli, Titouan Parcollet, Peter Plantinga, Aku Rouhe, Samuele Cor-
nell, Loren Lugosch, Cem Subakan, Nauman Dawalatabad, Abdelwahab Heba,
Jianyuan Zhong, et al. SpeechBrain: A general-purpose speech toolkit, 2021.

[36] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. VoxCeleb: A large-
scale speaker identification dataset. In Interspeech 2017. ISCA, August 2017.

[37] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman. VoxCeleb2: Deep
speaker recognition. In Interspeech 2018. ISCA, September 2018.

DSIC, UPV 55

i
i

“output” — 2023/9/11 — 9:53 — page 56 — #68 i
i

i
i

i
i

Bibliography

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need, December 2017.

56 DSIC, UPV

i
i

“output” — 2023/9/11 — 9:53 — page 57 — #69 i
i

i
i

i
i

List of Figures

1.1 Example of output timeline, representing the interventions of three
speakers: A(), B() and C(). 4

2.1 Perceptron diagram . 10
2.2 Example of Feed Forward Neural Network with an input layer of three

neurons, two hidden layers of five neurons each and an output layer
with one neuron. 10

2.3 Convolution example over 2D data. 12
2.4 Example of clustering using k-means over two dimensions. 12
2.5 Conventional speaker diarization system [1]. 16
2.6 Architecture of ECAPA-TDNN and its SE-Res2Block [16]. 18

5.1 Line plot of the DER over “La Cuina de Morera” dev() dataset
depending on inference hyperparameters. 35

5.2 Line plot of the DER over “debates” dev() dataset depending on
inference hyperparameters. 37

5.3 Line plot of the DER over “La Cuina de Morera” + “debates” dev()
dataset depending on inference hyperparameters. 40

5.4 Heatmap of DER over “La Cuina de Morera” dev dataset depending
on Learning Rate and Batch Size . 42

5.5 Heatmap of DER over “Debates” dev dataset depending on Learning
Rate and Batch Size . 43

5.6 Heatmap of DER over “La Cuina de Morera” + “Debates” dev dataset
depending on Learning Rate and Batch Size 44

5.7 Heatmap of DER over “La Cuina de Morera” dev dataset depending
on segmentation and clustering threshold used in inference with its
finetuned segmentation model . 45

5.8 Heatmap of DER over “Debates” dev dataset depending on segmen-
tation and clustering threshold used in inference with its finetuned
segmentation model . 46

5.9 Heatmap of DER over “La Cuina de Morera” + “Debates” dev dataset
depending on segmentation and clustering threshold used in inference
with its finetuned segmentation model 47

57

i
i

“output” — 2023/9/11 — 9:53 — page 58 — #70 i
i

i
i

i
i

i
i

“output” — 2023/9/11 — 9:53 — page 59 — #71 i
i

i
i

i
i

List of Tables

2.1 The original embedding DNN architecture. x-vectors are extracted at
layer segment6, before the nonlinearity. The N in the softmax layer
corresponds to the number of training speakers [13]. 16

3.1 Exemple of RTTM file extracted from the “Debates” dataset, showing
five speaker interventions. 22

3.2 Example of UEM file extracted from the “Debates” dataset. 23
3.3 Duration of each program of the RTVE2018 Database “dev2” parti-

tion [31]. 24
3.4 Duration of each program of the RTVE2018 Database “test” partition [32]. 24
3.5 Duration of each part of the “La Cuina de Morera” dataset. 26
3.6 Duration of each part of the “debates” dataset. 27
3.7 Duration of each part of the “La Cuina de Morera” + “debates” mixed

dataset. 27

5.1 DER obtained by the pyannote.audio pretrained speaker diarization
pipeline over the dev and test partitions of the three “À Punt” datasets. 34

5.2 DER obtained by the pyannote.audio speaker diarization pipeline over
the test partition of the three “À Punt” datasets, before (baseline), and
after (final) adapting it to each one by finetuning the segmentation
model and tuning its inference hyper-parameters. 48

59

i
i

“output” — 2023/9/11 — 9:53 — page 60 — #72 i
i

i
i

i
i

i
i

“output” — 2023/9/11 — 9:53 — page 61 — #73 i
i

i
i

i
i

Agraı̈ments

Com la gran majoria de vegades que he d’agrair coses a gent, en primer lloc, vull
agrair als meus pares. El seu suport i l’educació que m’han donat tota la meua vida
son fonament indispensable de tot allò que aconseguisc. Arribar a aquest punt de la
meua vida acadèmica no només no és excepció, és un dels màxims exponents.

També vull agrair a tota la gent del MLLP. Ells han creat un ambient de treball
idoni on desenvolupar aquest treball de fi de màster.

Agräısc als meus tutors Alfons i Joan Albert haver-me guiat en aquest treball.
També vull enviar un agräıment formal a ValgrAI per la beca que em concediren

per estudiar aquest màster.
Finalment (encara que és un dels agräıments més especials), vull agrair a tots els

amics que m’han acompanyat i m’han donat suport. Als que porten molts anys amb
mi, als que he fet fa poc en aquest màster o en el treball, i inclús a aquells que m’han
acompanyat en altres etapes i ara recorren camins separats del meu. Moltes gràcies
a tots!

61

i
i

“output” — 2023/9/11 — 9:53 — page 62 — #74 i
i

i
i

i
i

i
i

“output” — 2023/9/11 — 9:53 — page 63 — #75 i
i

i
i

i
i

List of Tables

APPENDIX
SUSTAINABLE DEVELOPMENT GOALS

Degree to which the work relates to the Sustainable Development Goals (SDGs).

Sustainable Development Goals (SDGs) High Medium Low Not
applicable

SDG 1. No Poverty. ✓
SDG 2. Zero Hunger. ✓
SDG 3. Good Health and Well-Being. ✓
SDG 4. Quality Education. ✓
SDG 5. Gender Equality. ✓
SDG 6. Clean Water and Sanitation. ✓
SDG 7. Affordable and Clean Energy. ✓
SDG 8. Decent Work and Economic Growth. ✓
SDG 9. Industry, Innovation, and Infrastructure. ✓ ✓
SDG 10. Reduced Inequalities. ✓
SDG 11. Sustainable Cities and Communities. ✓
SDG 12. Responsible Consumption and Production. ✓
SDG 13. Climate Action. ✓
SDG 14. Life Below Water. ✓
SDG 15. Life on Land. ✓
SDG 16. Peace, Justice and Strong Institutions. ✓
SDG 17. Partnerships for the Goals. ✓

As explained in the introduction of this master’s thesis, according to the World
Health Organization (WHO), in 2021, more than 1.5 billion people were affected by
hearing loss. The data of the WHO is not optimistic since these statistics are expected
to worsen with demographic changes, with predictions suggesting that hearing loss
could be affecting around 2.5 billion people in 2050. This is a massive health problem,
and trying to mitigate its effects definitely contributes to the health and well-being of
the population. For this reason, this work aligns highly with SDG 3: “Good Health
and Well-Being”.

The inclusion of people who have hearing loss is not only a great way but an
essential need to reduce inequalities, as the SDG 10: “Reduced Inequalities” requires.

ETS Enginyeria Informàtica
Camı́ de Vera, s/n, 46022, València
T +34 963 877 210
F +34 963 877 219
etsinf@upvnet.upv.es - www.inf.upv.es

DSIC, UPV 63

i
i

“output” — 2023/9/11 — 9:53 — page 64 — #76 i
i

i
i

i
i

List of Tables

For that reason, developing new techniques to adapt audiovisual content for them
is contributing to the SDG 10.

One of the main ways of adapting audiovisual content for people suffering from
hearing loss is the creation of quality subtitles, and the goal of this work is to use
cutting-edge technology based on Machine Learning to make this adaptation viable
and easy for any entity or person producing media content.

It has also been explained that subtitles are helpful not just for people who can not
hear well but, when used with translations, they become a valuable tool for making
content easy to understand at a reasonable cost. This benefits individuals who don’t
speak the original language of the media content without the necessity of adding
voiceovers, which can be more complex and costly. Taking this into account, they can
also be considered a very helpful asset for education, contributing to SDG 4: “Quality
Education”.

As it has also been already explained in the introduction, this master’s thesis
has been developed while working at the Machine Learning and Language Processing
Group (MLLP), a research group of the Universitat Politècnica de València (UPV).
Specifically, it was conducted as part of the MLLP-Corporació Valenciana de Mitjans
de Comunicació (CVMC) agreement: “Subtitulacio Assistida Per Ordinador en Temps
Real i Basada en la Intel·ligencia Artificial, de Continguts Audiovisuals”. For this
reason, it aligns with SDG 17: “Partnerships for the Goals”.

Since the developed Speaker Diarization systems are innovative and can be used
by the audiovisual industry, this master’s thesis also aligns with the SDG: “Industry,
Innovation, and Infrastructure”. Moreover, other industries can also use diarization
systems to improve processes, be more efficient and be more sustainable.

This master’s thesis is also lightly aligned with the SDG 8. “Decent Work and
Economic Growth”, since, as it has already been explained, Speaker Diarization sys-
tems will make the creation of quality subtitles much more easy and more efficient.
This will lead to an increased capacity in accessible audiovisual production, witch,
at the same time, will promote economic growth. Moreover, these systems serve as
tools for people working in the subtitling industry. If the parts of these jobs which
are more monotonous and time-consuming are reduced by these Speaker Diarization
and Automatic Speech Recognition systems, these jobs will become better.

ETS Enginyeria Informàtica
Camı́ de Vera, s/n, 46022, València
T +34 963 877 210
F +34 963 877 219
etsinf@upvnet.upv.es - www.inf.upv.es

64 DSIC, UPV

