
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Dept. of Computer Systems and Computation

Exploring GPT's Capabilities in Chess-Puzzles

Master's Thesis

Master's Degree in Software Systems Engineering and Technology

AUTHOR: Albert Gramaje, Borja

Tutor: Ferri Ramírez, César

Cotutor: Hernández Orallo, José

External cotutor: GARCIA PIQUERA, MANUEL

ACADEMIC YEAR: 2022/2023



  

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A mi madre, por su esfuerzo y apoyo en mi educación.  

 

  



 

IV 

Resumen 
Los modelos de lenguaje no han obtenido su popularidad solo por sus capacidades de 

generación de textos sino también por la capacidad de aprendizaje que tienen. En este trabajo se 

realiza una exploración de las capacidades resolutivas de los modelos de lenguaje sobre el ajedrez. 

Este caso de uso nos permite mediante notaciones especificas procesar un problema visual como 

el ajedrez en uno relativo a texto, pudiendo asi realizar diversos experimentos con diversos 

enfoques de 'prompts'. Conceptos de 'in-context learning' y 'fine-tuning' relativo a 'prompts' serán 

introducidos y estudiados. 

Palabras clave: IA, ML, DL, Generative AI, GPT, Chess. 

 

Resum 
Els models de llenguatge no han obtingut la seua popularitat només per les seues capacitats de 

generació de textos sino també per la capacitat d'aprenentatge que tenen. En aquest treball es 

realitza una exploració de les capacitats resolutives dels models de llenguatge sobre els escacs. 

Aquest cas d'ús ens permet mitjançant notacions especifiques processar un problema visual com 

els escacs en un relatiu a text, podent asi realitzar diversos experiments amb diversos enfocaments 

de 'prompt'. Conceptes de ‘in-context learning’ i ‘fine-tuning’ relatiu a ‘prompts’ seran introduïts 

i estudiats . 

 

Paraules clau: IA, ML, DL, Generative AI, GPT, Chess. 

 

Abstract 
 

These Language Models have not acquired their popularity based only on their text-generation 

capabilities, but also for the ability of learning they do have. An exploration of these capabilities 

over chess is carried out. With chess, it allows to process the game as a Natural Language text 

problem. Using specific chess notations, a visual problem is transformed into a base generated 

text problem. Analysing its capabilities of reasoning and solving puzzles with different prompt 

approaches will be the aim of this thesis. ‘In-context learning’ and ‘fine-tuning’ concepts will be 

introduced and studied. 

 

 

Keywords: IA, ML, DL, Generative AI, GPT, Chess.  

 



 

V 

Content table 

 
List of Figures ................................................................................................................ VII 

List of Tables................................................................................................................... IX 

1. Introduction ............................................................................................................... 1 

1.1 Objectives ........................................................................................................... 1 

1.2 Structure ............................................................................................................ 2 

2. Artificial Intelligence ................................................................................................. 3 

2.1 Machine Learning (ML) ................................................................................... 4 

2.1.1 Training ......................................................................................................... 4 

2.1.1.1 Supervised Learning ......................................................................................5 

2.1.1.2 Unsupervised Learning ..................................................................................5 

2.1.1.2.1 Reinforcement Learning ........................................................................... 6 

2.1.1.2.2 Reinforcement Learning from Human Feedback .................................... 6 

2.1.2 Deep Learning ............................................................................................... 6 

2.1.2.1 Artificial Neural Networks ............................................................................. 7 

2.1.2.1.1 Transformers ............................................................................................. 8 

3. Generative Artificial Intelligence ............................................................................. 11 

3.1 Language Models (LM) .................................................................................... 11 

3.1.1 Large Language Models (LLM) ................................................................... 12 

3.1.2 Instruction Tuned LLM ............................................................................... 12 

3.2 Training ............................................................................................................ 13 

3.2.1 Natural Language Processing (NLP) ........................................................... 13 

3.2.1.1 Stopwords ..................................................................................................... 14 

3.2.1.2 Stemming ...................................................................................................... 14 

3.2.1.3 Lemmatization ............................................................................................. 14 

3.2.1.4 Tokenization ................................................................................................. 15 

3.2.1.5 Word Embeddings ....................................................................................... 15 

3.2.1.6 Temperature ................................................................................................. 17 

3.3 Inference ........................................................................................................... 18 

3.3.1 Prompts ........................................................................................................ 19 

3.3.2 Iterative Prompt Development .................................................................... 19 

3.4 GPT Language Models ..................................................................................... 19 

3.4.1 Models .......................................................................................................... 20 



 

VI 

3.4.1.1 ‘GPT-3.5-turbo’ Language Model ............................................................... 20 

3.4.1.2 ‘GPT-4’ Language Model............................................................................. 24 

3.4.2 In-context Learning .................................................................................... 25 

3.4.2.1 Zero, One and Few-Shot Learning ............................................................. 26 

3.4.3 ChatML ......................................................................................................... 27 

3.4.3.1 Roles .............................................................................................................. 27 

3.4.3.1.1 System ...................................................................................................... 28 

3.4.3.1.2 User .......................................................................................................... 28 

3.4.3.1.3 Assistant ................................................................................................... 28 

3.4.4 Moderation .................................................................................................. 29 

3.5 Fine-tuning ...................................................................................................... 29 

3.6 Language Model Applications. ....................................................................... 30 

4. Artificial Intelligence for Chess ................................................................................ 31 

4.1 Chess Engines .................................................................................................. 31 

5. Experiments ............................................................................................................ 33 

5.1 Chess to Natural Language Problem.............................................................. 33 

5.1.1 Forsyth-Edwards Notation (FEN) .............................................................. 33 

5.1.2 Universal Chess Interface (UCI) ................................................................. 34 

5.2 ‘python-chess’ Library ................................................................................ 34 

5.3 Evaluation ....................................................................................................... 35 

5.4 Data retrieval and processing ......................................................................... 36 

5.4.1 Retrieval ....................................................................................................... 36 

5.4.2 Processing .................................................................................................... 36 

5.5 Experiment set-up ........................................................................................... 37 

5.6 Prompt design ................................................................................................. 39 

5.6.1 In-context learning ...................................................................................... 42 

6. Results ..................................................................................................................... 43 

6.1 Experiments outputs format .......................................................................... 43 

6.2 Accuracies ........................................................................................................ 43 

6.3 Sub-experiments results ................................................................................. 44 

6.3.1 GPT-3.5-turbo results ................................................................................. 46 

6.3.2 Ft-GPT-3.5-turbo results ............................................................................ 46 

6.3.3 GPT-4 results ................................................................................................47 

6.3.4 Further observations ....................................................................................47 

7. Conclusions ............................................................................................................. 49 

8. References ................................................................................................................ 51 



  

 

 

List of figures 
 

 

Figure 1. Artificial Intelligence vs Machine Learning vs Deep Learning (Anon n.d.-b) .. 4 

Figure 2. Graphical representation of a training process in an ANN (Ringa Tech 2021). 5 

Figure 3. Comparative table between supervised and unsupervised learning (Kumar 

2021) ................................................................................................................................. 6 

Figure 4. Simple Artificial Neural Network Diagram, Perceptron (Rowe n.d.) ................ 7 

Figure 5. Complex Artificial Multi-Layer Neural Network Diagram (Team 2023) ......... 8 

Figure 6. Recurrent vs Feed-Forward Neural Network (Donges 2023) .......................... 9 

Figure 7. Self-attention mechanism output diagram visualisation (Anon 2023f) ........... 9 

Figure 8. Self-attention mechanism output diagram visualization (Anon n.d.-e) .......... 10 

Figure 9. Output example from an input to a base LLM (Anon n.d.-c) .......................... 12 

Figure 10. Output example on a base LLM, with no capabilities to answer questions 

(Anon n.d.-c). .................................................................................................................. 12 

Figure 11. Output example from an instruction tuned LLM answering questions (Anon 

n.d.-c)............................................................................................................................... 13 

Figure 12. Stemming example in python with nltk corpus python library. .................... 14 

Figure 13. Tokenize sentence example in python with nltk corpus python library. ....... 15 

Figure 14. Load pretrained Word2Vec model for purposed showcases. ......................... 16 

Figure 15. Word embeddings of the ‘king’ word. ............................................................. 16 

Figure 16. Output of the words that are most like the ‘king’ word. ................................. 16 

Figure 17. 3D Visualization of the king and most similar words to it. ............................ 17 

Figure 18. Graphical explanation of the temperature attribute (Anon n.d.-c)................ 18 

Figure 19. Iterative Prompt Development graphical explanation (Anon n.d.-c). ........... 19 

Figure 20. Graphical representation of how OpenAI RLHF works (Gokultechninza 

2023b) ............................................................................................................................. 21 

Figure 21. Comparative of hallucinations with and without RLHF (OpenAI 2023b). .... 21 

Figure 22. GPT-3 training dataset composition (Anon 2023d). .................................... 22 

Figure 23. Brief descriptions of each model of GPT-3.5 series (OpenAI 2023b). .......... 22 

Figure 24.Evolution from GPT-3 series into GPT-3.5 series (Fu, Peng, and Khot 2022).

 ........................................................................................................................................ 22 

Figure 25. Brief explanation of both GPT-3.5-Turbo models (OpenAI 2023b). ............ 23 

Figure 26. GPT-4 parameters comparation with other LLM (Kerner 2023) ................. 24 

Figure 27. GPT-4 token pricing (OpenAI 2023b). ......................................................... 25 

Figure 28. GPT-3.5-turbo token pricing (OpenAI 2023b). ............................................ 25 



 

VIII 

Figure 29. Zero, One, Few-shot vs Fine-tuning (Brown et al. 2020) ............................. 26 

Figure 30. Showcase of roles in GPT-3.5-turbo with ChatML roles ............................... 27 

Figure 31. Diagram of roles in GPT-3.5-turbo with ChatML roles (Anon n.d.-c). ......... 28 

Figure 32. Showcase of ChatGPT response to harmful content. .................................... 29 

Figure 33. FEN notation example (Feng et al. 2023a). .................................................. 33 

Figure 34. UCI moves notation example (Feng et al. 2023a). ....................................... 34 

Figure 35. python-chess library showcases example (Fiekas 2023). ............................. 35 

Figure 36. python-chess library showcase example (Fiekas 2023)................................ 35 

Figure 37. Initial prompt iteration ................................................................................. 39 

Figure 38. Second iteration of prompt. .......................................................................... 40 

Figure 39. Third and final iteration of prompt................................................................ 41 

Figure 40. GPT error log during execution. .................................................................... 41 

 

  



 

IX 

List of tables 
 

 

Table 1. GPT LLM experiment setup ............................................................................... 37 

Table 2. ICL sub-experiment with GPT-3.5-turbo and temp 0 ...................................... 38 

Table 3. ICL sub-experiment with GPT-3.5-turbo and temp 1 ...................................... 38 

Table 4. ICL sub-experiment with fine-tuned GPT-3.5-turbo and temp 0 .................... 38 

Table 5. ICL sub-experiment with fine-tuned GPT-3.5-turbo and temp 1 ..................... 38 

Table 6. ICL sub-experiment with GPT-4 and temp 0 ................................................... 38 

Table 7. ICL sub-experiment with GPT-4 and temp 1 .................................................... 38 

Table 8. Output format of each sub-experiment ............................................................ 43 

Table 9. ICL sub-experiment results with GPT-3.5-turbo and temp 0. ......................... 44 

Table 10. ICL sub-experiment results with GPT-3.5-turbo and temp 1. ........................ 45 

Table 11. ICL sub-experiment results with fine-tuned GPT-3.5-turbo and temp 0. ...... 45 

Table 12. ICL sub-experiment results with fine-tuned GPT-3.5-turbo and temp 1. ...... 45 

Table 13. ICL sub-experiment results with GPT-4 and temp 0. ..................................... 45 

Table 14. ICL sub-experiment results with GPT-4 and temp 1. ..................................... 45 

Table 15. Number of matching moves per sub-experiment. .......................................... 48 

  



  

 

1 
 

1. Introduction 
 

Nowadays Artificial Intelligence (AI) has achieved a prominent role in various domains 

of our society, transforming the way we interact with technology and opening new 

opportunities for development and innovation of newer products and services. One of 

the most fascinating aspects of AI is its generative capability, known as ‘Generative 

Artificial Intelligence’. 

‘Artificial Intelligence is the theory and development of computer systems able 

to perform tasks normally requiring human intelligence (Qwiklabs n.d.-a). 

Generative Artificial Intelligence refers to the ability of AI systems to produce new 

content, whether in the form of text, images, or music from some input. These inputs are 

also referenced by the term ‘prompt’. A prompt is a short piece of text that is given to the 

system and can be used to control the given output from the system without modifying 

its natural behaviour (Qwiklabs n.d.-a). 

There are several systems of Generative Artificial Intelligence (GenAI), such as 

generative models of images from text (text-to-image); generative models of videos from 

images (image-to-video); generative models of text from text (text-to-text) known as 

Language Models. 

Language Models (LM) are statistical tools that anticipate the next word(s) in a sequence 

by computing the probability distribution of a given sequence. Language models are 

typically trained on a large dataset with data from various sources such as books, news 

articles, web pages and so on (Qwiklabs n.d.-b). 

Among Generative Language Models, Generative Pretrained Transformer (GPT) 

Language Models, developed by OpenAI, has shown an exceptional performance and 

results. The model uses Neural Networks and large datasets to learn linguistic patterns 

and generate coherent and relevant text in response to a given prompt. 

GPT LLM’s have gained worldwide recognition this year, showcasing diverse 

applications through prompts and significantly influencing daily life. In this thesis, an 

experiment over these models is carried exploring its own capabilities over an abstract 

concept like chess. Chess puzzles will be supplied targeting a potential next move leading 

to a checkmate. Their in-context learning will be tested with different conversational 

input prompts. A fine-tuning process over one of these LLM’s will be done as well.  A 

comparison with the effectiveness of both approaches with different GPTs’ will be 

studied. 

1.1 Objectives 

 

An introduction Generative Artificial Intelligence (GenAI) field, over the text-generative 

field with Language Models (LM) and Large Language Models (LLM) is carried. 

Furthermore, this thesis aims to study of capacity and limitations of these models over 

an abstract concept like chess. 



 

2 

Experiments will be conducted over these LLMs in a non-Natural Language use case, like 

chess puzzles. Different prompt techniques will be supplied to the model, including 

concepts of fine-tuning and in-context learning. In-context learning refers to the ability 

of the model to learn given a conversational dataset into him; without affecting to the 

natural behaviour of the models. In contrast of fine-tuning, that does affect this natural 

behaviour. 

Fine-tuning OpenAI’s LLMs is available from September 2023. An experiment setup 

using both GPT-3.5-turbo and GPT-4 base models and GPT-3.5-turbo fine-tuned version 

is done, analysing learning, and solving capabilities over chess puzzles. 

1.2 Structure 

 

For the consecution of the proposed objectives above, a brief explanation in Chapter 2 

introducing key concepts on AI such as AI itself, Machine Learning (ML) and Deep 

Learning (DL); the latter is particularly described when it is related with Artificial Neural 

Networks (ANN). 

Additionally, in Chapter 3, a brief explanation of Generative Artificial Intelligence 

(GenAI) will be introduced among its key concepts like Language Models (LM). An 

explanation of what are LM, and its training procedure will be briefly explained in 

Section 3.1. In Section 3.2, different Natural Language Processing techniques required 

for a model to understand human natural language will be explained including 

Tokenization, Lemmatization, and Embeddings. 

In Section 3.3, an explanation of the inferring concept and how to infer into LMs via 

prompts will be carried out. In Section 3.4, the evolution of OpenAI language models will 

be briefly covered, with a focus on the GPT dialog chat LLMs.  

Over Chapter 4, a brief introduction of chess on the AI field is introduced. Chess engines 

will be briefly defined and explained. Some history of this engines will be exposed. 

Chapter 5 includes all the experiments design. Since the definition of each of experiments 

and sub-experiment to the chess notation used. These notations transform a chess game 

in a text generation problem. Prompt design process is also detailed, with different 

iterations done. 

These experiments consist of a series of chess puzzles, finding the move that produces a 

checkmate situation over it. 

Results section will be Chapter 6, where results are shown and explained. An analysis of 

the results given per each model is done, with an addition of some further observations 

that could be made over these results. 

Chapter 7 concludes the work, summarizing results given and briefly explained why of 

these results, including a future work related to it. 

 

  



 

3 

2. Artificial Intelligence 
 

The advancement of technologies in terms of computational capacity, progress and 

development of new algorithms are bringing the concept of AI to a greater use in our 

daily lives. There are many examples using AI such as the development of autonomous 

vehicles, data analysis; for predictions, or the generation of smart chatbots. 

One of the fields that have gained more popularity during this year over other AI topics 

has been the branch of Generative Artificial Intelligence: through the release of language 

models such as Generative Pretrained Transformer (GPT) Large Language Models 

(LLM).   

Building machines with the ability to reason, learn, and behave in ways that would need 

human intelligence, or involving data beyond what people can examine is the focus of the 

study of AI. AI is a broad field that includes many different topics; computer science, 

data analysis and statistics, and software engineering (Anon 2023h). 

But AI is not the only main concept involved in this scenario; other concepts are involved 

in this field. However, there has been a certain lack of knowledge about the different 

concepts and their relationships among them. The three key concepts are Deep Learning 

(DL), ML, and AI itself (Oracle 2018a). 

When discussing AI and its purpose, various learning algorithm techniques are applied. 

These techniques include a learning process; empowering the system to produce outputs 

like human responses when given specific inputs (Qwiklabs n.d.-a). 

These learning techniques belong to the subfield of ML, which is one of the key concepts 

mentioned earlier; they also fall under the umbrella of the AI concept. There are various 

learning techniques. One of these techniques, which has gained popularity, efficiency, 

and power, is DL (Oracle 2018a). 

DL is an ML technique. It's based on Artificial Neural Networks (ANN); which will be 

explained later. Its main goal is to replicate human learning. These techniques require 

prior training with specific datasets; this trains the AI system using the provided 

algorithms. There are various types of learning techniques; further on explained (Anon 

n.d.-f; Oracle 2018a). 

In summary, AI pertains to algorithms grounded in ML, facilitating self-directed and 

automated learning, employed for diverse purposes (Alonso 2023). This leads to AI being 

the overarching notion encompassing ML. Moreover, the notion of DL, being a segment 

of ML; also encompassed within the AI framework. 

To sum up: 

𝐴𝐼  ⊃  𝑀𝐿  ⊃  𝐷𝐿  



 

4 

 

Figure 1. Artificial Intelligence vs Machine Learning vs Deep Learning (Anon n.d.-b) 

Collectively, these pivotal ideas are interconnected and mutually enhance each other, 

propelling progress in crafting intelligent systems able to execute tasks autonomously 

with minimal human intervention (Oracle 2018a). 

2.1 Machine Learning (ML) 

 

Machine Learning (ML) is a subset of AI; it can autonomously learn (hence the term 

"Machine Learning"). The goal is to create a model where human intervention is 

minimized, if not eliminated altogether; producing accurate answers/outputs closely 

aligned with a given context. In essence, these models can "learn" from data patterns 

without explicit human guidance (Anon 2023c; Oracle 2018b). 

Rather than being explicitly programmed to perform a specific task, it learns 

automatically through exposure to data and identification of patterns and relationships 

in it (Anon 2023g). 

Machine learning encompasses different training approaches, such as Supervised 

Learning, Unsupervised Learning, Reinforcement Learning (RL) or Reinforcement 

Learning from Human Feedback (RLHF) and so on. The aim of each training approach 

depends on the kind of model we are trying to achieve and the purpose of it (Copeland 

2016). 

2.1.1 Training 

 

Training is necessary for a model to learn from data and perform specific tasks. It enables 

the model to acquire knowledge finding patterns and relationships from a set of training 

data; allowing to make predictions or decisions on new data given (GraphEverywhere 

2019). 

Notably, training stands as a pivotal ML phase; it significantly shapes the model's 

performance and its capacity to extrapolate from fresh data. Effective training hinges on 

a comprehensive and enriched dataset, suitable algorithmic and methodological 



 

5 

selections, and adept tuning of the model's hyperparameters (parameters preset prior to 

training, like learning rate, batch size, or epoch count) (Delua 2021).  

Training is over and finished when the learning curve of the model remains constant. An 

example of how the learning curve of a sample model looks like can be seen in Figure 2. 

 

Figure 2. Graphical representation of a training process in an ANN (Ringa Tech 2021). 

The image depicted above illustrates the training process of a simple ANN (aimed at 

learning the conversion of Fahrenheit to Celsius degrees, utilizing a labelled dataset). At 

Epoch 40 (a full iteration over the model's training data), the learning curve plateaus. 

This signifies the model's training process concludes at this point, rendering additional 

epochs unnecessary (Delua 2021). 

2.1.1.1 Supervised Learning 

 

Supervised Learning entails an algorithm furnished with a dataset composed of labelled 

instances presented as pairs of {data, label}. These labels signify the desired output the 

model should generate when given an input, thus supervising the necessary output 

corresponding to the given input (Delua 2021) 

The concept behind this learning technique involves deriving insights from past 

examples to predict future values; examining relationships within this labelled data and 

enable the system to make decisions autonomously (Delua 2021). 

An instance of a model utilizing a Supervised Learning approach could involve 

categorizing images, like animal pictures, by labelling them as dog, cat, and more. The 

model would return us an output (tag) derived from the probabilities associated with all 

feasible tags presented to the model during the training stage. 

2.1.1.2 Unsupervised Learning 

 

In Unsupervised Learning, the algorithm receives a dataset of non-labelled examples. 

The essence of this learning technique lies in examining raw data, analysing it (spotting 

patterns), and observing if it naturally organizes into clusters (Delua 2021). The 



 

6 

algorithms autonomously unveil hidden patterns and data groupings, independent of 

human involvement. 

The primary distinction between Unsupervised and Supervised Learning, lies in the 

absence of a labelled dataset. The algorithm independently provides an output based on 

what the model has received during its training phase. 

A comparative image between both the Supervised Learning and Unsupervised Learning 

based on the input data, accuracy, and complexity can be seen in Figure 3. 

 

Figure 3. Comparative table between supervised and unsupervised learning (Kumar 2021) 

2.1.1.2.1 Reinforcement Learning 

 

Reinforcement Learning (RL) forms a subset of ML; it revolves around an agent 

mastering interactions with an environment to maximize cumulative rewards. The agent 

learns by taking actions within the environment and receiving feedback in the form of 

rewards or punishments. Consequently, the agent fine-tunes itself, guided by these 

rewards or punishments, to produce the anticipated output, aligning with the objectives 

set by AI system developers (Bajaj 2018) 

2.1.1.2.2 Reinforcement Learning from Human Feedback 

 

Reinforcement Learning from Human Feedback (RLHF) constitutes a ML strategy that 

merges RL techniques—rewards and comparisons—with human direction to educate an 

AI agent. The goal of RLHF is to elevate the effectiveness and aptitude of machine 

learning algorithms by integrating human expertise and knowledge (Bajaj 2018; 

Mandour 2023) 

This approach strives to address the limitations of Supervised Learning and 

Unsupervised Learning, in which machine learning algorithms exclusively learn from 

labelled or unlabelled data (Mandour 2023) 

2.1.2 Deep Learning 

 

Deep Learning (DL) constitutes a subset of ML. It relies on utilizing Artificial Neural 

Networks (ANN), which will be explained in the upcoming section, to simulate the 

cognitive processes of the human brain. This enables DL to tackle more intricate patterns 

beyond the capabilities of traditional ML algorithms (Delua 2021) 



 

7 

DL algorithms emerged with the intention of increasing the effectiveness of traditional 

ML techniques. Under traditional machine learning methods, significant human effort is 

required to train the software. 

2.1.2.1 Artificial Neural Networks 

 

Artificial Neural Networks (ANN) are made up of collection of layers of nodes (neurons). 

There are three types of layers, the input layer, the hidden/s layer, and the output layer. 

An ANN consists of at least three layers, including the input/output layer and at least one 

hidden layer (Anon 2023i). An example of a simple representation, also called 

perceptron, can be found in Figure 4. 

 

Figure 4. Simple Artificial Neural Network Diagram, Perceptron (Rowe n.d.) 

Input layer stands for the information from the outside that is given as input to the ANN. 

Output layer is the result of all the data processed by the ANN. Hidden layer/s are layers 

that takes the input from the input layer or from previous hidden layer (Anon 2023i). 

Each layer is composed or built up with several artificial neurons. The design of artificial 

neurons was inspired by real biological neurons. Our neurons processes environment 

data or stimulations and sends electrical pulses to other neurons, producing an output 

being a human reaction. Artificial neurons tend to do the same behaviour as human 

neurons (Rowe n.d.). 

Each artificial neuron is built up with its inputs, outputs and two private variables, an 

activation function; that produces the output of the artificial neuron, and a threshold. If 

the result of the activation function is greater than the threshold, then the neuron gets 

activated and sends its result to the next hidden layer (Team 2023). 

A diagram of how layers are interconnected, and a graphical representation of a complex 

multi-layer network can be seen in Figure 5. As the layers progress, each neuron in each 

layer can make decisions at a more intricate and abstract level, compared to the neurons 

in preceding layers. This is because it considers the output of the previous neurons as its 

input (Team 2023). 



 

8 

 

Figure 5. Complex Artificial Multi-Layer Neural Network Diagram (Team 2023) 

Each arrow that connects two nodes (artificial neurons) represents a connection. These 

connections hold associated numerical values, referred to as weights. A weight signifies 

the strength of the connection between the neurons. Both weights and thresholds are 

computed by the neural network during the training phase, assigning values that best 

align with the network's operations (Rowe n.d.; Team 2023). 

The input of each neuron in its respective hidden layer consists of the addition of every 

input node from the previous layer times the respective weight value of the connection. 

The following formula represents the calculation. 

𝑍 = ∑ 𝑋𝑖 𝑥 𝑊𝑖

𝑖

 

Among all activation functions that can be used, one to mention and has been widely 

used in artificial neural networks is ReLU. ReLU stands for “Rectified Linear Unit”.  

Since using this activation formula, a certain number of neurons are activated, the 

function is computationally more efficient than other functions (BerenLuthien 2016; 

DaemonMaker 2014; RockTheStar 2019). 

2.1.2.1.1 Transformers 

 

Normal or Feed-Forward Neural Networks (which progress unidirectionally from the 

input layer through hidden layers to the output layer) lack any recollection of previous 

inputs as they solely focus on the current input. This makes such networks inadequate 

for forecasting forthcoming elements based solely on the current input; a necessity to 

retain contextual information arises (Donges 2023). 

In the history of AI, various methods have emerged to "retain" or maintain data context. 

One noteworthy approach is Recurrent Neural Networks (RNNs), which operate with an 

information "loop." Neurons in an RNN consider both the current input and the 

knowledge accumulated from preceding inputs when making decisions (Donges 2023). 

A diagram illustrating the distinction between feed-forward and recurrent architectures 

can be observed in Figure 6. 



 

9 

 

Figure 6. Recurrent vs Feed-Forward Neural Network (Donges 2023) 

While this network type addresses context preservation, it carries a drawback: a limited 

short-term memory capability (Donges 2023). In the realm of RRN and NLP field, the 

model retains context between words. However, the initial output might not correlate 

with the conclusion, as these networks fail to monitor the ongoing context of the entire 

conversation. This underscores the need to sustain context consistently throughout the 

process. 

Regarding Generative Artificial Intelligence, which will be elaborated upon, there arises 

a necessity to maintain conversational context, necessitating a long-term memory to 

generate a coherent output root-ed in that context. 

To address the short-term memory issue, a 2017 paper titled "Attention Is All You Need" 

presented a solution through an encoder-decoder architecture named Transformer, 

incorporating attention layers. This design aimed to overcome the constraints of RNNs 

in handling sequential data, notably  upgrading the processing of natural language text 

(Vaswani et al. 2017) 

Self-attention models facilitate the association of each specific word in the input prompt 

with other words within the same prompt. This establishes connections between 

individual words and the entirety of the prompt. This mechanism empowers the model 

to concentrate on the most pertinent sections of the input sequence for each prediction, 

in contrast to processing the entire sequence simultaneously (Vaswani et al. 2017). The 

visual representation of these relationships is depicted in Figure 7. 

 

Figure 7. Self-attention mechanism output diagram visualization (Anon 2023f) 

The architecture comprises an encoder and a decoder, both consisting of multiple layers 

of self-attention and feed forward ANNs. The encoder handles the input sequence, 

yielding a series of hidden states. These states are subsequently employed by the decoder 

to craft the output sequence. Additionally, the decoder employs self-attention to gauge 



 

10 

the significance of the input sequence while producing each output token (Anon 2023f). 

Figure 8 is a depiction of such model's architecture. 

One of the key advantages of the architecture is that it allows for parallel processing of 

the input sequence, which makes it much faster to train compared to other Neural 

Networks, such as the recurrent ones. This is because the self-attention mechanism 

allows each token in the sequence to be processed independently of the others, rather 

than sequentially (Vaswani et al. 2017) 

 

Figure 8. Self-attention mechanism output diagram visualization (Anon n.d.-e) 

Generative Artificial Intelligence, as per Language Models (LM) and Large Language 

Models (LLM) such as GPT LLM are based on the Transformer’s architecture explained 

above. 

  



 

11 

3. Generative Artificial Intelligence 
 

AI capable of producing novel content spanning text, images, music, and video is referred 

to as "Generative Artificial Intelligence," often abbreviated as "GenAI." A recent 

inclusion in this AI domain comprises the introduction of tools like ChatGPT and Google 

Bard. These are AI chatbots enabling users to interact by posing queries, prompts, or 

questions to a language model and subsequently obtaining a distinctive output generated 

by the model (Qwiklabs n.d.-a). 

GenAI generates fresh content by drawing upon the entirety of existing data that the 

system has been trained on. It crafts new and distinct outputs using the inputs provided, 

commonly referred to as prompts (Qwiklabs n.d.-a). 

It diverges from conventional AI, which focuses on discerning patterns and formulating 

predictions from preexisting data. GenAI models initiate with a prompt, which might be 

presented as text, an image, a video, or any other processable input within the AI system's 

scope. GenAI employs a statistical model to anticipate a plausible response, thereby 

generating novel output (Qwiklabs n.d.-a). 

The main distinction between GenAI  and traditional AI is the nature of the model's 

output. If the output is a numeric value, a probability score, or a predefined class, it 

signifies a traditional AI model. Conversely, if the output takes the form of a natural 

language response, a video, an audio clip, or similar content, the model falls under the 

category of GenAI (Qwiklabs n.d.-a).  

The significance of the GenAI domain extends beyond its individual applications. It 

brings us closer to a point where communication with computers occurs in natural 

language, bridging the gap between human communication and programming 

languages. 

3.1 Language Models (LM) 

 

As previously detailed, GenAI has the capability to process a wide array of input types 

(prompts) and subsequently produce novel responses. Language Models (LM) are a 

prominent subset within the GenAI domain that typically generate text-based outputs. 

Notable examples of such models include OpenAI's LLMs like GPT-3.5-turbo and GPT-

4. 

“Language models are models that use machine learning (ML) to conduct a 

probability distribution over words to predict the most likely next word in a 

sentence based on the previous entry (Kapronczay 2023)”.  

They are simply statistical tools that anticipate the next word(s) in a sequence by 

computing the probability distribution of a sequence of words (Kapronczay 2023). They 

learn about patterns in language trough training data. 



 

12 

Beyond LM, there exist other categories of GenAI models, like image models. These 

models, when given a textual prompt, generate images in accordance with the input 

description. An illustration of this kind is the DALL·E 2 model by OpenAI. 

3.1.1 Large Language Models (LLM) 

 

Also, LM, but they've undergone a training process using extensive datasets, earning 

them the label "Large Language Models (LLM)". These models possess the ability to 

generate superior-quality output compared to standard LM. This elevated quality can be 

attributed to the considerably larger and higher-quality data that these models have been 

exposed to during their training, as opposed to the datasets provided to basic LM (Peng 

et al. 2023a; Qwiklabs n.d.-b) 

 

Figure 9. Output example from an input to a base LLM (Anon n.d.-c) 

In the depicted image, an instance of input (highlighted in red) and its corresponding 

output (displayed in black) is illustrated. Given that LLMs predict the subsequent word 

relying on training data, the generated output maintains a correlation with the input 

supplied (Qwiklabs n.d.-b) 

When provided with questions as input, the model could generate new questions linked 

to the input. However, it's important to note that the model lacks the capability to 

comprehend intentions deeply, such as providing answers to questions. 

 

Figure 10. Output example on a base LLM, with no capabilities to answer questions (Anon n.d.-c). 

When a question is posed, the expectation is to receive an answer rather than just 

additional related questions. This is where Instruction-Tuned LLMs come into play. 

These models can be tailored to a particular context, enabling the model to adhere to 

provided instructions and offer responses aligned with the given scenario. Peng et al. 

2023; Qwiklabs n.d.-b). 

3.1.2 Instruction Tuned LLM 

 

Tuning refers to the process of adjusting a model to suit a new domain or a customized 

set of cases, achieved by training the model on fresh data. Instruction tuning, on the other 

hand, is a technique employed to align LLMs with human intentions. This is 

accomplished by training these models on data designed for following specific 

instructions. Through instruction tuning, developers can furnish precise directives to the 



 

13 

LLM, guiding its behaviour and tailoring it for specific tasks (Peng et al. 2023a). 

Essentially, these models are trained to predict responses based on the instructions 

they've learned and the input they receive. 

Instructional tuning encompasses various methods. One approach involves employing 

Supervised Learning, where a collection of labelled examples is utilized to train the 

foundational model. Another technique involves the use of RLHF, which merges RL 

principles with human guidance to instructively fine-tune the model. This approach 

combines reinforcement learning techniques with human direction to educate an AI 

system (Peng et al. 2023a) 

 

Figure 11. Output example from an instruction tuned LLM answering questions (Anon n.d.-c). 

In the output presented in the above image, the provided response directly addresses the 

question posed in the input. Notably, it refrains from generating additional questions 

linked to the original query. This outcome is achieved through the instruction tuning 

process. 

OpenAI's GPT LLMs, including both GPT-3.5-turbo and GPT-4, undergo instruction 

tuning to adopt a chatbot-like conversational way. In contrast to earlier OpenAI models 

that operated primarily as base LM, predicting subsequent words based on provided 

input, these newer iterations are refined to engage in interactive conversations as 

chatbots (OpenAI 2022, 2023b) 

3.2 Training 

 

Language models are usually trained on extensive text datasets encompassing sources 

like books, news articles, and web pages. Unsupervised Learning serves as the 

foundational learning technique. Via this approach, the model acquires vocabulary and 

establishes connections among word concepts. The essence of Unsupervised Learning is 

to directly examine raw data, analyse it to uncover patterns, and determine if it naturally 

clusters into groups or relationships among words (Delua 2021; Qwiklabs n.d.-a) 

While computers fundamentally use binary code (comprised of 0s and 1s), LM can 

interpret human-written plain text through Natural Language Processing (NLP) 

algorithms(Kerner 2023). These algorithms facilitate the transformation of words into 

numerical sequences, enabling machines to process data. This conversion process, 

termed encodings, is an essential concept for developers working on language models. 

3.2.1 Natural Language Processing (NLP) 

 

An area of computer science and AI called Natural Language Processing (NLP) uses 

computational linguistics and rule-based models of human language to help computers 

comprehend text (Anon 2023k; Wolff 2020).  



 

14 

NLP empowers computers to identify letters, words, and sentences, subsequently 

attributing meaning, and comprehension to the information. This capability allows 

machines to understand natural language in a manner akin to human cognition (Wolff 

2020) 

NLP encompasses a range of techniques designed to enable machines to process and 

comprehend natural language text. Fundamental methods include tokenization, 

lemmatization, stemming, stopwords removal, and word embeddings. 

3.2.1.1 Stopwords 

 

Stopwords refer to frequently used words in a language that are often excluded from text, 

enhancing the accuracy and efficiency of text analysis. Such words encompass articles, 

prepositions, conjunctions, and other terms that lack substantial individual meaning 

(GeeksforGeeks 2017). 

Frequent occurrences of stopwords in text can escalate the computational intricacy of 

NLP algorithms, resulting in sluggish processing speeds. These words do not contribute 

significantly to a text's meaning and might even introduce noise or ambiguity into the 

analysis (GeeksforGeeks 2017). 

3.2.1.2 Stemming 

 

Stemming is a pre-processing technique employed NLP to truncate a word to its core or 

root form, referred to as the stem. Stemming algorithms strive to ascertain shared root 

bases by eliminating word endings or beginnings (Pykes 2023). 

  

Figure 12. Stemming example in python with nltk corpus python library. 

In the depicted image, three distinct words share the same lemma, as these words are 

derived from a common stem. 

3.2.1.3 Lemmatization 

 

Lemmatization serves as a text pre-processing technique within NLP that condenses a 

word to its core or dictionary form, recognized as the lemma. This approach aims to unify 

various inflected variations of the same word, identifying similarities and enhancing the 

precision of NLP models (Pykes 2023). 

In contrast to Stemming, Lemmatization hinges on precisely discerning the intended 

part-of-speech and meaning of a word within its context. It factors in the neighbouring 

words of the target word in the sentence. For instance, while stemming could potentially 



 

15 

reduce "programmers" to "program",  which could be either a verb or a noun, introducing 

ambiguity; Lemmatization would consider the context to ascertain whether 

"programmers" works as a noun or a verb on its context (Pykes 2023). 

Stemming algorithms frequently adopt a simplistic approach, rendering them swift and 

efficient, but not always accurate. In contrast, lemmatization algorithms prioritize 

correctness over speed and efficiency, yielding meaningful base roots by sacrificing 

computational speed (Pykes 2023). 

3.2.1.4 Tokenization 

 

Tokenization is a fundamental process in NLP that involves breaking down a text or 

sequence into smaller units called tokens. By breaking down the text into tokens, we can 

analyse and process the data using computational techniques (Gupta 2019; Menzli 

2022). 

Those tokens involve a range of possibilities, including words, phrases, sentences, or 

even individual characters, contingent upon the task and demands. In Figure 13, the nltk 

python library splits the sentence provided into an array of tokens. 

 

Figure 13. Tokenize sentence example in python with nltk corpus python library. 

3.2.1.5 Word Embeddings 

 

Given that computers comprehend numerical entities like scalars, vectors, and matrices 

rather than words, word embeddings offer a technique to transform natural language 

words into numerical vectors. This transformation enables the application of 

mathematical and ML algorithms to the data (Anon 2023l) 

Word embeddings represent a significant advancement in NLP, enhancing computers' 

capacity to comprehend text-based content more effectively. These embeddings 

encapsulate the semantic essence of words, enabling the establishment of relationships 

between words sharing similar meanings (Anon 2023l; shristikotaiah 2020). 

Various ANN models exist to extract word embeddings for specific words, such as 

"Word2Vec". Word2Vec is a ANN model that produces embeddings for the entire 

vocabulary it encounters during the training phase (Anon 2023l; shristikotaiah 2020). 

An illustration of ANN, trained on a text corpus, has been presented as a use case. This 

model, along with its associated training process, is accessible on Kaggle 1. 

 
1 ‘Google’s Trained Word2Vec Model in Python | Kaggle’, accessed 8 July 2023, 
https://www.kaggle.com/datasets/umbertogriffo/googles-trained-word2vec-model-in-python. 



 

16 

 

Figure 14. Load pretrained Word2Vec model for purposed showcases. 

The image depicted above illustrates the procedure for loading this pre-trained model 

from the Kaggle website. 

 

Figure 15. Word embeddings of the ‘king’ word. 

Figure 15 showcases the embeddings for the word 'king.' Each value within the array 

corresponds to a distinct feature or dimension within the embedding space. In simpler 

terms, these values encapsulate specific characteristics or attributes of the word. 

Embeddings facilitate the utilization of mathematical algorithms for various objectives. 

One such application involves determining the words most closely associated with a 

target word. This is achieved by employing cosine similarity between the embedding 

vector of the target word and the embedding vectors of the entire vocabulary 

encompassed by the trained model (Barla 2022; shristikotaiah 2020) 

Within this model, a function named 'most_similar()' implements the algorithm 

explained above. This function furnishes the top ten words that are most akin to the 

provided word, determined by a probability list spanning from 0 to 1 (Barla 2022). 

 

Figure 16. Output of the words that are most like the ‘king’ word. 



 

17 

It's feasible to create a visual representation of the present embedding space for the word 

"king" and its closely related words. Furthermore, it's possible to encounter a 

comprehensive Word2Vec model on the internet 2, that has undergone extensive training 

with a substantial dataset. This model can be employed to infer embeddings for specific 

words and visualize their corresponding embedding spaces. 

Figure 17 depicts the embeddings of the word "king" in a three-dimensional graph 

visualization, accompanied by the words most closely associated with it. Words 

positioned closer to the target word hold stronger relationships or similarities to it. 

 

Figure 17. 3D Visualization of the king and most similar words to it. 

3.2.1.6 Temperature 

 

Within NLP, temperature (θ) serves as a parameter employed to regulate the extent of 

randomness and innovation within the output of a language model (Salamone 2021).  

This value ranges between 0 and 1. A temperature of 0 outputs the highest probability 

response computed. Conversely, a temperature of 1 enhances the model's creativity, 

enabling it to choose words with lower probabilities (Salamone 2021). 

Temperature modulation introduces an extra variable θ that impacts the softmax 

distribution. Softmax distribution will calculate the probabilities of each target class over 

all possible target classes. Main advantage of using Softmax is the range of output 

probabilities. The range will be from 0 to 1, and the sum of all probabilities will be equal 

to one (Salamone 2021; Vicente n.d.).  

 
2 Daniel Smilkov Picture Nikhil Thorat, Charles Nicholson, Big, ‘Embedding Projector - Visualization of 
High-Dimensional Data’, accessed 10 July 2023, http://projector.tensorflow.org. 



 

18 

A higher temperature essentially "boosts" outputs that had lower probabilities 

previously, whereas a lower temperature diminishes the relatively smaller outputs 

compared to the largest ones (Salamone 2021). 

Figure 18 provides a visual description of the temperature attribute within a LM. As the 

model endeavours to predict the next word in a sequence, it internally generates a 

probabilistic distribution among the words it has acquired familiarity with during 

training. When the temperature attribute is set to zero, the model consistently selects the 

word with the highest calculated probability. Conversely, when the temperature is set to 

one, the model may choose a word that doesn't necessarily possess the highest 

probability among the computed words. 

 

Figure 18. Graphical explanation of the temperature attribute (Anon n.d.-c) 

3.3 Inference 

 

In AI, inference refers to the process of logical reasoning and decision-making based on 

available information or data within a model. This procedure involves deriving new 

insights or conclusions from existing knowledge or data. Inference is of paramount 

importance in AI; it enables machines to engage in rational deduction and decision-

making, guided by the information at hand (Gupta 2023; Ltd n.d.). 

During the inference phase, a machine leverages the knowledge acquired and stored 

throughout the training phase to comprehend new data. This stage empowers the 

machine to recognize fresh data even if it has not encountered it previously (Gupta 2023) 

Each system possesses a distinct method of conducting inference, contingent upon its 

training and intended purpose. In the context of LM particularly LLM, inference is 

achieved through the utilization of "prompts". 

 



 

19 

3.3.1 Prompts 

 

In the realm of LLM, a "prompt" constitutes a fragment of text employed to steer the 

model toward a particular task or desired output. Prompts exhibit diverse forms, 

encompassing descriptions of sought-after outcomes, commands, questions, or succinct 

sets of instructions (Varshney and Suria 2023). 

Prompts serve as instruments for interacting with and inferring from LLMs to fulfil 

specific tasks. They hold the potential to enhance the performance of LLMs in addressing 

the in-tended task. While prompts are effective for refining the model's outputs, they 

don't modify the model itself. To refine the model itself, a new training process must be 

undertaken (Tianyu 2021).  

Prompt engineering entails the deliberate curation and optimization of prompts to 

effectively utilize LLMs, aiming to extract the optimal outcomes from the model (Tianyu 

2021) 

3.3.2 Iterative Prompt Development 

 

Iterative Prompt Development encapsulates the process of identifying an ideal prompt 

tailored for a particular task. Analogous to coding, it involves experimenting with 

prompts, refining them, and iteratively retrying until the output aligns with the task the 

model aims to achieve (Kuyper 2023). Figure 19 offers a visual depiction of this concept. 

 

Figure 19. Iterative Prompt Development graphical explanation (Anon n.d.-c). 

This process is labour-intensive and demands a significant investment of time. The 

intricacy of prompts hinges on the kind of desired outcome, necessitating a cycle of 

generating, refining, and assessing prompts for optimal results (Kuyper 2023) 

3.4 GPT Language Models 

 

Generative Pre-trained Transformer (GPT), an innovation from OpenAI, denotes LM 

employing DL algorithms to produce text akin to human language (OpenAI 2023c). It 

operates on an ANN rooted in the Transformers architecture, pre-trained using an 



 

20 

extensive corpus of textual data, and can be fine-tuned to tackle distinct NLP 

undertakings (Anon 2023j). 

GPT models are designed to generate text that is coherent, grammatically correct, and 

contextually appropriate. They can be used for a variety of NLP tasks such as text 

completion, summarization, question answering, and language translation (Mandour 

2023)  

The evolution of DL techniques has facilitated the creation of GPT LLMs. These models 

involve training ANN with extensive datasets, enabling them to grasp intricate patterns 

and produce realistic human-like text. 

In essence, GPT LLMs signify a remarkable breakthrough in the realm of NLP. They 

empower machines to comprehend and generate language with an unprecedented level 

of fluency and precision. 

3.4.1 Models 

 

OpenAI has recently unveiled two enhanced LLMs, namely GPT-3.5-turbo and GPT-4, 

which have garnered substantial traction in the domain of GenAI. These state-of-the-art 

models belong to the latest generation of LLMs, and they have gained substantial usage, 

especially with the launch of the ChatGPT application. It's worth noting that GPT-3.5-

turbo and GPT-4 are not the only LLMs available. OpenAI has progressed through 

various iterations, culminating in the current GPT-4 release for now (OpenAI 2022, 

2023b). 

Well-known ChatGPT application leverages both the GPT-3.5-turbo and GPT-4 LLMs. 

GPT-3.5-turbo is a refined iteration derived from the GPT-3.5 series (text-davinci-003), 

which interacts in a conversational way. On the other hand, GPT-4 shares a similar 

nature with GPT-3.5-turbo but emerges from GPT-3.5 series, signifying a progression 

from the GPT-3 iteration (Anon 2023a; OpenAI 2023b). 

3.4.1.1 ‘GPT-3.5-turbo’ Language Model 

 

OpenAI introduced GPT-3.5-turbo in November 2022, as a refined iteration of the GPT-

3 LLMs series. This version is meticulously fine-tuned to engage in conversational 

interactions, resulting in outputs that possess a natural conversational tone. GPT-3.5-

turbo has gathered significant importance for its efficacy in constructing user-friendly 

chatbots (Mandour 2023; OpenAI 2022; Ouyang et al. 2022). 

This model is a product of a series of advancements built upon previous LLMs and has 

undergone meticulous human-guided fine-tuning. This refinement process uses RLHF 

techniques. OpenAI's RLHF approach involves employing base LLM, GPT-3 in this 

instance, alongside a dataset fine-tuned by OpenAI experts. The combination of these 

elements gives rise to a LLM that inherits the capabilities of the base model while 

adopting a conversational tone in its output. The training process and model 

development were executed utilizing the substantial computational power of an Azure AI 

supercomputing infrastructure (Anon 2023a; OpenAI 2022; Ouyang et al. 2022; 

Gokultechninza 2023a). 



 

21 

 

Figure 20. Graphical representation of how OpenAI RLHF works (Gokultechninza 2023b) 

The fine-tuned dataset used to enhance the performance of the base model was curated 

by OpenAI employees who actively engaged in generating conversations. These 

conversations were simulated by assuming dual roles: user who inputs prompts, and 

assistant who generates the model's responses. Combining the resulting fine-tuned 

dataset with the foundational dataset of the base LLM culminated in the creation of the 

GPT-3.5-turbo model (Gokultechninza 2023a; OpenAI 2023a). 

It's important to acknowledge that these models, while capable of impressive outputs, 

can also generate content that is potentially harmful, toxic, or even inaccurate. Some of 

these outputs might be characterized as hallucinations, where the AI provides a response 

with unwarranted confidence, not justified by its training data. The implementation 

RLHF has shown promise in mitigating such undesirable outputs, although it does not 

guarantee complete elimination of these issues. 

 

Figure 21. Comparative of hallucinations with and without RLHF (OpenAI 2023b). 

During the training phase of GPT-3, a diverse range of data sources was utilized to create 

a comprehensive dataset. These sources included Common Crawl, which gathers data 

from web crawling and offers it publicly, as well as webpages, books, and content from 

Wikipedia. The training data was drawn from these various sources to provide a broad 

foundation of knowledge for the model (Anon 2023e). Figure 22 represents the 

mentioned dataset.  



 

22 

.  

Figure 22. GPT-3 training dataset composition (Anon 2023d). 

A concise description of each model in the GPT-3.5 series is presented on the official 

website as follows: 

 

Figure 23. Brief descriptions of each model of GPT-3.5 series (OpenAI 2023b). 

The evolutionary journey from the foundational GPT-3 language model to its subsequent 

iterations, culminating in the latest GPT-3.5-turbo LLM, is visually depicted in Figure 

24. 

 

Figure 24. Evolution from GPT-3 series into GPT-3.5 series (Fu, Peng, and Khot 2022). 



 

23 

Within the context of the GPT-3.5 Series, a subset of models is covered in this series. All 

these models undergo instruction fine-tuning. The initial model, 'text-davinci-002', 

employs a supervised instruction-tuning approach. In contrast, both 'text-davinci-003' 

and 'GPT-3.5-turbo (ChatGPT)' undergo fine-tuning through RLHF. Notably, this 

process includes the previous instruction fine-tuning step of 'text-davinci-002', given 

that both later models stem from this foundational version (Fu et al. 2022; OpenAI 2022, 

2023b).  

A significant advancement in the GPT-3.5-turbo LLM is its multi-turn capability, 

allowing it to process an array of messages as input. This feature stands in contrast to the 

GPT-3 model, which only offered single-turn text prompts. The addition of multi-turn 

functionality represents an enhancement that permits users to incorporate context into 

the generated response. This is achieved through the utilization of predefined scenarios 

and previous responses, thereby enriching the interactive experience (Fu et al. 2022; 

OpenAI 2023b) 

The incorporation of multi-turn functionality introduces a new dimension to the concept 

of in-context learning. This principle revolves around the training that the model 

undergoes based on the provided prompts. OpenAI has facilitated this process through 

the development of a mini-markup language known as ChatML. This language enables 

the programming of model output behaviours without requiring a complete model 

retraining. It's worth noting that if substantial changes to the model's behaviour are 

required, a fine-tuning process becomes essential. However, the multi-turn concept is 

primarily associated with "hot-fine-tuning" for output formats, preserving the model's 

inherent natural behaviour (Fu et al. 2022)  

Concerning the concept of in-context learning, it's important to highlight three distinct 

types of this approach, each of which will be detailed in subsequent sections. These three 

types are known as zero-shot learning, one-shot learning, and few-shot learning (Brown 

et al. 2020)- 

Indeed, all OpenAI models come with a constraint on the maximum number of tokens 

they can process in a single input. Initially, earlier iterations of GPT-3.5-turbo were 

limited to handling up to 4096 tokens. However, a significant update has been 

introduced in the latest version of GPT-3.5-turbo. This update has substantially 

increased the maximum token capacity to 16,384 tokens, which is four times greater than 

its previous capacity. This enhancement has opened significant possibilities for 

implementing more advanced in-context learning techniques (OpenAI 2023b). 

 

Figure 25. Brief explanation of both GPT-3.5-Turbo models (OpenAI 2023b). 



 

24 

Both GPT-3.5-turbo and GPT-4 models have a knowledge cutoff up to September 2021. 

This implies that any questions or prompts related to events, developments, or 

information beyond that date would lead the models to produce responses based on their 

training data up to September 2021, potentially resulting in hallucinations (OpenAI 

2023b). 

3.4.1.2 ‘GPT-4’ Language Model 

 

GPT-4, the latest iteration in OpenAI's GPT series, is said to be ten times more advanced 

than its forerunner, GPT-3.5-turbo. GPT-4 boasts a maximal token limit of 32,000 (with 

a recent update), which is a significant increase from GPT-3.5's 4,000 tokens (16,000 

with another recent update). This upgrade empowers the model to grasp context more 

effectively and discern nuances, ultimately leading to responses that are more precise, 

coherent, and con-textually relevant (Prakash 2023; Terrasi 2023) 

GPT-4 introduces a remarkable enhancement in its capability to manage multimodal in-

puts, encompassing both text and images, a feature unavailable in GPT-3.5 series. 

Furthermore, GPT-4 exhibits a heightened level of creativity compared to its 

predecessor, yielding responses that are notably more imaginative when prompted 

(Prakash 2023; Terrasi 2023). 

This iteration possesses an enhanced capacity to comprehend and generate diverse 

dialects and appropriately respond to emotions conveyed in the text. Additionally, GPT-

4 showcases an 82% reduction in the likelihood of generating disallowed content in 

response to requests and a 40% increase in providing factual responses, as observed in 

internal evaluations when compared to GPT-3.5 (Kerner 2023). 

 

Figure 26. GPT-4 parameters comparation with other LLM (Kerner 2023) 

In Figure 26, a comparison illustrating the number of parameters for each individual 

ANN is presented. An ANN equipped with a greater number of parameters holds the 

potential to encompass more intricate and complex patterns within the data. This 

heightened parameter count confers and increased flexibility in representing a diverse 

array of functions. Notably, GPT-4 boasts nearly six times the number of parameters 

compared to its predecessor, GPT-3 (Kerner 2023). Note that GPT-3.5-turbo, being 



 

25 

derived from GPT-3 with modifications in RLHF and a safety layer via the moderation 

API, retains the same parameter count as its base model. 

When considering the principal distinctions between these two LLMs, the foundational 

architecture and training approach remain consistent with their predecessors. However, 

a significant difference emerges in the scale of training data exposure. GPT-4 is subjected 

to a larger corpus of training data compared to GPT-3, although the specific magnitudes 

are undisclosed by OpenAI (Kerner 2023). 

To recap, GPT-4 represents a substantial advancement over GPT-3.5 LLMs series, 

marked by enhanced accuracy, improved reasoning abilities, and the capacity to process 

multimodal inputs. It boasts heightened creativity, a superior aptitude for 

comprehending and generating diverse dialects, while also demonstrating a reduced 

likelihood to respond to requests for prohibited content (OpenAI 2023b; Prakash 2023; 

Terrasi 2023). 

Additionally, the choice between employing GPT-4 or GPT-3.5-turbo could hinge on use-

case contexts, budgetary constraints, and available computational resources. Each model 

carries distinct costs per token and might be more suitable for specific scenarios. Figures 

27 and 28 depict the cost breakdowns for GPT-4 and GPT-3.5-turbo models, respectively. 

 

 

Figure 27. GPT-4 token pricing (OpenAI 2023b). 

 

Figure 28. GPT-3.5-turbo token pricing (OpenAI 2023b). 

3.4.2 In-context Learning 

 

In-context learning (ICL) is a prompt engineering methodology where a dataset is sliced 

into tiny chunks and fed into the system to prompt it. A new task is learned by in-context 

learning (ICL) from a small group of examples that are supplied within the context (the 

prompt) while inferring LLMs (Raventós et al. 2023).  

Despite just being trained with the goal of next token prediction, LLMs trained on 

enough data display ICL.  The prompting with examples features LLMs, which enables 

applications to novel tasks without the requirement for LLM fine-tuning, is largely 

responsible for their popularity (Brown et al. 2020; Raventós et al. 2023). 

Three different concepts are available in this in-context learning study. These are zero-

shot learning, one-shot learning, and few-shot learning. 



 

26 

3.4.2.1 Zero, One and Few-Shot Learning 

 

By employing limited labelled data, a ML model can anticipate new classes using 

methods such as zero-shot learning, few-shot learning, and one-shot learning (Peng et 

al. 2023b; Rouse 2023).  

These methods differ in the quantity of labelled data. Zero-shot learning doesn't use 

labelled data within the conversation context. One-shot learning includes a unique set of 

labelled data instance, while few-shot learning encompasses multiple labelled data 

instances (Brown et al. 2020; Dai et al. 2023a). 

This concept avoids the need for new training, for a fine-tuning process, shown in Figure 

31 as "gradient update," which updates pre-trained model weights via a training dataset 

done with Supervised Learning or RLHF (Dai et al. 2023b; Peng et al. 2023b; Rouse 

2023). 

 

Figure 29. Zero, One, Few-shot vs Fine-tuning (Brown et al. 2020) 

OpenAI allows to apply these concepts into their LLMs via ChatML, which is a markup 

language for building a context into the model with given examples prior to the inferring 

time process. 

 

 

 



 

27 

3.4.3 ChatML 

 

ChatML, which stands for Chat Markup Language, is a markup language utilized for 

organizing and arranging conversational input intended for models like GPT-3.5-turbo 

and GPT-4. This language permits the delineation of different roles within a 

conversation, such as user, assistant, and system. It enables the definition of the 

behaviour and corresponding responses for each designated role (Greyling 2023; Maatta 

2023; Varma 2023). 

The conversational input format along with the incorporation of ChatML, facilitates the 

development of interactive and dynamic conversations with the model. By organizing the 

input, users can offer instructions and context to the model, enhancing its capacity to 

generate responses that are more coherent (Greyling 2023) 

3.4.3.1 Roles 

 

Roles established within ChatML play a crucial role in structuring and formatting the 

conversational input for OpenAI LLMs. They provide a means of exerting greater control 

over the flow of the conversation and directing the model's responses in a guided manner 

(Greyling 2023; OpenAI 2023b).  

Figure 30 illustrates a straightforward query structure directed towards the GPT-3.5-

turbo model. 

 

Figure 30. Showcase of roles in GPT-3.5-turbo with ChatML roles 

The function call depicted above primarily revolves around the "messages" argument. 

This argument is a collection of message objects, where each object is assigned a role 

("system," "user", or "assistant") and a content type. A conversation can consist of a 

single message or encompass multiple exchanges between various roles (Greyling 2023; 

OpenAI 2023b).  



 

28 

 

Figure 31. Diagram of roles in GPT-3.5-turbo with ChatML roles (Anon n.d.-c). 

3.4.3.1.1 System 

 

The system role exerts influence over the behavior of the model in the assistant role. It 

serves to deliver instructions to the model, defining and guiding the behavior of the 

assistant during the conversation (Greyling 2023; Maatta 2023; Varma 2023). 

In most cases, the system role provides the model with context or specific instructions. 

This could involve tasks like setting the knowledge cutoff or delivering a welcoming 

message. By structuring conversations with multiple roles, including the system role, it 

also serves as a safeguard against prompt injection attacks. 

3.4.3.1.2 User 

 

The end-user, which is us, interacts with the assistant (the model) through the user role. 

In this role, the user can provide input such as suggestions, inquiries, feedback, or any 

other messages to engage with the conversation or communicate with other users 

(Greyling 2023; Maatta 2023; Varma 2023). 

When we make inquiries through the ChatGPT web application interface to any of the 

available models, the default role assigned to us is 'user', as we interact with the model 

by providing prompts. 

3.4.3.1.3 Assistant 

 

The 'assistant' role embodies the model's replies to the user's input. It mirrors how the 

chatbot, as the assistant, answers the user's previous message. The aim is to adjust the 

model's output for similar prompts, as seen during the hot-tuning procedure (Greyling 

2023; Maatta 2023; Varma 2023). 



 

29 

3.4.4 Moderation 

 

In GPT LLMs, the term "moderation" pertains to the act of inspecting and overseeing 

user-generated content to ensure alignment with established standards and norms. This 

involves scanning content for offensive or harmful elements, such as hate speech, 

inaccurate information, or unlawful material. Subsequently, appropriate responses are 

crafted to address these issues (OpenAI 2023b). 

OpenAI has developed a moderation API to enhance GPT LLMs’ content moderation 

capabilities. This API allows developers to identify and remove content that violates 

OpenAI's usage policies and guidelines by comparing it to user-generated content. This 

contributes to maintaining compliance with established standards (OpenAI 2023b). 

Every prompt made to OpenAI LLM’s comes with a validation with this moderation API. 

If the API does not approve the given response generate by the model, then the output is 

not given to us, and a warning is shown. 

Figure 32 illustrates a sample output showcasing the integration of the moderation API 

into ChatGPT's output workflow. 

 

Figure 32. Showcase of ChatGPT response to harmful content. 

Crucially, it must be noted that content control in OpenAI's GPT LLMs is not infallible 

and may have constraints. There remains a possibility of errors or omissions in 

identifying hazardous content by the AI model. To attain optimal content quality and 

safety, coupling AI moderation with human oversight and assessment is essential 

(OpenAI 2023b). 

3.5 Fine-tuning 

 

From September 2023, OpenAI released fine-tuning over GPT-3.5-turbo. GPT-4 is not 

ready to be fine-tuned yet. Fine-tuning, in contrast of in-context learning, requires a re-

training of the model to change the natural behavior of it. With this approach, models’ 

parameters and weights gets updated during its new training phase.  



 

30 

Fine-tuning in LMs’ refers to the process of re-training pre-trained models on specific 

datasets to adapt them to a particular task or domain. Fine-tuning allows the model to 

learn style, form, and update the model with new knowledge to improve results. The 

objective of fine-tuning is to improve the performance of the pre-trained model on a 

specific task or domain by adjusting its parameters to the new data (Dhaduk 2023).  

Fine-tuning can be done by training the model on a small amount of task-specific data, 

which is used to update the pre-trained model's parameters. 

OpenAI and its python library allows fine-tuning process. For this process at least a 

training dataset is required with a ChatML format. Messages containing a role ‘user’ with 

the question and an ‘assistant’ role as the answer are needed. A test dataset can be 

supplied making the ANN validation itself required for self-testing updated weights.  

3.6 Language Model Applications. 

 

LLMs can be use in a wide variety of use cases. Since summarizing text, to reading a PDF 

and making questions about it. Apart from typical NLP use cases, these models could be 

used over non-NLP use cases. 

These models can be used as programming tools for generation code of simple tasks. 

Also, capabilities of testing such case tests definitions and generation over a piece of code, 

or even finding a bug for given piece of code. They could also work as code debuggers.  

They can also work as a sentiment analysis tool over text given, without requiring an 

specific script to do it. 

All these mentioned tasks are useful cases for these models. Some of them such the 

sentiment analysis tool could require some fine-tuning or in-context learning 

approaches over prompts given but making it them useful for specific scenario use cases.   

 

 

 

  



 

31 

4. Artificial Intelligence for Chess 
 

Chess is a two-player strategy board game played on a checkerboard with 64 squares, 

arranged in an 8×8 grid. Chess has gained tremendous popularity, and it’s only growing 

as more people started playing during the global pandemic. The history of chess and AI 

has been correlated together (Gebhardt n.d.; Team (CHESScom) 2019). 

The first chess-playing program was created in the 1950s, which marks the beginning of 

AI in chess. By the 1960s, a program that could play real, automated chess without the 

need for a secret human opponent, was developed. Garry Kasparov, the reigning chess 

world champion, was defeated by IBM's Deep Blue computer in their 1997 rematch; 

proving that computers can outperform people in challenging zero-sum games (Anon 

n.d.-a; Gebhardt n.d.; Team (CHESScom) 2019).  

Since then, chess engines have only improved, and the current generation of chess 

engines can defeat even the most skilled human players under normal circumstances. 

4.1 Chess Engines 

 

Chess engines are computer programs that use AI algorithms to play chess. They analyze 

chess positions, calculate possible moves and their consequences, and choose the best 

move based on a set of evaluation criteria. Chess engines use various algorithms and 

techniques, including ML, to evaluate positions and carry out the next move. They do 

this by analyzing vast amounts of data to come up with very solid and accurate position 

choices, allowing them to play much faster than a human could  (Amnon 2023; Jain 

2022). 

These engines have two main functions: a search function and an evaluate function. The 

search function looks at all possible moves and evaluates them to find the best move. The 

evaluate function analyzes the positions of all the pieces on the chessboard and creates a 

list of moves that could be considered the strongest (Amnon 2023; Jain 2022). 

Chess engines have transformed over the past two decades, and they have allowed human 

players to accelerate their progress by adding a different level of understanding and 

knowledge to the game. 

They use different types of ML training approaches. RL is the most used approach for 

training chess engines. In RL, the chess engine learns to make decisions based on the 

state of the board and the reward it receives for each move. The reward can be defined 

as winning or losing the game at the end of the match. The chess engine tries to maximize 

the reward by learning from its interactions with the environment (Anon 2023b). 

Today, one of the main purposes of chess engines is to act as training tools. They allow 

players at any level to generate ideas and analyze specific chess positions. Some of the 

most popular chess engines include Stockfish, Leelenstein, and Komodo. These engines 

boast remarkable calculating power and can be used to help players analyze their games 

(Mahendra 2022; Yothment 2023). 



 

32 

Chess engines are not just applicable to chess, but to all of AI. Chess engines are a great 

example of how AI can be used to solve complex problems and make decisions based on 

data analysis. 

 

  



 

33 

5. Experiments 
 

GPT LLMs have been widely used since there were released with exceptional result in 

common NLP use cases. An aim on testing capabilities of this LLMs on a non-NLP use 

case, is carried out.  The scenario chosen is the traditional well know classic board game, 

chess.  

A series of chess puzzles with different game situations are used; similar to a photo of the 

current situation of the game is presented to the LLMs. In each puzzle the objective is to 

analyse the board and pick a valid move thus producing a checkmate. 

GPT’s capabilities on answering to these kinds of topics where a visual analysis must be 

made is tested. A challenge comes in an understanding the status of the chess game 

within the scope of a text-based prompt, generating a valid output format and response. 

All prompts will be based on same system prompt but an addition of set of resolved 

examples would be given to the model. With this, an study over the in-context learning 

capabilities of the model is made. Furthermore, a fine-tuning process is carried away 

compering performance over these non-NLP field between base LLMs and fine-tuned 

LLMs. 

5.1 Chess to Natural Language Problem 

 

Since illustrating chess to GPT is not equal as telling the model to summarize some sort 

of text or paraphrase it; a need arises of making the model comprehend the chess game 

and data provided to it. Within a chess game, an understating of the visual field over the 

board is required. 

There are different notations adapting mentioned visual understanding necessity in 

Natural Language knowledge. For representing the chess board with each piece on its 

corresponding square, the FEN notation can be used. For representing the moves applied 

to the board the UCI notation is available.  

Both notations will be used to transform all needed information related to a particular 

chess game to the LLM.  

5.1.1 Forsyth-Edwards Notation (FEN) 

 

Forsyth-Edwards Notation (FEN) will be used to record the chess games as a series of 

notations. FEN is a notation that describes a particular board state in one line of text with 

only ASCII characters. (Feng et al. 2023a; Zola 2023). 

FEN represents the positions of pieces on the chessboard, active colour, castling rights, 

peasant targets, and the half-move and full-move counters (Feng et al. 2023b). 

 

Figure 33. FEN notation example (Feng et al. 2023a). 



 

34 

Each letter in the FEN notation corresponds to a piece on the board. Capital letters 

standing in for white pieces and lowercase letters for black pieces. Board rows are 

denoted by forward slashes ("/"), and the number following each row denotes the 

number of empty squares there are. The letters "w" for white or "b" for black stand in for 

whose turn is it. The letters "K" (for white kingside), "Q" (for white queenside), "k" (for 

black kingside), and "q" (for black queenside) stand for the casting rights. Both the 

number of half-moves since the last pawn move or capture, and current move number, 

are shown by the half-move and full-move counters, respectively. (Anon 2023d; Feng et 

al. 2023b). 

5.1.2 Universal Chess Interface (UCI) 

 

The Universal Chess Interface (UCI) is an open communication protocol that enables 

chess engines to communicate with user interfaces. The UCI format describes the 

movements of the pieces by encoding the start and end coordinates of the piece (Feng et 

al. 2023a; Zola 2023).  

Moves are therefore noted with 4 characters (letter, digit, letter, digit), such as "e3e5" to 

indicate moving the pawn from e3 to e5. 

 

Figure 34. UCI moves notation example (Feng et al. 2023a). 

A collection of chess moves in UCI format can be seen in Figure 34. With this interface, 

representing the moves over the board simplifies it to the LLMs understanding. 

5.1.3 ‘python-chess’ Library 

 

There are several Python libraries that can be used for playing chess and checking if a 

given move is valid. “python-chess” is one of them. It is a pure Python chess library that 

supports legal move generation, move validation, and board visualization (Fiekas 2023). 

The general purpose of using this library is for testing the given outputs by the GPT 

LLMs. This library will check if given move is in valid format (UCI); if is also valid for the 

given board using FEN notation. Finally, if it is valid then push it into the board updating 

the corresponding FEN notation (Fiekas 2023) for the updated board. 

Additionally, this library tells with a given FEN notation, if the current board is in 

checkmate or not. Figure 35 shows a use of python-chess to check if a move is valid and 

push it into the board. 



 

35 

 

Figure 35. python-chess library showcases example (Fiekas 2023). 

Figure 36 shows ‘is_checkmate()’ functionality for checking if a given board is in 

checkmate status. 

 

Figure 36. python-chess library showcase example (Fiekas 2023). 

5.2 Evaluation 

 

Previous studies on LLMs over chess games have shown that the the model is not very 
remarkably good in solving complex chess puzzles (Feng et al. 2023b; Reznikov 2022; 
Srivastava et al. 2023). However, an study of the solving capabilites of these models over 
chess puzzles will be made. 

Checkmate in one. The goal of this experiment is to test LLMs’ capacity to recognize a 
move in a particular FEN board situation that would lead to a checkmate. It assesses the 
model's ability to comprehend and apply the chess rules in this way. In essence, the 
model must identify a move that not only exposes the opponent's king to assault but also 
guarantees that the king cannot elude capture in next moves. 

For the prompt given to the model, an iterative prompt development is done. A refine 
process is carried out for increasing LLMs performance in chess field. A report of the 
accuracy per each model used will be done. Each model will be divided in three sub-
experiments due to in-context learning (zero-shot, one-shot and few-shot learning) 
capabilities testing. Fine-tuned model will also be experimented with this in-context 
learning capability. 

Both base models GPT-3.5-turbo and GPT-4 will be used. In addition to both, a 
generated fine-tuned GPT-3.5-turbo LLM in a supervised chess dataset is used too. This 
dataset is generated from the open-source dataset called Lichess 3.  

A study of the LLMs capabilities of reaching a checkmate status over a chess game is 
presented. Nevertheless, a clear comprehension of the chess rules by the LLMs is needed; 
by providing valid moves depending in the board, that comprehension will be tested. 

 
3 Anon. n.d.-c. ‘Lichess.Org Open Database’. Retrieved 5 August 2023 , 
https://database.lichess.org/#puzzles 



 

36 

5.3 Data retrieval and processing 

 

A process of data retrieval and processing has been carried out to feed the model with 

prompts. Following sections explains the retrieval process of the data and the processing 

done to the raw data collected. 

5.3.1 Retrieval 

 

The dataset of chess puzzles used in this experiment was retrieved from the Lichess 

database, which contains over 1.5 billion chess games and puzzles (Anon n.d.-d). The 

Lichess database is a valuable resource for chess enthusiasts and researchers alike, being 

freely available for download. This dataset mentioned, is used as a large chess-related 

language corpus. 

Lichess dataset is divided by the following columns: 

• PuzzleId, a given id for a puzzle. 

• FEN, FEN notation of current chess puzzle board status. 

• Moves, a list of all moves done and pushed into the board in UCI format. 

• Rating, the difficulty rating of the puzzle. This is typically represented using Elo 
points, which indicate the puzzle's level of challenge. 

• RatingDeviation, the uncertainty or deviation associated with the puzzle's rating. 
Lower deviation values mean higher confidence in the puzzle's rating. 

• Popularity, a measure of the puzzle's popularity or how frequently it has been 
attempted by users. 

• NbPlays, represent the number of times a particular puzzle has been played or 
attempted by users on the Lichess platform. 

• Themes, a series of tags or keywords describing the thematic elements of the 
puzzle. 

• URL, an URL of Lichess webpage for playing the chess puzzle online. 

• OpeningTags, related to the opening variation or opening theme that the puzzle 
is associated with. 

Columns PuzzleId, FEN, Moves, and Themes will be used to carry out the experiment.  

5.3.2 Processing 

 

Since Lichess dataset is available in raw format (.csv), we do not perform any additional 

preprocessing. The only process done to the data is a selection process over the puzzles.  

As the objective of the experiments is to is to analyze the behaviour of the LLM over a 

possible checkmate situation finding the move that produces it, a selection is applied. 

That selection process consists of two phases: 

• A filter where all puzzles are filtered over a specific theme provided by this 

dataset. Each puzzle has different themes regarding of the situation of the puzzle 



 

37 

and the board status. In our case, a filter over the “MateIn1” theme is applied, 

as these puzzles only require 1 move to produce a checkmate. 

• A checking over these puzzles producing a checkmate in one move is done. Using 

python-chess library, each puzzle with the given moves is pushed into the board. 

When all moves have been pushed, with previous function explained above, we 

check if the final FEN board is expected to be in a checkmate status. This is done 

to double check if the theme in the given puzzle is correct for minimizing false 

positives results producing a checkmate situation when is not possible.  

5.4 Experiment set-up 

 

For the experimental setup situation, a total of six studies over the two most famous GPT 

Language Models (GPT-3.5-Turbo and GPT-4) with a variation of the temperature 

attribute (zero or one) will be done. For GPT-3.5-turbo, a fine-tuning process was 

executed for comparison purposes over in-context learning methods, referenced as “ft-

gpt3”. 

In Table 1 a representation of the setups can be seen. 

 

Table 1. GPT LLM experiment setup 

Same context length LLM version will be used. An option for GPT-4 using the 32k version 

one could be applied. Nevertheless, for testing head-2-head the performance between 

LLMs; same number of tokens is given to each one. For variability purposes, a default 

value of 3 inferences, to each of the scenarios above is required. With this, different 

computed answers by the model are considered. 

Moreover, to each one of the experiments, the concept of in-context learning will be 

tested. A total of three sub-experiments per each row, modifying the number of given 

resolved examples in the LLM context is requested. A total of eighteen sub-experiments 

are needed for in-context learning testing .  



 

38 

 

Table 2. ICL sub-experiment with GPT-3.5-turbo and temp 0 

 

Table 3. ICL sub-experiment with GPT-3.5-turbo and temp 1 

 

Table 4. ICL sub-experiment with fine-tuned GPT-3.5-turbo and temp 0 

 

Table 5. ICL sub-experiment with fine-tuned GPT-3.5-turbo and temp 1 

 

Table 6. ICL sub-experiment with GPT-4 and temp 0 

 

Table 7. ICL sub-experiment with GPT-4 and temp 1 

On zero-shot learning, the model will only use the system prompt message. One-shot 

learning LLMs will use system message and a supervised unique example of how the 

model should behave over an input. In contrast to few-shot learning where an increased 



 

39 

number of labelled examples is given. Due to financial and budgeting reasons; a unique 

set of two labelled examples is given. 

All experiments will be exposed to the same chess puzzles amount (50 chess-puzzles) 

due to pricing requirements on token-cost per request by OpenAI. All LLMs will face 

same chess puzzles, comparing their performances.  

For the fine-tuned model, original dataset was divided in two slices, for training and 

validation purposes.  

Finally, but not least, all sub-experiments will be executed 3 times, for variability 

purposes. To check if the LLM can compute other results over these number of 

inferences. 

5.5 Prompt design 

 

Prompt design is a crucial step for maximizing output performance and results of LLMs. 

To create the best prompt possible, an iterative process of performing-error-testing was 

used. This concept is referred as iterative prompt development. 

As a base context, every experiment was fed with the system role prompt. This prompt 

included an explanation of the model’s expected behaviour. With this message, the LLMs 

were given a puzzle with a FEN board notation and requested to respond with next valid 

move producing a checkmate.  

For testing and analysis purposes, that message includes an output format required from 

the LLM to accomplish. The output consists of a JSON (JavaScript Object Notation) 

object with a unique key called “move”, where given move in UCI format by the LLM, is 

stored. 

 

Figure 37. Initial prompt iteration 

Over this base prompt, GPT’s capabilities of understanding UCI format were not as 

expected. Given moves were not in a UCI format, causing to consider most of the 



 

40 

responses as not valid. Most of them were corrupted using special characters such as (¿, 

?, !, *, +).  

Explaining what UCI format was, and therefore explaining how to note a movement was 

needed. For this UCI concept an example with its respective explanation was added. A 

further iteration with the above explanation is needed.    

 

Figure 38. Second iteration of prompt. 

According to an initial assessment over this second iteration, the LLM result ended up 

concluding a predictable lack of knowledge over the chess field. The model's lacks 

appropriate valid moves prevented most puzzles from being solved. These given moves 

were in UCI format (solving first iteration problems); nevertheless, not valid to the 

current board.  

To sum up, a new iteration was required to prevent non-valid chess moves as responses, 

without losing UCI format output capabilities. Therefore, with this new iteration, some 

contextual chess game information was included into the message.  

A list of valid moves, and a history move list as were fed into the prompt. First list consists 

of all possible valid moves over the game by its FEN notation; second consists of a 

backlog of all moves pushed to the game. A brief explanation explaining both attributes 

was inserted. 

Hoping of an increase on GPT visual understanding over the game, the iteration above 

was done. With these, all given moves should be valid to a given FEN and therefore, UCI 

format capabilities of the model remained constant.  



 

41 

 

Figure 39. Third and final iteration of prompt 

Over this final iteration, the given results were all valid to the FEN and therefore also in 

a correct UCI format. With this prompt, experiments will be carried out, analysing the 

capabilities of LLMs over chess.  

For recording and handling errors, an implementation of error loggers was done, 

recording every single error there could be in each of the iterations. With those logs, and 

further analysis of them, iterations were done, increasing quality of outputs.  

An example of some error logs can be seen in Figure 40, where a malformed string was 

return therefore producing and exception of the current code execution. 

 

Figure 40. GPT error log during execution. 

 



 

42 

5.5.1 In-context learning 

 

Zero, one and few-shot approaches are considered in this experiment. As previously 

mentioned, for each approach, zero, one and two guided examples are provided to the 

model, respectively. 

Regarding the guided examples, from original dataset, a set of examples are taken, 

building the respective response model should give. These supervised responses are 

directly fed into the model using ChatML syntax format.  

These responses consist of a pair of user and assistant role messages. For user role, the 

input is the one described over the system message, consisting of FEN, a list of valid 

moves and a backlog of used moves.  For the assistant role, a JSON object with the unique 

key “move”, and the UCI format move producing a checkmate is returned.  

Whit these an aim on analyzing and experimenting learning capabilities without 

requiring fine-tuning are tested.  

  



 

43 

6. Results 
 

In this section, results will be obtained, with a concise explanation over them. Format 

used and different formulas will be introduced in measuring GPT’s capabilities over this 

chess field.  

6.1 Experiments outputs format 

 

Analyzing the results and giving conclusions to them are needed. For this analysis, a 

raw .csv file is generated over the results of each sub-experiments. 

Each sub-experiments output is divided by the following columns: 

• puzzleId, id of the Lichess puzzle dataset. 

• dataset-move, the answer of the puzzle. The move producing a checkmate over 

the puzzle. 

• gpt0-move, first inference answer given by the LLM. 

• gpt1-move, second inference answer given by the LLM. 

• gpt2-move, third inference answer given by the LLM. 

• gpt-valids, a string containing for the three inferences done if each move is valid 

or not. 

• gpt-results, a string containing for the three inferences done if the puzzle is in 

checkmate or not. 

 

Table 8. Output format of each sub-experiment 

6.2 Accuracies 

 

Accuracy of chess problem resolution is considered. The number of puzzles solved (total 

“true” in ‘gpt-results’ column) and number of unique puzzles solved (at least one true in 

the row in ‘gpt-results’ column) per row is used. With these two attributes following 

formulas for   𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑡𝑜𝑡𝑎𝑙 and 𝑎𝑐𝑐𝑢𝑟𝑎𝑦𝑢𝑛𝑖𝑞𝑢𝑒 will be explained. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑡𝑜𝑡𝑎𝑙 , calculates the accuracy of the LLM in terms of how many times has 

obtained a checkmate resolution over all puzzles, included the variability tries.  Following 

formula will be used: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑡𝑜𝑡𝑎𝑙 =  
∑𝑖=0

𝑛  "𝑡𝑟𝑢𝑒"𝑖

𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑛
 



 

44 

Where: 

• 𝑛 stands for the number of rows in the dataset. 

• 𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦  stands for the number of inferences to the LLM. By default, 3 

inferences are done, so 𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 3. 

• ∑𝑖=0
𝑛  "𝑡𝑟𝑢𝑒"𝑖 stands for summatory of all “true” values from gpt-results column 

from 0 to 𝑛 row.  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑢𝑛𝑖𝑞𝑢𝑒 , calculates the accuracy of the LLM in terms of how many times has 

obtained a checkmate resolution on unique puzzles. Even if the model has reached to a 

checkmate more than one time, only one “true” will be consider. With this, a calculation 

of accuracy of unique puzzles solved can be carried away. Following formula will be used: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑢𝑛𝑖𝑞𝑢𝑒 =  
∑𝑖=0

𝑛  𝑅𝑖

𝑛
 

Where: 

• 𝑛 stands for the number of rows in the dataset. 

• ∑𝑖=0
𝑛  𝑅𝑖, stands for summatory of 𝑅𝑖 from 0 to 𝑛 row. 𝑅𝑖 is an indicator variable 

that equals 1 if the i-th row contains at least one occurrence of the string "true" 

within any of its variability results. Otherwise, equals 0. 

 

6.3 Sub-experiments results 

 

Based on the accuracies’ calculations explained above. Following figures represents the 

results of each sub-experiment.  

Each result encompasses of 4 columns: 

• experimentId, id of the sub-experiment. 

• 𝒏𝒖𝒎𝒆𝒙𝒂𝒎𝒑𝒍𝒆𝒔, number of supervised examples provided to the LLM for 

incontext-learning capabilities. 

• 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝒕𝒐𝒕𝒂𝒍, total accuracy of each model setup. 

• 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝒖𝒏𝒊𝒒𝒖𝒆, unique accuracy of each model setup. 

 

Table 9. ICL sub-experiment results with GPT-3.5-turbo and temp 0. 



 

45 

 

Table 10. ICL sub-experiment results with GPT-3.5-turbo and temp 1. 

 

Table 11. ICL sub-experiment results with fine-tuned GPT-3.5-turbo and temp 0. 

 

Table 12. ICL sub-experiment results with fine-tuned GPT-3.5-turbo and temp 1. 

  

Table 13. ICL sub-experiment results with GPT-4 and temp 0. 

 

Table 14. ICL sub-experiment results with GPT-4 and temp 1. 

Tables 9, 11, and 13 represents scenarios of a temperature attribute set to 0. In contrast 

to Tables 10, 12, and 14 representing scenarios of a temperature set to 1. 

Analyzing these results, some clear assumptions can be made. Between base LLMs (GPT-

3.5-turbo & GPT-4) a clear superiority of this last one is shown. GPT-4 has both 

accuracies higher than its predecessor. Fine-tuning techniques over GPT-3.5-turbo 

produces a model with a higher chess capability than its “vanilla / base” version. Even 

though it's much better, it’s almost on par over the GPT-4 LLM.  

After a first-view analysis over the utilization of these models; an analysis over the in-

context learning addition and the temperature differentiation is made.  

 



 

46 

6.3.1 GPT-3.5-turbo results 

 

GPT-3.5-turbo, LLM capabilities on chess are very limited. Producing, as its best, a 20% 

solved chess puzzles over total 50.  Regarding both temperature and incontext-learning 

setup, a distinction can be made.  

With temperature 0, GPT-3.5-turbo outputs the most probability computed answer. 

Both accuracies columns of Table 9 have the same values. These same values tells that 

over 3 iterations, the model gave the exact same resolution over these puzzles, meaning 

a result of “true true true” or “false false false” for each of the puzzles.  

Over a temperature 1 setup, unique puzzles solved increased; producing at least one 

checkmate over them. Concluding that the LLM can resolve more different puzzles than 

temperature 0 setup. Nevertheless, its total accuracy decreases; meaning that based on 

his knowledge, generated confidence over computed answers are not always correct. 

Furthermore, computed answers may include the real answer needed, but generated 

confidence is not reached to output the needed answer.  

Regarding in-context learning approach an improvement can be seen. One-shot learning 

and few-shot learning ended up producing better results than zero-shot learning. 

Showing off that GPT-3.5-turbo is a shot-learner, even though results are not highly 

remarkable due to poor chess capabilities provided by the LLM.  

Thinking that with an increase in the number of supervised results produced better 

performance was partially correct. With temperature 0, the LLMs’ capabilities are 

increased, producing a direct relation by the number of supervised examples provided. 

In contrast to temperature 1, where the model’s peak performance is at one-shot 

learning, where temperature 0 relationship does not fit. Nevertheless, both approaches 

produced an increase in LLMs’ capabilities over zero-shot learning in chess puzzles 

resolution.  

6.3.2 Ft-GPT-3.5-turbo results 

 

Fine-tuning process has shown a prominent performance over its base model. Fine-

tuned version of GPT-3.5-turbo produces as it most a 34% checkmate rate. This fine-

tuned version has increased GPT-3.5-turbo capabilities over a 70% in its best case.  

Since this model emerges from the GPT-3.5-turbo, part of the behavior is shared. In 

temperature 0, both accuracies remain the same, highlighting the idea explained from 

its base model scenario.  

Regarding temperature 1, the accuracy of unique puzzles remains constant compared to 

temperature 0, but a decrease in the total accuracy is highlighted. Meaning that unique 

puzzles solved remained the same, but the total number of resolved puzzles decreased. 

This could be due to the fine-tuning process. Since re-training phase updated 

correspondingly weights of the ANN; first computed answer with higher probabilities is 

set to be the highest checkmate rate answer.  

With this assumption, models fine-tuning process worked correctly, outputting (in its 

capability limits) the correct answer with higher probabilities.  



 

47 

In-context learning over this fine-tuned model did not affect model performance at all. 

Since the same training data format was given and weights of the ANN were updated; in-

context learning concept did not make any upgrades over its capabilities. Since, this 

concept is a way of hot-fine-tune the model, without updating ANN weights, it makes 

sense that these concept does not produce an increase in models’ performance. 

6.3.3 GPT-4 results 

 

GPT-4 has obtained best performance over this non-NLP field justifying its number of 

parameters, and token pricing as well. Peak performance of this model has reached an 

amount of solving 50% unique puzzles from the 50 by default given.  

Both temperatures setup retrieved similar results, but temperature 0 case obtained the 

highest number of unique puzzles solved. Observing that computed answers with highest 

confidence are the correct answers.  

In terms of giving the model a set of examples did not make GPT-4 performance increase. 

Rather than increasing it, it affected negatively to it.   

Despite of in-context learning being applied and not working as expectedly, different 

considerations could be made. GPT-4 training dataset size is not the same as its 

predecessor. Could be that over that dataset GPT-4 learned about chess concepts that 

GPT-3.5-turbo did not. Therefore, the learning techniques applied did not make any 

significative evidence increasing its capabilities.   

6.3.4 Further observations 

 

As a further analysis made, without going through the experiment objectives of reaching 

a checkmate. Another relation has been discussed which is the number of matching 

moves retrieved and its evolution.  

“Matching moves” refers to moves provided by the LLMs’, but its first two characters are 

equal to the dataset stored move. With this observation, an study over the knowledge of 

the LLM in picking the correct piece of chess to produce a checkmate is studied. 

A total of 150 chess moves per sub-experiment the LLM has given us (50 puzzles * 3), 

being variability attribute 3 by default. Table 15 represents the information detailed 

above. 

 



 

48 

 

Table 15. Number of matching moves per sub-experiment. 

Results aside of probabilities of each experiment over total moves provided; what is 

interesting here is, in worst cases, almost 50% (despite 𝑔𝑝𝑡3𝑡𝑒𝑚𝑝0𝑧𝑒𝑟𝑜) have selected the 

correct chess piece to produce a checkmate.  

There could be two possibilities in which GPT fails. One of them is a bad understanding 

of the UCI format chess notation giving a non-intended notation for the movement 

computed by the LLM. Another is a lack of knowledge in some specific chess puzzles that 

is not capable of resolve.  

The dataset used has an “OpeningTags” and “Theme” columns where some “metadata” 

of the game is stored. These columns could contain information like type of defense 

applied. Training phase over these models may have taught them over some scenario’s 

chess scenarios but not all of them. 

Nevertheless, GPT LLMs presents a lack of knowledge over this field. Its main use case 

for these LLMs is not this type of approach but some related to NLP use cases such as 

text generation or summarization.  

 

 

 

 

 

 

 

  



 

49 

7. Conclusions 
 

Over this thesis work, some conclusions can be made. LLMs’ have come to the world with 

an enormous strength, helping us in our daily lives.  

These models can work as foundational models, meaning that AI can be applied to 

diversity concepts without a need of requiring AI, ML or DL knowledge about it. Since 

in-context learning, fine-tuning techniques (from September 2023) can be applied, 

every business or person can easily feed the model with custom-purposes datasets to suit 

the model over some scenarios. 

This process of suiting the model has been carried out over this thesis with both 

techniques. Chess was the scenario chosen due to its contribution to AI field with the 

development of chess engines; widely used by professional chess players in their daily 

routines. Chess has the advantage of having different notations to represent a visual 

understanding of the board, as a text generation problem.  

Both chess notations (FEN & UCI) increased visual understanding of the model, even 

though its capabilities were not such good. In-context learning approaches updated 

GPT-3.5-turbo capabilities but still further overreaching GPT-4. Nevertheless, fine-

tuned version of GPT-3.5-turbo almost reached GPT-4, producing a discussion of which 

model to use.  

Base GPT-3.5-turbo was the most affected by these strategies, increasing its capability in 

its best case over an 167%.  Furthermore, concluding that increasing guided examples, 

directly increased its capacity over chess puzzles. This LLM from the ones used over this 

thesis is the simplest, producing a higher capability over new concepts learned.  

Regarding GPT-4, since its training dataset information is not public yet, some clear 

foundation cannot be made. What is known about is that has almost seven times more 

parameters than its predecessor, and its training data size is bigger. With this training 

phase, GPT-4 could have a base knowledge of chess bigger than its predecessor, 

producing a non-effective approach of in-context learning.  

In-context learning techniques over GPT-4 decreased its resolving capacity by 12% in 

some cases. Other cases remain the same resolving capabilities. Therefore, guided 

examples could produce a miss-understating over the base chess knowledge the model 

has. Moreover, altering his base knowledge negatively affected its base capabilities. 

Fine-tuned model increased its capabilities over his base model over a 70% in its best 

case. Altering his natural base knowledge positively affected its resolution capabilities on 

chess. Updating its corresponding weights of the ANN positively affected the results, 

nevertheless in-context learning applied to it did not. Applying this prompt techniques 

did not upgrade models' performance but neither downgraded. Fine-tuned process 

successfully worked since guided examples did not upgrade its resolving capabilities as 

its natural capabilities were already upgraded. 

Taking into consideration token pricing of both models, fine-tuned versions of GPT-3.5-

turbo could be a desirable option since its price token is ten times less than GPT-4. Both 



 

50 

models were relatively closed to each other besides GPT-4 being the one with better 

performances. A mean increased performance difference of 15% of GPT-4 over fine-

tuned GPT-3.5-turbo is presented. A discussion over its capabilities could be made over 

budget saving per request. 

About puzzles not solved, there could be one thing that could happen. This dataset has 

some specific themes over each puzzle. While feeding guided examples to the model, only 

a tiny portion of different strategies to solve different puzzles could were given; 

producing that unknow themes for the LLMs could not be resolved. Nevertheless, and as 

mentioned before, these models had shown the capability of choosing the correct piece 

to move although the movement provided does not produce the checkmate.  

Related to a future work applied to it, and without considering budget limitations; 

further work of fine-tuning process and in-context learning approaches with an increase 

on the number of both guided examples provided can be done. With this, an assumption 

over Language Models being short learners could be applied. In this work, base GPT-3.5-

turbo was proven to be short-learner since its capabilities increased. Nevertheless, to 

GPT-4 that assumption could not be made due to the lack number of guided examples. 

Increasing its base examples could positively affect this model, therefore concluding that 

GPT-4 could be a short-learner as well. 

In summary, these technologies and architecture of Large Language Models have come 

to stay and therefore help us in daily routine tasks. The evolution of this models must be 

followed since its learning rate over future year could be enormously high. 

  



 

51 

8. References 
 

Alonso, Rodrigo. 2023. ‘Diferencias entre IA, Machine Learning y Deep Learning’. 

HardZone. Retrieved 23 August 2023 

(https://hardzone.es/tutoriales/rendimiento/diferencias-ia-deep-machine-learning/). 

Amnon. 2023. ‘How Do Chess Engines Work? An Intro to AI.’ Retrieved 2 September 

2023 (https://blog.cambridgecoaching.com/how-do-chess-engines-work-an-intro-to-

ai). 

Anon. 2023a. ‘Aligning Language Models to Follow Instructions’. Retrieved 22 August 

2023 (https://openai.com/research/instruction-following). 

Anon. 2023b. ‘Do Chess Engines Use Machine Learning?’ Retrieved 3 September 2023 

(https://osgamers.com/frequently-asked-questions/do-chess-engines-use-machine-

learning). 

Anon. 2023c. ‘¿En qué se diferencian la IA y el aprendizaje automático?’ Google Cloud. 

Retrieved 20 August 2023 (https://cloud.google.com/learn/artificial-intelligence-vs-

machine-learning?hl=es). 

Anon. 2023d. ‘Forsyth–Edwards Notation’. Wikipedia. 

Anon. 2023e. ‘GPT-3’. Wikipedia. 

Anon. 2023f. ‘Modelo Transformador Para La Comprensión Del 

Lenguaje.  |  Text  |  TensorFlow’. Retrieved 23 August 2023 

(https://www.tensorflow.org/text/tutorials/transformer?hl=es-419). 

Anon. 2023g. ‘¿Qué es el machine learning? - Explicación sobre el machine learning 

empresarial - AWS’. Amazon Web Services, Inc. Retrieved 20 August 2023 

(https://aws.amazon.com/es/what-is/machine-learning/). 

Anon. 2023h. ‘¿Qué es la inteligencia artificial (IA)?’ Google Cloud. Retrieved 20 

August 2023 (https://cloud.google.com/learn/what-is-artificial-intelligence?hl=es). 

Anon. 2023i. ‘¿Qué es una red neuronal? - Explicación de las redes neuronales 

artificiales - AWS’. Amazon Web Services, Inc. Retrieved 20 August 2023 

(https://aws.amazon.com/es/what-is/neural-network/). 

Anon. 2023j. ‘What Is GPT AI? - Generative Pre-Trained Transformers Explained - 

AWS’. Amazon Web Services, Inc. Retrieved 22 August 2023 

(https://aws.amazon.com/what-is/gpt/). 

Anon. 2023k. ‘What Is Natural Language Processing? | IBM’. Retrieved 20 August 

2023 (https://www.ibm.com/topics/natural-language-processing). 

Anon. 2023l. ‘Word Embeddings in NLP: A Complete Guide’. Retrieved 20 August 

2023 (https://www.turing.com/kb/guide-on-word-embeddings-in-nlp). 



 

52 

Anon. n.d.-a. ‘Chess AI: A Brief History | Built In’. Retrieved 2 September 2023 

(https://builtin.com/artificial-intelligence/chess-ai). 

Anon. n.d.-b. ‘Diferencias entre IA, Machine Learning y Deep Learning’. HardZone. 

Retrieved 23 August 2023 (https://hardzone.es/tutoriales/rendimiento/diferencias-ia-

deep-machine-learning/). 

Anon. n.d.-c. ‘DLAI - Learning Platform Beta’. Retrieved 7 September 2023 

(https://learn.deeplearning.ai/chatgpt-prompt-eng/lesson/1/introduction). 

Anon. n.d.-d. ‘Lichess.Org Open Database’. Retrieved 25 August 2023 

(https://database.lichess.org/#puzzles). 

Anon. n.d.-e. ‘Modelo Transformador Para La Comprensión Del 

Lenguaje.  |  Text  |  TensorFlow’. Retrieved 23 August 2023 

(https://www.tensorflow.org/text/tutorials/transformer?hl=es-419). 

Anon. n.d.-f. ‘What Is Deep Learning? | IBM’. Retrieved 20 August 2023 

(https://www.ibm.com/topics/deep-learning). 

Bajaj, Prateek. 2018. ‘Reinforcement Learning’. GeeksforGeeks. Retrieved 20 August 

2023 (https://www.geeksforgeeks.org/what-is-reinforcement-learning/). 

Barla, Nilesh. 2022. ‘The Ultimate Guide to Word Embeddings’. Neptune.Ai. Retrieved 

20 August 2023 (https://neptune.ai/blog/word-embeddings-guide). 

BerenLuthien, Ancalagon. 2016. ‘Answer to “What Are the Advantages of ReLU over 

Sigmoid Function in Deep Neural Networks?”’ Cross Validated. Retrieved 20 August 

2023 (https://stats.stackexchange.com/a/211359). 

Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla 

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini 

Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya 

Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark 

Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher 

Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. 

‘Language Models Are Few-Shot Learners’. 

Copeland, Michael. 2016. ‘The Difference Between AI, Machine Learning, and Deep 

Learning?’ NVIDIA Blog. Retrieved 20 August 2023 

(https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-

machine-learning-deep-learning-ai/). 

DaemonMaker. 2014. ‘Answer to “What Are the Advantages of ReLU over Sigmoid 

Function in Deep Neural Networks?”’ Cross Validated. Retrieved 20 August 2023 

(https://stats.stackexchange.com/a/126362). 

Dai, Damai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. 

2023a. ‘Why Can GPT Learn In-Context? Language Models Implicitly Perform 

Gradient Descent as Meta-Optimizers’. 



 

53 

Dai, Damai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. 

2023b. ‘Why Can GPT Learn In-Context? Language Models Implicitly Perform 

Gradient Descent as Meta-Optimizers’. (arXiv:2212.10559). 

Delua, Julianna. 2021. ‘Supervised vs. Unsupervised Learning: What’s the Difference?’ 

IBM Blog. Retrieved 20 August 2023 (https://www.ibm.com/blog/supervised-vs-

unsupervised-learning/). 

Dhaduk, Hiren. 2023. ‘A Complete Guide to Fine Tuning Large Language Models’. 

Simform - Product Engineering Company. Retrieved 4 September 2023 

(https://www.simform.com/blog/completeguide-finetuning-llm/). 

Donges, Niklas. 2023. ‘What Are Recurrent Neural Networks? | Built In’. Retrieved 20 

August 2023 (https://builtin.com/data-science/recurrent-neural-networks-and-lstm). 

Feng, Xidong, Yicheng Luo, Ziyan Wang, Hongrui Tang, Mengyue Yang, Kun Shao, 

David Mguni, Yali Du, and Jun Wang. 2023a. ‘ChessGPT: Bridging Policy Learning and 

Language Modeling’. (arXiv:2306.09200). 

Feng, Xidong, Yicheng Luo, Ziyan Wang, Hongrui Tang, Mengyue Yang, Kun Shao, 

David Mguni, Yali Du, and Jun Wang. 2023b. ‘ChessGPT: Bridging Policy Learning and 

Language Modeling’. 

Fiekas, Niklas. 2023. ‘Python-Chess: A Chess Library for Python — Python-Chess 1.10.0 

Documentation’. Retrieved 25 August 2023 (https://python-

chess.readthedocs.io/en/latest/). 

Fu, Yao, Hao Peng, and Tushar Khot. 2022. ‘How Does GPT Obtain Its Ability? Tracing 

Emergent Abilities of Language Models to Their Sources’. 

Gebhardt, Patrick. n.d. ‘The History of Chess AI’. Retrieved 2 September 2023 

(https://blog.paessler.com/the-history-of-chess-ai). 

GeeksforGeeks. 2017. ‘Removing Stop Words with NLTK in Python’. GeeksforGeeks. 

Retrieved 20 August 2023 (https://www.geeksforgeeks.org/removing-stop-words-nltk-

python/). 

Gokultechninza. 2023a. ‘How Should AI Systems Behave and Who Should Decide? - 

According to OpenAI’. Medium. Retrieved 22 August 2023 

(https://medium.com/@gokultechninza/how-should-ai-systems-behave-and-who-

should-decide-according-to-openai-e1683a20fd34). 

Gokultechninza. 2023b. ‘How Should AI Systems Behave and Who Should Decide? - 

According to OpenAI’. Medium. Retrieved 22 August 2023 

(https://medium.com/@gokultechninza/how-should-ai-systems-behave-and-who-

should-decide-according-to-openai-e1683a20fd34). 

GraphEverywhere, Equipo. 2019. ‘Machine Learning | Qué es, tipos, ejemplos y cómo 

implementarlo’. GraphEverywhere. Retrieved 20 August 2023 

(https://www.grapheverywhere.com/machine-learning-que-es-tipos-ejemplos-y-

como-implementarlo/). 



 

54 

Greyling, Cobus. 2023. ‘Example Code & Implementation Considerations For GPT 3.5 

Turbo, ChatML & Whisper’. Medium. Retrieved 22 August 2023 

(https://cobusgreyling.medium.com/example-code-implementation-considerations-

for-gpt-3-5-turbo-chatml-whisper-e61f8703c5db). 

Gupta, Mohit. 2019. ‘NLP | How Tokenizing Text, Sentence, Words Works’. 

GeeksforGeeks. Retrieved 20 August 2023 (https://www.geeksforgeeks.org/nlp-how-

tokenizing-text-sentence-words-works/). 

Gupta, Shlok. 2023. ‘Rules of Inference in AI’. Scaler Topics. Retrieved 21 August 2023 

(https://www.scaler.com/topics/inference-rules-in-ai/). 

Jain, Anupama. 2022. ‘A Complete Guide To Understand How Chess Engines Work 

(2022)’. Retrieved 2 September 2023 (https://squareoffnow.com/blog/how-chess-

engines-work/). 

Kapronczay, Mór. 2023. ‘A Beginner’s Guide to Language Models | Built In’. Retrieved 

20 August 2023 (https://builtin.com/data-science/beginners-guide-language-models). 

Kerner, Sean Michael. 2023. ‘What Is a Large Language Model (LLM)? – TechTarget 

Definition’. WhatIs.Com. Retrieved 23 August 2023 

(https://www.techtarget.com/whatis/definition/large-language-model-LLM). 

Kumar, Ravish. 2021. ‘Supervised, Unsupervised, and Semi-Supervised Learning’. 

EnjoyAlgorithms. Retrieved 23 August 2023 (https://medium.com/enjoy-

algorithm/supervised-unsupervised-and-semi-supervised-learning-64ee79b17d10). 

Kuyper, Dan. 2023. ‘Iterative Prompt Development’. Dan Kuyper. Retrieved 21 August 

2023 (https://dankuyper.com/iterative-prompt-development/). 

Ltd, Arm. n.d. ‘What Is AI Inference’. Arm | The Architecture for the Digital World. 

Retrieved 21 August 2023 (https://www.arm.com/glossary/ai-inference). 

Maatta, Teemu. 2023. ‘Chat Markup Language (ChatML’. Medium. Retrieved 22 

August 2023 (https://tmmtt.medium.com/chat-markup-language-chatml-

35767c2c69a1). 

Mahendra, Sanksshep. 2022. ‘How Do Chess Engines Work?’ Artificial Intelligence +. 

Retrieved 3 September 2023 (https://www.aiplusinfo.com/blog/how-do-chess-

engines-work/). 

Mandour, Ahmed. 2023. ‘GPT-3.5 Model Architecture’. OpenGenus IQ: Computing 

Expertise & Legacy. Retrieved 20 August 2023 (https://iq.opengenus.org/gpt-3-5-

model/). 

Menzli, Amal. 2022. ‘Tokenization in NLP: Types, Challenges, Examples, Tools’. 

Neptune.Ai. Retrieved 20 August 2023 (https://neptune.ai/blog/tokenization-in-nlp). 

OpenAI. 2022. ‘Introducing ChatGPT’. Retrieved 22 August 2023 

(https://openai.com/blog/chatgpt). 

OpenAI. 2023a. ‘How Should AI Systems Behave, and Who Should Decide?’ Retrieved 

22 August 2023 (https://openai.com/blog/how-should-ai-systems-behave). 



 

55 

OpenAI. 2023b. ‘OpenAI Platform’. Retrieved 20 August 2023 

(https://platform.openai.com). 

OpenAI. 2023c. ‘OpenAI Platform’. Retrieved 22 August 2023 

(https://platform.openai.com). 

Oracle, ExperiencIA. 2018a. ‘Diferencias Entre La Inteligencia Artificial y El Machine 

Learning’. Medium. Retrieved 20 August 2023 

(https://medium.com/@experiencIA18/diferencias-entre-la-inteligencia-artificial-y-el-

machine-learning-f0448c503cd4). 

Oracle, ExperiencIA. 2018b. ‘Diferencias Entre La Inteligencia Artificial y El Machine 

Learning’. Medium. Retrieved 20 August 2023 

(https://medium.com/@experiencIA18/diferencias-entre-la-inteligencia-artificial-y-el-

machine-learning-f0448c503cd4). 

Ouyang, Long, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela 

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, 

Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter 

Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. 2022. ‘Training Language 

Models to Follow Instructions with Human Feedback’. 

Peng, Baolin, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. 2023a. 

‘Instruction Tuning with GPT-4’. 

Peng, Baolin, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. 2023b. 

‘Instruction Tuning with GPT-4’. (arXiv:2304.03277). 

Prakash, Amit. 2023. ‘GPT-4 vs GPT-3.5: A Full Breakdown of The Differences’. 

ThoughtSpot. Retrieved 22 August 2023 (https://www.thoughtspot.com/data-

trends/ai/gpt-4-vs-gpt-3-5). 

Pykes, Kurtis. 2023. ‘Stemming and Lemmatization in Python’. Retrieved 20 August 

2023 (https://www.datacamp.com/tutorial/stemming-lemmatization-python). 

Qwiklabs. n.d.-a. ‘Introduction to Generative AI | Google Cloud Skills Boost’. Qwiklabs. 

Retrieved 20 August 2023 

(https://www.cloudskillsboost.google/course_sessions/3227266/video/382759). 

Qwiklabs. n.d.-b. ‘Introduction to Large Language Models | Google Cloud Skills Boost’. 

Qwiklabs. Retrieved 20 August 2023 

(https://www.cloudskillsboost.google/course_sessions/3268094/video/379143). 

Raventós, Allan, Mansheej Paul, Feng Chen, and Surya Ganguli. 2023. ‘Pretraining 

Task Diversity and the Emergence of Non-Bayesian in-Context Learning for 

Regression’. 

Reznikov, Ivan. 2022. ‘How Good Is ChatGPT at Playing Chess? (Spoiler: You’ll Be 

Impressed)’. Medium. Retrieved 25 August 2023 

(https://medium.com/@ivanreznikov/how-good-is-chatgpt-at-playing-chess-spoiler-

youll-be-impressed-35b2d3ac024a). 



 

56 

Ringa Tech, dir. 2021. Tu Primera Red Neuronal En Python y Tensorflow. 

RockTheStar. 2019. ‘What Are the Advantages of ReLU over Sigmoid Function in Deep 

Neural Networks?’ Cross Validated. Retrieved 20 August 2023 

(https://stats.stackexchange.com/q/126238). 

Rouse, Margaret. 2023. ‘Zero-Shot, One-Shot, Few-Shot Learning’. Techopedia. 

Retrieved 22 August 2023 (https://www.techopedia.com/definition/34949/zero-shot-

one-shot-few-shot-learning). 

Rowe, Walker. n.d. ‘What Is a Neural Network? An Introduction with Examples’. BMC 

Blogs. Retrieved 23 August 2023 (https://www.bmc.com/blogs/neural-network-

introduction/). 

Salamone, Luke. 2021. ‘What Is Temperature in NLP?        ’. Luke Salamone’s Blog. 

Retrieved 21 August 2023 (https://lukesalamone.github.io/posts/what-is-

temperature/). 

shristikotaiah. 2020. ‘Word Embeddings in NLP’. GeeksforGeeks. Retrieved 20 August 

2023 (https://www.geeksforgeeks.org/word-embeddings-in-nlp/). 

Srivastava, Aarohi, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar 

Abid, Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-

Alonso, Agnieszka Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, 

Alex Warstadt, Alexander W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia 

Parrish, Allen Nie, Aman Hussain, Amanda Askell, Amanda Dsouza, Ambrose Slone, 

Ameet Rahane, Anantharaman S. Iyer, Anders Andreassen, Andrea Madotto, Andrea 

Santilli, Andreas Stuhlmüller, Andrew Dai, Andrew La, Andrew Lampinen, Andy Zou, 

Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio 

Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun 

Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut 

Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej 

Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin 

Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, 

Cameron Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, César Ferri 

Ramírez, Chandan Singh, Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, 

Chris Callison-Burch, Chris Waites, Christian Voigt, Christopher D. Manning, 

Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro, Colin Raffel, 

Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks, 

Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel 

Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, 

Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep 

Ganguli, Denis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke 

Hupkes, Diganta Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, 

Dylan Schrader, Ekaterina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, 

Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodola, Emma Lam, 

Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan 

Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, 

Fatemeh Siar, Fernando Martínez-Plumed, Francesca Happé, Francois Chollet, Frieda 

Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germán Kruszewski, 



 

57 

Giambattista Parascandolo, Giorgio Mariani, Gloria Wang, Gonzalo Jaimovitch-López, 

Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh 

Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze, Hiromu 

Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack 

Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, 

James B. Simon, James Koppel, James Zheng, James Zou, Jan Kocoń, Jana Thompson, 

Janelle Wingfield, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, 

Jason Wei, Jason Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, 

Jeremy Kim, Jeroen Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, 

Jillian Tang, Joan Waweru, John Burden, John Miller, John U. Balis, Jonathan 

Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose Hernandez-Orallo, 

Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum, Joshua S. 

Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik 

Gopalakrishnan, Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel, 

Kevin Omondi, Kory Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, 

Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, 

Lianhui Qin, Lidia Contreras-Ochando, Louis-Philippe Morency, Luca Moschella, 

Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis Oliveros Colón, Luke Metz, 

Lütfi Kerem Şenel, Maarten Bosma, Maarten Sap, Maartje ter Hoeve, Maheen Farooqi, 

Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco Maru, Maria 

Jose Ramírez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin 

Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna 

Baitemirova, Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, 

Michael Gu, Michael Ivanitskiy, Michael Starritt, Michael Strube, Michał Swędrowski, 

Michele Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac 

Suzgun, Mitch Walker, Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, 

Mozhdeh Gheini, Mukund Varma T, Nanyun Peng, Nathan A. Chi, Nayeon Lee, Neta 

Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron, Nicole Martinez, 

Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish Keskar, Niveditha S. 

Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar 

Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, 

Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy 

Liang, Peter Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, 

Piyush Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, 

Rabin Banjade, Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramon Risco, 

Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe 

Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman Sitelew, Ronan 

LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov, Ryan Chi, 

Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mohammad, 

Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. 

Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik 

Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, 

Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank 

Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh 

Pachchigar, Shubham Toshniwal, Shyam Upadhyay, Shyamolima, Debnath, Siamak 

Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-

Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano 

Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven T. Piantadosi, Stuart 



 

58 

M. Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal 

Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo Desbordes, 

Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick, 

Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, 

Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, 

Vikas Raunak, Vinay Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek 

Srikumar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, 

Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair 

Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, 

Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian 

Wang, Zijie J. Wang, Zirui Wang, and Ziyi Wu. 2023. ‘Beyond the Imitation Game: 

Quantifying and Extrapolating the Capabilities of Language Models’. 

Team (CHESScom), Chess com. 2019. ‘Computer Chess Engines: A Quick Guide’. 

Chess.Com. Retrieved 2 September 2023 

(https://www.chess.com/article/view/computer-chess-engines). 

Team, IBM Data and AI. 2023. ‘AI vs. Machine Learning vs. Deep Learning vs. Neural 

Networks: What’s the Difference?’ IBM Blog. Retrieved 20 August 2023 

(https://www.ibm.com/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-

networks/). 

Terrasi, Vincent. 2023. ‘GPT-4: How Is It Different From GPT-3.5?’ Retrieved 22 

August 2023 (https://www.searchenginejournal.com/gpt-4-vs-gpt-3-

5/482463/#close). 

Tianyu, Gao. 2021. ‘Prompting: Better Ways of Using Language Models for NLP Tasks’. 

The Gradient. Retrieved 21 August 2023 (https://thegradient.pub/prompting/). 

Varma, Satish. 2023. ‘Use of Role’s System/User/Assistant in ChatGPT API’. Java 

Tutorials. Retrieved 22 August 2023 (https://javabydeveloper.com/use-of-roles-

system-user-assistant-in-chatgpt-api/). 

Varshney, Tanay, and Annie Suria. 2023. ‘An Introduction to Large Language Models: 

Prompt Engineering and P-Tuning’. NVIDIA Technical Blog. Retrieved 21 August 2023 

(https://developer.nvidia.com/blog/an-introduction-to-large-language-models-

prompt-engineering-and-p-tuning/). 

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. 

Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. ‘Attention Is All You Need’. in 

Advances in Neural Information Processing Systems. Vol. 30. Curran Associates, Inc. 

Vicente, Fran Ramírez. n.d. ‘Las matemáticas del Machine Learning: Funciones de 

activación’. Telefónica Tech. Retrieved 6 September 2023 

(https://telefonicatech.com/blog/las-matematicas-del-machine-learning-funciones-de-

activacion). 

Wolff, Rachel. 2020. ‘What Is Natural Language Processing’. MonkeyLearn Blog. 

Retrieved 20 August 2023 (https://monkeylearn.com/blog/what-is-natural-language-

processing/). 



 

59 

Yothment, Jacob. 2023. ‘How AI Powers Chess Engines and Creates Grandmasters’. 

Pure Storage Blog. Retrieved 3 September 2023 

(https://blog.purestorage.com/perspectives/how-ai-powers-chess-engines-and-

creates-grandmasters/). 

Zola, Andrew. 2023. ‘How to Play Chess Using a GPT-2 Model | HackerNoon’. 

Retrieved 24 August 2023 (https://hackernoon.com/how-to-play-chess-using-a-gpt-2-

model-c9323wwi). 

 

 

 

 

 

 


