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Abstract 
Obtaining efficient speed profiles for metro trains is a multi-objective optimisation 

problem where energy consumption and travel time must be balanced. Automatic Train 

Operation (ATO) systems may handle a great number of possible speed profiles; hence 

optimisation algorithms are required find efficient ones in a timely manner. This paper 

aims to assess the performance of a particular meta-heuristic optimisation algorithm, a 

variation of the traditional Ant Colony (ACO) modified to deal with multi-objective 

problems with continuous variables: MOACOr. This algorithm is used to obtain 

efficient speed profiles in up to 32 interstation sections in the metro network of 

Valencia (Spain), and the convergence and diversity of these solution sets is evaluated 

through metrics such as Inverse Generational Distance (GD) and Normalised 

Hypervolume (NH). The results are then compared to those obtained with a 

conventional genetic algorithm (NSGA-II), including a statistical analysis to identify 

significant differences. It has been found that MOACOr shows a better performance 

than NSGA-II in terms of convergence, regularity and diversity of the solution. These 

results indicate that MOACOr is a good alternative to the widely used genetic algorithm 

and could be a better tool for rail operation managers trying to improve energy 

efficiency. 
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1. Introduction 

The growing threat of climatic change and scarcity of resources imposes the need for 

increasing efficiency at all levels of our society. This includes the transport sector, 

whose impact on CO2 emissions is as remarkable as its importance for global economy. 

Railways are, comparatively, one of the most efficient ways of moving passengers and 

goods [1] and thus have become an investment priority for many public administrations 

across the world. However, there is still ample room for reducing the energy 

consumption of railways, thus contributing to a more sustainable transport. 

Many studies have focused on this topic over the past years, addressing energy 

efficiency on railways through different approaches: from track geometry [2], to better 

aerodynamics [3] or lighter materials [4]. However, the most common approach to 

energy efficiency on railways is eco-driving i.e., the study and application of speed 

profiles that reduce energy consumption. According to Douglas et al. [5],  applying eco-

driving may achieve a reduction of energy consumption between 15 and 35%  with low 

implementation costs. 

Focusing on metropolitan railways (metros and trams), eco-driving has been 

successfully applied in many networks which are operated automatically with an ATO 

(Automatic Train Operation) system. For instance, according to Domínguez et al. [6], 

an energy reduction of 20% was achieved on Metro Madrid (Spain) after applying eco-

driving techniques. Similarly, Brenna et al. [7] achieved an energy reduction of 33% on 



 

the metro of Milan (Italy) through an analogous approach. These results point out the 

effectivity of eco-driving on urban railways. 

Obtaining efficient speed profiles for metro trains is a multi-objective optimisation 

problem because there are, at least, two conflicting variables to consider: energy 

consumption and travel time. Therefore, there is not a single solution to the problem, 

but a (theoretically infinite) set of optimal solutions, called Pareto Solutions or non-

dominated solutions (or, alternatively, the Pareto Front). Each solution is defined by the 

ATO commands set by the system for each interstation run (e.g., braking rate, holding 

speed, etc.) and yields a different travel time and energy consumption. 

Conventional ATO systems had bandwidth limitations that only allow a few different 

speed profiles to be pre-programmed for each interstation run. Therefore, it is feasible to 

calculate and analyse all of them to identify the Pareto solutions [6, 8]. In this case, 

there is no need for applying an optimisation algorithm, as a systematic calculation of 

the whole solution space is entirely possible. However, the development of more 

advanced CBTC (Communication Based Train Control) allows ATO systems to handle 

many values (theoretically infinite, although this is of course limited by the accuracy of 

the system to measure and set magnitudes such as train speed or acceleration) for each 

ATO command when departing from each station. This means many more potential 

speed profiles to be considered, thus expanding dramatically the solution space and 

making a direct calculation of the Pareto solutions unfeasible [9]. Even more so if that 



 

calculation is repeated for each interstation section covering the whole network, and if 

other factors are considered (e.g., variations in train load, on-board energy storage or 

interactions between trains). 

The most common way of addressing this problem [10] is using a meta-heuristic 

algorithms that allows searching the solution space and finding non-dominated solutions 

in a timely manner. These algorithms have been extensively used in fields such as 

unmanned vessels [11], fault diagnosis [12] or supply chains [13] and have also been 

widely applied to obtain efficient train profiles and to optimise train schedules [14–17]. 

There are many different meta-heuristic algorithms, but in this context the preferred 

choice by far are Genetic Algorithms (GA), and particularly the NSGA-II (Non-

dominated Sorted Genetic Algorithm) variant [10]. GA have been extensively used to 

identify efficient speed profiles in railways [9, 15, 17–21], to the point that the NSGA-II 

variant has become a benchmark to assess the effectivity of any other optimisation 

algorithm. The reason is that NSGA-II yields good results with relatively low 

computing time, and was one of the first truly effective meta-heuristics applied on 

railways-related optimisation problems [18]. 

Other, more recent algorithms have been compared to GA. For instance, Lu et al. [22] 

found that Ant Colony Optimisation (ACO) converges faster than GA in a single-

objective problem. On the other hand, Zhao et al. [23] did not find clear differences 

between the performance of ACO and GA. Focusing on multi-objective optimisation, 



 

Domínguez et al. [9] compared the performance of NSGA-II and MOPSO (Multi-

Objective Particle Swarm Optimisation) and found the latter to converge faster and 

yield a more diverse set of solutions. Conversely, according to He and Xiong [21], 

NSGA-II offers best results in less time than SPEA-II (Strength Pareto Evolutionary 

Algorithm). 

However, despite these examples, relatively few studies compare the performance of 

different meta-heuristic algorithms in identifying efficient metro speed profiles, and 

there are many still unexplored options. NSGA-II remains the preferred choice in this 

field of research [10], ignoring the development of other algorithms in other fields that 

may offer certain advantages to cope with multi-objective optimisation. 

In this context, this paper aims to assess the performance of a relatively new variant of 

the well-known ACO algorithm, modified to address multi-objective problems with 

continuous variables. This variant, called MOACOr (Multi-Objective Ant Colony 

Optimisation for continuous domains), was first introduced by Garcia-Najera and 

Bullinaria [24] and has been already tested in other fields [13, 25], but has not yet been  

used to address railways eco-driving. By testing MOACOr, we aim to expand the range 

of tools available for railways researchers in a field that it is still somewhat limited to 

the use of NSGA-II and other GA. 



 

The reason for choosing MOACOr over other, more advanced or complex algorithms is 

that ACO algorithms are one of the most well-known and tested swarm intelligence 

algorithms, and they have been scarcely used to identify efficient speed profiles. 

There are also other ACO variants for multi-objective problems, such as iMOACOr for 

problems with four or more objectives [26], or EMOACO with elitist mechanisms to 

improve solution diversity [27], but they only offer slight improvements over MOACOr 

and are devised to cope with certain aspects (such as many optimisation objectives) that 

are not applicable to this study.  

To evaluate the performance of MOACOr, we applied it to calculate efficient speed 

profiles in the metro network of Valencia (Spain), operated by Ferrocarrils de la 

Generalitat Valenciana (FGV). The results have been assessed using certain metrics to 

measure the convergence and diversity of the solutions provided by the algorithm. A 

conventional NSGA-II has been also used for comparison purposes owing to its 

widespread use in the field as explained above.  

The paper is divided as follows: First, a brief description of the Valencia metro network 

and the data used for this study is given. Then, the driving simulator used as a tool for 

modelling speed profiles, based on previous published works, is described. Afterwards, 

the main characteristics of both algorithms (NSGA-II and MOACOr), as well as the 

metrics used for their evaluation, are explained. Then the process of obtaining efficient 

speed profiles for up to 32 interstation sections is described, and the results obtained are 



 

thoroughly analysed and discussed. Finally, the main conclusions regarding the 

performance of MOACOr compared to NSGA-II are presented. 

2. Materials and methods 

2.1. Description of the Valencia metro network 

The metro network of Valencia (Spain), operated by FGV, comprises 9 metro and tram 

lines with a total length of 156 km. 64 million passengers use the network annually, and 

the total energy consumption is about 78 GWh/year [28]. Trains are powered by a 1500 

V DC system (750 V for trams). 

Metro lines (1, 2, 3, 5, 7 and 9) are partially operated with an ATO system. The rolling 

stock used is the metro series 4300 (Vossloh), with a maximum speed of 80 km/h and 

1480 kW of power. There are two different train configurations: one with four carriages 

(588 passengers) and one with five (750 passengers). Tram lines (4, 6 and 8) are omitted 

from this study due to their different characteristics. 

Our analysis focuses on the underground parts of lines 1, 2, 3 and 5, where the ATO 

controls the trains. As shown in Figure 1, lines 1 and 2 share the same route between 

‘Empalme’ and ‘València Sud’, as do lines 3 and 5 between ‘Aeroport’ and ‘Alameda’. 

Only line 5 is completely underground; the rest have parts on the surface where trains 

are manually driven. Omitted from Figure 1 are the tram lines (4, 6 and 8) as well as 

metro lines 7 and 9. The latter share most of their layout with the other metro lines 

except from two short track stretches from which there was no data available. 



 

 

FIGURE 1: Valencia Metro network (only routes operated with ATO). 

Real energy consumption, travel time and speed profile data were measured along these 

lines to calibrate and validate the simulation model as well as to define the optimisation 

problem that constitutes the framework to compare MOACOr and NSGA-II. More 

details regarding data gathering and processing can be found in Martínez Fernández et 

al. [29]. 

2.2. Problem description 

The optimisation problem defined to compare MOACOr and NSGA-II follows the same 

model already used by other authors [9, 14]. It aims at obtaining efficient speed profiles 



 

for automatically operated metro trains, balancing two opposing objectives: travel time 

and energy consumption. 

Travel time depends directly on the train speed profile and has a lower limit (defined by 

the fastest profile a train may apply along a given route) and usually an upper one as 

well (defined by the operator based on what amount of delay is acceptable). Energy 

consumption, on the other hand, depends on several factors such as train characteristics 

(e.g., engine configuration and efficiency, train load), track layout and condition, the 

presence of regenerative braking, etc. It has also at least an upper limit, that of the 

fastest profile at a given route. 

As we are considering a metro line operated automatically, each solution is defined by 

the values of the ATO commands (see section 2.3), which in turn define the speed 

profile that the train will follow from one station to the next. Each profile yields a value 

of travel time and energy consumption. 

There are certain constrains that affect the speed profile and thus both optimisation 

objectives. The ones considered in this research are: 

• Speed limits. 

• Limited braking force (comfort requirement). 

• Speed differences of at least 20 km/h between coasting cycles (comfort). 

• Jerk limited to 0.5 m/s2/s (comfort requirement). 



 

Variations of train load, energy storage and interactions with other trains have not been 

included. 

2.3. Driving simulator 

To carry out an optimisation scheme and find out Pareto speed profiles, a simulation 

tool is usually required. The optimisation algorithms search across the solution space, 

composed of every feasible set of ATO commands, and use such tool to calculate the 

actual travel time and energy consumption of any potential solution [6, 9, 10]. 

Moreover, as the purpose of this study is not to carry out an optimisation study but to 

compare between different meta-heuristic algorithms, the simulator is also needed to 

obtain the real Pareto front (that is, the subset of solutions that are non-dominated) for 

each interstation stretch through systematic simulation. In this way, the real Pareto front 

may be used to assess the performance of each optimisation algorithm (in fact, as 

explained in section 2.5, certain performance metrics require the real Pareto front to be 

known beforehand). 

There are different ways of modelling train dynamics, from mathematical formulations 

based on the Pontryagin Principle [30–32] to stochastic models [33] or fuzzy logic [15, 

34]. However, the most common approach [10] is to use a time-step simulator based on 

simple motion equations, which yields accurate results with reasonable computing effort 

[35, 36]. 



 

This is the approach chosen for this study, which is based on the time-step simulator 

presented by Domínguez et al. [35] but also incorporates a neural network to obtain the 

energy consumption [29]. 

The combined simulator thus developed has been calibrated and validated using real 

data measured in the metro of Valencia [29], and yields an average error of 2.9% for 

travel time and 3.6% for energy consumption. This degree of accuracy is in line with the 

results obtained by other authors with similar time-step simulators [2, 35, 37, 38]. The 

simulator was implemented in MATLAB R2018a (The Mathworks, Inc.). 

Only two types of speed profiles were considered: holding profiles (i.e., the train 

accelerates to a pre-set speed, holds that speed for as long as possible and then brakes to 

stop at the next station) and coasting profiles (i.e., the train coasts and accelerates 

between two pre-set speed limits). This is because these two types are the most energy 

efficient [32, 39] to the point that certain ATO systems are designed based exclusively 

on holding and coasting [8]. This choice determines the simulator input, which consists 

of four ATO commands: braking ratio (b), holding speed (vh), coasting speed (vc) and 

recovery speed (vr). As the two types of speed profiles are mutually exclusive (i.e. a 

train will either hold or coast between two consecutive stations), the ATO system never 

sets values for the four commands at once. For holding profiles, positive values for 

braking ratio and holding speed are set (with vc = vr = 0). For coasting, positive values 

for braking ratio, coasting and recovery speeds are set (with vh = 0 and vc > vr). 



 

2.4. Optimisation algorithms 

As explained before, the main objective of this study is to assess the performance of a 

variant of the ACO algorithm called MOACOr (Multi-Objective Ant Colony 

Optimisation for continuous domains). Socha and Dorigo [40] proposed a variant of the 

traditional ACO called ACO-R, or Ant Colony Optimisation for Continuous Domains. 

This variant modifies the basic mechanism of ACO to search through continuous 

variables by means of a probability density function. Conversely, Garcia-Najera and 

Bullinaria [24] proposed adding an archive to store the best, non-dominated solutions 

after each iteration in order to cope with multi-objective problems. These two 

developments are the source of the MOACOr algorithm used in this study. Although 

simpler versions of ACO have been used for railway optimisation problems with a 

single objective [22], or for multi-objective problems with discrete variables [41], the 

MOACOr version has not been yet tested to obtain energy efficient speed profiles in 

metro networks. 

The ACOr as defined by Socha and Dorigo [40] uses an archive to store the best 

solutions after each iteration. Each stored solution (sl) has a weight (wl) defined as: 

𝑤𝑙 =
1

𝑞𝑘√2𝜋
𝑒
(𝑙−1)2

2𝑞2𝑘2                       (1) 

Where k is the number of ants, subindex l denotes belonging to the l-th solution (sl) and 

q is a parameter that controls the selection from the archive (the higher the value of q, 

the higher the probability of choosing the best solutions already in the archive). On the 



 

other hand, as the algorithm deals with continuous variables, for each decision variable 

(i.e., the four ATO commands) a Gaussian kernel is defined, consisting of the weighted 

sum of several one-dimensional Gaussian density functions (as many as the size of the 

archive). During each iteration, each ant chooses and samples one of these distributions, 

and this choice is ruled by a probability pl determined by the weights of the solutions 

stored in the archive: 

𝑝𝑙 =
𝑤𝑙

∑ 𝑤𝑟
𝑘
𝑟=1

                        (2) 

Where l denotes once again belonging to the l-th solution and wl/wr are weights as 

defined in equation (1). Please note that weights have different subindexes to denote 

different numerations (where subindex r is tied to the summation in the denominator of 

equation (2)). Each Gaussian distribution is defined by its mean and standard deviation, 

formulated as: 

𝜇𝑖 = 𝑠𝑙
𝑖                          (3) 

𝜎𝑖 = 𝜉 ∑
|𝑠𝑒
𝑖−𝑠𝑙

𝑖|

𝑘−1

𝑘
𝑒=1                       (4) 

Where index i denotes the i-th decision variable (in our case, each of the four ATO 

commands), index l indicates the l-th solution and se/sl are the mean values as defined 

by equation (3). Additionally,  is the pheromone parameter, which regulates the 

convergence of the algorithm. 



 

This ACOr structure is modified to cope with two objectives by applying a non-

dominance criterion to choose the solutions that will be stored in the archive. A 

Crowding Distance criterion has also been applied to trim the archive when there is an 

excess of solutions, saving the ones that offer more diversity. 

The Genetic Algorithm used as a benchmark to assess the performance of the MOACOr 

is the conventional Non-dominated Sorted Genetic Algorithm (NSGA-II); a widespread 

algorithm extensively used in railways optimisation problems, as explained in section 1. 

This algorithm includes crossover and mutation mechanisms to generate new solutions 

during each iteration, uses non-domination criteria to choose the best ones and 

incorporates a Crowding Distance mechanism to improve diversity [9]. As the NSGA-II 

algorithm is a well-known and widely used method, a more detailed description will be 

omitted. 

Both algorithms were implemented in MATLAB R2018a (The Mathworks, Inc.) based 

on open-source versions available in www.yarpiz.com, with only minor modifications 

to adapt them to this context. 

Table 1 shows the main parameters of both MOACOr and NSGA-II used for this study, 

calibrated through a sensitivity analysis. 

Table 1 Main parameters for both algorithms, range and chosen value after sensitivity 

analysis 

NSGA-II 

Variable Range Value 

Population size 10-60 30 

Number of iterations 10-60 25 



 

Crossover percentage 0.20-0.60 0.50 

Mutation percentage 0.15-0.50 0.15 

Mutation rate Fixed 0.02 

MOACOr 

Variable Range Value 

Population size 20-50 30 

Number of iterations 20-40 25 

Archive size Fixed 30 

Weight parameter (q) 0.05-0.80 0.80 

Pheromone parameter () 0.50-1.00 1 

 

For the sensitivity analysis, a single, representative interstation section was chosen: 

Aragon-Amistat, in line 5 (see Figure 1). This is because there are not speed limits or 

other factors in this section that may restrict some of the potential speed profiles, and it 

is a completely straight and mostly flat track stretch. Additionally, the obtained Pareto 

front convers the full range of both optimisation variables (i.e., time and energy) and 

includes both types of speed profiles (i.e., holding and coasting). 

In this track section, each algorithm was tested several times to obtain sets of optimal 

speed profiles, varying its parameters within the ranges shown in Table 1. A systematic 

analysis was carried out, where each parameter was modified along its range while 

keeping the rest fixed. In order to account for interactions between parameters, this 

process was repeated several times modifying the values of the fixed parameters before 

each simulation, hence yielding several combinations of values across all ranges. 

Moreover, for each combination of parameters, the algorithm was run six times and the 

average results for each performance metric were calculated. The combination that 



 

better minimised these metrics was then chosen. Ranges for each parameter (and the 

decision of fixing some of them beforehand, such as mutation rate in NSGA-II and 

archive size in MOACOr) were defined based on previous research [23, 42, 43].  

2.5. Performance metrics 

To compare the performance of both meta-heuristic optimisation algorithms, two 

metrics were used. The objective of these metrics is to carry out a quantitative 

evaluation of three aspects of the solution front provided by each algorithm: 

convergence (i.e., proximity to the real Pareto front), diversity (i.e., how spread across 

the solution space is the calculated front) and regularity (i.e., how evenly distributed is 

the calculated front). These three aspects are essential for any set of solutions provided 

by an optimisation algorithm, as the ATO system may thus choose among speed 

profiles that are optimum (as they are part of the Pareto front) and may cover a wider 

range of possibilities, from faster profiles to more conservative ones depending on 

traffic needs. 

These metrics require the real Pareto front to be known beforehand, hence the need for a 

systematic simulation of speed profiles using the driving simulator. This simulation 

consisted, for each interstation stretch, of up to 5832 calculations of the speed profile 

(666 corresponding to holding profiles and 5166 to coasting profiles). This was made by 

sampling the full range of each ATO command in equal increments. Evidently, this is 

only a fraction of the total number of potential solutions (which is virtually infinite), and 



 

thus the Pareto front obtained in each track section is but an approximation to the real 

one. However, as the purpose of this paper is to carry out a comparison between both 

algorithms in a realistic setting, and not obtaining optimal profiles, this deviation was 

deemed acceptable as it provided the required front to obtain the performance metrics 

with a reasonable calculation time. 

The metrics are: 

Inverse Generational Distance (IGD) 

The IGD is an improvement over the more traditional Generational Distance (GD) 

metric. GD measures the proximity of the solution provided by the algorithm to the real 

Pareto front by means of calculating an average distance. It is thus an evaluation of 

convergence. However, GD is not Pareto-compliant and is sensitive to the size of the 

solution set provided by the algorithm. To address this, IGD inverts the terms of GD so 

that it calculates the proximity of the real Pareto front to the solution set provided by the 

algorithm. IGD is calculated as follows [44]: 

𝐼𝐺𝐷 = √
∑ 𝑑𝑗

2𝑁𝑃
𝑗=1

𝑁𝑃
                       (5) 

 

Where dj is the Euclidean distance between the j-th element of the real Pareto front and 

the nearest point belonging to the solution set obtained by the algorithm, and NP is the 

number of elements in the real Pareto front. The lower the value of IGD, the closer the 

solution is to the real Pareto front. 

Normalised Hypervolume (NH) 



 

The Hypervolume, which was first proposed by Thiele and Zitzler [45], is a Pareto-

compliant metric that measures the portion of the objective space weakly dominated by 

the set of solutions given by the algorithm. Calculating this metric is a rather complex 

process, particularly when the number of optimisation objectives increases [46]. In this 

case, we have used an open source algorithm programmed in Python [47], based on the 

algorithm proposed by Fonseca et al. [48]. Moreover, the metric given by each 

algorithm is normalised using the hypervolume calculated for the approximated Pareto 

front. As it is expressed as a fraction of the Pareto front hypervolume, the closer to 1, 

the better. 

3. Results and discussion 

3.1. Pareto fronts 

The first step to compare both algorithms is to obtain the real Pareto front for each of 

the 32 interstation stretches analysed (which, considering both directions of circulation, 

yields 64 cases). This systematic simulation would not be necessary in a real 

optimisation problem, as the main reason of using meta-heuristic algorithms is precisely 

to avoid such a time-consuming task. However, as explained before, it is necessary in 

this case as the evaluation metrics are otherwise impossible to calculate. Therefore, a 

systematic simulation of speed profiles was carried out in each interstation stretch, using 

up to 5832 combinations of ATO commands (666 holding profiles and 5166 coasting 

profiles). This set of combinations is based on the values shown in Table 2. 



 

Table 2 Maximum, minimum and step values for ATO commands used for systematic 

simulation 

 Braking rate, b 

(m/s2) 

Holding speed, 

vh (km/h) 

Coasting 

speed, vc 

(km/h) 

Recovery 

speed, vr 

(km/h) 

Maximum 

value 
0.80 80 80 60 

Minimum 

value 
0.55 25 40 20 

Step 0.05 0.5 1 1 

 

It is evident that a more thorough simulation could be done, as there are theoretically an 

infinite number of possible combinations of ATO commands within the limits in Table 

2. However, those 5832 combinations where enough to identify a good approximation 

to the real Pareto front with a feasible computing time: 100 minutes on average for each 

interstation stretch (while both optimisation algorithms only require a few minutes at 

worst). Figure 2 shows an example of this simulation, namely the results obtained 

between ‘Rosas’ and ‘Manises’ stations (Lines 3 and 5), with the Pareto front fully 

identified. The figure shows the 5832 calculated speed profiles, divided between 

holding and coasting profiles, and marks those that form the approximated Pareto front 

considering a non-dominance criterion. 



 

 

FIGURE 2: Example of extensive simulation to obtain the real Pareto front. Rosas-

Manises (Lines 3-5). 

3.2. Metric results 

Once all Pareto fronts were calculated, both algorithms were used to obtain a set of 

optimised speed profile in each of the 64 cases, and the corresponding metrics defined 

in section 2.5 were obtained. Figure 3 shows a few examples of the results provided by 

each algorithm, compared with the real Pareto front. Overall, both algorithms yield a 

good approximation to the Pareto front, particularly in terms of convergence, although 

MOACOr seems to cover better the full extent of the real Pareto front and hence offers a 

more diverse solution. 



 

 

 

FIGURE 3: Examples of algorithms’ results vs Pareto front. 



 

Table 3 shows the average results for each metric, considering all 64 cases. It seems that 

MOACOr performs better than NSGA-II in both metrics, as it yields an average smaller 

IGD and a NH closer to that of the Pareto front. Therefore, MOACOr may perform 

better in terms of convergence, diversity and regularity. Moreover, MOACOr 

outperforms NSGA-II in 76% of the cases with respect to IGD, and in 87% of the cases 

with respect to NH. 

Table 3 Average results for each metric and algorithm 

 Metric 

IGD NH 

NSGA-II 

Mean 3.417 0.881 

Median 2.338 0.896 

Std. dev. 2.991 0.070 

Asymmetry 6.428 -5.324 

Kurtosis 6.623 6.744 

MOACOr 

Mean 1.910 0.937 

Median 1.599 0.949 

Std. dev. 1.427 0.056 

Asymmetry 8.217 -12.625 

Kurtosis 13.935 36.805 

 

Figure 4 shows the box and whiskers plot for each metric and algorithm, considering all 

64 cases. MOACOr yields a smaller value of IGD on average and shows much lower 

dispersion than NSGA-II. Additionally, MOACOr offers a value of NH closer to one on 

average, and again with less dispersion than NSGA-II. Therefore, there is a trend for an 

overall better performance of MOACOr regarding both diversity and convergence. 



 

 

FIGURE 4: Box and whiskers plots for each metric and algorithm. 

Note that, apart from convergence and diversity metrics, the algorithms might be 

compared in terms of running time. However, in this case, the overall running time of 

each algorithm is greatly affected by the running time of the train simulator, which is 

accurate and functional [29] but not particularly efficient. As each algorithm runs 

several iterations, and on each iteration several speed profiles are calculated by calling 

on the simulator, the total running time may reach several seconds (even up to a few 

minutes). However, these figures do not represent the actual performance of the 

algorithms and thus comparing running times could be misleading. A more accurate 

assessment of running times (clearly separating the time required by each instance of 

the train simulator from the actual running time of each algorithm) could be carried out 

in future research steps. 

3.3. Statistical Analysis 

In order to go further in the comparison between both algorithms, a statistical analysis 

has been carried out to find whether the observed differences are statistically significant. 



 

Figure 5 shows a flow chart detailing the steps of the analysis, carried out using 

STATGRAPHICS CENTURION XVII 17.2.04 (Statpoint Technologies, Inc.). 

 

FIGURE 5: Statistical Analysis flow chart 

First of all, considering the values of asymmetry and kurtosis shown in Table 3, it is 

clear that the distribution of IGD and NH values do not follow a Normal distribution as 

they are clearly outside the [-2, 2] range. A Shapiro-Wilk test confirmed this 

assessment. 

Moreover, a Levene test was applied to test whether each pair of distributions (i.e., IGD 

and NH) have equal variance. According to the results shown in Table 4, in both cases 

the hypothesis of equal variance is rejected with a 95% statistical confidence level. 



 

Therefore, to detect potential significant differences between the values of each metric 

for both algorithms, a non-parametric test was used. Mann-Whitney was discarded as it 

relies on the assumption of approximately equal variance (which is not acceptable in 

this case) and thus the Mood Median test was used instead, once again assuming a 95% 

statistical confidence level, to detect differences in the median values. The results are 

also shown in Table 4. 

Table 4 Levene and Mood Tests results 

VARIANCE (Levene) 

Metric P-Value Equal variance? 

IGD 0.0001 < 0.05 NO 

NH 0.0145 < 0.05 NO 

MEDIAN (Mood) 

Metric P-Value Equal median? 

IGD 0.0047 < 0.05 NO 

NH 1.85E-9 < 0.05 NO 

 

As these results show, there is a statistically significant difference between the median 

values of IGD and NH obtained by each algorithm. Therefore, in terms of convergence, 

regularity and diversity, MOACOr outperforms NSGA-II. This further proves that 

MOACOr offers a small yet significant advantage compared to NSGA-II, as it will offer 

solutions better spread along the Pareto front as well as closer to it. This allows 

choosing ATO profiles among a wider range of options, from a faster profile to a slower 

and less energy-consuming one depending on service needs [9]. 

As stated in the introduction, MOACOR has never been used before as an optimisation 

tool for metro speed profiles, and thus it is not possible to strictly compare the results of 



 

this paper with other studies. However, other heuristic algorithms based on swarm 

intelligence (and specifically MOPSO) have already proved to offer better results [9] 

than the widespread NSGA-II, thus supporting the conclusion that swarm intelligence 

algorithms may be better suited for optimising speed profiles than genetic ones. This 

may be due to these algorithms being less affected by dynamic or unstable optimisation 

problems [49] and being better suited for problems where the objective functions have 

high conditioning values [50], both circumstances that apply to speed profile 

optimisation. 

3.4. Limitations and future research 

The comparison between NSGA-II and MOACOr, albeit based on current trends in the 

field of railways driving optimisation, could be expanded to other meta-heuristic 

algorithms. Several algorithms (as well as variants and improvements of existing ones) 

have been developed and tested in other areas of research over the last years, but only a 

few have been applied to obtain efficient speed profiles (of which MOPSO is the most 

noteworthy [9]). Moreover, most of the reviewed papers that compare algorithms in this 

particular area of research only analyse the performance of one algorithm against the 

widespread NSGA-II. Therefore, a multiple comparison with many algorithms is the 

logical next step. Additionally, although metro networks, due to their growing 

automation, are the most adequate for large-scale optimisation, this study could be 

expanded to interurban rail lines, both conventional and high-speed ones. 



 

4. Conclusions 

The main aim of this study is to assess the performance of a modified version of the 

ACO algorithm, devised to cope with multi-objective optimisation problems with 

continuous variables (MOACOr), in obtaining efficient speed profiles for metro lines 

operated with ATO systems. To do so, the algorithm has been used to obtain a set of 

efficient solution in terms of energy consumption and travel time in 32 interstation 

stretches (i.e., 64 cases, considering both directions) within the metro network of 

Valencia (Spain). The results have been evaluated using two metrics to assess their 

degree of convergence, diversity and regularity: Inverse Generational Distance (IGD) 

and Normalised Hypervolume (NH). A genetic algorithm (NGSA-II), which is the 

algorithm most used to optimise metro speed profiles, has been also used as a reference 

to assess the performance of MOACOr. 

The results show that both algorithms offer, on average, rather good approximations to 

the real Pareto front (which was calculated through systematic simulation of the ATO 

commands). However, both in terms of convergence (measured through IGD) and 

diversity (measured through NH) MOACOr tends to perform better, scoring lower 

values of IGD in 76% of the cases and lower values of NH in 87% of the cases. 

Furthermore, a statistical analysis was carried out, using a non-parametric test (Mood 

Median test) to check whether any difference in the median values of the metrics 

obtained by each algorithm is statistically significant. The results prove that there is, in 



 

fact, a significant difference in the median values of IGD and NH (in both cases with a 

statistical confidence level of 95%). 

Therefore, the MOACOr variant does offer an alternative to the conventional NSGA-II, 

which has been extensively used in the past years to obtain efficient metro speed 

profiles in several real-life applications. MOACOr yields solutions with improved 

degree of convergence, regularity and diversity than those provided by NSGA-II, and 

thus outperforms it with regard to every criterion considered in the analysis. For a more 

practical point of view, more diverse solution sets offer the metro manager a wider 

range of optimum speed profiles to choose when programming the ATO system, from 

faster (and more energy-consuming) profiles to slower (and more energy-saving) ones, 

depending on service needs. 
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