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Abstract
The determination of distances consistent with the definition of the base unit of length in the
International System of Units (SI), the SI meter, with uncertainties of less than 1 ppm up to
5 km in the open air is a current challenge that is being increasingly required for different
applications, including the determination of local ties, calibration baselines, and high precision
geodetic metrology in singular scientific and engineering projects. The required knowledge of
the index of refraction of the propagating medium at the same level of 1 ppm is a hard limit to
the use of precise electronic distance meters (EDMs), which has motivated the recent
development of new two-color, refractivity compensated, EDM prototypes. As an alternative,
the use of global navigation satellite systems (GNSS) could benefit from their high scale
stability although the lack of appropriate estimation of the uncertainties in their sources of error
and their unknown propagation into the final result during the data processing has prevented a
rigorous uncertainty analysis and, therefore, the use of GNSS for absolute distance
determination. Stemming from our initial methodology for a GNSS-based distance meter
(GBDM) that was restricted to relatively horizontal baselines and distances up to 1 km only, we
have improved the method so that its application range is extended to baselines of up to 5 km
with a possibly significant height difference so that it provides the final baseline distance with
the corresponding uncertainty derived from the uncertainties in the different error sources
rigorously propagated through the equations by which the distance is finally determined. This
improved methodology, named as GBDM+, constitutes a significant step forward in the
application of GNSS to open air length metrology.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Length metrology is concerned with the realization, mainten-
ance and dissemination of the SI meter, which is defined as
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the length of the path travelled by light in vacuum during
a time interval with duration of 1/299 792 458 of a second
[1]. This realization is done with uncertainties of the order of
10−12 (k = 1) for short distances under laboratory conditions
by means of laser interferometers with stabilised frequencies,
but suffers a considerable loss of accuracy when transferred to
outdoor facilities.

Absolute distance determination, or the determination of
distances consistent with the SI meter definition, with an
uncertainty of less than 1 part per million (1 ppm) is being
increasingly required in the open air for different applications,
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including the determination of local ties in Fundamental Geo-
detic Observatories [2], high precision geodetic metrology in
singular scientific projects, such as the European Organiza-
tion for Nuclear Research (CERN) site for the survey and
alignment of the components of accelerators, experiments and
transfer lines [3], especially in views of the construction of
the Future Circular Collider, a 100 km-length ring aiming
at reaching collision energies of 100 TeV in the search for
new physics, where geodetic surveillance with the highest
accuracy will be required, and calibration baselines, such as
the Nummela standard baseline [4], which, in turn, are used
to accurately transfer the SI meter to engineering projects
where a scale control is crucial, e.g. deformation monitoring
of civil infrastructures, landslides and rockfalls [5]. The use
of high precision electronic distance meters (EDMs) for this
purpose is limited by the required determination of the index
of refraction along the light path with an uncertainty below
1 ppm, which is a hard task in the open air even for lengths
of only several hundred meters, since it has to be deduced
from the accurate measurement of atmospheric parameters
representative to the entire light path. This is why new tech-
niques and prototypes, such as two-color laser telemeters are
being developed [6].

A possible alternative to these is the use of global nav-
igation satellite systems (GNSS) to develop a GNSS-based
distance meter (GBDM). GNSS scale is consistent with the
SI meter by its maintenance by means of the use of atomic
clocks and has been demonstrated to be worldwide stable at
the level of 0.001 ppm (or 1 ppb) [7, 8]. The Joint Research
Project (JRP) SIB60 Metrology for long distance surveying
project [2], a joint effort of a consortium of European met-
rology institutes and universities, addressed this possibility
and summarized their research in their Good practice guide
for high accuracy global navigation satellite system based
distance metrology [9]. Among the conclusions drawn, they
pointed out that the ‘propagation of the signal through the
ionosphere and troposphere, effect of multipath, antenna phase
center variations (PCVs) and other sources of error are not con-
trollable and are mostly unknown during the data processing.
Although one can estimate the magnitude of these variables
in the analysis, uncertainties of these estimations are mostly
unknown, and especially their propagation into the final res-
ults’. They also remarked that the user has little informa-
tion on the propagation of uncertainties when using standard
software packages. This prevents, they concluded, a stringent
uncertainty analysis of a distance measurement performed
by GNSS.

The JRP SIB60Metrology for long distance surveying pro-
ject was concerned with lengths up to 1 km. Recently, this
consortium renewed and united in a new research project,
GeoMetre [6, 10], that is aimed at improving the traceabil-
ity of geodetic references to the SI meter definition with the
focus extended to lengths up to 5 km, including the develop-
ment of novel distance meters and a novel strategy for GNSS-
based distance determination for this range. The presenta-
tion of this strategy is the objective of the current paper, a
strategy which provides the user with the detailed analysis of

the uncertainty in the different error sources and its propaga-
tion through the particular double-differenced equations up to
the determination of the baseline distance, whose final value
can be now accompanied with the corresponding uncertainty
budget, something which is not possible to be carried out by
the existing software packages and has prevented so far the use
of GNSS techniques for metrological purposes.

We started our research in submillimetric GNSS-based
length determination, first analyzing the inner consistency of
results [11], then with a first comparison with respect to a
value obtained by absolute-scale transfer from the Nummela
baseline with a Mekometer ME5000 [12], a type of compar-
ison that has also been done by other authors (e.g. [13]). We
explored different strategies to mitigate noise, especially mul-
tipath [12, 14, 15] and finally came with a working scheme
for a GBDM [16]. This method was, however, restricted to
relatively horizontal baselines with distances up to 1 km only
and, correspondingly, had several simplifications (such as no
correction of double-differenced tropospheric and ionospheric
delays). In accordance with the objectives of the Geometre
project, we want to improve the method now so that its applic-
ation range can be extended to baselines of up to 5 km with
significant (or not) height difference. The improved methodo-
logy for this GBDMwill be referred to as GBDM+ two obser-
vation campaigs are planned during 2022 where the GBDM+
methodology will be contrasted with refractivity compensated
two-color EDM prototypes in two singular sites: the CERN
geodetic network and the European primary reference baseline
EURO5000 [10].

In particular we are aiming at defining a relatively simple
strategy for use in length metrology that is based as far as
possible on the use of renowned standards both for files
and solutions (such as Receiver Independent Exchange—
RINEX—for GNSS data files, SP3 files as provided by
the International GNSS Service—IGS—for final ephemerides
of satellites, Antenna Exchange Format—ANTEX—files as
provided by IGS for satellite antenna phase center offsets
(PCOs) and variations andANTEXfiles for individual antenna
calibrations at the receiver ends) as well as an initial pre-
processing with the online service CSRS-PPP version 3 [17],
which is increasingly being used by the geodetic community
and has some distinctive features over other solutions that may
suggest its acceptance as a type of standard for precise point
positioning (PPP). To start with, PPP with ambiguity resolu-
tion is automatically enabled in this processing, which is the
best strategy to obtain reliable results [18]. Secondly, after
uploading an observation RINEX file—not limited to 24 h as
in other services—to the CSRS-PPPwebsite, the service sends
an email to the user with exhaustive information on the pro-
cessing and results: station coordinates referred to the mean
observation epoch with high quality (uncertainties typically of
the order of some mm for 24 h observation files), excellent tro-
pospheric estimates (see [18, 19]) along with their correspond-
ing uncertainties, receiver clocks, observation residuals in L1
and L2 carrier phase frequencies, some detailed plots, etc.

Although the user could undoubtedly obtain this initial
information—approximate coordinates, tropospheric delays,
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clocks—from other sources ranging from the use of sci-
entific packages (e.g. Bernese) to commercial solutions or
user-developed software, the use of CSRS-PPP is here sug-
gested as a simple, easy-to-use means to obtain a set of initial
information that is both internally consistent as well as con-
sistent with standard up-to-date IGS products.

In the following section we present the GBDM+methodo-
logy. It is highlighted that its purpose is not only obtaining
a value for the baseline distance but also its corresponding
uncertainty as propagated from the corresponding uncertain-
ties of the corrections of the different error sources rigor-
ously propagated through the equations by which the distance
is finally determined. This sets this methodology apart from
other attemps than did not take into account the uncertainties
in the corrections of every single error and their propagation
through the particular equations leading to the resulting dis-
tance. That was precisely the reason that led to conclude the
JRP SIB60 Metrology for long distance surveying group in
theirGood practice guide for high accuracy global navigation
satellite system based distance metrology [9] that a rigorous
uncertainty budget for the distance could not be provided. The
situation is remedied with our GBDM+ methodology, which
estimates not only the baseline distance but the contribution of
each error source to this distance and the corresponding total
uncertainty, which enables using the methodology for metro-
logical purposes.

2. Methods

We start with a description of the GBDM+ mathematical
model, which has been specially tailored to the optimal
determination of the distance as a result of enabling the study
of the impact of all relevant sources of error on the particular
distance and the possible mitigation of their influence on the
distance. Other parameters of the baseline (azimuth and height
difference, or coordinate differences) are left outside the focus,
so that they might not be optimally determined—if desired—
by the current methodology. This is clearly at variance with
the standard geodetic processing, which, in general, focuses
on coordinate determination.

After introducing the GBDM+ model we will present a
general scheme for uncertainty propagation from an error
source in zero differences to double-differenced equations,
first, and then to the final distance determined. This scheme
will be conveniently particularized next to the existing relev-
ant error sources.

As it is recalled in [9], the propagation of uncertainty from
the different error sources to the final distance cannot be stud-
ied with standard software packages; the present derivation
and directions of use constitute therefore a significant step for-
ward in the application of GNSS to length metrology.

2.1. GNSS-based distance meter

The carrier phase observation equation for a receiver i and a
satellite k can be written, slightly adapted from [16], as

λφk
i = ρki +λNk

i + cdti− cdtk− Iki +Tki +MPki + δi− δ k+ εki
(1)

where λ is the carrier wavelength, φk
i is the carrier phase

in unit cycles, ρki is the geometric distance between satel-
lite and receiver at the reception point of the antenna, Nk

i is
the integer ambiguity, c is the light speed in vacuum, dti and
dtk are the receiver and satellite clock offsets, respectively,
Iki and Tki are the slant ionospheric and tropospheric delays,
respectively, MPki is the carrier phase multipath error, δi and
δ k are hardware biases and initial carrier phase offsets in the
receiver and the satellite, respectively, and εki is the remaining
observation error.

Note that, contrary to other expressions that incorporate
this error in the lumped term εki , this formulation explicitly
includes a multipath term MPki to highlight the existence of
this error. Antenna PCO and variations are assumed to have
been corrected with a model but these corrections are not
regarded as exact so that their uncertainty will be assessed and
then propagated to the final distance. This is explained later in
the dedicated subsection.

Equation (1) models the actual GNSS observation and is
often known as zero-differenced equation. In order to com-
pute the unknown parameters one normally finds position-
ing approaches based on the difference of equations for two
satellites and the same receiver, known as single-differenced
equations, or, even more commonly in surveying, approaches
based on the difference of equations for two satellites and
two receivers, known as double-differenced equations. As
acknowledged in [2], ‘for single difference measurements
other sources of uncertainty that usually cancel in the analysis
based on double differences now dominate the uncertainty’.
This is the main reason why we propose the use of double-
differenced equations in the current method: diminishing the
final uncertainty. As explained later, the relevant error sources
will be estimated in zero differences along with their uncer-
tainties, but these uncertainties will be then propagated to the
double differences scheme used to compute the distance. It is
worth noting that many double differenced errors do not can-
cel but get diminished only; correspondingly, uncertainties in
the double differenced corrections will not be neglected (as is
often encountered) but rigorously computed using the double
difference scheme and then propagated to the final distance
through the equations in use for the solution of the system of
equations. This is certainly the only way to provide the final
distance with its corresponding rigorously computed uncer-
tainty budget.

The scheme of double differences for a pair of receivers i
and j and a pair of satellites k and l, can be formed for the
carrier phases as follows

φkl
ij = φlj−φk

j −φli+φk
i . (2)

Following the same notation for the rest of the parameters we
can write

λφkl
ij = ρklij +λNkl

ij − Iklij +Tklij +MPklij + εklij (3)
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where common errors (clock offsets, hardware biases and ini-
tial carrier phase offsets) have cancelled.

Let us use some approximate coordinates for the receivers
(from the preliminary PPP computation) along with coordin-
ates for the satellites (from precise ephemerides). It is pos-
sible to linearly expand equation (3) in terms of the unknown
corrections to the approximate coordinates of receivers, dXi,
dYi and dZi, dXj, dYj and dZj, and write

λφkl
ij − ρklij0 = λNkl

ij +

(
∂ρklij
∂Xi

)
0

dXi+

(
∂ρklij
∂Yi

)
0

dYi

+

(
∂ρklij
∂Zi

)
0

dZi+

(
∂ρklij
∂Xj

)
0

dXj+

(
∂ρklij
∂Yj

)
0

dYj

+

(
∂ρklij
∂Zj

)
0

dZj− Iklij +Tklij +MPklij + εklij . (4)

In practice, for baselines up to tens of kilometers, two con-
siderations are made with a completely negligible effect on
the results. First, the derivatives of the satellite-to-receiver dis-
tances with respect to coordinates of i can be considered equal
to the derivatives of the satellite-to-receiver distances with
respect to coordinates of j so that it can be written

λφkl
ij − ρklij0 = λNkl

ij +

(
∂ρklij
∂Xj

)
0

(dXi+ dXj)

+

(
∂ρklij
∂Yj

)
0

(dYi+ dYj)+

(
∂ρklij
∂Zj

)
0

(dZi+ dZj)

− Iklij +Tklij +MPkl
ij + εklij (5)

or

λφkl
ij − ρklij0 = λNkl

ij +

(
∂ρklij
∂Xj

)
0

dXij+

(
∂ρklij
∂Yj

)
0

dYij

+

(
∂ρklij
∂Zj

)
0

dZij− Iklij +Tklij +MPkl
ij + εklij (6)

denoting by dXij, dYij, dZij the combined effect of changes in
coordinates of i and j, that is

dXij = dXi+ dXj (7)

dYij = dYi+ dYj (8)

dZij = dZi+ dZj. (9)

A second consideration with a completely negligible impact
on the results for baselines up to tens of kilometers is hold-
ing fixed the coordinates of one of the baseline endpoints, say
i, so that dXi = dYi = dZi = 0 in equations (7)–(9), and the
displacement of coordinates (or the differential change in the
baseline distance, for what matters in our case) is attributed to
changes in coordinates of one station only, dXj, dYj, dZj.

Therefore, the double-differenced carrier phase equation
model, as it is normally given in textbooks, reads

λφkl
ij − ρklij0 = λNkl

ij +

(
∂ρklij
∂Xj

)
0

dXj+

(
∂ρklij
∂Yj

)
0

dYj

+

(
∂ρklij
∂Zj

)
0

dZj− Iklij +Tklij +MPklij + εklij . (10)

We can group in the left-hand side of the equation all the para-
meters that could be determined somehow (we postpone to
later sections of the paper the detailed explanation on the ways
to do so), including in this category the integer ambiguity val-
ues, ionospheric and tropospheric delays and multipath errors
and write the double differences equation as

λφkl
ij − ρklij0 −λNkl

ij + Iklij −Tklij −MPkl
ij − εklij

=

(
∂ρ kl

ij

∂Xj

)
0

dXj+

(
∂ρ kl

ij

∂Yj

)
0

dYj+

(
∂ρ kl

ij

∂Zj

)
0

dZj.
(11)

With equations of the type of equation (11) one gets a system
of equations of the form

k+ r= Ax (12)

where

k=



λφkl(1)
ij − ρkl

(1)

ij0 −λNkl(1)
ij + Ikl

(1)

ij −Tkl
(1)

ij −MPkl
(1)

ij

λφkm(1)

ij − ρkm
(1)

ij0 −λNkm(1)

ij + Ikm
(1)

ij −Tkm
(1)

ij −MPkm
(1)

ij

...

λφst
(1)

ij − ρst
(1)

ij0 −λNst
(1)

ij + Ist
(1)

ij −Tst
(1)

ij −MPst
(1)

ij

...

λφkl(N)
ij − ρkl

(N)

ij0 −λNkl(N)
ij + Ikl

(N)

ij −Tkl
(N)

ij −MPkl
(N)

ij

...

λφrt
(N)

ij − ρrt
(N)

ij0 −λN rt(N)
ij + I rt

(N)

ij −T rt
(N)

ij −MPrt
(N)

ij


(13)

r=



−εklij
(1)

−εkmij
(1)

...
−εstij

(1)

...

−εklij
(N)

...
−εrtij

(N)


(14)
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A=



(
∂ρ kl

ij

∂Xj

)
0

(1) (
∂ρ kl

ij

∂Yj

)
0

(1) (
∂ρ kl

ij

∂Zj

)
0

(1)

(
∂ρ km

ij

∂Xj

)
0

(1) (
∂ρ km

ij

∂Yj

)
0

(1) (
∂ρ km

ij

∂Zj

)
0

(1)

...(
∂ρstij
∂Xj

)
0

(1) (
∂ρstij
∂Yj

)
0

(1) (
∂ρstij
∂Zj

)
0

(1)

...(
∂ρ kl

ij

∂Xj

)
0

(N) (
∂ρ kl

ij

∂Yj

)
0

(N) (
∂ρ kl

ij

∂Zj

)
0

(N)

...(
∂ρrtij
∂Xj

)
0

(N) (
∂ρrtij
∂Yj

)
0

(N) (
∂ρrtij
∂Zj

)
0

(N)



(15)

x=

 dXj
dYj
dZj

 (16)

for satellites k, l, m, .., r, s, t, and observation epochs (1), to
(N). Note that, obviously, the same satellite pair may not be
available in different epochs.

The system of equations in equation (12) is normally
solved by least squares to yield a solution in the coordinate
domain (dXj, dYj, dZj and then Xj, Yj, Zj, enabling one to
obtain the baseline components ∆X= Xj−Xi, ∆Y= Yj−Yi
and ∆Z= Zj−Zi). This is standard in the literature. We want
to focus on the distance and its corresponding uncertainty,
however, so we will deviate from the beaten track and pro-
pose a particular change of variable for directly evaluating the
distance and its corresponding uncertainty.

Taking into account, first, that the relationship between the
distance D, azimuth α and (local) height difference z, and the
increments of coordinates x, y, z (or easting, northing, upping)
in the local geodetic system can be written for differential val-
ues as  dDij

dαij
dzij

= J

 dxij
dyij
dzij

 (17)

with

J=


∂Dij

∂xij
∂Dij

∂yij
∂Dij

∂xij
∂ij
∂xij

∂ij
∂yij

∂ij
∂zij

∂zij
∂xij

∂zij
∂yij

∂zij
∂zij



=


xj−xi
Dij

yj−yi
Dij

zj−zi
Dij

yj−yi
(xj−xi)2+(yj−yi)2

−(xj−xi)
(xj−xi)2+(yj−yi)2

0

0 0 1

 (18)

and considering, second, that a rotation matrix relates the
increments of coordinates x, y, z in the local geodetic system
and the increments of Earth-Centered Earth-Fixed coordinates
X, Y, Z in a global reference system (here the International Ter-
restrial Reference Frame, or equivalently, the IGbyy as given
in the precise ephemerides file) [20] by

 dxij
dyij
dzij

= RT

 dXij
dYij
dZij

 (19)

RT =

 −sin λj cos λj 0
−sin φjcos λj −sin φjsin λj cos φj
cos φjcos λj cos φjsin λj sin φj

 (20)

where we have taken j as the origin of the local system, some-
thing that should be done also for equation (18), which means
computing the coordinates therein for the local geodetic sys-
tem of j. Both equations (17) and (19) are invertible so that
the relationships can also be written (note that the inverse of a
rotation matrix is its transpose) as dxij

dyij
dzij

= J−1

 dDij

dαij
dzij

 (21)

 dXij
dYij
dZij

= R

 dxij
dyij
dzij

 . (22)

By combining these two equations we can write dXij
dYij
dZij

= RJ−1

 dDij

dαij
dzij

 . (23)

Recall that we assumed dXi = dYi = dZi = 0 in equations (7)–
(9), so that we can write dXj

dYj
dZj

= RJ−1

 dDij

dαij
dzij

 . (24)

The changes in the distance from i to j (as well as the changes
in the azimuth and height from i to j) can therefore be related
to the changes in coordinates of j, dXj, dYj, dZj (assuming i is
fixed) via equation (24).

We recall from equation (16) that he left-hand side of
equation (24) is the unknown x of the system of equations in
equation (12), which can be written now as

k+ r= ARJ−1

 dDij

dαij
dzij

 . (25)

We can define a new matrix B and a new unknown vector x′

as

B= ARJ−1 (26)

x ′ =

 dDij

dαij
dzij

 (27)

so that the new system of equations reads

k+ r= Bx ′ (28)
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and can be solved by least-squares as

x ′ =
(
BTPB

)−1
BTPk (29)

where P is the weight matrix of the equation system. This
permits to obtain in the first unknown x′(1) the correction to
the initial approximate distance in terms of the approximate
coordinates used for the receivers, dDij, as well as the corres-
ponding precision in the first element of the covariance matrix,
Cx′(1,1), which is obtained as

Cx ′ = σ̂2
0

(
BTPB

)−1
(30)

where σ̂2
0 is the variance of unit weight.

We briefly enumerate now the necessary ingredients to use
this model for the determination of the distance of a single
baseline with two high-grade geodetic receivers and two high-
grade geodetic antennas (preferably of the same model, of
choke-ring type):

• GNSS observation files (for one of the subsequent ingredi-
ents we assume them to be in RINEX format).

• Precise satellite ephemerides and clocks (SP3 files as
provided by the IGS).

• ANTEX files as provided by the IGS for satellite antenna
PCOs and variations, and ANTEX files for individual
antenna calibrations for each of the stations.

• Results from the CSRS-PPP processing: mainly the approx-
imate coordinates for both stations i and j, but also the
estimated clock offsets for both stations i and j. Although
receiver clock offsets are said to be completely cancelled
in the double differences model, some receiver clocks may
have so large offsets that the computation of satellite posi-
tions using so incorrect reception times may be significantly
damaged unless at least approximate clock corrections are
used (and for the sake of consistency we prefer to use here
CSRS-PPP receiver clock offsets). Other estimates from the
CSRS-PPP processing and their corresponding uncertainties
are suggested to be used as indicated in the following sub-
sections: tropospheric delays as well as L1 and L2 residuals.

Regarding the GNSS observation duration, the Good
practice guide for high accuracy global navigation satellite
system based distance metrology [9] indicates a minimum of
2 h, although better results can clearly be obtained with longer
times: in [11] we suggested 10 h for a precise estimation of
the distance, which is a similar result to that obtained by other
researchers for the case of coordinate determination [21], and
even better results are expected for observations spanning 24 h
(where the residual periodic effects can be averaged out) or
several days, such as in [22]. Also in agreement with the
Good practice guide we prefer the use of L1 carrier phase
observations, provided the influence of the ionosphere in the
double-differenced equations can be neglected or eliminated
with sufficient accuracy (see the later section devoted to the
ionospheric delay).

In what follows, we present a scheme for uncertainty
propagation from the zero-differenced observations to the

double-differenced observations (where we will note different
particularities for the different error sources) and then from the
double-differenced observations to the final estimation of the
baseline length.

2.2. Uncertainty propagation

The error sources affecting positioning (and in our case, the
determination of the baseline length) typically occur in the
receiver-to-satellite line, that is, in the level of zero differ-
ences. However, the method developed is based on double dif-
ferences, so that we need to estimate the errors in the zero
differences, first, and then compute their propagation to the
particular double-differenced equation. Then the propagation
from the system of double-differenced equations to the final
distance will be computed.

Let us note, first, that the uncertainty propagation of an error
source from zero differences, say elj, e

k
j , e

l
i and e

k
i , to double

differences, say eklij , may take two different forms depend-
ing on whether in the error type e there is a zenith error
to be mapped to the receiver-to-satellite direction by a suit-
able mapping function, which is the case of the tropospheric
and ionospheric delays (although with usually different map-
ping function types), or whether the mapping function and
the zenith error concepts do not apply for the error at hand,
which is the case of the multipath effect and the antenna PCO
and variations.

In the first case, where there is a zenith error above the sta-
tion, say ei and ej for stations i and j, respectively, and a suit-
able mapping function for the receiver-to-satellite direction we
can write

elj = ml
jej (31)

eli = ml
iei (32)

ekj = mk
j ej (33)

eki = mk
i ei (34)

where ml
j, m

k
j , m

l
i and mk

i represent the application of the
particular mapping function to the directions between sta-
tions i and j and satellites k and l and e is the error (tropo-
spheric o ionospheric delay) that has to be corrected in the
observation equation.

Let us denote by σelj , σe kj , σeli and σe ki the corresponding

uncertainties of the errors elj, e
k
j , e

l
i and eki , which can be

obtained as

σelj = ml
jσej (35)

σeli = ml
iσei (36)

σe kj = mk
j σej (37)
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σe ki = mk
i σei (38)

where we have denoted by σej and σei the corresponding
uncertainties of the zenith errors ej and ei provided they can
be estimated from a reliable procedure (see the following
sections) and where the mapping functions are assumed to
have a completely negligible error for the purpose of uncer-
tainty propagation.

Applying the law of covariance propagation to equations
(31)–(34) we obtain

σeljeli = ml
jm

l
iσeji (39)

σe kj e ki = mk
j m

k
i σeji (40)

σelje ki = ml
jm

k
i σeji (41)

σe kj eli = mk
j m

l
iσeji (42)

σelje kj = ml
jm

k
j σej

2 (43)

σelie ki = ml
im

k
i σei

2 (44)

in terms of the variances and covariance of the zenith errors in
j and i, σej

2, σei
2 and σeji , respectively.

Now let us consider the double difference

eklij = elj− ekj − eli+ eki . (45)

The law of error propagation yields

σe klij
2 = σelj

2 +σe kj
2 +σeli

2 +σe ki
2 − 2σelje kj − 2σeljeli + 2σelje ki

+ 2σe kj eli − 2σe kj e ki − 2σelie ki (46)

and using the expressions in equations (35)–(44)

σe klij
2 =

(
ml
j
2
+mk

j
2
)
σej

2 +
(
ml
i
2
+mk

i
2
)
σei

2 − 2ml
jm

k
j σej

2

− 2ml
jm

l
iσeji + 2ml

jm
k
i σeji + 2mk

j m
l
iσeji − 2mk

j m
k
i σeji

− 2ml
im

k
i σei

2. (47)

Grouping common factors (note the dependence on σeji disap-
pears) we can write

σe klij
2 =

(
ml
j−mk

j

)2
σej

2 +
(
ml
i−mk

i

)2
σei

2. (48)

For the purpose of uncertainty estimation in baselines of up to
few km (that is, station i relatively close to station j, thus very
similar apparent receiver-to-satellite elevations) one can also
consider ml

j = ml
i and m

k
j = mk

i , and write

σe klij
2 =

(
ml
j−mk

j

)2 (
σej

2 +σei
2
)
. (49)

This means that the geometry of the particular double differ-
ence (given here by the squared difference betweenml

j and m
k
j )

is the main factor defining the uncertainty in the double-
differenced error: in some cases (for very similar elevations)
the double-differenced error will be virtually zero whereas in
others the sum of zenith errors at i and j will be considerably
amplified by the squared difference between mapping func-
tions.

Now let us examine the case where the type of error cannot
be described by a zenith error and a mapping function, such
as in the cases of multipath effect as well as antenna phase
center and variations. For these cases equations (31)–(44) do
not hold. Now, the uncertainties σelj , σe kj , σeli and σe ki need to
be obtained by an appropriate procedure (see the subsequent
sections devoted to modelling the multipath effect and the
antenna errors) as well as the six covariances in equation (46).

The four covariances involving different stations (thus dif-
ferent multipath models or antenna calibrations), σeljeli , σe kj e ki ,
σelje ki , and σe kj eli , can be regarded as zero. For the other two cov-
ariances we resort to the definition of the correlation coeffi-
cient ρ which permits us to write

σelje kj = ρelje kj σeljσe kj (50)

σelie ki = ρelie ki σeliσe ki . (51)

These correlation coefficients are unknown. We can either
compute them from an available sample or simply assume
them to have the value for the worst case (+1 or −1). With
this latter assumption, the law of error propagation equation
(46) results in

σe klij
2 = σelj

2 +σe kj
2 +σeli

2 +σe ki
2 + 2σeljσe kj + 2σeliσe ki (52)

or

σe klij
2 =

(
σelj +σe kj

)2
+
(
σeli +σe ki

)2
. (53)

Having estimated the uncertainty in the double differences
equations—either by equation (49) or equation (53) depend-
ing on whether a mapping function is in use or not for the
particular error—we propagate these uncertainties to the final
distance obtained after the least squares adjustment.

Defining

M=
(
BTPB

)−1
BTP (54)

we can write the solution vector, equation (29), as

x ′ =Mk (55)

the effect of the uncertainties in the double differences
equations used σe klij

2, σe kmij
2 . . . onto the final distance can be

obtained by the law of covariance matrix propagation as

Cx ′ =MCkM
T (56)

where

Ck =

 σe klij
2

σe kmij
2

. . .

 (57)
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and

σDij =
√
Cx ′ (1,1) (58)

is the estimated uncertainty in the final distance due to the
propagated uncertainties of the particular error source.

Now we have a look at the particular instances of applic-
ation of these formulas for the existing relevant errors
in the determination of distances up to 5 km in (pos-
sibly) non-horizontal baselines by double-differenced carrier
phase observations.

2.3. Tropospheric delay

For horizontal short baseline distances the tropospheric delays
cancel out in the double differences. This condition was
assumed in our initial presentation of the GBDM technique
[16] but it may no longer hold for our current problem of
baselines up to 5 km with possibly significant height differ-
ences (tens or even hundreds of meters). In what follows, we
present our strategy to correct the tropospheric delays and
propagate the uncertainty of the correction to the final distance.

In short, the tropospheric delay corrections, Tklij , are sub-
tracted in the left-hand side of the model in equation (11) with
the values provided by the CSRS-PPP service and then the
corresponding uncertainties also provided by the CSRS-PPP
are used to analyze the uncertainties in the double differences,
first, and then in the final estimation of the baseline distance.

Note that, alternatively, we could use the values of the tro-
pospheric delay corrections (instead of their uncertainties) as
input in the equations of propagation to obtain not the propag-
ated uncertainty but the approximate effect on the final dis-
tance of neglecting such tropospheric delay corrections. We
highlight that this possible use is an approximation only, since
the law of (random) error propagation rigorously applies to
uncertainty propagation but not to systematic error propaga-
tion, where the errors have a definite size and sign. All in all,
the result can give an overall indication of the impact on the
final distance that entails neglecting the correction.

Referring now to the propagation of uncertainties in the tro-
pospheric delay corrections, they are given by the CSRS-PPP
service (at a level of confidence of 95%, k = 2) for the zenith
directions, that is σej and σei for stations j and i, respectively.
They need to be mapped to each receiver-to-satellite line of
sight by the corresponding mapping functions.

Different mapping functions have been proposed in the last
decades, ranging from very simple functions such as Black and
Eisner’s mapping [23]

ml
j =

1.001√
0.002001+ sin2Elj

(59)

where Elj is the elevation of satellite l as seen from receiver
j, to more elaborate and accurate functions such as Niell
mapping function (NMF) [24], Vienna mapping function 1
(VMF1) [25], or the Global Mapping Function [26]. The use
of NMF, VMF1 and GMF yield differences of the order of
millimeters in the computation of the tropospheric delays but

provide completely negligible differences when used to com-
pute the double differenced tropospheric delays, while for
the purpose of computing the uncertainty propagation to this
double differences it is sufficient to use the simple Black and
Eisner’s formula.

In the application section we will study the impact on the
final distance of disregarding the double-differenced tropo-
spheric delay and also, for the case where double-differenced
tropospheric delays are corrected, what is the rigorously
propagated uncertainty from the uncertainties in the tropo-
spheric delay corrections to the double-differenced correc-
tions, first, and then to the final distance.

2.4. Ionospheric delay

While in the initial presentation of the GBDM technique [16]
we assumed that the double-differenced ionospheric delays
cancelled out due to the short length of the baselines (1 km
at the most), this assumption may no longer hold for our cur-
rent problem of baselines up to 5 km.

The best approach would be to use ionospheric delay cor-
rections for the observations from each station along with their
estimated uncertainties in a similar way to the case of the tro-
pospheric delays. In its current version (version 3), however,
the CSRS-PPP service is estimating these ionospheric delays
in the GNSS processing although they are not being distrib-
uted to the users. The CSRS-PPP may possibly add this output
in short as part of its version 4 to be released in 2022 (Ban-
ville 2021, personal communication). This would permit to
use a consistent set of estimates (coordinates, clocks, observa-
tion residuals, tropospheric corrections and ionospheric cor-
rections) for the GNSS-based distance determination.

Meanwhile, the best possibility seems to use a combination
of L1 and L2 GPS carrier phases (orE1 andE5a for Galileo) that
eliminates the ionospheric delay to the first order, such as the
one known as L3 by the group in Berna [27]

φ3 = 77φ1 − 60φ2 (60)

where φ1, φ2 and φ3 are the carrier phases in unit cycles of L1,
L2 and L3, respectively, or, equivalently

Φ3 =
f1
2

f1
2 − f2

2Φ1 −
f2
2

f1
2 − f2

2Φ2 (61)

whereΦ1,Φ2 andΦ3 are the carrier phases in meters for L1, L2
and L3, respectively, and f1 and f2 are the carrier frequencies
of L1 and L2.

Although these combinations of L1 and L2 (or E1 ans E5a)
are indeed quasi ionosphere-free, the existing residual error is
completely eliminated in the double differences (with a com-
pletely negligible uncertainty). Obviously, a combination of
three frequencies can also be used. The cost, both for the dual
frequency combination and, even more so, for the triple fre-
quency, is an increase in noise compared to the use of L1 (by
a factor of approximately 3 for the case of L3 [27, p 53]).

Another possibility is the use of the Klobuchar model.
Although the Klobuchar model is estimated to be able to cor-
rect no more than about 50% of the delay at zero differences,
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the computation of double differences largely cancels out the
residual error and does not have a significant effect on the
final distance.

2.5. Multipath effect

As acknowledged in the Good practice guide [9] a careful
observation site selection (when possible) plus the use of
choke-ring antennas and long observation times are the best
advice to minimize the multipath effect. Going beyond this
advice, now at the computational level, is difficult.

In particular, obtaining a reliable estimation for the mul-
tipath error affecting every observation (along with an uncer-
tainty for this estimation) is a daunting task.

For the case of GPS observations, however, we can use
the sidereal filtering technique provided observations in differ-
ent days are available thanks to the apparent repeating period
of the GPS constellation of one sidereal day. For other con-
stellations this is not practical due to their longer apparent
repeating periods.

As explained in [16], the sidereal filtering technique
assumes that all significant sources of error have been taken
into account so that the observation residuals (in our case the
residuals obtained after the CSRS-PPP processing) contain
mostly multipath. For every observing site and every satel-
lite, we can match the observation residuals of different con-
secutive sidereal days and construct a time-varying multipath
model valid for the particular observation site and satellite.
The matching of residuals is better done by using the closest
azimuth and elevation values of the satellite between days or,
secondly preferred (because the repeating period slightly devi-
ates from one sidereal day in a different way for every satellite)
by shifting the residuals of the satellite one sidereal day. It is
advisable to have three or more observing days.

The model constructed from the matched residuals (as in
[16, figure 5]) not only provides the value of the multipath cor-
rection (the average values) but also an estimate of its uncer-
tainty (the experimental dispersion).

Beyond the restriction of use of this technique to GPS
observations, it has to be acknowledged that the decimation
of observations to 30 s performed by the CSRS-PPP signi-
ficantly hampers the application of the sidereal filtering tech-
nique, enabling only a poor satellite matching from 30 s obser-
vation rates instead of the more accurate definition that would
be obtained, e.g. using 1 s observation rates. Any alternative
computation of the sample of residuals, by a user-developed
software for example, would be disadvantageous, however,
by breaking the consistency in the set of auxiliary estim-
ates used (coordinates, clocks, observation residuals, tropo-
spheric corrections and ionospheric corrections all derived
from CSRS-PPP).

2.6. Antenna calibration

The point where the signal is received in the antenna is not
a fixed point that can be mechanically identified, but varies
with the frequency, azimuth and elevation of the incoming sig-
nal. To refer the measurement to the antenna reference point

(which is externally accessible to the user) a PCO, taken as a
mean value for the entire range of satellite azimuth and eleva-
tions, plus an additional PCV, dependent on the particular azi-
muth and elevation of the receiver-to-satellite line of sight, are
needed. These are given for each signal frequency in GNSS
antenna calibrations files—using the ANTEX format—which
may originate from a general calibration or from an individual
calibration of the particular antenna by a dedicated procedure.

The IGS calibration tables are the standard calibration files
of general type. They offer mean calibration values for each
type of antenna (PCOs and tabulated PCVs in terms of azi-
muth and elevation, for each signal frequency) after the cal-
ibration of different antennas of the same model. Individual
calibration tables, on the contrary, are obtained by a dedicated
method (robot calibration or anechoic chamber) to individu-
ally characterize the particular antenna.

Recently, some authors have presented special methods
for quantifying the errors, validating and comparing GNSS
antenna calibrations [28, 29]. To determine the baseline dis-
tance along with its corresponding uncertainty propagated
from the original error sources, we need to estimate and incor-
porate into the uncertainty budget the amount of uncertainty
attributed to the antenna calibration in use. Since our GBDM+
methodology aims to develop for this purpose simple meth-
ods using standard products and solutions, where possible, we
propose to compare the values from the individual robot cal-
ibration versus those from the individual anechoic chamber
calibration (as they are the leading methods for antenna calib-
ration), provided they are both available for the antenna in use,
or, alternatively, any available individual calibration versus the
generic calibration, so that the difference between both calib-
rations will be taken as the uncertainty (k= 1) of the individual
calibration correction.

These uncertainties at the level of zero differences will be
then propagated to double differences, equation (53), and then
to the baseline distance, equations (56)–(58).

2.7. Instrument setup

The instrument setup must be prepared following the same
scheme, in particular with antennas oriented towards north,
and with the same cable routing andmounting devices. As said
before, the antennas must be of choke-ring type (preferably of
the same model) and have been individually calibrated at least
by one of the existing methods (chiefly, robot calibration and
anechoic chamber).

While the uncertainty in the horizontal centering of the
instrument can be neglected, the measurement of the antenna
heights is especially critical. As it is acknowledged in the
Good practice guide [9, p 13] the use of a folding tape
or ruler is insufficient. As we will see in the application
section, for high elevation differences between the baseline
endpoints, it is possible that one third of the uncertainty in the
antenna height determination propagates to uncertainty in the
baseline distance.

We now propose a strategy to accurately measure the
antenna height along with the corresponding uncertainty. The
uncertainties in the determination of antenna heights in each

9
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Figure 1. Vertical angle measurement to the bottom of antenna
mount.

Figure 2. Vertical angle measurement to the top of pillar.

baseline endpoint will be then propagated to the final distance
with the appropriate formulas. In what follows we assume the
benchmark consists in a geodetic pillar, although the proposed
procedure could be easily adapted to other cases of interest.

Let use a total station set up a few meters apart from the
antenna so that the bottom of the antenna mount is as close as
practically possible to the horizontal line of site, i.e. Va ≈ 100g

(this is important to ensure that the vertical angle also cor-
responds to the vertical angle of the antenna mount at its
vertical axis). Only the vertical angle Va needs to be noted
down, although in figure 1 the geometric (or slant) distance to
the antenna Da and the corresponding reduced (or horizontal)
distance DR are also indicated along with the increment of
height from the total station ground point to the bottom of the
antenna∆za.

Then the antenna is dismounted and the vertical angle to
the top of the pillar at the centering point, Vc, is noted down,
figure 2. To accurately measure this vertical angle it may be
convenient to point to the right (and then left) external tangent
of the centering device (if there is one, e.g. a 5/8′′ centering
screw). As in the case of figure 1 we also show the geometric
distance to the antenna Dc, the reduced distance DR and the
increment of height from the total station ground point ∆zc.

Finally, we setup a prism (corner cube reflector) on top of
the pillar and measure the distance Dp, and the corresponding
vertical angle Vp.

Figure 3. Vertical angle and distance measurement to a prism.

This final step permits us to calculate the reduced distance
DR as

DR = Dp sinVp. (62)

This reduced distance is the same for the three schemes
figures 1–3. Further, for figures 1 and 2 we can write, respect-
ively

∆za =
DR

tanVa
(63)

∆zc =
DR

tanVc
(64)

so that the antenna height over the centering mark on top of
the pillar, h, can now be determined as

h=∆za −∆zc (65)

or

h= Dp sinVp

(
1

tanVa
− 1

tanVc

)
. (66)

The process can be repeated and done from other two or three
sides.

We can apply the law of error propagation to compute the
uncertainty in the antenna height, σh, in terms of the uncertain-
ties in the measured values Dp, Vp, Va and Vc, respectively,
σDp, σVp, σVa and σVc, as follows

σh
2 =

(
∂h
∂Dp

)2

σDp
2 +

(
∂h
∂Vp

)2

σVp
2 +

(
∂h
∂Va

)2

σVa
2

+

(
∂h
∂Vc

)2

σVc
2 (67)

with

∂h
∂Dp

= sinVp

(
1

tanVa
− 1

tanVc

)
(68)

∂h
∂Vp

= Dp cosVp

(
1

tanVa
− 1

tanVc

)
(69)
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∂h
∂Va

=−Dp sinVp
1

sin2Va
(70)

∂h
∂Vc

=−Dp sinVp
1

sin2Vc
. (71)

Assuming the same uncertainty σV in the determination of all
vertical angles, the expression for the uncertainty reduces to

σh
2 = sin2Vp

(
1

tanVa
− 1

tanVc

)2

σDp
2 +Dp

2

×

[
cos2Vp

(
1

tanVa
− 1

tanVc

)2

+sin2Vp

(
1

sin4Va
+

1

sin4Vc

)]
σV

2. (72)

Simplifications of this formula could be given with no signific-
ant loss of accuracy due to the proximity of all vertical angles
to 100g angles. In particular we can approximate all squared
sines to 1 and the squared cosine to zero, which yields

σh
2 =

(
1

tanVa
− 1

tanVc

)2

σDp
2 + 2Dp

2σV
2. (73)

Since the uncertainties of the antenna heights in the baseline
endpoints are very small quantities we can safely neglect the
earth’s curvature for the purpose of propagating these uncer-
tainties to the baseline distance.

This geometric distance between the baseline endpoints,
Dij, is related to the reduced distanceDRij and the increment of
height between stations∆hij, neglecting the earth’s curvature,
by the expression

Dij =

√
DRij

2 +∆hij
2. (74)

The law of error propagation yields the expression for uncer-
tainty in the geometric distance in terms of uncertainty in one
height (say i)

σDij =
∂Dij

∂∆hij
σhi (75)

σDij =
∆hij
Dij

σhi . (76)

And taking into account the uncertainties in the antenna
heights of both baseline endpoints, i and j, computed by mak-
ing use of equation (73) in each endpoint, we can finally write

σDij =
∆hij
Dij

√
σhi

2 +σhj
2. (77)

In section 3 we will obtain and discuss some numerical results
after the application of these formulas.

2.8. Additional remarks

As it was explained in our initial presentation of the GBDM
method [16], in the case of horizontal baselines of several
hundred meters only and low multipath, a free-ambiguity
approach could be used: in equation (11) ionospheric and
tropospheric double-differenced delays, Iklij and Tklij , could be
neglected and the smallness in coordinate corrections dXj,
dYj, dZj after a PPP processing for obtaining the approxim-
ate coordinates entailed that the quantity φkl

ij − ρklij0/λ be close
to an integer value, the ambiguity, and this ambiguity eas-
ily determined by rounding the quantity to its nearest integer
thus avoiding the ambiguity determination by the usual more
costly procedures.

For the case of baselines up to 5 km with a possibly sig-
nificant height difference, however, we have experienced that
the closeness to an integer value of the term φkl

ij − ρklij0/λ does
not always happen, no matter how close to their exact val-
ues the approximate coordinates are, because of the effect
of the remaining corrections (ionospheric and tropospheric
delays, and multipath effect). Dubious values around half a
cycle prevent one to safely adopt the rounding term approach
in this case so that some kind of ambiguity determination by
solving the system of observation equations has to be per-
formed. Two different easy procedures, however, prove to have
a high ambiguity success rate (by making both determina-
tions an even higher degree of security is obtained for the
coincident ambiguities):

• solving the system of equations to obtain floating ambigu-
ities and then rounding them to their nearest integer.

• setting to zero the coordinate corrections dXj = 0, dYj = 0,
and dZj = 0 in equation (10), which makes sense due to the
accurate initial PPP processing, and obtaining ambiguities
by solving the simplified system of equations: first as float-
ing ambiguities and then rounded to their nearest integer.

Regarding the L3 ambiguities, they can be obtained in
terms of the L1 ambiguities and the wide-lane combination
ambiguities.

Finally, it is worthmentioning that the other sources of error
of the GNSS systems not mentioned before are not relevant to
our double differences approach, since they completely cancel
out. This is the case, for example, of relativistic effects, which
cancel for all practical purposes in relative positioning [30, p
229], and the windup effect (‘completely cancelled in double
differences’ [31, p 731]).

Figure 4 summarizes the main steps of the GBDM+ meth-
odology starting from the preliminary operations (individual
antenna calibration), through the field measurements (GNSS
observations and antenna height measurement) and external
data collection, up to the PPP processing (with CSRS-PPP)
and double differences processing to finally obtain the baseline
distance along with its uncertainty (with in-house developed
software). The in-house developed software, written under
Matlab, was initially developed by the authors for [11, 12],
refined later for [16] and now extended to incorporate the dif-
ferent issues presented in the current paper.
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Figure 4. Scheme of the GDBM+ methodology.

3. Results and discussion

We apply the method to the case of Cortes de Pallás deform-
ation monitoring network [5], figure 5, which was observed
with the submillimetric Mekometer ME5000 EDM during
daytime and GNSS during nighttime in the 21–23 July
2020 observation campaign. Two Leica GS10 GNSS multi-
constellation receivers (GLONASS, GPS and Galileo) were
used with two Leica AR25 multi-constellation individually
calibrated choke-ring antennas (calibrated with the anechoic
chamber method) during two nights observing 10 h each night,
roughly from 19:00 to 5:00 UTC, with data every 1 s although
only epochs every 30 s were used for the computation with
an elevation mask of 15◦ (although the receivers tracked sig-
nals above 10◦). The observation files are available in a public
repository as indicated at the end of the paper. Precise eph-
emerides and clocks, of the ‘final’ type (igs2115_.sp3 files)
were used for the computations. In particular, we analyze here
the longest baseline of the network having a slant distance of
almost 2 km and a substantial height difference of 350 m.

In [32] we show the detailed results of the last deforma-
tion monitoring observation campaign (the initial campaign
was already presented in [5]), including the agreement within
1 mm between the GNSS-derived distance (from 10 h dur-
ing each two nights) and the ME5000-derived distance. Here
we present the complete results of the uncertainty propaga-
tion from zero differences to double differences, first, and
then to the final baseline distance for the relevant sources
of error in our GBDM+ method. As it has been repeatedly
mentioned, this is the main contribution of the current paper,
since it provides the user with the detailed analysis of the
uncertainty in the different error sources and the propaga-
tion of these uncertainties through the particular double-
differenced equations leading to the determination of the

Figure 5. Cortes de Pallás deformation monitoring network.

Figure 6. Uncertainty in the double differenced tropospheric delay
correction (22 July 2020, 19:05:00–21:05:00 UTC).

baseline distance, whose final value can be now accompanied
with the corresponding uncertainty budget. This study of
uncertainty propagation, which is particular to the observables
and equations by which the distance is finally determined, is
not possible to be carried out by the existing software packages
and constitutes the main advantage of the GBDM+ method
enabling its use for metrological purposes.

Starting with the tropospheric delay, whose uncertainty can
be obtained from CSRS-PPP files, the propagation to double
differences equations by equation (49) results in the uncertain-
ties shown in figure 6 for the first two observation hours.

Just as we reasoned right after equation (49), we can see
that the geometry of the particular double difference domin-
ates the resulting uncertainty and the assumption of a constant
uncertainty value at the level of double differences would be
really ill-advised: there are values of several cm while others
are really close to zero. We can also guess from figure 6 the
different combinations of satellites (satellite pairs) involved in
the particular double differenced equation as well as the partic-
ular time instant where the reference satellite in the equation
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Figure 7. Uncertainty in the baseline distance propagated from the
tropospheric delay uncertainty for different observation time spans
(average values for all the different time blocks).

is changed: in the particular moment of change of reference
satellite, the double-differenced uncertainty experiences a
jump explained by the change in uncertainty resulting by the
change in one of the satellites of the pair (namely, the refer-
ence satellite, which has been taken as the one with highest
elevation and usually has less uncertainty).

The propagation of these uncertainties in the double differ-
ences equations along the system of equations solution result-
ing in the final distance determination, equations (56)–(58),
yields 0.0005 m using the observation time span in figure 6.
Longer time spans yield lower uncertainties for the distance,
as expected. This can be seen in figure 7, where the resulting
uncertainties in the distance in terms of the observation time
spans are given.

We want to emphasize that these results on the propaga-
tion of the uncertainty in tropospheric delay correction up
to the final distance depend on the baseline studied, that is,
its location, orientation, slope and distance, as well as on
the moment of observation (observation time span, available
observables…) That is, the conclusions drawn are particu-
lar to this experiment and cannot be extrapolated to other
experiments.

Regarding the ionospheric delay, in the present case the dif-
ferences between the computation with L3 and L1 corrected
with Klobuchar model are negligible. As explained before, the
corresponding uncertainty is taken as zero. Alternatively, in
the future, if CSRS-PPP values for the ionospheric delay error
are available along with their uncertainties, these will be cor-
rected from the L1 observation and the uncertainty of the cor-
rection propagated to the final result as in the previous case of
the troposphere. Although of negligible magnitude, as expec-
ted, this result has its formal interest in the elaboration of the
complete uncertainty budget.

With respect to the multipath effect, after constructing
multipath correction models for the different satellites as

Figure 8. Multipath correction model for satellite G02.

Figure 9. Uncertainty in the double differenced multipath
correction (22 July 2020, 19:05:00–21:05:00 UTC).

explained in section 2.5, e.g. figure 8 for satellite G02, we can
obtain the corresponding uncertainties in double differences
by using equation (53), figure 9.

The propagation to the final distance, equations (56)–(58),
gives 0.0004 m for the observation time span in figure 9. As
expected, longer time spans yield lower uncertainties for the
distance, figure 10.

Regarding antenna calibration uncertainties, we present
here the results after estimating the uncertainty in the
individual antenna calibrations available (realized with the
anechoic chamber method by the IGG—Universität Bonn) by
comparison with the generic IGS antenna calibration model.
At the zero differences level there are discrepancies up to a
fewmm between the individual and the generic calibration. By
use of equation (53), they lead to the uncertainties in double
differenced values given in figure 11, where the change of
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Figure 10. Uncertainty in the baseline distance propagated from the
multipath uncertainty for different observation time spans (average
values for all the different time blocks).

Figure 11. Uncertainty in the double differenced antenna calibration
(22 July 2020, 19:05:00–21:05:00 UTC).

reference satellite in the formation of double differences is
again evident.

The propagation to the final distance, computed by
equations (56)–(58), gives 0.0005 m for the observation
time span in figure 11. As expected, longer time spans
yield lower uncertainties for the distance, as it can be seen
in figure 12.

With respect to the instrument setup, we give figures for
the application of equations (66)–(77) to the determination of
the antenna height with a Leica TM30 Total Station although
at the campaign the antenna height was simply determined by
the inaccurate use of a folder tape. Assuming Va = 99.9550g,

Figure 12. Uncertainty in the baseline distance propagated from the
antenna calibration uncertainty for different observation time spans
(average values for all the different time blocks).

Table 1. Total uncertainty budget in the baseline distance
propagated from all error sources, k = 2, values in mm (average
values for all the different time blocks).

Observ. time
span (h) utropo.delay umultipath uantenna model uantenna heights utotal

1 1.08 0.49 0.81 0.03 1.44
2 0.75 0.33 0.53 0.03 0.98
3.5 0.56 0.26 0.40 0.03 0.74
5 0.46 0.22 0.33 0.03 0.61
10 0.42 0.20 0.30 0.03 0.55

Vc = 101.0962g, Vp = 99.9220g and Dp = 5.126 m, the
antenna height results in h = 0.0919 m. The technical spe-
cifications give σV = 0.0003g, which we could increase
to σV = 0.0010g to account for possible pointing inac-
curacies at these short distances, and σD = 0.0006 m in
precise mode, which we could increase to σD = 0.0010 m
(or even 0.0020 m, it does not have a significant impact
on the result) to account for the possible inexactness in
the centering of the prism mount. The resulting accuracy
is σh = 0.00011 m for the determination of one antenna
height, which in this simulation we can assume equal in both
baseline endpoints: σhi = σhj = 0.00011 m. By using equation
(77) it is obtained σDij = 0.00003 m for an the approximate
height difference and baseline distance of 350 and 1916 m,
respectively.

The total uncertainty budget for k= 2 (95% level of confid-
ence) is given in table 1. As it can be seen, the uncertainty in
the tropospheric delay has the main in the current case of study
where there is a considerable height difference, but this could
obviously be different for other cases of application. Figure 13
shows the final uncertainty in terms of the observation
time span.
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Figure 13. Total uncertainty in the baseline distance propagated
from all error sources (average values for all the different time
blocks).

4. Conclusions and future work

We have proposed a methodology for an improved GBDM for
use in baselines of up to 5 kmwith a possibly significant height
difference between baseline endpoints. The uncertainty in the
correction of the different sources of error has been estimated
and rigorously propagated throughout the double-difference
equations of the system of equations until the corresponding
uncertainty in the final baseline distance.

The results obtained are particular to the concerned
baseline and observations and cannot be extrapolated to
other experiments.

The proposed methodology has been applied to an example
from a deformation monitoring network. The uncertainties in
the contributing error sources were reliably estimated, first,
and then propagated to the double differences equations and
the final baseline length. For this example, where the height
difference between baseline ends was significant (around
350 m in the 2 km baseline), the uncertainty in the tropo-
spheric delay was the dominant contribution to the uncertainty
in the final length, with a value of 1.1 mm. The uncertain-
ties stemming from the antenna model, multipath effect and
antenna height determination (by the method proposed) fol-
lowed in order of importance, with values of 0.8, 0.5 and below
0.1 mm, respectively.

This methodology is being applied in a near future to
the campaigns at the EURO5000 calibration baseline and the
CERN geodetic network and compared therein with the res-
ults from the new two-color EDM prototypes that are being
developed in the ongoing Geometre project.
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