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ABSTRACT
This paper develops the application of the Dual Rate Dual Sampling Reference Fil-
tering Control Strategy to 2D and 3D visual feedback control. This strategy allows
to overcome the problem of sensor latency and to address the problem of control
task failure due to visual features leaving the camera field of view. In particular, a
Dual Rate Kalman Filter is used to generate inter-sample estimations of the visual
features to deal with the problem of vision sensor latency, whereas a Dual Rate Ex-
tended Kalman Filter Smoother is used to generate more convenient visual features
trajectories in the image plane. Both 2D and 3D visual feedback control approaches
are widely analyzed through the paper, as well as the overall system performance
using different visual feedback controllers, providing a set of results that highlight
the improvements in terms of solution reachability, robustness and time domain re-
sponse. The proposed control strategy has been validated on an industrial system
with hard real-time limitations, consisting of a 6 DOF industrial manipulator, a 5
MP camera and a PLC as controller.

KEYWORDS
Visual Servoing; multi rate control; industrial robot manipulator

1. Introduction

Recent advances in computer science, control theory, robotics and technology have
allowed the application of robot visual feedback control or visual servoing for solv-
ing complex tasks (Hutchinson, Hager, and Corke (1996); Chaumette and Hutchinson
(2007); Corke (2011)). For instance, in the food industry, due to the high variety
of products and features (e.g., shape, size, color, etc.), visual servoing is applied for
grasping and placing tasks (Wu et al. (2017)). In medicine, visual information from
endoscopies or Computed Tomography (CT) scans is used to manoeuvre robot ma-
nipulators during surgeries (Gangloff, Nageotte, and Poignet (2013); Azizian et al.
(2014, 2015)). In the manufacturing industry, visual servoing is used in many applica-
tions such as welding, assembly, painting, etc. (Li et al. (2019); Muñoz-Benavent et al.
(2019); Chen et al. (2019)).

In general, any industrial visual servoing system has, at least, the following main
elements (see Fig. 1): a vision system in charge of extracting the required information
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Figure 1. Industrial robot visual feedback control scheme.

from the environment, coined as visual features vector; an external controller, usually a
PLC or PC-based industrial workstation, where the visual control algorithms and other
auxiliary algorithms (e.g., communications with the factory servers) are implemented;
an industrial robot; and other devices, such as screens or factory displays. All of these
elements are connected through an industrial router.

Visual servoing has still several unsolved issues, as is the case of the vision system
latency (Yu et al. (2017); Xiao and Chen (2020)), i.e., the total time required to
obtain the visual information. Nowadays, the main cause of latency in vision systems
is due to image processing algorithms, which are often computationally intensive,
limiting the refresh rate of the commands provided to the robot system (Castelli
et al. (2017); Zhang et al. (2017)). As a consequence, there is a deterioration of the
whole system performance, assuming slow robot motion in most cases (Hashimoto
and Noritsugu (1998); Solanes et al. (2011)). Another issue of classical visual servoing
approaches is stability, since local stability is achieved but global stability cannot be
guaranteed (Chaumette (1998)).

Several approaches can be found in the literature to deal with the above mentioned
issues, as discussed below.

Regarding the visual sensor latency issue, a multi rate inter-sample disturbance
rejection algorithm was presented in (Fujimoto (2003)) to ensure perfect disturbance
rejection at M-inter sample points in the steady state. Moreover, dual rate high order
holds were used in (Solanes et al. (2011)) to estimate the set of visual features vectors
in order to compensate the vision delay in visual servoing mechanisms. Furthermore,
a dual rate adaptive fading Kalman filter algorithm with delay compensation was
presented in (Wang et al. (2019)) to compensate the visual information delay and
achieve the accurate time sequential coordination of encoder and visual feedback in
visual servoing systems. Finally, a dynamic visual tracking control system for robot
manipulators was proposed in (Qu et al. (2020)) using the dual rate adaptive fading
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Kalman filter.
Regarding the global stability issue, most of the approaches are focused on the choice

of the visual features vector. For instance, (Chaumette (2002, 2004) and Tahri et al.
(2015)) proposed the use of image moments due to their ability to represent object re-
gions, although the rotational motions around the X- and Y-axes simultaneously with
the translational motions along the same axes remains a key issue. Other approaches
are focused on introducing image or joint constraints in order to avoid reaching the
joints limits (Marchand, Rizzo, and Chaumette (1996); Han and Park (2013)) or the
loss of the visual features vector (Muñoz-Benavent et al. (2018); Qiu, Hu, and Liang
(2019)). A different approach was presented in (Solanes et al. (2013)), which used the
duality of LQR-like controllers (Armesto et al. (2015)) and an Extended Kalman Fil-
ter Smoother (Todorov (2005, 2008); Zima et al. (2013)) to develop a novel Reference
Filtering Control Strategy (RFCS) able to significantly increase the solution reach-
ability of the classic Image Based Visual Servoing (IBVS) controller. This approach
was extended in (Solanes et al. (2016)) using a dual rate Kalman filter for the classic
IBVS controller in order to deal with the vision sensor latency problem.

The present work develops a general formulation of the dual rate RFCS to be applied
for all existing visual servoing controllers, whether the control task is performed in the
3D Cartesian space or in the 2D image plane. The new Dual Rate Dual Sampling
Reference Filtering Control Strategy (DR-DS-RFCS) is based on: a dual rate Kalman
filter to estimate the set of features vectors during the vision sensor latency; and an
Extended Kalman Filter Smoother (EKFS), improved with a dual sampling approach
based on the ratio between the vision and control periods, to generate the smoothed
references.

In order to show the applicability and benefits of the proposed approach, simulation
and real experiments are conducted for well-known visual servoing controllers in 2D
and 3D workspaces using a 6R serial industrial manipulator for positioning tasks (e.g.,
pick-and-place or sanding tasks). The results obtained in this experimentation clearly
show the improvements of the proposed approach in terms of solution reachability,
robustness and time domain response.

The paper is organized as follows. Next section introduces some preliminaries and
the materials used in the subsequent sections, including the proposed method (DR-DS-
RFCS) in Section 2.6. Then, Section 3 presents several simulation results to evaluate
the performance of DR-DS-RFCS with respect to its single rate counterpart. The
feasibility and robustness of the proposed method is shown in Section 4 using a 6R
serial industrial robot, which includes a comparison with several single and dual rate
visual servoing controllers. Finally, a discussion about the proposed method is provided
in Section 5, whereas some concluding remarks are given in Section 6.

2. Materials and Methods

2.1. Robot kinematics

The robot kinematics at time instant τ and its derivative are given by:

p(τ) = l(q(τ)) (1)

ṗ(τ) =
∂l(q(τ))

∂q(τ)
q̇(τ) = Jr(q(τ)) q̇(τ), (2)
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Figure 2. Schematic representation of the joint variables qi and pose vector p used in the robot kinematics.

where p =
[
x y z α β γ

]T
is the robot pose (orientation is given by roll α, pitch

β and yaw γ angles), vector q =
[
q1 · · · qn

]T
is the robot configuration (see Fig. 2),

n is the number of robot joints, vector l is the robot kinematic function and matrix
Jr is the robot Jacobian at time instant τ (Chiaverini, Oriolo, and Walker (2008)).

2.2. Low-level controller

This study assumes that the low-level controller developed by the robot manufacturer
is able to achieve a particular joint velocity from the commanded velocity q̇c(τ) with
negligible (fast) dynamics. Notice that this low-level controller should take into account
the robot dynamic model.

2.3. N-periodic systems

Systems with elements or parts working at different periods are called multi rate
systems (Apostolakis (1996)). The N-periodic or dual rate systems are those multi
rate systems that are composed of two parts (e.g., visual servoing robotic systems): a
part working at a higher period, coined as frame period ∆; and a part working at a
lower period, coined as base period δ. The relation between the base and frame periods
is ∆ = N · δ.

The Lifting technique (Khargonekar, Poolla, and Tannenbaum (1985), Bamieh et al.
(1991)) is commonly used in order to deal with dual rate systems. In this approach, a
linear periodic model of the dual rate system is converted into a linear time invariant
model (LTI), making it possible to use standard LTI techniques. The input and output
system states are expanded in order to have both the same sampling period. Therefore,
if the system output is updated N times faster than its input, the generated lifted
output vector will be N times larger after the application of the Lifting technique.

The dual rate Kalman filter used in this work is based on the Lifting technique,
see (Tornero and Armesto (2003)) for more details.
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2.4. Visual servoing

The task in visual servoing is to control the pose of the robot end-effector, relative to
the target, using visual features extracted from the image (Corke (2011)). There are
two basic approaches for visual servoing: Position-Based Visual Servoing (PBVS) and
Image-Based Visual Servoing (IBVS). On the one hand, PBVS uses the visual features,
a calibrated camera and a known geometric model of the target to determine the pose
of the target with respect to the camera. Then, the robot control is performed in the
Cartesian space (typically R3) to move the robot end-effector towards the mentioned
pose. On the other hand, IBVS omits the pose estimation step, using directly the
visual features, and performs the robot control in the image coordinate space R2.

This paper proposes a novel control approach that can be applied to both PBVS
and IBVS basic approaches, although it can also be applied to other approaches such
as the Hybrid Visual Servoing in (Hafez and Jawahar (2007) and Hafez, Cervera,
and Jawahar (2008)), or the task control in the operational space in (Khatib (1987))
and (Cai (2017)). For the sake of brevity, this paper presents results only for PBVS
and IBVS approaches, using the well-known P and PID controllers.

2.4.1. Image Based Visual Servoing

Without loss of generality, this paper assumes that the camera is rigidly attached
to the robot, coined as eye-in-hand configuration, see (Chaumette and Hutchinson
(2006)) and (Corke (2011)) for more details. In addition, this work considers points
of the target object as the visual features. Therefore, considering a point P(τ) =
[X Y Z]T ∈ R3 in the Cartesian workspace, the visual feature vector is expressed

as f(τ) = [x y]T , being x = X
Z and y = Y

Z the perspective projection for normalized
coordinates.

The relation between the camera velocity, υ(τ) =[
vx(τ) vy(τ) vz(τ) ωx(τ) ωy(τ) ωz(τ)

]T
, and the visual feature movement

in the image plane in normalized coordinates, ḟ(τ) = [ẋ(τ) ẏ(τ)]T , is given
by (Chaumette and Hutchinson (2006); Corke (2011)):

[
ẋ(τ)
ẏ(τ)

]
=

[
− 1
Z(τ) 0 x(τ)

Z(τ) x(τ) · y(τ) −(1 + x2(τ)) y(τ)

0 − 1
Z(τ)

y(τ)
Z(τ) 1 + y2(τ) −x(τ) · y(τ) −x(τ)

]
·


vx(τ)
vy(τ)
vz(τ)
ωx(τ)
ωy(τ)
ωz(τ)


= Lf (τ)·υ(τ), (3)

being Lf (τ) the image Jacobian or interaction matrix at time instant τ .
Since the approach proposed in this work needs to update Z(τ) parameter, the visual

feature vector is extended to f(τ) =
[
x(τ) y(τ) Z(τ)

]T
. Therefore, the relation

between the camera velocity, υ(τ), and the extended visual feature vector velocity,
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ḟ(τ) = [ẋ(τ) ẏ(τ) Ż(τ)]T , is given by:

 ẋ(τ)
ẏ(τ)

Ż(τ)

 =

− 1
Z(τ) 0 x(τ)

Z(τ) x(τ) · y(τ) −(1 + x2(τ)) y(τ)

0 − 1
Z(τ)

y(τ)
Z(τ) 1 + y2(τ) −x(τ) · y(τ) −x(τ)

0 0 −1 −y(τ) · Z(τ) x(τ) · Z(τ) 0

·

vx(τ)
vy(τ)
vz(τ)
ωx(τ)
ωy(τ)
ωz(τ)


ḟ(τ) = Lf (τ) · υ(τ). (4)

In general, n visual features should be considered to guarantee the convergence of the
control (Corke (2011)). Therefore, the visual features vector s(τ) and the interaction
matrix Ls(τ) are defined as:

s(τ) =
[
fT1 (τ) fT2 (τ) . . . fTn (τ)

]T
Ls(τ) =

[
Lf1(τ) Lf1(τ) . . . Lfn(τ)

]T
,

(5)

leading to:

ṡ(τ)=Ls(τ) · υ(τ). (6)

The expression given by (6) indicates the movement of the visual features vector
s(τ) due to the camera movement in the Cartesian workspace. Therefore, the visual
features motion can be controlled by:

υ(τ)=L†s(τ) · ṡ(τ), (7)

where the symbol † represents the Moore-Penrose pseudo-inverse (Rakha (2004)). In
order to control the visual features velocity, the simplest strategy consists in using the
following linear controller ṡ(τ) = −λ · (s(τ)− s∗(τ)), which drives the visual features
vector s towards the desired value s∗ (Hashimoto (1993); Corke (2011))1. Therefore,
Eq. (7) can be rewritten as:

υ(τ)=−λ · L†s(τ) · (s(τ)− s∗(τ)). (8)

Assuming that the camera is mounted on the last link of the robot system, being

eTc =

[
eRc

etc
0 1

]
∈ R4x4 the homogeneous transformation matrix that relates the

camera pose with respect to the pose of the last link of the robot (usually the end-
effector)2, the velocity vector of the robot joints is obtained as follows:

q̇(τ) = −λIBV S · (Ls(τ) ·V · Jr(τ))†(s(τ)− s∗(τ))

= −λIBV S · J(τ)†(s(τ)− s∗(τ)), (9)

1In this work, a PID controller is also used, see (Lots et al. (2001)) for further details.
2The present work adopts the standard notation of using a leading superscript to denote the frame with

respect to which a set of coordinates is referenced, which is also denoted as a subscript
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where Jr(τ) is the robot Jacobian, V =

[
eRc [etc]

e
×Rc

0 eRc

]
∈ R6×n is the twist velocity

matrix3 and n is the number of joints of the robot system.
Note that the interaction matrix in (4) uses 3D information, i.e., the visual feature

depth Zi. Therefore, the controller given by (9) is not a pure IBVS. Thus, in order
to cancel the effect of the 3D information, an additional block-diagonal matrix H =

diag(φ1, . . . , φi, . . . , φm), with φi =
[

1 0 0
0 1 0
0 0 0

]
and m the number of visual features, is

introduced in Eq. (9), yielding the IBVS controller used in this work:

q̇(τ)=−λIBV S · J†(τ) ·H · (s(τ)− s∗(τ)). (10)

The convergence of the control task is only guaranteed when the actual visual
features are close to the reference visual features (local convergence). Therfore, task
failure may occur when solving large translations. Moreover, the interaction matrix
Ls is singular for pure rotation movements of 180◦ around the optical axis (Solanes
et al. (2013)).

2.4.2. Position Based Visual Servoing

In Position Based Visual Servoing (PBVS) the pose of the target Fo with respect to
the pose of the camera Fc is estimated in each time instant τ (Martinet, Gallice, and
Khadraoui (1996); Chaumette and Hutchinson (2006); Siciliano and Khatib (2008);
Corke (2011)). The control task goal is to determine the motion required to move
the camera from its initial pose Fc to the desired pose F∗c . Thus, the homogeneous
transformation matrix that relates the camera pose in each time instant τ with respect
to the desired camera pose c∗Tc(τ) can be described by its translation vector c

∗
tc(τ) ∈

R3x1 and rotation matrix c∗Rc(τ) ∈ R3x3.
The state s(τ) can be defined as (t(τ), θ(τ)u(τ)), where t(τ) is a translation vector

and θ(τ)u(τ) gives the angle/axis parametrization for the rotation. If t(τ) is defined
relative to the target frame Fo, then s(τ) = (t(τ), θ(τ)u(τ)), s∗(τ) = (t∗(τ),0) and
e(τ) = (t(t)− t∗(t), θ(t)u(t)). In this case, the interaction matrix Le(t) results in:

Le(τ)=

[
c∗

Rc(τ) 0
0 Lθu(τ)

]
∈ R6x6, (11)

where:

Lθu(τ)=I3 −
θ(τ)

2
[u(τ)]× +

(
1− sinc(θ(τ))

sinc2( θ(τ)
2 )

)
· [u(τ)]2× ∈ R3x3, (12)

being I3 the 3×3 identity matrix and sinc(x) the sinus cardinal defined such that
x · sinc(x) = sinx and sinc(0) = 1 (Chaumette and Malis (2000)).

Following the developments presented in Section 2.4.1 for IBVS, the robot controller
for PBVS results in (Chaumette and Hutchinson (2006)):

q̇(τ)=−λPBV S · (L(τ) ·V · Jr(τ))†e(τ)=−λPBV S · J(τ)†e(τ). (13)

3Note that, since the camera is rigidly attached to the last link of the robot system, matrix V is constant.

7



s(τ)
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Figure 3. Schematic representation of the RFCS (Solanes et al. (2013)).

Note that, since the control task is carried out in the 3D workspace, the trajectory
of the visual features vector s(τ) is not known a priory. In fact, the features could
leave the camera field of view before reaching the convergence, what would produce
the control failure.

2.5. Reference Filtering Control Strategy (RFCS)

Authors in (Solanes et al. (2013)) proposed to modify the reference visual features
used in classical IBVS to improve the task solution reachability. This strategy, coined
as Reference Filtering Control Strategy (RFCS), is depicted in Fig. 3 and is based
on the ideas in (Zima et al. (2013)). The actual visual features vector s(τ) (starting
position) and the reference visual features vector s∗(τ) (ending position) are assumed
to be known. The first step is to predict the state trajectory from the starting posi-
tion to the ending position given a prediction horizon Γ = τ + h, being h the total
number of iterations expressed in the frame period. During the filtering, the system
evolves in “open-loop” mode at the prediction step since control inputs are unknown.
Thus, the Kalman filter provides a trajectory {ŝ(τ + 1|τ + 1), . . . , ŝ(Γ|Γ)}, see the blue
dots and trajectory in Fig. 3, where h = 2. Subsequently, a Kalman Smoother (KS)
generates a trajectory that takes into account “future” observations under the form
{¯̂s∗(Γ|Γ), . . . , ¯̂s

∗
(τ+1|Γ)}, see the green dots and trajectory in Fig. 3. At the final step,

the algorithm establishes ¯̂s
∗
(τ + 1|Γ) as “reference” visual features vector. Note that

the new reference visual features vector is based on the knowledge about the evolution
of the system from the starting position to the ending or reference position and, hence,
the resulting trajectories represent the predicted behavior.

2.6. Dual Rate Dual Sampling Reference Filtering Control Strategy
method (DR-DS-RFCS)

2.6.1. Overview of the method

Authors in (Solanes et al. (2016)) proposed the DR-DS-RFCS for the classic IBVS
controller. Fig. 4 shows the general case of the DR-DS-RFCS method, where a visual
feedback controller (VFC) working at base period δ is used along two components:

• The Dual Rate Kalman Filter component (DR-KF), which provides a set of
estimated visual features vectors at base period δ.
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Figure 4. Overview of the proposed approach.

• The Dual Sampling Extended Kalman Filter Smoother component (DS-EKFS),
which provides a set of smoothed filtered reference visual features vectors at base
period δ.

The input to the DR-KF is the visual features vector s(τ) given by the “features
extraction algorithm” working at frame period ∆. Note that the dimension and units of
the visual features vector will be in accordance to the workspace, 2D or 3D, described
in Section 2.4.

The inputs to the DS-EKFS are the first visual features vector ¯̂s(τ) given by the
DR-KF, the reference visual features vector s∗(τ) and the actual robot state vector
q(τ).

The inputs to the VFC are the set of estimated visual features vectors ¯̂s(τ) given
by the DR-KF, the set of smoothed filtered reference visual features vectors ¯̂s∗(τ)
provided by the DS-EKFS and the actual robot state vector q(τ). The commanded
joint velocity vector q̇c(τ) is computed at base period and serves as the input to the
robot controller.

2.6.2. DR-KF component

A Dual Rate Kalman Filter (DR-KF), with the well-known constant velocity model,
is used to estimate the position and velocity of the set of visual features vectors
ŝ(τ) (Armesto and Tornero (2006); Steffes (2014); Solanes et al. (2016)). The lifted
stochastic model is given by:[

ŝ(τ)
ˆ̇s(τ)

]
=

[
I NδI
0 I

] [
ŝ(τ−N)
ˆ̇s(τ−N)

]
+

[
(2N−1)δ2

2 I (2N−3)δ2

2 I . . . δ2

2 I
δI δI . . . δI

]
w̄(τ) (14)

{¯̂s(τ), ¯̂s(τ + 1), . . . , ¯̂s(τ +N − 1)} =
[
I δI

] [ŝ(τ)
ˆ̇s(τ)

]
+ v̄(τ), (15)

where w̄(τ) =
[
wT (τ) wT (τ + 1) . . . wT (τ +N−1)

]T
and v̄(τ) =[

vT (τ) vT (τ + 1) . . . vT (τ +N−1)
]T

are the lifted noise matrices, assum-

ing w ∼ N (0, Q̃) to be the acceleration noise with covariance matrix Q̃ and
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Figure 5. Dual Sampling Extended Kalman Filter Smoother component (Solanes et al. (2016)) with N = 7
and h = 49. Fast-EKF step (S1), in blue; Slow-EKF step (S2), in orange; Slow-EKS step (S3), in red; Fast-EKS

step (S4), in green.

v ∼ N (0, R̃) to be the measurement noise with covariance matrix R̃, see (Armesto
and Tornero (2006)) for further details.

2.6.3. DS-EKFS component

The DS-EKFS approach is represented in Fig. 5 and consists of four steps (Solanes
et al. (2016)):

S1) Fast-EKF step: in this step, the system evolves in open-loop using the well-
known stochastic model based on the interaction matrix (Allibert and Courtial
(2009); Allibert, Courtial, and Chaumette (2010)) at base period δ during N
samples. The control input is assumed to be zero since its future values are
unknown. The reference visual features vector s∗(τ) is used as “observation”
input to guarantee the trajectory convergence. In addition, s∗(τ) is compared
with the predicted state for the update stage of the EKF. Note that covariance
matrices R and Q of the EKF must be appropriately discretized, see (Armesto
and Tornero (2006)) for more details. In sum, the Fast-EKF step predicts the
following set of visual features vectors (see (Solanes et al. (2013)) for further
details):

{ŝ∗(τ + 1|τ + 1), ŝ∗(τ + 2|τ + 2), . . . , ŝ∗(τ +N |τ +N)}. (16)

S2) Slow-EKF step: in this step, the system evolves at frame period until the given
prediction horizon T . Thus, the Slow-EKF step provides the following predicted
set of visual features vectors:

{ŝ∗(τ +N |τ +N), ŝ∗(τ + 2N |τ + 2N), . . . , ŝ∗(Γ|Γ)}. (17)

S3) Slow-EKS step: in this step, a backward estimation working at frame period
Nδ is performed using the predicted set of visual features vectors given by the
Slow-EKF step. Note that the smoothing counterpart of the algorithm proposed
in (Rauch, Striebel, and Tung (1965)) computes the state covariance during
the backward smoothing. However, this state covariance is not necessary in the
proposed approached and can be omitted (see (Armesto et al. (2015)) for more
details). Therefore, the Slow-EKS step provides the following smoothed set of
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reference visual features vectors:

{ŝ∗(Γ|Γ), ŝ∗(Γ−N |Γ), . . . , ŝ∗(τ +N |Γ)}. (18)

S4) Fast-EKS step: in this step, a backward estimation at base period δ is per-
formed taking into account the predicted set of visual features vectors given by
the Slow-EKF step. Therefore, the Fast-EKS step provides the following solution
of smoothed predicted set of reference visual features vectors:

{ŝ∗(τ +N |Γ), ŝ∗(Γ−N − 1|Γ), . . . , ŝ∗(τ + 1|Γ)}. (19)

2.6.4. Implementation of the controller

The pseudo-code of the proposed algorithm is given below, which is executed at a base
period of δ seconds and considers several parameters and functions:

• The initial state covariance prediction P0 for the DR-KF component is set to
zero, since the state s(τ) is known.
• The continuous covariances matrices Q and R are adjustable parameters and

are initialized at the begging of the algorithm.
• Function GetDiscreteRQmatrices() returns the discretized Rδ and Qδ at base

period δ, and RNδ and QNδ at frame period Nδ, from the continuous covariances
matrices R and Q.
• Function GetRobotStateFromController() returns the current robot state q(τ) at

base period δ.
• Function GetRobotJacobian(q(τ)) computes and returns the geometric Jacobian

matrix of the robot at base period δ.
• Function GetFeatureVector() returns the set of visual features vectors s(τ) at

frame period Nδ. Note that depending on the control task workspace, the di-
mension and units of s(τ) will change.
• Function VFC (q̇(τ+i), ¯̂s(τ+i), ¯̂s

∗
(τ+i)) computes the commanded joint velocity

vector.
• Function SendToJointControllers(q̇c(τ + i)) commands the desired velocities to

the low-level controller.

3. Simulation

The DR-DS-RFCS approach described in Section 2.6 was simulated using the virtual
environment depicted in Fig. 6 in order to determine its benefits and drawbacks when
dealing with extreme situations, which are difficult or impossible to implement in the
real scenario.

The virtual environment was composed of a 6R serial robot manipulator, a camera
mounted on the robot end-effector and a square of side 300mm as virtual target, where
four coplanar points were used as visual features.

The simulator was run in a PC with Intel Core i7-6700HQ processor at 2.6 GHz
clock frequency, 16 GB of RAM and using Xubuntu 16.04 as Operating System.

The following open source libraries were used:

11



Algorithm 1 Algorithm executed at sampling time of δ seconds

1: P̄(τ−N |τ−N)← P0

2: ˆ̇s(τ−N |τ−N)← 0
3: [Rδ,Qδ,RNδ,QNδ]← GetDiscreteRQmatrices(Q,R)
4: while ‖s(τ)− s∗(τ)‖ < error do
5: q(τ)← GetRobotStateFromController()
6: J(τ)← GetRobotJacobian(q(τ))
7: s(τ)← GetFeatureVector()

8: ¯̂s(τ)← DR-KF(s(τ), ˆ̇s(τ−N |τ−N), R̃, Q̃, P̄(τ−N |τ−N))
9: ¯̂s

∗
(Γ|Γ)← DS-EKFS(̄̂s(τ),q(τ), s∗(τ),Rδ,Qδ,RNδ,QNδ,N,h)

10: for i← 0 to N − 1 do
11: q(τ + i)← GetRobotStateFromController()
12: J(τ + i)← GetRobotJacobian(q(τ + i))
13: q̇c(τ + i)← VFC(q(τ+i),J(τ + i), ¯̂s(τ+i), ¯̂s

∗
(τ+ i+1|Γ))

14: SendTotJointControllers(q̇c(τ + i))
15: end for
16: end while

Algorithm 2 DS-EKFS

Require: q(τ), J(τ), s∗(τ), Qδ, Rδ, QNδ, RNδ, N and h
1: P(τ |τ)← 0
2: for ν ← τ + 1 to τ +N do // Fast-EKF step (S1)
3: [̂s∗(ν|ν),P(ν|ν)]← EKF (s∗(τ), ŝ∗(ν − 1|ν − 1),P(ν−1|ν−1),Qδ,Rδ)
4: end for
5: for l← 2 to h do // Slow-EKF step (S2)
6: ν ← τ + lN
7: [̂s∗(ν|ν),P(ν|ν)]← EKF (s∗(τ), ŝ∗(ν−N |ν−N),P(ν−N |ν−N),QNδ,RNδ)
8: end for
9: for l← h to 2 do // Slow-EKS step (S3)

10: ν ← τ + (l − 1)N
11: ŝ∗(ν|Γ)← ŝ∗(ν|ν) + P(ν|ν) ·P−1(ν +N |ν) · (̂s∗(ν +N |Γ)− ŝ∗(ν +N |ν))
12: end for
13: for ν ← τ +N − 1 to τ + 1 do // Fast-EKS step (S4)
14: ŝ∗(ν|Γ)← ŝ∗(ν|ν) + P(ν|ν) ·P−1(ν + 1|ν) · (̂s∗(ν + 1|Γ)− ŝ∗(ν + 1|ν))
15: end for
16: return ¯̂s

∗
(τ+1) ≡ {ŝ∗(τ + 1|Γ), ..., ŝ∗(τ +N |Γ)}

• Visual Servoing Platform library (Marchand, Spindler, and Chaumette (2005)),
in order to implement the image visual features extraction algorithm.
• OpenRAVE (Diankov and Kuffner (2008)), in order to generate the virtual en-

vironment.
• Orocos Toolchain (Bruyninckx, Soetens, and Koninckx (2003); Soetens and

Bruyninckx (2005)), in order to establish the communications between the con-
troller thread and the image processing thread.
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Figure 6. Simulator of the visual servoing system.

3.1. Sensibility analysis of the covariance matrices

The Extended Kalman Filter (EKF) is a widely adopted tool in visual servoing to
estimate the measured features (Janabi-Sharifi and Marey (2010); Van et al. (2015);
Saltus et al. (2020)). It is well-known that the estimation performance of the EKF
depends on the noise covariance matrices, Q and R. Therefore, a sensibility analysis
is conducted below to determine the effect of the noise covariance matrices in the
Reference Filtering Control Strategy (RFCS) proposed in section 2.5.

In order to determine the benefits of the proposed approach, the RFCS has been
compared with its EKF counterpart (Brown et al. (2020)). In particular, the classical
image based visual servoing was used with a gain value λ of 0.5. Moreover, the frame
period was set to 84ms and the target was placed on the camera optical axis in order
to perform pure rotations of the target with respect to the camera.

in red; task success reached by DR-DS-RFCS, in blue; task success reached by both
SR-SS-RFCS and DR-DS-RFCS, in green.

Fig. 7 shows the results of the experiment: the region of control task success for both
the EKF estimator and RFCS approach is depicted in green; the region of control task
success for only the RFCS approach is depicted in blue; and the region of control
task failure for both the EKF estimator and RFCS approach is depicted in red. On
the one hand, Fig. 7(a) shows the results obtained when the noise covariance matrix
Q is equalt to the identity matrix I and the noise covariance matrix R varies from
0.01 · I to 10 · I. On the other hand, Fig. 7(b) shows the results obtained when the
noise covariance matrix R is equal to I and the noise covariance matrix Q varies from
0.01 ·I to 10 ·I. Note that the control task success region is improved with the proposed
RFCS regardless of the values used for the noise covariance matrices.

Note also that, as the control task success depends on values used for the noise
covariance matrices, the setup of these parameters is important. For this purpose,
several approaches (Brown et al. (2020)) can be used to optimally estimate the values
of the noise covariance matrices. However, this is out of the scope of this work.

3.2. Single-rate versus dual-rate single sampling reference filtering
control strategies

In the following, the single-rate single sampling reference filtering control strategy
(SR-SS-RFCS) proposed in (Solanes et al. (2013)) and the dual-rate dual sampling

13
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(b) Performance with respect to Q covariance matrice.

Figure 7. Comparison of the effect of the noise covariance matrices, R and Q in the RFCS and EKF
estimators: task success for both EKF and RFCS, green region; task success for only RFCS, blue region; and

task failure for both EKF and RFCS, red region.

reference filtering control strategy (DR-DS-RFCS) are compared in terms of control
robustness and task solution reachability. Without loss of generality, classic IBVS and
PBVS controllers are used in the VFC component, although other control approaches
could be used, such as the 2D 1/2 Visual Servoing in Chaumette and Malis (2000).

3.2.1. Conditions for the simulation

• The base period δ was set to 12 milliseconds in order to reproduce the periods
imposed by the hardware used in the real experimentation detailed in Section 4.
• The total number of iterations h for the prediction horizon T was set to 49.
• Classic IBVS and PBVS controllers described in Section 2.4.1 and Section 2.4.2

were used in the VFC component (see Section 2.6.4).
• The gain parameters λIBV S in Eq. (10) and λPBV S in Eq. (13) were empirically

tuned to guarantee the control task stability and the fastest task convergence.
• The covariance matrices R̃ and Q̃ of the DR-KF were empirically tuned to obtain

the best estimation of the image features.
• The covariance matrices R and Q of the DS-EKFS were empirically tuned to

minimize the convergence time and maximize the task solution reachability.

3.2.2. Robustness analysis

In order to determine the benefits of the proposed approach in terms of control ro-
bustness improvement when calibration errors, model errors and large frame periods
are present, the target was fixed in a position of the 3D workspace, which ensures
the control task success when classic single rate IBVS and PBVS controllers under
ideal conditions are used. Calibration and model errors were introduced through Z(τ),
see (Solanes et al. (2013, 2016)) for further details.

Fig. 8 shows the result of this experiment. On the one hand, Fig. 8(a) and Fig. 8(b)
show the performance of the SR-SS-RFCS and DR-DS-RFCS, respectively, when the
classic IBVS is used in the VFC component. On the other hand, Fig. 8(c) and Fig. 8(d)
show the performance of the SR-SS-RFCS and DR-DS-RFCS, respectively, when the
classic PBVS is used in the VFC component. Green areas in Fig. 8 represent cases of
success in the control task, whilst red areas represent cases of task failure. Note that,
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(a) SR-SS-RFCS with classic IBVS controller.

10 50 100 150 200 250 300
−50

−25

0

25

50

Frame Period [ms]

C
a

lib
ra

ti
o

n
 &

 m
o

d
e

l 
E

rr
o

rs
 [

%
]

(b) DR-DS-RFCS with classic IBVS controller.
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(c) SR-SS-RFCS with classic PBVS controller.
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(d) DR-DS-RFCS with classic PBVS controller.

Figure 8. Analysis of control task robustness when calibration errors, model errors and large frame periods
are present (results showing the mean of 25 experiments for each case).

Table 1. Starting positions of the target with respect to the camera in the reachability analysis.

Pose 1-3 Pose 4-6 Pose 7-9
X(m) 0.1 0.05 0
Y(m) 0.1 0.05 0 0.1 0.05 0 0.1 0.05 0
Z(m) -0.115

in both IBVS and PBVS, the proposed DR-DS-RFCS improved the robustness of its
single rate counterpart, specially for large frame periods.

3.2.3. Reachability analysis

This simulation was conducted to determine the benefits of the DR-DS-RFCS in terms
of task solution reachability using the classic PBVS controller. The classic PBVS was
chosen because, since it performs the control task in the 3D workspace, it has more
task reachability issues than classic IBVS. Moreover, the frame period was chosen to
be 84 milliseconds (i.e., N = 7) to reproduce the real experimentation setup, which
is detailed below in Section 4. Furthermore, no calibration or model errors were con-
sidered, whereas the target was placed in 9 different starting positions with respect to
the camera frame, see Table 1. For each position, the target was rotated around roll
α, pitch β and yaw γ angles in the following ranges: α = [−20, 20] o, β = [−20, 20] o

and γ = [0, 360] o.
Failure in the task solution reachability was considered when one or more visual
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features leave the camera field of view during the control task. Fig. 9 shows the re-
sult of this experiment. Those positions and orientations of the target that could not
be properly solved by either of the two controllers are represented in red. The blue
color represents those positions and orientations of the target whose solution was only
reached by the DR-DS-RFCS. The green color represents all those positions and ori-
entations of the target that were properly solved by both controllers, SR-SS-RFCS
and DR-DS-RFCS. Note that this results evidence that the proposed DR-DS-RFCS
increases the range of task solution reachability with respect to that obtained with the
SR-SS-RFCS approach.

4. Real experimentation

The set-up used for the real experimentation consists of (see Fig. 10): a KUKA KR6
R900 sixx (Agilus) in ceiling-mounted configuration, with integrated low-level joint
controller; a 5MP monochrome camera from OMRON Electronics mounted on the
robot end-effector; a PC-based Xpectia vision system from OMRON Electronics; a
PLC NJ501-1500 controller from OMRON Electronics; and a target that consists of a
black square of side 300mm with four white points as visual features.

The controller was implemented in a PLC NJ501-1500 controller from OMRON
Electronics. The visual features extraction algorithm was implemented in a PC-based
Xpectia vision system from OMRON Electronics and the camera was connected di-
rectly using the Camera Link protocol. The robot controller was equipped with the
KUKA robot sensor interface, allowing real-time communication between the robot
controller and external sensors or controllers via UDP protocol. Thus, Agilus robot,
PLC and Xpectia were connected to an industrial router and communicate via UPD
protocol. The base period δ was set to 12ms due to robot specification, whereas the
frame period Nδ was set to 84ms due to the visual features extraction algorithm.

A first experiment was conducted in order to validate the benefits of the DR-DS-
RFCS in terms of task solution reachability using the classic PBVS controller. A case
of task failure for both the classic PBVS and SR-SS-RFCS was chosen. The PBVS
controller given by Eq. (13) was used in the VFC component, being λIBV S = 4.5
the optimal value obtained experimentally. The values of the covariance matrices Q
and R used in the DS-EKFS component (Section 2.6.3) were set to Q = 1100 · I6×6

and R = diag(1, 1, 1, 15, 15, 15). Moreover, the total number of iterations h for the
prediction horizon T was set to 49.

Fig. 11 shows the results obtained for the first experiment, where it can be seen
that the proposed DR-DS-RFCS was able to reach the reference values for the visual
features despite that the single rate approaches were not able to.

A second experiment was conducted in order to compare and analyze the perfor-
mance of single rate, dual rate, SR-SS-RFCS and DR-DS-RFCS approaches. For each
approach, classic and PID controllers were tested, both in IBVS and PBVS. The start-
ing pose of the camera, the pose of the target and the reference visual features were
the same for all the mentioned cases. The control parameters for each controller were
set experimentally to obtain the best performance in each case.

The following indicators are considered for comparison purposes: the rise time; the
settling time; the overshoot; the maximum control effort (MCE)4; and the Integrating

4MCE: maxt

√∑m
i=1

(
∂qi
∂t

)2
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(a) Pose 1. (b) Pose 2. (c) Pose 3.

(d) Pose 4. (e) Pose 5. (f) Pose 6.

(g) Pose 7. (h) Pose 8. (i) Pose 9.

Figure 9. Analysis of solution reachability: task failure, in red; task success reached by DR-DS-RFCS, in
blue; task success reached by both SR-SS-RFCS and DR-DS-RFCS, in green.

Square Control Effort (ISCE)5.
Table 2 shows the results of the above indicators for all the mentioned approaches

and controllers. Note that the best behavior was obtained by the DR-DS-RFCS with
a PID: for the case of the task carried out in the 2D workspace (i.e., IBVS), the rise
time was 4.1 seconds, the settling time was 7.2 seconds, the overshoot was zero, the

5ISCE:
∫ t
0

(√∑m
i=1

(
∂qi
∂t

)2
[∞]−

√∑m
i=1

(
∂qi
∂t

)2
[t]·dt

)
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Figure 10. Setup used for the experiments: a 6R industrial robot with a camera mounted on the end-effector

and a target that consists of a black square of side 300mm with four white points as visual features.

maximum effort was 7.2 degrees/seconds and the ISCE was 13.1 degrees; wereas for
the case of the task carried out in the 3D workspace (i.e., PBVS), the rise time was 4.6
seconds, the settling time was 7.9 seconds, the overshoot was the 2%, the maximum
effort was 7.8 degrees/seconds and the ISCE was 14.9 degrees. Therefore, it can be
concluded that the proposed DR-DS-RFCS improves the results obtained with single
rate and classic approaches.

5. Discussion

The proposed DR-DS-RFCS showed a significant improvement in terms of solution
reachability with respect to the classic IBVS and PBVS controllers, as demonstrated
in the simulation and experimentation above. It also demonstrated better performance
than its single rate counterpart, i.e., the SR-SS-RFCS. Nevertheless, the control task
solution is not always guaranteed since it depends on the visual servoing controller
used in the VFC component and the visual features used.

One possibility to mitigate to some extent this problem consists of adding con-
straints to the control task. For instance, image constraints would prevent the visual
features from leaving the field of view of the camera. These image constraints would
be part of the DR-KF and DS-EKFS components. In addition, 3D constraints would
prevent the robot from reaching joints limits or forbidden configurations. In this case,
the 3D constraints would be part of the DS-EKFS and VFC components.

It should be mentioned that the proposed method is considered to be part of the
solution to the problem of automatic detection and repair of defects on painted car
body surfaces (Molina et al. (2017); Muñoz et al. (2019); Gracia et al. (2018); Solanes
et al. (2018)). The application consists of a network of cameras, 24 in the case of the
Mercedes-Benz factory in Vitoria (Spain), used to detect and locate all the defects on
the car body surface, among other properties such as type, size, etc. This visual infor-
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(a) Image plane: trajectories of the visual features in cyan;
starting position of the visual features in red; and reference

values for the visual features in green.

(b) Error signals e(τ) = (t(τ)− t∗(τ), θ(τ)u(τ)) as a function of time: X-axis

in blue; Y-axis in red; and Z-axis in green.

(c) Velocity commands q̇c as a function of time.

Figure 11. Control task performance using the DR-DS-RFCS with PBVS. In this case, both classic PBVS
and SR-SS-RFCS with PBVS failed.

19



Table 2. Comparison of different visual servoing controllers: best performance highlighted in yellow.
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mation is intended to be used to command several robot manipulators equipped with
sanding tools in order to automatically repair the defects detected by the automatic
detection system.

6. Conclusions

A generalization of the Reference Filtering Control Strategy has been developed in
this work for 2D and 3D visual servoing of industrial robot manipulators using dual
rate and dual sampling estimation techniques. In particular, a Dual Rate Kalman
Filter was used to generate inter-sample estimations of the visual features to deal with
the problem of vision sensor latency, whereas a Dual Rate Extended Kalman Filter
Smoother was used to generate more convenient visual features trajectories in the
image plane.

The effectiveness of the proposed method was shown in simulation for several com-
plex case studies. In particular, the simulation results showed a significant improve-
ment in terms of robustness and solution reachability of the control task in both 2D
and 3D workspaces.

Furthermore, the feasibility of the proposal was demonstrated with real experimen-
tation using a conventional 6R robot arm, a PLC and an industrial vision system.
Moreover, several single rate and dual rate controllers were also implemented for com-
parison purposes in order to show the benefits of the proposed approach.

As further work, it is proposed to analyze in depth the stability and robustness
when other typical issues of visual servoing systems are present, such as command
communication delays or loss of visual features during the control task.
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