Physiological Measurement l PE M

Institute of Physics and
Engineering in Medicine

PAPER » OPEN ACCESS You may also like

- Two-stage ECG signal denoising based on

From 12 to 1 ECG lead: multiple cardiac condition deep convolutional network

Lishen Qiu, Wengiang Cai, Miao Zhang et

detection mixing a hybrid machine learning al
approach with a one-versus-rest classification T —

t t Gari D Clifford and George B Moody
S ra egy - ECG denoising and fiducial point
extraction using an extended Kalman
filtering framework with linear and
nonlinear phase observations
Mahsa Akhbari, Mohammad B
Shamsollahi, Christian Jutten et al.

To cite this article: Santiago Jiménez-Serrano et al 2022 Physiol. Meas. 43 064003

View the article online for updates and enhancements.

IPEM 10P

Series in Physics and Engineering in Medicine and Biology

Start exploring the collection—download the
first chapter of every title for free.

This content was downloaded from IP address 158.42.104.235 on 30/06/2022 at 10:06


https://doi.org/10.1088/1361-6579/ac72f5
/article/10.1088/1361-6579/ac34ea
/article/10.1088/1361-6579/ac34ea
/article/10.1088/0967-3334/33/9/E01
/article/10.1088/0967-3334/33/9/E01
/article/10.1088/0967-3334/37/2/203
/article/10.1088/0967-3334/37/2/203
/article/10.1088/0967-3334/37/2/203
/article/10.1088/0967-3334/37/2/203
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstYWtOvBdhG_ti7P6HQIqrAd9kkk4o4Ni0y3KZDE25XrUw1DoF7LIVVpR88nV4YaPsr6QY7VXKNRS2uJaR_ZDXf6S12Sa1wmQZyHNHBpQWdSX0pcNdFWEA0twDHvHTTsGi3oLNBhRhO8GH-JzHFgxm7b043bqIDHBBBU4TXj6XukPCGtcppOTWSEVqhZQguktZyCjtOcH2QrO1yin5fidRnqKizXZbeMxLUZFdWzik8nAckRY5z-q6ZmKDQBt8gl8gio1MNhF6DJjHRqW_BdKQFLSxUkJ7HM2h2CSNMAfr8vw&sig=Cg0ArKJSzKq5kdcXcP3Z&fbs_aeid=[gw_fbsaeid]&adurl=https://iopscience.iop.org/bookListInfo/physics-engineering-medicine-biology-series%23series

10P Publishing

® CrossMark

OPENACCESS

RECEIVED
8 January 2022

REVISED
16 May 2022

ACCEPTED FOR PUBLICATION
24 May 2022

PUBLISHED
28 June 2022

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 4.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

Physiol. Meas. 43 (2022) 064003 https://doi.org/10.1088/1361-6579 /ac72f5

IPEM

Institute of Physics and
Engineering in Medicine

Physiological Measurement

PAPER

From 12 to 1 ECG lead: multiple cardiac condition detection mixing a
hybrid machine learning approach with a one-versus-rest
classification strategy

Santiago Jiménez-Serrano"* ®, Miguel Rodrigo’, Conrado ] Calvo’, José Millet' and Francisco Castells'

! Instituto ITACA, Universitat Politecnica de Valencia, Valéncia, Spain
> CoMMLab, Universitat de Valéncia, Valéncia, Spain

* Universitat Politecnica de Valéncia, Valéncia, Spain

* Author to whom any correspondence should be addressed.

E-mail: sanjiser@upv.es

Keywords: ECG, signal processing, feature extraction, feature selection, machine learning, classification, cardiac conditions detection

Abstract

Objective. Detecting different cardiac diseases using a single or reduced number of leads is still
challenging. This work aims to provide and validate an automated method able to classify ECG
recordings. Performance using complete 12-lead systems, reduced lead sets, and single-lead ECGs is
evaluated and compared. Approach. Seven different databases with 12-lead ECGs were provided
during the PhysioNet/Computing in Cardiology Challenge 2021, where 88 253 annotated samples
associated with none, one, or several cardiac conditions among 26 different classes were released for
training, whereas 42 896 hidden samples were used for testing. After signal preprocessing, 81 features
per ECG-lead were extracted, mainly based on heart rate variability, QRST patterns and spectral
domain. Next, a One-versus-Rest classification approach made of independent binary classifiers for
each cardiac condition was trained. This strategy allowed each ECG to be classified as belonging to
none, one or several classes. For each class, a classification model among two binary supervised
classifiers and one hybrid unsupervised-supervised classification system was selected. Finally, we
performed a 3-fold cross-validation to assess the system’s performance. Main results. Our classifiers
received scores 0f0.39, 0.38, 0.39,0.38, and 0.37 for the 12, 6, 4, 3 and 2-lead versions of the hidden
test set with the Challenge evaluation metric (CM). Also, we obtained a mean G-score 0f 0.80, 0.78,
0.79,0.79,0.77 and 0.74 for the 12, 6, 4, 3, 2 and 1-lead subsets with the public training set during our
3-fold cross-validation. Significance. We proposed and tested a machine learning approach focused on
flexibility for identifying multiple cardiac conditions using one or more ECG leads. Our minimal-lead
approach may be beneficial for novel portable or wearable ECG devices used as screening tools, as it
can also detect multiple and concurrent cardiac conditions.

1. Introduction

The clinical importance of cardiac diseases, commonly linked with population ageing, is rising along with their
incidence and prevalence (Chow et al 2012), and as a consequence is becoming the foremost cause of death
worldwide (Gaziano etal 2010, Virani et al 2021). In this sense, the 12-lead ECG is the primary technique in
cardiac diagnosis (Kligfield 2002), being a cheap and widely available screening tool. However, it requires
experienced clinicians to interpret ECG recordings, being this process a time-consuming task subject to inter-
observer variability (Bickerton and Pooler 2019).

In order to help in this task, some previous works have addressed the problem of automatic ECG
abnormalities detection in different ways. Early approaches were mainly based on time-frequency analysis and
features (Alexakis et al 2003, Chazal et al 2004, Christov et al 2006, Mahmoud et al 2006, Kostka and Tkacz 2007),
or wavelet and Fourier signal transforms (Martinez et al 2004, Mahmoodabadi et al 2005, Minami et al 1999,
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Yang and Shen 2013, Aqil et al 2015). Next, fuzzylogic and machine learning techniques were tested in order to
detect heart diseases (Vafaie eral 2014, Chen et al 2018). A comparison of machine learning methods for the
classification of five different cardiovascular abnormalities can be found in Hagan et al (2021), where support
vector machines, artificial neural networks, and ensembles of decision trees were tested. In Zheng et al (2020a), a
Gradient Boosting Tree classifier achieved the best classification performance among four different cardiac
rhythms using 12-leads ECG registers. In recent years, deep learning, mostly based on convolutional neural
networks (CNN)), is also gaining importance in classification tasks of ECG segments and has been used to detect
Atrial Fibrillation in a single lead (Xiong et al 2018, Rahimeh et al 2021, Krasteva et al 2021), or to improve the
annotating performance of P-QRS-T waves through a recurrent CNN model (Sodmann et al 2018). Other works
aim to detect as many as nine cardiac conditions in large ECG datasets, mostly using CNNs (Jo etal 2021, Yang
etal2021, Huaetal 2021, Dai et al 2021, Zhang et al 2021). Besides this, recent works have reported results for the
detection of 24-27 cardiac abnormalities in databases containing a maximum of 66 361 samples, using 12 leads
and different deep learning frameworks (Zhaowei et al 2021, Giovanni et al 2021, Zhao et al 2022).

On the other hand, wearable devices are gaining great interest for the early detection of cardiac diseases in
both research and clinical settings due to their potential for massive screening and monitoring of cardiac
conditions in a wide variety of scenarios (Kumari et al 2017). Furthermore, these devices usually capture the ECG
with areduced number ofleads. In fact, the ECG signal obtained from devices such as smartwatches that pick up
the ECG from the differential potential of right and left hands/wrists, is equivalent to lead L.

Nevertheless, accurate diagnosis of cardiac diseases using a single or reduced number of leads in an
automatic way is still challenging (Dunn et al 2018, Georgiou et al 2018). Despite the aforementioned
advantages, a main drawback of systems with a reduced number of leads is the loss of morphologic features and
patterns only visible in specific leads. For example, the characteristic atrial f-wave described during atrial
fibrillation is mainly visible in lead V1, whereas it is barely appreciable in the lead I (Cheng et al 2013). Therefore,
exploiting the information of the atrial signal is not likely to provide good discrimination from reduced lead
systems where V1 is missing. Another example worth mentioning is the typical ST-segment elevation caused by
transmural ischemia, although this is only visible in leads picked up by electrodes placed in the direction toward
the ST vector of the affected region points (Deshpande and Birnbaum 2014). Thus, this feature is, in practice,
exclusive of precordial leads. Another important diagnostic feature that could be missed in reduced lead systems
that exclude precordial leads (i.e. using only limb leads) is the T-wave inversion caused by a variety of cardiac
syndromes (Said et al 2015).

Despite these limitations, smart devices with reduced lead sets can still be useful as massive screening tools.
The main challenge in the diagnostic with these devices is to find an appropriate balance between sensitivity (in
order not to miss important cardiac problems) and specificity (to avoid unnecessarily collapsing health centers).
Hence, accurate algorithms suitable for mobile or wearable devices able to detect cardiac conditions in ECG
registers are highly desirable.

In this work, we aim to develop and validate a robust methodology able to identify a wide variety of cardiac
conditions from five different ECG leads combinations (12, 6, 4, 3, and 2-leads) plus the single lead ‘T’ scenario.
This aim wants to address the clinical need for novel wearables technologies with limited electrocardiographic
information in which multiple cardiac conditions can be identified automatically. We also aim to evaluate the
classification performance of our solution with short ECG segments, as it is likely to be obtained with smart
devices.

2. Materials

To validate the performance of the proposed approach, our experiments were conducted and examined in the
context of the PhysioNet/Computing in Cardiology Challenge 2021 (Perez Alday et al 2020, Reyna et al 2021),
where seven databases with a total of 131 149 ECG traces were used. We used the 88 253 12-lead ECG recordings
provided as public training set also containing the age and gender of the patient for each record. On the other
hand, the challenge organizers assessed online the performance of the classification models with hidden
validation and test databases, composed of 6 630 and 36 266 ECG recordings, respectively. Raw data have seven
different sources, as shown in table 1. The first source is the China Physiological Signal Challenge 2018 database
(CPSC) (Liu etal 2018). The second source is the St. Petersburg Institute of Cardiological Technics database
(INCART) (Tihonenko et al 2008). The third source is the Physikalisch-Technische Bundesanstalt database
(PTB) (Bousseljot et al 1995, Wagner et al 2020). The fourth source is the Georgia 12-lead ECG Challenge
database (G12EC). The fifth database comes from an undisclosed American institution. The sixth source is the
Chapman University, Shaoxing People’s Hospital (Chapman-Shaoxing) (Zheng et al 2020a) and Ningbo First
Hospital (Ningbo) (Zheng et al 2020b) databases (CHAP-SHX).

And finally, the seventh source is the UMich Database from the University of Michigan.
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Table 1. The number of ECG recordings in the public training database, as well as in the official hidden validation and test databases used in

the PhysioNet/Computer in Cardiology Challenge (2021).

Recordings in official public

Recordings in official hidden

Recordings in official hidden

Database training set validation set test set Total recordings
CPSC 10 330 1463 1463 13 256
INCART 74 — — 74

PTB 22 353 — — 22 353
GI12EC 10 344 5167 5161 20672
Undisclosed — — 10 000 10 000
CHAP-SHX 45152 — — 45152
UMich — — 19 642 19 642
Total 88 253 6630 36 266 131 149

Table 2. Cardiac conditions to be detected (plus Normal Sinus Rhythm), abbreviation and number of samples in the public training dataset.

Cardiac conditions to be detected (classes) Abbreviation Number of samples for training
Atrial fibrillation AF 5255
Atrial flutter AFL 8374
Bundle branch block BBB 522
Bradycardia Brady 295
Complete left bundle branch block|left bundle branch Block CLBBBJ|LBBB 213|1,281
Complete right bundle branch block|right bundle branch Block CRBBB|RBBB 1779|3051
1st degree AV block IAVB 3534
Incomplete right bundle branch block IRBBB 1857
Left axis deviation LAD 7631
Left anterior fascicular block LAnFB 2186
Prolonged PR interval LPR 392
Low QRS voltages LQRSV 1599
Prolonged QT interval LQT 1907
Nonspecific intraventricular conduction disorder NSIVCB 1768
Normal sinus rhythm NSR 28971
Premature atrial contraction|supraventricular premature beats PACI|SVPB 3041|224
Pacing rhythm PR 1481
Poor R-wave progression PRWP 638
Premature ventricular contractions|ventricular premature beats PVC|VPB 1279|659
Q-wave abnormal QAb 2076
Right axis deviation RAD 1280
Sinus arrhythmia SA 3790
Sinus bradycardia SB 18918
Sinus tachycardia STach 9657
T-wave abnormal TAb 11716
T-wave inversion TInv 3989

Public training recordings used in this work came from five of the mentioned databases: CPSC, INCART,
PTB, G12EC and CHAP-SHX. Deeper explanations of the databases (sampling frequency, samples lasting, etc)

can be found in Perez Alday et al (2020), Reyna et al (2021).

Table 2 shows the cardiac conditions to be detected and the number of samples labelled with such labels in
the public training dataset. In this dataset, one ECG-record could be labelled with more than one class, and some
classes contain two cardiac diseases since they scored as the same diagnosis.

Werelabeled the next four classes in the dataset: LBBB as CLBBB, RBBB as CRBBB, SVPB as PAC and finally
VPB as PVC. This way, we reduced the number of classes to be detected from 30 to 26. The main reason to do this
is that each relabelled class shares the main rhythm and features with its final label and also scored as the same
diagnosis in the context of the PhysioNet/Computer in Cardiology Challenge 2021 (Reyna et al 2021).

On the other hand, 6 287 ECG records that did not belong to any of the 26 classes to be detected were
removed from the training dataset since no binary classifier in this work might take them as positive samples.

In addition to the official leads sets of the PhysioNet/Computing in Cardiology Challenge 2021 (12, 6,4, 3 and
2-leads), we also report the results using only lead I. We consider this important in order to assess the suitability
of our automatic classification methods for ECG signals in devices that record only lead I. Table 3 shows the
number and sets of ECG leads evaluated in this work, used to train and validate the classification models.
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Table 3. Number and sets of ECG leads used
to train and validate our classification

models.

#Leads Leads Sets

12 L IL III,aVR,aVL,aVF, V1-V6
6 L IL III,aVR, aVL, aVF

4 LILIIL, V2

3 LI, V2

2 LII

1 1

3. Methods

In this section, we describe the methodology proposed to identify 25 ECG abnormalities plus the Normal Sinus
Rhythm, summing up a total of 26 different classes to be detected, using the different combinations of ECG leads
shown in table 3.

We first introduce the models’ validation scheme and scoring rules applied. Next, we present noise
reduction, signal processing and feature extraction. Subsequently, feature selection for dimensionality reduction
is described. Then, we present training and validation processes for the proposed binary classification models
setups. To conclude, we describe the One-versus-Rest classification approach used in order to provide a multi-
class classification system intended to detect the distinct 26 cardiac categories previously mentioned.

The framework where we performed all these steps was MATLAB (R2021a, The MathWorks); the developed
code, used both to train and validate the models, is available at https: / /github.com/sjimenezupv/itaca_upv.
cinc2021.special_issue. On the other hand, the hardware used during this work was a computer with an Intel(R)
Core(TM) i9-10900K CPU @ 3.70 GHz processor, 64 GB of RAM memory, an SSD drive with 1 TB of available
memory and an NVIDIA GeForce RTX 3080 GPU CUDA capable. This computer had Windows 10 Pro (64 bits)
as the operating system installed. In this work, we will present our computational costs in terms of time used
during the main three processes (feature extraction, and models training and testing) plus the performance of
our system in terms of samples processed per second.

3.1. Validation scheme

We used 3-fold cross-validation with the available 88 253 training samples since the number of samples in the
database was large enough and the training time could become unnecessarily high for a larger number of folds.
Moreover, we selected the samples for each fold with no bias among all the distinct databases available, thus
having the same number of samples coming from each database in each fold. This way, for each cross-validation
fold, we used 58 835 (66.6%) samples for training and 29 418 (33.3%) for offline testing in order to assess the
performance of the classification models, using the combinations of 12, 6, 4, 3,2 and also 1 lead.

On the other hand, we report the results in the official test and validation datasets (also named online test and
validation datasets) containing 36 266 and 6 630 12-lead ECG recordings, respectively. These results were
provided by the challenge organizers using the official combinations of 12, 6, 4, 3 and 2 leads, not including any
single-lead result like ours in the cross-validation. These online datasets should not be confused with the training
dataset used during the offline cross-validation. The official validation and test datasets were unavailable to train
nor validate any classification model in this work and were used only to report our models’ scoring metrics
described next.

3.2.Scoring

In this work, we report the PhysioNet/Computing in Cardiology Challenge 2021 scoring rule described in Reyna
etal (2021). This scoring rule, named Challenge Metric (CM), uses a collection C = [cj] as alist of positive or
negative diagnoses, computing a multi-class confusion matrix A = [a;;], where a;; is the number of recordings
that were classified as belonging to class ¢; but actually belong to class c;. Then, amatrix W = [w;;] weighted the
confusion matrix based on the similarity of treatments or differences in risks. This way, an unnormalized score S
is obtained using the next expression

S = ZW,']'*CL,']'. (1)
ij

The score S is then normalized in order to give a value of 1 for a classifier that always outputs the true class or
classes and a value of O for an inactive classifier that always outputs negative predictions for each class. This
normalization gives as a result the final CM score value, achieved using the following ratio
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CM = S — Sinactive , (2)

Strue - Sinactive
where S;,qive 1S the score for the inactive classifier and Sy, is the ground-truth classifier score. This CM score
could also give negative values if the ratio of false positives is high, thus showing a lower score than a classifier
that returns only negative labels.

On the other hand, we also report the geometric mean among sensitivity and specificity both for each
individual binary classifier and the global mean =+ standard deviation for each lead combination. This score,
named here G-metric, was used in order to select the binary classifiers with the best performance during the
training and validation in our experimentation and corresponded to the next expression

G= \/ Sensitivity 4 Specificity . 3)

We also report the Area Under the ROC Curve (AUROC) and F-measure values despite the fact that we did
not use them to validate nor select any hyper-parameter or binary model during the training stage.

3.3. Signal preprocessing

The duration of the signals in the dataset was heterogeneous, with a mean lasting from 10 to 1800 s, whereas their
sampling frequency was mostly 500 Hz (Perez Alday et al 2020, Reyna et al 2021, Zheng et al 2020a, 2020b). The
signal preprocessing described below was applied to all the recordings regardless of their duration.

First, all ECG signals were resampled to 500 Hz if necessary, using the resample Matlab R2021a function, in
order to homogenize the sampling frequency to the most common value in the employed database.

Next, we applied a Butterworth band-pass filter between 0.5 and 40 Hz, thus removing baseline wander
artifacts and high-frequency noise such as powerline interference. Following this, we removed the first and last
second of each signal in order to leave out the filtering stabilization stage.

Then, we removed aberrant signal artifacts mainly caused by sudden patients’ movements, which appeared
as abrupt changes in the signal level. To detect them, we used a 0.5 s sliding window and calculated their
maximum and minimum values. If the difference among these values in neighboring windows exceeded a
certain threshold, we considered them anomalous, and the signal segment within this window was set to zero.

Finally, we removed the signal segments beyond the first 15 s if they were available. Hence, we used short
ECG segments and avoided big differences in the lasting time of the dataset samples, as previously done in
Xiaoyu etal (2021), Wickramasinghe and Athif (2021), Aublin et al (2021).

3.4. Feature extraction

We automatically extracted 81 signal features from each of the available 12 ECG-leads in the training set, plus the
age and sex from the recordings metadata, getting a total of 974 feature values from each sample. These extracted
features were derived from the ventricular activity and mostly based on heart rhythm variability, QRS and
T-waves patterns, plus the lower part of the spectral domain, being previously used in Zheng et al (2020a),
Jiménez-Serrano et al (2017, 2021). Whereas part of the variables extracted were dependent of the heart rhythm
variability, and this should give similar metrics for all ECG leads, they were extracted independently for each
ECG channel. This allowed to take into account differences in heart rhythm detection for each ECG lead, as well
as to maintain the structure of the rest of the lead-dependent variables.

To accomplish this task, firstly, for each lead, we extracted the RR sequence using a QRS detector based on
the Pan and Tompkins algorithm and the first derivative of the ECG (Pan and Tompkins 1985). Then we filtered
the outliers from the RR sequence using the mean =+ three standard deviations as thresholds and obtained the
first and second derivatives of that sequence, named here RRdI and RRd2. Moreover, we created a T-wave
detector using a 300 ms window and an offset of 100 ms from the R-waves previously identified, getting the index
of the maximum absolute value in this window as the location of the T-wave. With this information, we obtained
the QT interval and other related features.

Next, we got both the QRS and T wave patterns for each lead using a =100 ms window over all the QRS and T
wave detections.

On the other hand, we got Welch’s power spectral density estimation for each lead in order to obtain some
frequency-based features.

Using the above QRS and T waves marks, RR sequences, wave patterns and spectral information, we grouped
in ten different categories the 81 signal features extracted from each lead detailed in table 4. The performance of
both QRS and T-wave detectors is closely related to the final classification performance since 72 out of these 81
features depend on such marks.




10P Publishing

Physiol. Meas. 43 (2022) 064003 S Jiménez-Serrano et al

Table 4. Detail of the ten feature categories extracted from each ECG lead, the number of features in each category, and the features
description. Furthermore, age and sex were obtained from the recordings metadata.

Number of
Feature categories features Features description
1—Waves voltages 4 Basic statistics over the R and T waves voltages (mean, standard deviation)
2—QT time 2 Basic statistics over the QT interval in milliseconds (mean, standard deviation)
3—QTc-time 3 Mean QT corrected duration with the formulas of Bazett (1920), Fridericia (1920) and
Framingham (Sagie eral 1992)
4—QRSand T Pattern 25 Features based on the QRS and T patterns: Percentage of the amplitude of T wave respect
the R wave, the sign of the R and T waves (positive or negatives), percentage of waves dis-
cards and RMSE during the R and T pattern definition, and maximum values for first and
second derivatives of both patterns
We also split the patterns into three parts: before the absolute maximum value, after the
absolute maximum value and before the absolute minimum value, and after the minimum
value. For each part, we got the maximum and minimum derivative values. Furthermore,
we got a value indicating if the absolute maximum or minimum value was dominant in
each pattern
5—RR stats 9 Basic statistics over the RR, RRdI and RRd2 sequences selecting only those stats that pre-
sented significant differences among positive and negative samples: mean (RR, RRd1),
standard deviation (RR, RRd1, RRd2), kurtosis (RR, RRd1, RRd2) and skewness (RR)
6—RRd1 based 4 Features based on the RRd1 sequence: RMSSD, pNN25, pNN50, pNN75, where pNNxx
(Mietus et al 2002) denotes the percentage of intervals between normal beats exceeding 25,
50 and 75 ms
7—Poincaré’s plot 7 Poincaré plot-based features using sequence RRdI: Maximum, minimum, mean, standard
deviation, kurtosis and skewness of the distances among all the points plus the absolute
difference between the maximum and minimum distance values
8—Lorenz’s plot 8 Lorenz plot-based features using sequence RRd2: Angular variability, dispersion of the dis-
tance between points to the origin, and differences between 2 and 3 consecutive beats
9—Spectral features 17 Dominant frequency ( fdom) using the Welch spectral density estimation method; spectral
concentration (SC) in fdom= 0.5 Hz in the periodogram normalized in the range [0, 1] and
the sum of the normalized periodogram in steps of 2 Hz in the range [0, 28] Hz
10—Other features 2 Lempel-Ziv complexity of the RR time series after binarization using the median as thresh-
old and Shannon entropy of the RR sequence
Total features/lead 81

3.5. Dataset preprocessing
First, for each feature in the training fold, outliers exceeding three times the standard deviation above or below
the median were replaced by these same limits. Next, if some sample contained a NaN value, due to a feature
extraction error or the impossibility of obtaining such value, it was replaced by the median in the dataset for such
feature. According to the previous two rules, 1.24% of the values were outliers, and 0.31% NaN values, been
replaced for their corresponding limit or median value.

Lastly, for each training fold during the cross-validation, we performed a z-score in order to rescale the
dataset, saving the mean (1) and standard deviation (0) of each feature by means of the following expression

==K (4)
o
where x denotes the original feature value, and z is the rescaled one. During the validation stage of our cross-
validation, we used the saved p and o values in order to rescale in the same way the input feature values. Also, in
the validation stage, we replaced the possible NaN values with the median values of the training fold since the
binary classification models cannot deal with NaN values. Outlier values in validation were not replaced.

3.6. Feature selection

We applied a feature selection process using both supervised and unsupervised statistical filtering methods. To
do this, we used as input the features corresponding to the available leads (see table 3). In addition, age and sex
always were selected in order to avoid an empty set of features. Next, we performed a two-sample Student’s t-test
with an alpha value of 0.05 for each feature, taking into account if the sample belongs or not to the specified class,
and all the features that did not pass the significance test were removed.

Student’s t-test on large datasets are very sensitive to differences between measures and allow to identify
variables with potential predictive value. This approach had the limitation of including many variables with
correlated information. Therefore, for each possible pair of the remaining features, we removed one of them if
their Pearson’s correlation coefficient was greater or equal to 0.95.
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Figure 1. Summary diagram for the supervised classifier training (SCT) process.

3.7.Binary classification strategy

In this work, for each cardiac condition to be detected (table 2), a set of binary classifiers were trained and
validated to finally select the one with the best performance. The selected model was included in the final multi-
classification system, described in section 3.8, in order to give the corresponding label for a given class.

We differentiate two different types of binary classifiers trained and validated during this stage: supervised
classifiers (SC) and hybrid classifiers (HC). The first ones are classic supervised models trained and validated
with the whole training dataset. The last proposed hybrid model mixes an unsupervised k-means algorithm with
the previous SC approach. Once all the binary classification models for a given class were validated, we selected
the one that presented the higher G score.

A feature selection was performed for each of the distinct 26 ECG categories previously to the training of
each binary classifier. Thus, each binary classifier presented next had associated a subset of features specifically
selected for its own training and validation process.

The next sections detail the training processes for the binary SC and HC models, plus the selection process of
the binary model (SC or HC) with better performance for each cardiac condition.

3.7.1. Supervised classifiers training (SCT)

The training for a given supervised binary classifier is depicted in figure 1. There, we use as input the dataset X
and the ground truth labels vector y, for a given class. Next, we performed the feature selection getting the subset
of features X'.

Lastly, we performed a training and validation process for distinct types of classification models: feed
forward neural networks (FFNN) and Naive Bayes (NB), in our setup; then, we selected the one with the higher
G score. As aresult, we get a binary classification function f that uses 6 as the model parameters obtained during
the training process and the X’ selected features as inputs needed.

Regarding the Naive Bayes model, we used X’ in order to train a binary classifier for each class using the
fitenb Matlab R2021a function. By default, this function models the predictor distribution within each class
using a Gaussian distribution having some mean and standard deviation; and the prior class probability
distribution as the relative frequency distribution of the classes in the data set. In this sense, the prior class
probability distribution did not modify the results for this model, so finally, we used the default setup containing
prior probabilities.

On the other hand, we trained two different FFNNs, both with an architecture of one hidden layer and using
tansig as activation function: the first one made of 18 units and the last one with 32 units in the hidden layer.
Furthermore, the output layer used mapminmax as activation function mapping the output in the range [—1, 1].
Apart from this, all the FFNN were trained with the default objects and parameters in the Matlab R2021a Deep
Learning Toolbox, using trainscg (Scaled Conjugate Gradient) as the training function; the useGPU flag was
switched on in order to use the available Graphics Processing Units to speed up the training, and the
showResources flag was switched off.

Using asinput X', 75% of training data was used to train the FFNNs. With the resting 25%, we selected for
each FFNN the output threshold in the range [—1, 1] that maximized the G metric score using steps of 0.005 in
that range. This threshold was used as the cut-off point to classify the samples as positives or negatives. This way,
we dealt with the problem of imbalanced classes in the dataset where the ratio of positive samples always was
lower than negatives for each cardiac condition.

Finally, among the three SC trained during the SCT process (one NB plus two different FFNN), we chose the
one that presented a higher G score value, named here Ggcr-

3.7.2. Hybrid classifiers training (HCT)

The Hybrid binary classification approach is depicted in figure 2. First, we perform a feature selection from the
input dataset X and the ground truth labels for a given class y, in order to get the subset of features X’. Then, the
core of our proposal is based on an unsupervised machine learning technique (k-means) that clusters in three
different groups the input training set X’ in order to get three different cluster centroids that we named Cj, 5,3},
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Figure 2. Summary diagram for the hybrid classifier training (HCT) process.

and three subsets of samples associated to each centroid named X' 5 3;. Finally, for each subset of samples in
X'(1,2,3}> we performed the SCT process described previously in order to get an SC with the best classification
performance possible for each data cluster. Finally, as the output of the HCT process, we saved the selected
feature indexes X'(} , 3}, the cluster centroids Cyj 3 3), and the SC binary classifiers corresponding to each cluster,
named here f , 3

Thus, for classifying a new unseen sample x, we first remove the unselected features from the tuple of values
giving as results the new tuple x'; then we get the euclidean distance from this sample to each of the three cluster
centroids in Cjy,,3) and choose the cluster that minimizes this distance; finally, we use the SCmodelin f , 5,
associated to such cluster in order to give the binary response, i.e. use the NB or FFNN trained previously only
with the data belonging to this cluster. This classification process is expressed as follows, where . is the label
predicted by our hybrid system

Ji = fie,y &Dlex = argmin (distance(Cy1,2,3, x7). (5)

We chose the arbitrary value of k = 3 in order to obtain a compromise between training time and accuracy.
Regarding the training time, it has to be noted that k multiplies the total number (#) of SC models to be trained
and evaluated during the HCT proposed approach following the next formula

HCT (#SC Trained Models) = k . #classes. (6)

The accuracy of the supervised binary classifiers associated with each cluster also depends on the number of
input samples provided during the training process. Since some classes had a lower rate of positive samples, a k
value greater than 3 resulted in clusters with few positive samples available as inputs, being 3 the optimal value
tested.

Once the number of clusters was selected, we used as k-means training parameters 200 iterations as
maximum and 10 different replicates in order to try to achieve the maximum separation among clusters and
their corresponding centroids.

On the other hand, to assess the accuracy of the model, we took into account the G metric of each supervised
classifier associated with one cluster, weighted to the number of samples in such cluster with the next expression

3
Grer = 3 G( f,-)*(ﬂ), )
i=1 n
where G(f,) and n; denote the G value and the number of samples of the classifier belonging to cluster i, and n is
the total number of samples in the training fold. Thereby, large clusters had greater importance in the Gycr
score of the model, while the reverse is true for small clusters. Furthermore, if some cluster had less than 40
samples, or less than 40 positive samples, we did not train nor validate the corresponding f; SC, givinga G(f,)
value of zero to this cluster since we cannot assess a correct binary classification with this data.

3.7.3. Model selection

Once we trained and validated both the SC and the HC classification models approaches, we selected only one
binary classifier in order to be used in the whole multi-classification system. To do so, we chose the one with the
highest G value, following the next expression

Classifier; = Classifier (argmax(Gscr, Grer)), (8

where Gscr and Gycr are the G score values corresponding to the selected binary models during the SCT and
our proposed HCT hybrid approach.

3.8. One-versus-rest classification approach

Once we selected the best trained and validated binary classifier for each of the 26 cardiac categories to be
detected, we built a final multi-classification system depicted in figure 3. This approach is also known as a One-
versus-Rest classification model, where the samples of the dataset are labelled as positive or negative using each
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Figure 3. Summary diagram of the One-versus-Rest classification approach.

binary classifier for each known class. Thus, the whole One-versus-Rest classification model will give a binary
response indicating if an unseen sample belongs or not to each of the 26 classes previously used during the
training process. Furthermore, as detailed previously, each binary classifier uses the selected set of features that
best fits its own classification problem. Consequently, each binary model solves an independent classification
problem in the whole classification system, being possible to assign a new sample to none, one or more than one
class. This is especially useful in this work since some samples could not belong to any cardiac category
previously trained, or, on the contrary, belong to more than one cardiac condition.

Finally, we made an exception during the training of the right axis deviation (RAD) class, where we always
used an NB binary classifier. The main reason for this was that the SCT and HCT classification approaches gave
uslower and inconsistent G scores among distinct validation folds using both FENN or the hybrid binary
classifier for RAD. On the other hand, NB presented a consistent and higher G score for RAD during the
validation process, not overfitting the input dataset.

4, Results

4.1. Computational costs

Each of the three folds used during the cross-validation contained ~58 800 samples for training and ~29 400
samples for testing. With this sampling size as context, we timed three main processes of our experimentation
set: signal processing and feature extraction, model training (feature selection included), and model testing (time
taken in classifying samples unseen by the models).

The time needed to perform the signal processing and feature extraction for the 12-lead ECG records was
566.79 £ 24.955(9.45 + 0.42 min), giving us a performance of 103.74 + 4.16 samples per second using the
hardware described previously.

Next, we measured the time needed to perform the training, validation and selection of the corresponding
One-versus-Rest multi-classifiers for each leads set combination. Finally, we performed the same operation for
timing the testing of the unseen samples by the models. Figure 4 shows the trend of the computational time
needed for both processes being the training process the more time consuming, whereas the testing process
presents a linear behavior with a small slope with respect to the leads number.

Finally, figure 5 shows the performance during the training and testing of the models in terms of the number
of samples processed per second. Best performance corresponds to the single-lead classifier, with 21.20 + 0.35
sampless ™' during trainingand 18.02 & 0.18 sampless ' during testing. As expected, lower performance
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Figure 5. Mean performance for each of the ECG multi-classifier models during the 3-fold cross-validation on the public training set,
in terms of the number of samples processed per second.

results take place using the 12-leads ECG classifier, with 4.86 + 0.02 sampless ™' for trainingand 7.46 + 0.07
samples s~ during testing. It has to be noted that each time a sample is tested, the challenge version of the code
must read the sample file from the disk, adding an overhead that does not exist during the training process.

4.2. Feature selection analysis

First, table 5 shows the percentage of features selected from the whole dataset in order to train the binary
classifiers that finally compose the One-versus-Rest multi-classifier models for each leads set combination. The
method employed selected amean of 60 £ 10% of available features (removing the remaining for the
corresponding binary classifier) with no significant differences among the leads combinations used.

Second and last, in order to know the performance and behavior of our feature selection method among the
different ECG-leads, we got the percentage of the selected features for each binary classifier and grouped them by
the lead from which they were obtained; these results are shown in table 6. During the training of the models
using 12-leads, only features extracted from lead V1 presented a slightly bigger selection percentage with a value
0f8.81 + 0.76%. In the case of the models trained with 4 and 3-leads, features extracted from lead V2 presented
alower selection percentage with values 0f24.15 £ 2.28% and 32.01 =+ 2.72% each. Other leads combinations
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Table 5. Percentage (mean
+standard deviation) of the
selected features for each binary
classifier during the 3-fold cross-

validation on the public

training set.

Leads Selected features [%]
12 59.62 + 9.99

6 61.01 £+ 10.73

4 60.24 + 10.15

3 60.35 £ 9.88

2 61.43 £+ 10.89

1 61.62 + 10.48

Table 6. Percentage (mean =+ standard deviation) of the selected features for the binary classifiers used during the 3-fold cross-validation,
grouped by ECG-leads. Age and sex were always selected.

Selected features by lead [%] 12-leads models 6-leads models 4-leads models 3-leads models 2-leads models
I 8.48 £ 0.67 16.55 + 1.25 25.05 + 1.79 33.22 £+ 2.18 48.86 + 2.61
II 8.50 £ 0.57 16.60 £ 0.90 25.15 + 1.68 33.37 £+ 2.33 49.07 + 2.75
III 8.32 £ 0.72 16.25 + 1.34 24.59 + 1.86 — —
aVR 8.57 £+ 0.61 16.74 + 1.03 — — —
aVL 8.69 £+ 0.72 16.96 + 1.20 — — —
aVF 8.30 £+ 0.81 16.20 + 1.44 — — —
V1 8.81 £+ 0.76 — — — —
V2 8.06 = 0.73 — 24.15 + 2.28 32.01 + 2.72 —
V2 7.98 + 0.62 — — — —
V4 8.06 £ 0.50 — — — —
V5 7.86 £+ 0.44 — — — —
Vo 8.01 + 0.42 — — — —

Table 7. Percentage of the distinct types of models
selected for the binary classifiers depending on the leads
combination used for training during the 3-fold cross-
validation on the public training set.

#Leads Hybrid [%] FENN [%] NB [%]

12 38.46 57.69 3.85
6 34.62 55.13 10.26
4 33.33 58.97 7.69
3 30.77 62.82 6.41
2 28.21 64.10 7.69
1 32.05 58.97 8.97

did not present significant differences in the percentages among features corresponding to distinct leads, being
this ratio proportional to the number of leads employed.

In summary, the results presented in tables 5 and 6 show that a mean of 40 &+ 10% of the extracted features
was filtered using our selection method and that the ratio of these features was balanced among the available
leads in each binary classification model.

4.3. Model selection analysis
Percentages of the distinct types of models selected for the binary classifiers depending on the leads
combinations used for training are shown in table 7. More than 50% of the time, an FFNN model was selected,
whereas, in a range between 28% and 38% of the time, our proposed HC improved the performance during the
validation process, and thus, was selected as the final binary classifier for a given cardiac condition. Lastly, NB
was selected less than 11% of the time, mainly where the other models did not perform well.

Moreover, we detail the percentage of the distinct type of models selected for each binary classifier in table 8.
For ten cardiac conditions, only FFNN was selected, whereas, in the other categories, a mix of models was
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Table 8. Percentage of the distinct type of models selected for
each binary classifier during the 3-fold cross-validation on the
public training set with all the ECG-lead combinations.

Class Hybrid [%] FENN [%)] NB [%]
AF — 100 —
AFL — 100 —
BBB 55.56 — 44.44
Brady — 88.89 11.11
CLBBB|LBBB 83.33 — 16.67
CRBBB‘RBBB — 100 —
IAVB 33.33 66.67 —
IRBBB 94.44 5.56 —
LAD 50.00 50.00 —
LAnFB 11.11 88.89 —
LPR 11.11 72.22 16.67
LQRSV 83.33 16.67 —
LQT 100 — —
NSIVCB 33.33 66.67 —
NSR 66.67 33.33 —
PAC|SVPB — 100 —
PR 94.44 5.56 —
PRWP 94.44 — 5.56
PVC|VPB — 100 —
QAb 44.44 55.56 —
RAD — — 100
SA — 100 —
SB — 100 —
STach — 100 —
TADb — 100 —
TInv — 100 —

Table 9. Challenge scores metric (CM ) for our final multi-lead classification models using 3-fold cross-validation on the public training set,
one-time scoring on the official and hidden validation set, and one-time scoring on each official and hidden test sets as well as on the entire
official hidden test set. The competition organizers did not evaluate the single lead configuration.

Training set (cross- Validation CPSC test GI12EC test Undisclosed test UMich test Entire test
#Leads validation) (CM) set (CM) set (CM) set (CM) set (CM) set (CM) set (CM)
12 0.435 + 0.009 0.440 0.301 0.465 0.284 0.418 0.388
6 0.402 £ 0.003 0.431 0.281 0.457 0.262 0.410 0.376
4 0.421 £ 0.001 0.435 0.279 0.457 0.286 0.418 0.387
3 0.420 + 0.004 0.432 0.278 0.457 0.282 0.415 0.384
2 0.414 £ 0.005 0.428 0.268 0.459 0.252 0.407 0.373
1 0.388 + 0.005 — — — — — —

selected depending on the fold and the number of ECG-leads used for training. NB was used 100% of the time
only once in RAD since we used a rule to do so defined previously.

4.4. Model scoring analysis
Best results using the CM in the entire official hidden test set had a value of 0.388 using 12 leads. However, the
lower score obtained in the same entire test sethad a CM value of 0.373 using only two leads, with a slight
difference 0f 0.015 with respect to the first one. On the other hand, using the 3-fold cross-validation in the public
training set, we gota CM value 0f0.435 £ 0.009 using 12 leads and 0.388 =+ 0.005 using a single lead.
Nonetheless, the differences of the 6, 4, 3 and 2 leads configuration were also lower comparing their CM values
with the 12 leads combination, being 0.033 the maximum. Table 9 shows the whole results set using the CM
score during our cross-validation and in the different hidden test datasets. The AUROC mean values in the test
dataset were 0.86 in CPSC, 0.81 in G12EC, 0.84 in the undisclosed database and 0.82 in the UMich test set, with
no significant differences among the distinct lead combinations.

Table 10 shows the mean and standard deviation of different performance metrics in the classification of the
26 scored classes in the challenge during the cross-validation in the public training set, where a higher G value of
0.80 was achieved using 12 leads, followed by a G value of 0.79 using both 4 and 3 leads, and 0.78 using both 6
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Table 10. Mean=standard deviation of other performance metrics among the classification of the 26 scored
classes for our final selected multi-lead classification models using 3-fold cross-validation on the public training
set: Area Under the ROC Curve, F-measure, Sensitivity, Specificity and G metric.

#Leads AUROC F-measure Sensitivity Specificity G

12 0.817 £ 0.008 0.286 =+ 0.001 0.817 + 0.003 0.795 £ 0.007 0.804 £ 0.004

6 0.811 £ 0.017 0.261 =+ 0.002 0.784 £ 0.005 0.779 =+ 0.005 0.777 £ 0.001

4 0.828 £+ 0.014 0.270 =+ 0.002 0.800 =+ 0.005 0.787 =+ 0.002 0.788 =+ 0.002

3 0.837 £ 0.009 0.269 =+ 0.002 0.801 + 0.002 0.784 + 0.004 0.786 + 0.002

2 0.823 £ 0.011 0.262 £ 0.004 0.787 £ 0.004 0.779 + 0.004 0.775 £ 0.002

1 0.784 + 0.007 0.240 =+ 0.001 0.751 £ 0.006 0.757 £ 0.006 0.744 =+ 0.005
Table 11. G metric values for the single binary classifiers, using 3-fold cross-validation on the public training set.
Class G (12-leads) G (6-leads) G (4-leads) G (3-leads) G (2-leads) G (1-leads)
AF 0.86 £ 0.00 0.87 £ 0.01 0.86 £ 0.00 0.87 £ 0.00 0.87 £ 0.01 0.87 £ 0.00
AFL 0.87 £ 0.01 0.86 £ 0.01 0.87 £ 0.00 0.86 £ 0.00 0.85 £ 0.01 0.84 £ 0.00
BBB 0.76 £ 0.01 0.73 £+ 0.04 0.75 £ 0.03 0.72 £ 0.00 0.72 £ 0.02 0.68 £ 0.01
Brady 0.75 £ 0.04 0.73 £+ 0.03 0.78 £+ 0.01 0.78 £ 0.02 0.79 £ 0.05 0.73 £+ 0.03
CLBBBJ|LBBB 0.91 £ 0.01 0.90 £ 0.00 0.90 £ 0.01 0.89 £ 0.01 0.88 £ 0.01 0.87 £ 0.02
CRBBB|RBBB 0.91 £ 0.01 0.85 £ 0.00 0.88 £ 0.01 0.88 £ 0.01 0.86 £ 0.01 0.85 £ 0.00
IAVB 0.75 £ 0.03 0.78 £ 0.01 0.76 £ 0.00 0.77 £ 0.01 0.78 £ 0.00 0.75 £ 0.00
IRBBB 0.80 £ 0.01 0.69 £ 0.01 0.75 £ 0.01 0.75 £ 0.01 0.68 £ 0.01 0.66 £ 0.01
LAD 0.87 £ 0.00 0.86 £ 0.00 0.83 £ 0.02 0.83 £ 0.00 0.83 £ 0.00 0.66 £ 0.00
LAnFB 0.90 £ 0.01 0.91 £ 0.00 0.90 £ 0.00 0.90 £ 0.00 0.91 £ 0.01 0.66 £ 0.02
LPR 0.66 £ 0.03 0.66 + 0.02 0.71 £ 0.02 0.70 £ 0.00 0.69 £ 0.02 0.69 + 0.03
LQRSV 0.79 £ 0.01 0.76 £ 0.00 0.76 £ 0.01 0.78 £ 0.01 0.77 £ 0.01 0.70 £ 0.01
LQT 0.76 £ 0.01 0.74 £+ 0.02 0.75 £+ 0.03 0.76 £ 0.00 0.74 £ 0.00 0.73 £ 0.01
NSIVCB 0.69 £ 0.01 0.66 £ 0.01 0.68 £ 0.00 0.69 £ 0.00 0.69 £ 0.00 0.68 £ 0.01
NSR 0.80 £ 0.01 0.79 £ 0.00 0.79 £ 0.01 0.79 £ 0.01 0.80 £ 0.00 0.79 £ 0.01
PAC|SVPB 0.80 £ 0.01 0.80 £ 0.00 0.79 £ 0.01 0.79 £ 0.01 0.80 £ 0.00 0.78 £ 0.00
PR 0.89 £ 0.01 0.86 £ 0.00 0.88 £ 0.02 0.88 £ 0.00 0.87 £+ 0.01 0.84 £ 0.00
PRWP 0.77 £ 0.03 0.61 £ 0.04 0.74 £ 0.00 0.76 £ 0.01 0.67 £ 0.00 0.64 £ 0.00
PVC|VPB 0.80 £ 0.03 0.78 £ 0.00 0.79 £ 0.01 0.79 £+ 0.02 0.78 £ 0.02 0.76 £ 0.01
QADb 0.69 £ 0.01 0.68 £ 0.01 0.68 £ 0.01 0.69 £ 0.01 0.63 £ 0.02 0.63 £ 0.01
RAD 0.66 £ 0.01 0.56 £ 0.00 0.46 £ 0.01 0.44 £ 0.02 0.39 £ 0.02 0.30 £ 0.02
SA 0.84 £ 0.01 0.83 £ 0.01 0.84 £ 0.00 0.85 £ 0.00 0.84 £ 0.01 0.86 £ 0.01
SB 0.93 £ 0.00 0.93 4 0.00 0.93 £ 0.00 0.93 £ 0.00 0.93 £ 0.00 0.93 £ 0.00
STach 0.94 £ 0.00 0.94 £ 0.00 0.93 £ 0.00 0.93 £ 0.00 0.93 £ 0.00 0.94 £ 0.00
TADb 0.75 £ 0.00 0.72 £ 0.00 0.72 £ 0.00 0.72 £+ 0.01 0.72 £ 0.00 0.69 £ 0.00
TInv 0.76 £ 0.00 0.72 4+ 0.01 0.74 £ 0.00 0.72 4+ 0.01 0.72 £ 0.01 0.70 £ 0.01

and 2 leads. The single lead classification model got a G score of 0.74 with a balanced ratio among sensitivity and
specificity of 0.75 and 0.76.
In table 11, we show the results achieved for the individual binary classifiers during the cross-validation in
the public training set, where the next ten different cardiac conditions had G scores equal to or greater than 0.85
in some lead combinations: AF, AFL, CLBBB|LBBB, CRBBB|RBBB, LAD, LAnFB, PR, SA, SB and STach.
Finally, figure 6 shows the boxplots of the G score values for each of the cardiac conditions during the cross-
validation in the public training set, using the values obtained with all the leads combinations. There, we observe
that AF, AFL, CLBBB|LBBB, PR, SB and STach present G score values higher than 0.85 in all the leads
combinations with no significant differences among them.

5. Discussion

As expected, the best performance was achieved with 12 leads, which suggests that the standard 12-lead system
should not be replaced by reduced lead systems in clinical practice. However, performance decrease using fewer
leads was low, according to the reported results of CM and G scores. These results show a great potential of
reduced lead sets out of the clinical environment, e.g. intended for massive screenings and monitoring for early
detection. It should also be mentioned that classification using four and three leads outperformed the ones using
six leads. Although at a first glance this seems surprising, these results can be well explained by the fact that,
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Figure 6. Boxplot of the G metric values for each single binary classifier, using the values obtained with all the lead combinations
during the 3-fold cross-validation on the public training set.

among the limb leads that contained the 6-lead subset, only two of them are independent; indeed, the 6-lead
limb system is recorded using only three electrodes. On the other hand, the 3- and 4-lead subsets add the
precordial lead V2, which is independent of the limb leads and hence, adds clinically valuable information.
According to this, performance using the 6-lead subset should be contrasted with the 2-lead subset for a more
fair comparison. In fact, models with 2 leads had the closest scoring results to the ones obtained with 6 leads (we
got CM values 0f0.373 and 0.376 in the hidden test set, and mean G values 0of 0.775 and 0.777 during the 3-fold
cross-validation in the public training set, both using 2 and 6 leads, respectively). These results also suggest that
more important than increasing the number of leads is to include leads that contain complementary
information.

5.1. Results with one lead and suitability for smart devices

Focusing on the outcomes using only lead I, during the cross-validation, we got mean CM and G values of 0.39
and 0.74 each using a single lead, whereas using the whole 12-leads set, the same scores were 0.43 and 0.80,
respectively. Besides the fact that the performance decreased, these results are of high interest, as this allows the
ECG recording and automated diagnosis in a number of daily situations where the standard 12-lead would not
be possible (e.g. using a wearable or smartwatch, handling a smartphone or when driving with a smart steering
wheel, just to mention a few). Furthermore, it should be highlighted that, for some cardiac conditions,
classification performance using only lead I equaled or even improved classification with 12 leads. Specifically, G
values for single binary classifiers during the 3-fold cross-validation in the training set were: 0.86 with 12-leads,
0.87 with one lead for AF; 0.75 with 12-leads, 0.75 with one lead for IAVB; 0.66 with 12-leads, 0.69 with one lead
for LPR; 0.84 with 12-leads, 0.86 with one lead for SA; 0.93 with 12-leads, 0.93 with one lead for SB; and 0.94
with 12-]leads, 0.94 with one lead for STach. Most of these single binary classification results even improve using
the 2-leads classification model.

However, this work also shows that some cardiac conditions need information from precordial leads to be
better detected, such as BBB, LAD, LAnFB, LQRSV, PRWP and RAD, where the 12 leads configuration
outperformed clearly with respect to other configurations. This suggests that this approach should be used
cautiously when intended to detect cardiac conditions with low performance in our results.

Despite the benefits of automated ECG monitoring with wearables and smart devices, there are still some
inaccuracies in the diagnosis. Therefore, special care should be taken when presenting the result to the userina
non-clinical scenario. On the one hand, false negatives could lead to a false sense of security. On the other hand,
false positives could trigger an unnecessary visit to the doctor that, when handled massively, could lead absurdly
to the collapse of health centers. Future optimization of these classifiers, e.g. by adding more disease-specific
features and/or clinical rules, could prevent these inconveniences.

From a computational point of view, the average classification time with one lead halved the average
classification time with 12 leads in the testing stage. Therefore, smart devices such as wearables would also
benefit from lower computational costs and battery consumption.
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5.2. Improvements of the work reported in computing in cardiology 2021

An initial version of this work was previously done and reported in the Computing in Cardiology 2021 congress in
the context of the Physionet Challenge (Jiménez-Serrano et al 2021). However, the current work presents
important changes thatlead us to improvements in the performance of all the scoring metrics. Regarding the
CM score, in Jiménez-Serrano et al (2021) we got values 0f 0.34, 0.34,0.27, 0.30 and 0.34 using the combinations
of 12, 6,4, 3 and 2 leads in the official hidden test set; whereas in this work, we improved the same scores with
values 0f0.39, 0.38,0.39, 0.38 and 0.37, respectively. The same happened with the G score during the 3-fold
cross-validation in the public training set, obtaining in Jiménez-Serrano et al (2021) values 0of 0.76, 0.74, 0.69,
0.69,0.74 and 0.71 using combinations of 12, 6,4, 3, 2 and 1 lead, whereas this work improved the previous ones
with values 0f0.80, 0.78,0.79, 0.79, 0.78 and 0.74, respectively. The changes we made to achieve these
improvements with respect to the previous work in Jiménez-Serrano et al (2021) are as follows:

After the signal filtering stage, we used only 15 s of ECG recording, as other participants did (Xiaoyu et al
2021; Wickramasinghel and Athif 2021, Aublin et al 2021), improving the processing time and avoiding some
unwanted collateral effects of long records. The main problem in this sense is that a long recording scores the
same as a short one, and in the database used, short recordings are the majority. Another problem that we found
with long recordings was that the probability of founding more cardiac conditions increases, but the fixed
labelling of the records could be wrong in different parts of the records, e.g. paroxysmal atrial fibrillation could
appear and disappear in the same long ECG recording. Thus, splitting the signal into different parts with the
same labelling or using along sliding window during the feature extraction could become a no sense operation
for training the classifiers.

This way, the authors think that the automatic classification of short ECG recordings no longer than 30's
have to be addressed in a different way than the classification of longer ECG recordings, as well as the labelling of
each segment of signal for long recordings. Furthermore, since one of the aims of this work is to achieve
classification models suitable for smart devices and able to deal with short ECG registers, this work assesses our
classification scores in recordings lasting no more than 15 s. Moreover, one more difference from Jiménez-
Serrano et al (2021) is that in this work, we no longer used features useful for long ECG recordings, such as stats
over long signals applying a sliding window. Thus, in total, we removed 46 previous features of this type. On the
other hand, we added more specific QRS and T pattern features that improved our classification scoring.

Next, we added data preprocessing in order to use only 26 classes mixing the cardiac conditions that
weighted the same, and also, we avoided using samples that did not belong to any of the 26 cardiac categories for
training. We also changed the threshold value in the second stage of the feature selection respect (Jiménez-
Serrano etal 2021), from 0.90 to 0.95 in the correlation coefficient among two different features, slightly
improving the validation results.

Finally, we added a mixed approach using supervised and unsupervised machine learning techniques, where
each binary classifier could be made of an FFNN, NB, or HC, whereas in Jiménez-Serrano et al (2021), we only
used FFNN as binary classifiers. The proposed hybrid classification system is based on an unsupervised k-means
algorithm, where 3 cluster centroids are looked for, and an FFNN or NB is associated with each of them.
Moreover, a model selection system for these binary classifiers was created for the training process.

To conclude the description of changes that we made regarding (Jiménez-Serrano et al 2021), we fixed some
minor bugs and inaccuracies, releasing the latest version of the code in https://github.com /sjimenezupv/itaca_
upv.cinc2021.special_issue. As a result, we improved all the classification scores with respect to the
previous work.

5.3. Comparison with other works

As far as the authors’ knowledge, other works were proposed in order to address this multi-leads classification
problem with the same database during the Computing in Cardiology 2021, mostly based on deep learning. As
observed in the comparative table in Reyna et al (2021), other competitors in the Challenge obtained
substantially superior scores than those presented in this manuscript. These works presented different
approaches to those used here.

In Xiaoyu et al (2021), amodel based on SE-ResNet was built incorporating peak detection as a self-
supervised auxiliary task. The CM scores were 0.55, 0.58, 0.58,0.57 and 0.57 using the combinations of 12, 6, 4, 3
and 2 leads in the official hidden test set.

In Wickramasinghe and Athif (2021), two separated deep CNNs were trained using ECG segments of 20 s
and their Fast Fourier Transform. The CM scores were 0.55, 0.51, 0.56, 0.55 and 0.56 using the combinations of
12,6, 4, 3 and 2 leads in the official hidden test set.

In Aublin et al (2021), a voting system was designed, where ECG segments of 10 s feed a large deep CNN for
each available lead. The CM scores were 0.48, 0.47,0.47, 0.47 and 0.46 using the combinations of 12, 6,4, 3 and 2
leads in the official hidden test set.
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The mentioned works had promising results, but none of them evaluated the performance in a single lead
with the challenge database as we did. Furthermore, our set of extracted features could be evaluated in an easy
way by expert physicians in order to understand our models’ results. Finally, we also highlight that our system
was designed in a modular way, allowing future upgrades (or even downgrades), such as adding new classes,
features and classification models to the training and validation system in an easy and clean way.

6. Conclusion

We presented and evaluated a methodology for multiple cardiac disease detection through ECG registers that
combines feature extraction and selection, and a One-versus-Rest classification approach using FFNN, NB and a
novel Hybrid approach as binary classifiers. Interestingly, after a systematic analysis, the classification results
using only one or two leads were not far from the results with twelve leads, showing lower computational costs
and being more suitable for wearables. Furthermore, for some individual cardiac conditions, using one or two
ECG leads showed equal or better score values than the others leads setups. Improving the identification of some
cardiac rhythms by incorporating more specific features or clinical rules for those cases where the performance
was low should be an interesting direction to explore in future works.
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