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Abstract
Objective. Detecting different cardiac diseases using a single or reduced number of leads is still
challenging. This work aims to provide and validate an automatedmethod able to classify ECG
recordings. Performance using complete 12-lead systems, reduced lead sets, and single-lead ECGs is
evaluated and compared.Approach. Seven different databases with 12-lead ECGswere provided
during the PhysioNet/Computing in Cardiology Challenge 2021, where 88 253 annotated samples
associatedwith none, one, or several cardiac conditions among 26 different classes were released for
training, whereas 42 896 hidden samples were used for testing. After signal preprocessing, 81 features
per ECG-leadwere extracted,mainly based on heart rate variability, QRSTpatterns and spectral
domain.Next, aOne-versus-Rest classification approachmade of independent binary classifiers for
each cardiac conditionwas trained. This strategy allowed each ECG to be classified as belonging to
none, one or several classes. For each class, a classificationmodel among two binary supervised
classifiers and one hybrid unsupervised-supervised classification systemwas selected. Finally, we
performed a 3-fold cross-validation to assess the system’s performance.Main results. Our classifiers
received scores of 0.39, 0.38, 0.39, 0.38, and 0.37 for the 12, 6, 4, 3 and 2-lead versions of the hidden
test set with theChallenge evaluationmetric (CM ). Also, we obtained ameanG-score of 0.80, 0.78,
0.79, 0.79, 0.77 and 0.74 for the 12, 6, 4, 3, 2 and 1-lead subsets with the public training set during our
3-fold cross-validation. Significance.We proposed and tested amachine learning approach focused on
flexibility for identifyingmultiple cardiac conditions using one ormore ECG leads.Ourminimal-lead
approachmay be beneficial for novel portable orwearable ECGdevices used as screening tools, as it
can also detectmultiple and concurrent cardiac conditions.

1. Introduction

The clinical importance of cardiac diseases, commonly linkedwith population ageing, is rising alongwith their
incidence and prevalence (Chow et al 2012), and as a consequence is becoming the foremost cause of death
worldwide (Gaziano et al 2010, Virani et al 2021). In this sense, the 12-lead ECG is the primary technique in
cardiac diagnosis (Kligfield 2002), being a cheap andwidely available screening tool. However, it requires
experienced clinicians to interpret ECG recordings, being this process a time-consuming task subject to inter-
observer variability (Bickerton and Pooler 2019).

In order to help in this task, some previous works have addressed the problemof automatic ECG
abnormalities detection in different ways. Early approaches weremainly based on time-frequency analysis and
features (Alexakis et al 2003, Chazal et al 2004, Christov et al 2006,Mahmoud et al 2006, Kostka andTkacz 2007),
or wavelet and Fourier signal transforms (Martínez et al 2004,Mahmoodabadi et al 2005,Minami et al 1999,
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Yang and Shen 2013, Aqil et al 2015). Next, fuzzy logic andmachine learning techniques were tested in order to
detect heart diseases (Vafaie et al 2014, Chen et al 2018). A comparison ofmachine learningmethods for the
classification of five different cardiovascular abnormalities can be found inHagan et al (2021), where support
vectormachines, artificial neural networks, and ensembles of decision trees were tested. In Zheng et al (2020a), a
Gradient Boosting Tree classifier achieved the best classification performance among four different cardiac
rhythms using 12-leads ECG registers. In recent years, deep learning,mostly based on convolutional neural
networks (CNN), is also gaining importance in classification tasks of ECG segments and has been used to detect
Atrial Fibrillation in a single lead (Xiong et al 2018, Rahimeh et al 2021, Krasteva et al 2021), or to improve the
annotating performance of P-QRS-Twaves through a recurrent CNNmodel (Sodmann et al 2018). Other works
aim to detect asmany as nine cardiac conditions in large ECGdatasets,mostly usingCNNs (Jo et al 2021, Yang
et al 2021,Hua et al 2021, Dai et al 2021, Zhang et al 2021). Besides this, recent works have reported results for the
detection of 24–27 cardiac abnormalities in databases containing amaximumof 66 361 samples, using 12 leads
and different deep learning frameworks (Zhaowei et al 2021, Giovanni et al 2021, Zhao et al 2022).

On the other hand, wearable devices are gaining great interest for the early detection of cardiac diseases in
both research and clinical settings due to their potential formassive screening andmonitoring of cardiac
conditions in awide variety of scenarios (Kumari et al 2017). Furthermore, these devices usually capture the ECG
with a reduced number of leads. In fact, the ECG signal obtained fromdevices such as smartwatches that pick up
the ECG from the differential potential of right and left hands/wrists, is equivalent to lead I.

Nevertheless, accurate diagnosis of cardiac diseases using a single or reduced number of leads in an
automatic way is still challenging (Dunn et al 2018, Georgiou et al 2018). Despite the aforementioned
advantages, amain drawback of systemswith a reduced number of leads is the loss ofmorphologic features and
patterns only visible in specific leads. For example, the characteristic atrial f-wave described during atrial
fibrillation ismainly visible in leadV1, whereas it is barely appreciable in the lead I (Cheng et al 2013). Therefore,
exploiting the information of the atrial signal is not likely to provide good discrimination from reduced lead
systemswhereV1 ismissing. Another exampleworthmentioning is the typical ST-segment elevation caused by
transmural ischemia, although this is only visible in leads picked up by electrodes placed in the direction toward
the ST vector of the affected region points (Deshpande andBirnbaum2014). Thus, this feature is, in practice,
exclusive of precordial leads. Another important diagnostic feature that could bemissed in reduced lead systems
that exclude precordial leads (i.e. using only limb leads) is the T-wave inversion caused by a variety of cardiac
syndromes (Said et al 2015).

Despite these limitations, smart devices with reduced lead sets can still be useful asmassive screening tools.
Themain challenge in the diagnostic with these devices is tofind an appropriate balance between sensitivity (in
order not tomiss important cardiac problems) and specificity (to avoid unnecessarily collapsing health centers).
Hence, accurate algorithms suitable formobile orwearable devices able to detect cardiac conditions in ECG
registers are highly desirable.

In this work, we aim to develop and validate a robustmethodology able to identify a wide variety of cardiac
conditions from five different ECG leads combinations (12, 6, 4, 3, and 2-leads) plus the single lead ‘I’ scenario.
This aimwants to address the clinical need for novel wearables technologies with limited electrocardiographic
information inwhichmultiple cardiac conditions can be identified automatically.We also aim to evaluate the
classification performance of our solutionwith short ECG segments, as it is likely to be obtainedwith smart
devices.

2.Materials

To validate the performance of the proposed approach, our experiments were conducted and examined in the
context of the PhysioNet/Computing inCardiology Challenge 2021 (Perez Alday et al 2020, Reyna et al 2021),
where seven databases with a total of 131 149 ECG traces were used.We used the 88 253 12-lead ECG recordings
provided as public training set also containing the age and gender of the patient for each record. On the other
hand, the challenge organizers assessed online the performance of the classificationmodels with hidden
validation and test databases, composed of 6 630 and 36 266 ECG recordings, respectively. Rawdata have seven
different sources, as shown in table 1. Thefirst source is the China Physiological Signal Challenge 2018 database
(CPSC) (Liu et al 2018). The second source is the St. Petersburg Institute of Cardiological Technics database
(INCART) (Tihonenko et al 2008). The third source is the Physikalisch-Technische Bundesanstalt database
(PTB) (Bousseljot et al 1995,Wagner et al 2020). The fourth source is theGeorgia 12-lead ECGChallenge
database (G12EC). Thefifth database comes from anundisclosed American institution. The sixth source is the
ChapmanUniversity, Shaoxing People’sHospital (Chapman-Shaoxing) (Zheng et al 2020a) andNingbo First
Hospital (Ningbo) (Zheng et al 2020b) databases (CHAP-SHX).

And finally, the seventh source is theUMichDatabase from theUniversity ofMichigan.
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Public training recordings used in this work came from five of thementioned databases: CPSC, INCART,
PTB,G12EC andCHAP-SHX.Deeper explanations of the databases (sampling frequency, samples lasting, etc)
can be found in Perez Alday et al (2020), Reyna et al (2021).

Table 2 shows the cardiac conditions to be detected and the number of samples labelledwith such labels in
the public training dataset. In this dataset, one ECG-record could be labelledwithmore than one class, and some
classes contain two cardiac diseases since they scored as the same diagnosis.

We relabeled the next four classes in the dataset: LBBB as CLBBB, RBBB asCRBBB, SVPB as PAC and finally
VPB as PVC. Thisway, we reduced the number of classes to be detected from30 to 26. Themain reason to do this
is that each relabelled class shares themain rhythmand features with itsfinal label and also scored as the same
diagnosis in the context of the PhysioNet/Computer in Cardiology Challenge 2021 (Reyna et al 2021).

On the other hand, 6 287 ECG records that did not belong to any of the 26 classes to be detectedwere
removed from the training dataset since no binary classifier in this workmight take them as positive samples.

In addition to the official leads sets of the PhysioNet/Computing inCardiology Challenge 2021 (12, 6, 4, 3 and
2-leads), we also report the results using only lead I.We consider this important in order to assess the suitability
of our automatic classificationmethods for ECG signals in devices that record only lead I. Table 3 shows the
number and sets of ECG leads evaluated in this work, used to train and validate the classificationmodels.

Table 1.The number of ECG recordings in the public training database, as well as in the official hidden validation and test databases used in
thePhysioNet/Computer in Cardiology Challenge (2021).

Database

Recordings in official public

training set

Recordings in official hidden

validation set

Recordings in official hidden

test set Total recordings

CPSC 10 330 1463 1463 13 256

INCART 74 — — 74

PTB 22 353 — — 22 353

G12EC 10 344 5167 5161 20 672

Undisclosed — — 10 000 10 000

CHAP-SHX 45 152 — — 45 152

UMich — — 19 642 19 642

Total 88 253 6630 36 266 131 149

Table 2.Cardiac conditions to be detected (plusNormal Sinus Rhythm), abbreviation and number of samples in the public training dataset.

Cardiac conditions to be detected (classes) Abbreviation Number of samples for training

Atrialfibrillation AF 5255

Atrialflutter AFL 8374

Bundle branch block BBB 522

Bradycardia Brady 295

Complete left bundle branch block|left bundle branch Block CLBBB|LBBB 213|1,281
Complete right bundle branch block|right bundle branch Block CRBBB|RBBB 1779|3051
1st degree AVblock IAVB 3534

Incomplete right bundle branch block IRBBB 1857

Left axis deviation LAD 7631

Left anterior fascicular block LAnFB 2186

Prolonged PR interval LPR 392

LowQRS voltages LQRSV 1599

ProlongedQT interval LQT 1907

Nonspecific intraventricular conduction disorder NSIVCB 1768

Normal sinus rhythm NSR 28 971

Premature atrial contraction|supraventricular premature beats PAC|SVPB 3041|224
Pacing rhythm PR 1481

Poor R-wave progression PRWP 638

Premature ventricular contractions|ventricular premature beats PVC|VPB 1279|659
Q-wave abnormal QAb 2076

Right axis deviation RAD 1280

Sinus arrhythmia SA 3790

Sinus bradycardia SB 18 918

Sinus tachycardia STach 9657

T-wave abnormal TAb 11 716

T-wave inversion TInv 3989
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3.Methods

In this section, we describe themethodology proposed to identify 25 ECG abnormalities plus theNormal Sinus
Rhythm, summing up a total of 26 different classes to be detected, using the different combinations of ECG leads
shown in table 3.

Wefirst introduce themodels’ validation scheme and scoring rules applied. Next, we present noise
reduction, signal processing and feature extraction. Subsequently, feature selection for dimensionality reduction
is described. Then, we present training and validation processes for the proposed binary classificationmodels
setups. To conclude, we describe theOne-versus-Rest classification approach used in order to provide amulti-
class classification system intended to detect the distinct 26 cardiac categories previouslymentioned.

The frameworkwherewe performed all these steps wasMATLAB (R2021a, TheMathWorks); the developed
code, used both to train and validate themodels, is available at https://github.com/sjimenezupv/itaca_upv.
cinc2021.special_issue.On the other hand, the hardware used during this workwas a computer with an Intel(R)
Core(TM) i9-10900KCPU@3.70GHzprocessor, 64GBof RAMmemory, an SSD drivewith 1TB of available
memory and anNVIDIAGeForce RTX 3080GPUCUDA capable. This computer hadWindows 10 Pro (64 bits)
as the operating system installed. In this work, wewill present our computational costs in terms of time used
during themain three processes (feature extraction, andmodels training and testing) plus the performance of
our system in terms of samples processed per second.

3.1. Validation scheme
Weused 3-fold cross-validationwith the available 88 253 training samples since the number of samples in the
databasewas large enough and the training time could become unnecessarily high for a larger number of folds.
Moreover, we selected the samples for each foldwith no bias among all the distinct databases available, thus
having the same number of samples coming from each database in each fold. This way, for each cross-validation
fold, we used 58 835 (66.6%) samples for training and 29 418 (33.3%) for offline testing in order to assess the
performance of the classificationmodels, using the combinations of 12, 6, 4, 3, 2 and also 1 lead.

On the other hand, we report the results in the official test and validation datasets (also named online test and
validation datasets) containing 36 266 and 6 630 12-lead ECG recordings, respectively. These results were
provided by the challenge organizers using the official combinations of 12, 6, 4, 3 and 2 leads, not including any
single-lead result like ours in the cross-validation. These online datasets should not be confusedwith the training
dataset used during the offline cross-validation. The official validation and test datasets were unavailable to train
nor validate any classificationmodel in this work andwere used only to report ourmodels’ scoringmetrics
described next.

3.2. Scoring
In this work, we report the PhysioNet/Computing in Cardiology Challenge 2021 scoring rule described in Reyna
et al (2021). This scoring rule, namedChallengeMetric (CM ), uses a collection C cj[ ]= as a list of positive or
negative diagnoses, computing amulti-class confusionmatrix A a ,ij[ ]= where aij is the number of recordings
thatwere classified as belonging to class ci but actually belong to class c .j Then, amatrixW wij[ ]= weighted the
confusionmatrix based on the similarity of treatments or differences in risks. This way, an unnormalized score S
is obtained using the next expression

S w a . 1
ij

ij ij ( )å= *

The score S is then normalized in order to give a value of 1 for a classifier that always outputs the true class or
classes and a value of 0 for an inactive classifier that always outputs negative predictions for each class. This
normalization gives as a result thefinal CM score value, achieved using the following ratio

Table 3.Number and sets of ECG leads used
to train and validate our classification
models.

#Leads Leads Sets

12 I, II, III, aVR, aVL, aVF,V1-V6

6 I, II, III, aVR, aVL, aVF

4 I, II, III, V2

3 I, II, V2

2 I, II

1 I
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CM
S S

S S
, 2inactive

true inactive

( )=
-
-

where Sinactive is the score for the inactive classifier and Strue is the ground-truth classifier score. This CM score
could also give negative values if the ratio of false positives is high, thus showing a lower score than a classifier
that returns only negative labels.

On the other hand, we also report the geometricmean among sensitivity and specificity both for each
individual binary classifier and the globalmean±standard deviation for each lead combination. This score,
named here G-metric, was used in order to select the binary classifiers with the best performance during the
training and validation in our experimentation and corresponded to the next expression

G Sensitivity Specificity . 3⁎ ( )=

Wealso report the AreaUnder theROCCurve (AUROC) and F-measure values despite the fact that we did
not use them to validate nor select any hyper-parameter or binarymodel during the training stage.

3.3. Signal preprocessing
The duration of the signals in the dataset was heterogeneous, with amean lasting from10 to 1800 s, whereas their
sampling frequencywasmostly 500Hz (Perez Alday et al 2020, Reyna et al 2021, Zheng et al 2020a, 2020b). The
signal preprocessing described belowwas applied to all the recordings regardless of their duration.

First, all ECG signals were resampled to 500Hz if necessary, using the resampleMatlabR2021a function, in
order to homogenize the sampling frequency to themost common value in the employed database.

Next, we applied a Butterworth band-pass filter between 0.5 and 40Hz, thus removing baseline wander
artifacts and high-frequency noise such as powerline interference. Following this, we removed the first and last
second of each signal in order to leave out the filtering stabilization stage.

Then, we removed aberrant signal artifactsmainly caused by sudden patients’movements, which appeared
as abrupt changes in the signal level. To detect them,we used a 0.5 s slidingwindow and calculated their
maximumandminimumvalues. If the difference among these values in neighboringwindows exceeded a
certain threshold, we considered them anomalous, and the signal segment within this windowwas set to zero.

Finally, we removed the signal segments beyond the first 15 s if theywere available. Hence, we used short
ECG segments and avoided big differences in the lasting time of the dataset samples, as previously done in
Xiaoyu et al (2021),Wickramasinghe andAthif (2021), Aublin et al (2021).

3.4. Feature extraction
Weautomatically extracted 81 signal features from each of the available 12 ECG-leads in the training set, plus the
age and sex from the recordingsmetadata, getting a total of 974 feature values from each sample. These extracted
features were derived from the ventricular activity andmostly based on heart rhythm variability, QRS and
T-waves patterns, plus the lower part of the spectral domain, being previously used in Zheng et al (2020a),
Jiménez-Serrano et al (2017, 2021).Whereas part of the variables extractedwere dependent of the heart rhythm
variability, and this should give similarmetrics for all ECG leads, theywere extracted independently for each
ECG channel. This allowed to take into account differences in heart rhythmdetection for each ECG lead, as well
as tomaintain the structure of the rest of the lead-dependent variables.

To accomplish this task,firstly, for each lead, we extracted the RR sequence using aQRS detector based on
the Pan andTompkins algorithm and the first derivative of the ECG (Pan andTompkins 1985). Thenwefiltered
the outliers from theRR sequence using themean±three standard deviations as thresholds and obtained the
first and second derivatives of that sequence, named hereRRd1 andRRd2.Moreover, we created a T-wave
detector using a 300mswindow and an offset of 100ms from the R-waves previously identified, getting the index
of themaximumabsolute value in this window as the location of the T-wave.With this information, we obtained
theQT interval and other related features.

Next, we got both theQRS andTwave patterns for each lead using a±100mswindowover all theQRS andT
wave detections.

On the other hand, we gotWelch’s power spectral density estimation for each lead in order to obtain some
frequency-based features.

Using the aboveQRS andTwavesmarks,RR sequences, wave patterns and spectral information, we grouped
in ten different categories the 81 signal features extracted from each lead detailed in table 4. The performance of
bothQRS andT-wave detectors is closely related to the final classification performance since 72 out of these 81
features depend on suchmarks.
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3.5.Dataset preprocessing
First, for each feature in the training fold, outliers exceeding three times the standard deviation above or below
themedianwere replaced by these same limits. Next, if some sample contained aNaN value, due to a feature
extraction error or the impossibility of obtaining such value, it was replaced by themedian in the dataset for such
feature. According to the previous two rules, 1.24%of the valueswere outliers, and 0.31%NaN values, been
replaced for their corresponding limit ormedian value.

Lastly, for each training fold during the cross-validation, we performed a z-score in order to rescale the
dataset, saving themean (m) and standard deviation (s) of each feature bymeans of the following expression

z
x

, 4( )m
s

=
-

where x denotes the original feature value, and z is the rescaled one. During the validation stage of our cross-
validation, we used the saved m and s values in order to rescale in the sameway the input feature values. Also, in
the validation stage, we replaced the possibleNaN values with themedian values of the training fold since the
binary classificationmodels cannot deal withNaN values. Outlier values in validationwere not replaced.

3.6. Feature selection
Weapplied a feature selection process using both supervised and unsupervised statisticalfilteringmethods. To
do this, we used as input the features corresponding to the available leads (see table 3). In addition, age and sex
alwayswere selected in order to avoid an empty set of features. Next, we performed a two-sample Student’s t-test
with an alpha value of 0.05 for each feature, taking into account if the sample belongs or not to the specified class,
and all the features that did not pass the significance test were removed.

Student’s t-test on large datasets are very sensitive to differences betweenmeasures and allow to identify
variables with potential predictive value. This approach had the limitation of includingmany variables with
correlated information. Therefore, for each possible pair of the remaining features, we removed one of them if
their Pearson’s correlation coefficient was greater or equal to 0.95.

Table 4.Detail of the ten feature categories extracted from each ECG lead, the number of features in each category, and the features
description. Furthermore, age and sexwere obtained from the recordingsmetadata.

Feature categories

Number of

features Features description

1—Waves voltages 4 Basic statistics over the R andTwaves voltages (mean, standard deviation)
2—QT time 2 Basic statistics over theQT interval inmilliseconds (mean, standard deviation)
3—QTc-time 3 MeanQT corrected durationwith the formulas of Bazett (1920), Fridericia (1920) and

Framingham (Sagie et al 1992)
4—QRS andTPattern 25 Features based on theQRS andTpatterns: Percentage of the amplitude of Twave respect

the Rwave, the sign of the R andTwaves (positive or negatives), percentage of waves dis-
cards andRMSEduring the R andTpattern definition, andmaximumvalues for first and

second derivatives of both patterns

We also split the patterns into three parts: before the absolutemaximumvalue, after the

absolutemaximumvalue and before the absoluteminimumvalue, and after theminimum

value. For each part, we got themaximumandminimumderivative values. Furthermore,

we got a value indicating if the absolutemaximumorminimumvaluewas dominant in

each pattern

5—RR stats 9 Basic statistics over theRR,RRd1 andRRd2 sequences selecting only those stats that pre-

sented significant differences among positive and negative samples:mean (RR,RRd1),
standard deviation (RR,RRd1,RRd2), kurtosis (RR,RRd1,RRd2) and skewness (RR)

6—RRd1 based 4 Features based on theRRd1 sequence: RMSSD, pNN25, pNN50, pNN75, where pNNxx

(Mietus et al 2002) denotes the percentage of intervals between normal beats exceeding 25,

50 and 75ms

7—Poincaré’s plot 7 Poincaré plot-based features using sequenceRRd1:Maximum,minimum,mean, standard

deviation, kurtosis and skewness of the distances among all the points plus the absolute

difference between themaximumandminimumdistance values

8—Lorenz’s plot 8 Lorenz plot-based features using sequenceRRd2: Angular variability, dispersion of the dis-

tance between points to the origin, and differences between 2 and 3 consecutive beats

9—Spectral features 17 Dominant frequency ( fdom)using theWelch spectral density estimationmethod; spectral

concentration (SC) in fdom± 0.5Hz in the periodogramnormalized in the range [0, 1] and
the sumof the normalized periodogram in steps of 2Hz in the range [0, 28]Hz

10—Other features 2 Lempel-Ziv complexity of theRR time series after binarization using themedian as thresh-

old and Shannon entropy of theRR sequence

Total features/lead 81
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3.7. Binary classification strategy
In this work, for each cardiac condition to be detected (table 2), a set of binary classifiers were trained and
validated tofinally select the onewith the best performance. The selectedmodel was included in the finalmulti-
classification system, described in section 3.8, in order to give the corresponding label for a given class.

We differentiate two different types of binary classifiers trained and validated during this stage: supervised
classifiers (SC) and hybrid classifiers (HC). Thefirst ones are classic supervisedmodels trained and validated
with thewhole training dataset. The last proposed hybridmodelmixes an unsupervised k-means algorithmwith
the previous SC approach. Once all the binary classificationmodels for a given class were validated, we selected
the one that presented the higher G score.

A feature selectionwas performed for each of the distinct 26 ECG categories previously to the training of
each binary classifier. Thus, each binary classifier presented next had associated a subset of features specifically
selected for its own training and validation process.

The next sections detail the training processes for the binary SC andHCmodels, plus the selection process of
the binarymodel (SC orHC)with better performance for each cardiac condition.

3.7.1. Supervised classifiers training (SCT)
The training for a given supervised binary classifier is depicted infigure 1. There, we use as input the dataset X
and the ground truth labels vector yi for a given class. Next, we performed the feature selection getting the subset
of features X .¢

Lastly, we performed a training and validation process for distinct types of classificationmodels: feed
forward neural networks (FFNN) andNaïve Bayes (NB), in our setup; then, we selected the onewith the higher
G score. As a result, we get a binary classification function f that uses q as themodel parameters obtained during
the training process and the X ¢ selected features as inputs needed.

Regarding theNaïve Bayesmodel, we used X ¢ in order to train a binary classifier for each class using the
fitcnbMatlab R2021a function. By default, this functionmodels the predictor distributionwithin each class
using aGaussian distribution having somemean and standard deviation; and the prior class probability
distribution as the relative frequency distribution of the classes in the data set. In this sense, the prior class
probability distribution did notmodify the results for thismodel, sofinally, we used the default setup containing
prior probabilities.

On the other hand, we trained twodifferent FFNNs, bothwith an architecture of one hidden layer and using
tansig as activation function: the first onemade of 18 units and the last onewith 32 units in the hidden layer.
Furthermore, the output layer usedmapminmax as activation functionmapping the output in the range [−1, 1].
Apart from this, all the FFNNwere trainedwith the default objects and parameters in theMatlab R2021aDeep
Learning Toolbox, using trainscg (Scaled ConjugateGradient) as the training function; the useGPU flagwas
switched on in order to use the availableGraphics ProcessingUnits to speed up the training, and the
showResourcesflagwas switched off.

Using as input X ,¢ 75%of training data was used to train the FFNNs.With the resting 25%,we selected for
each FFNN the output threshold in the range [−1, 1] thatmaximized the G metric score using steps of 0.005 in
that range. This thresholdwas used as the cut-off point to classify the samples as positives or negatives. This way,
we dealt with the problemof imbalanced classes in the dataset where the ratio of positive samples always was
lower than negatives for each cardiac condition.

Finally, among the three SC trained during the SCTprocess (oneNBplus two different FFNN), we chose the
one that presented a higher G score value, named here G .SCT

3.7.2. Hybrid classifiers training (HCT)
TheHybrid binary classification approach is depicted infigure 2. First, we perform a feature selection from the
input dataset X and the ground truth labels for a given class yi in order to get the subset of features X .¢ Then, the
core of our proposal is based on an unsupervisedmachine learning technique (k-means) that clusters in three
different groups the input training set X ¢ in order to get three different cluster centroids that we named C ,1,2,3{ }

Figure 1. Summary diagram for the supervised classifier training (SCT)process.
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and three subsets of samples associated to each centroid named X .1,2,3{ }¢ Finally, for each subset of samples in
X ,1,2,3{ }¢ weperformed the SCTprocess described previously in order to get an SCwith the best classification
performance possible for each data cluster. Finally, as the output of theHCTprocess, we saved the selected
feature indexes X ,1,2,3{ }¢ the cluster centroids C ,1,2,3{ } and the SCbinary classifiers corresponding to each cluster,
named here f .1,2,3{ }

Thus, for classifying a newunseen sample x,we first remove the unselected features from the tuple of values
giving as results the new tuple x ;¢ thenwe get the euclidean distance from this sample to each of the three cluster
centroids in C 1,2,3{ } and choose the cluster thatminimizes this distance;finally, we use the SCmodel in f 1,2,3{ }
associated to such cluster in order to give the binary response, i.e. use theNBor FFNN trained previously only
with the data belonging to this cluster. This classification process is expressed as follows, where yî is the label
predicted by our hybrid system

y f x c argmin distance C x, . 5i c x 1,2,3x
ˆ ( )∣ ( ( )) ( ){ } { }= ¢ = ¢¢¢

Wechose the arbitrary value of k 3= in order to obtain a compromise between training time and accuracy.
Regarding the training time, it has to be noted that k multiplies the total number (#) of SCmodels to be trained
and evaluated during theHCTproposed approach following the next formula

HCT SC Trained Models k classes. 6( ) ⁎ ( )# = #

The accuracy of the supervised binary classifiers associatedwith each cluster also depends on the number of
input samples provided during the training process. Since some classes had a lower rate of positive samples, a k
value greater than 3 resulted in clusters with few positive samples available as inputs, being 3 the optimal value
tested.

Once the number of clusters was selected, we used as k-means training parameters 200 iterations as
maximumand 10 different replicates in order to try to achieve themaximum separation among clusters and
their corresponding centroids.

On the other hand, to assess the accuracy of themodel, we took into account the G metric of each supervised
classifier associatedwith one cluster, weighted to the number of samples in such cluster with the next expression

⎛
⎝

⎞
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G G f
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n
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*

where G fi( ) and ni denote the G value and the number of samples of the classifier belonging to cluster i, and n is
the total number of samples in the training fold. Thereby, large clusters had greater importance in the GHCT

score of themodel, while the reverse is true for small clusters. Furthermore, if some cluster had less than 40
samples, or less than 40 positive samples, we did not train nor validate the corresponding fi SC, giving a G fi( )
value of zero to this cluster sincewe cannot assess a correct binary classificationwith this data.

3.7.3.Model selection
Oncewe trained and validated both the SC and theHC classificationmodels approaches, we selected only one
binary classifier in order to be used in thewholemulti-classification system. To do so, we chose the onewith the
highest G value, following the next expression

Classifier Classifier argmax G G, , 8i SCT HCT( ( )) ( )=

where GSCT and GHCT are the G score values corresponding to the selected binarymodels during the SCT and
our proposedHCThybrid approach.

3.8.One-versus-rest classification approach
Oncewe selected the best trained and validated binary classifier for each of the 26 cardiac categories to be
detected, we built afinalmulti-classification systemdepicted infigure 3. This approach is also known as aOne-
versus-Rest classificationmodel, where the samples of the dataset are labelled as positive or negative using each

Figure 2. Summary diagram for the hybrid classifier training (HCT) process.
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binary classifier for each known class. Thus, thewholeOne-versus-Rest classificationmodel will give a binary
response indicating if an unseen sample belongs or not to each of the 26 classes previously used during the
training process. Furthermore, as detailed previously, each binary classifier uses the selected set of features that
bestfits its own classification problem. Consequently, each binarymodel solves an independent classification
problem in thewhole classification system, being possible to assign a new sample to none, one ormore than one
class. This is especially useful in this work since some samples could not belong to any cardiac category
previously trained, or, on the contrary, belong tomore than one cardiac condition.

Finally, wemade an exception during the training of the right axis deviation (RAD) class, wherewe always
used anNBbinary classifier. Themain reason for this was that the SCT andHCT classification approaches gave
us lower and inconsistent G scores among distinct validation folds using both FFNNor the hybrid binary
classifier for RAD.On the other hand,NBpresented a consistent and higher G score for RADduring the
validation process, not overfitting the input dataset.

4. Results

4.1. Computational costs
Each of the three folds used during the cross-validation contained∼58 800 samples for training and∼29 400
samples for testing.With this sampling size as context, we timed threemain processes of our experimentation
set: signal processing and feature extraction,model training (feature selection included), andmodel testing (time
taken in classifying samples unseen by themodels).

The time needed to perform the signal processing and feature extraction for the 12-lead ECG recordswas
566.79±24.95 s (9.45±0.42 min), giving us a performance of 103.74±4.16 samples per second using the
hardware described previously.

Next, wemeasured the time needed to perform the training, validation and selection of the corresponding
One-versus-Restmulti-classifiers for each leads set combination. Finally, we performed the same operation for
timing the testing of the unseen samples by themodels. Figure 4 shows the trend of the computational time
needed for both processes being the training process themore time consuming, whereas the testing process
presents a linear behavior with a small slopewith respect to the leads number.

Finally, figure 5 shows the performance during the training and testing of themodels in terms of the number
of samples processed per second. Best performance corresponds to the single-lead classifier, with 21.20±0.35
samples s−1 during training and 18.02±0.18 samples s−1 during testing. As expected, lower performance

Figure 3. Summary diagramof theOne-versus-Rest classification approach.
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results take place using the 12-leads ECG classifier, with 4.86±0.02 samples s−1 for training and 7.46±0.07
samples s−1 during testing. It has to be noted that each time a sample is tested, the challenge version of the code
must read the sample file from the disk, adding an overhead that does not exist during the training process.

4.2. Feature selection analysis
First, table 5 shows the percentage of features selected from thewhole dataset in order to train the binary
classifiers that finally compose theOne-versus-Restmulti-classifiermodels for each leads set combination. The
method employed selected amean of 60±10%of available features (removing the remaining for the
corresponding binary classifier)with no significant differences among the leads combinations used.

Second and last, in order to know the performance and behavior of our feature selectionmethod among the
different ECG-leads, we got the percentage of the selected features for each binary classifier and grouped themby
the lead fromwhich theywere obtained; these results are shown in table 6. During the training of themodels
using 12-leads, only features extracted from leadV1 presented a slightly bigger selection percentagewith a value
of 8.81±0.76%. In the case of themodels trainedwith 4 and 3-leads, features extracted from leadV2 presented
a lower selection percentagewith values of 24.15±2.28% and 32.01±2.72% each.Other leads combinations

Figure 4.Trend ofmean time for training and test of each ECGmulti-classifier during the 3-fold cross-validation on the public
training set.

Figure 5.Mean performance for each of the ECGmulti-classifiermodels during the 3-fold cross-validation on the public training set,
in terms of the number of samples processed per second.
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did not present significant differences in the percentages among features corresponding to distinct leads, being
this ratio proportional to the number of leads employed.

In summary, the results presented in tables 5 and 6 show that amean of 40±10%of the extracted features
wasfiltered using our selectionmethod and that the ratio of these features was balanced among the available
leads in each binary classificationmodel.

4.3.Model selection analysis
Percentages of the distinct types ofmodels selected for the binary classifiers depending on the leads
combinations used for training are shown in table 7.More than 50%of the time, an FFNNmodel was selected,
whereas, in a range between 28%and 38%of the time, our proposedHC improved the performance during the
validation process, and thus, was selected as the final binary classifier for a given cardiac condition. Lastly, NB
was selected less than 11%of the time,mainly where the othermodels did not performwell.

Moreover, we detail the percentage of the distinct type ofmodels selected for each binary classifier in table 8.
For ten cardiac conditions, only FFNNwas selected, whereas, in the other categories, amix ofmodels was

Table 5.Percentage (mean
±standard deviation) of the
selected features for each binary
classifier during the 3-fold cross-
validation on the public
training set.

Leads Selected features [%]

12 59.62±9.99
6 61.01±10.73
4 60.24±10.15
3 60.35±9.88
2 61.43±10.89
1 61.62±10.48

Table 6.Percentage (mean±standard deviation) of the selected features for the binary classifiers used during the 3-fold cross-validation,
grouped by ECG-leads. Age and sexwere always selected.

Selected features by lead [%] 12-leadsmodels 6-leadsmodels 4-leadsmodels 3-leadsmodels 2-leadsmodels

I 8.48±0.67 16.55±1.25 25.05±1.79 33.22±2.18 48.86±2.61
II 8.50±0.57 16.60±0.90 25.15±1.68 33.37±2.33 49.07±2.75
III 8.32±0.72 16.25±1.34 24.59±1.86 — —

aVR 8.57±0.61 16.74±1.03 — — —

aVL 8.69±0.72 16.96±1.20 — — —

aVF 8.30±0.81 16.20±1.44 — — —

V1 8.81±0.76 — — — —

V2 8.06±0.73 — 24.15±2.28 32.01±2.72 —

V2 7.98±0.62 — — — —

V4 8.06±0.50 — — — —

V5 7.86±0.44 — — — —

V6 8.01±0.42 — — — —

Table 7.Percentage of the distinct types ofmodels
selected for the binary classifiers depending on the leads
combination used for training during the 3-fold cross-
validation on the public training set.

#Leads Hybrid [%] FFNN [%] NB [%]

12 38.46 57.69 3.85

6 34.62 55.13 10.26

4 33.33 58.97 7.69

3 30.77 62.82 6.41

2 28.21 64.10 7.69

1 32.05 58.97 8.97
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selected depending on the fold and the number of ECG-leads used for training. NBwas used 100%of the time
only once in RAD sincewe used a rule to do so defined previously.

4.4.Model scoring analysis
Best results using the CM in the entire official hidden test set had a value of 0.388 using 12 leads.However, the
lower score obtained in the same entire test set had a CM value of 0.373 using only two leads, with a slight
difference of 0.015with respect to the first one. On the other hand, using the 3-fold cross-validation in the public
training set, we got a CM value of 0.435±0.009 using 12 leads and 0.388±0.005 using a single lead.
Nonetheless, the differences of the 6, 4, 3 and 2 leads configurationwere also lower comparing their CM values
with the 12 leads combination, being 0.033 themaximum. Table 9 shows thewhole results set using the CM
score during our cross-validation and in the different hidden test datasets. TheAUROCmean values in the test
dataset were 0.86 inCPSC, 0.81 inG12EC, 0.84 in the undisclosed database and 0.82 in theUMich test set, with
no significant differences among the distinct lead combinations.

Table 10 shows themean and standard deviation of different performancemetrics in the classification of the
26 scored classes in the challenge during the cross-validation in the public training set, where a higher G value of
0.80was achieved using 12 leads, followed by a G value of 0.79 using both 4 and 3 leads, and 0.78 using both 6

Table 8.Percentage of the distinct type ofmodels selected for
each binary classifier during the 3-fold cross-validation on the
public training set with all the ECG-lead combinations.

Class Hybrid [%] FFNN [%] NB [%]

AF — 100 —

AFL — 100 —

BBB 55.56 — 44.44

Brady — 88.89 11.11

CLBBB|LBBB 83.33 — 16.67

CRBBB|RBBB — 100 —

IAVB 33.33 66.67 —

IRBBB 94.44 5.56 —

LAD 50.00 50.00 —

LAnFB 11.11 88.89 —

LPR 11.11 72.22 16.67

LQRSV 83.33 16.67 —

LQT 100 — —

NSIVCB 33.33 66.67 —

NSR 66.67 33.33 —

PAC|SVPB — 100 —

PR 94.44 5.56 —

PRWP 94.44 — 5.56

PVC|VPB — 100 —

QAb 44.44 55.56 —

RAD — — 100

SA — 100 —

SB — 100 —

STach — 100 —

TAb — 100 —

TInv — 100 —

Table 9.Challenge scoresmetric (CM ) for our finalmulti-lead classificationmodels using 3-fold cross-validation on the public training set,
one-time scoring on the official and hidden validation set, and one-time scoring on each official and hidden test sets as well as on the entire
official hidden test set. The competition organizers did not evaluate the single lead configuration.

#Leads

Training set (cross-
validation) (CM )

Validation

set (CM )
CPSC test

set (CM )
G12EC test

set (CM )
Undisclosed test

set (CM )
UMich test

set (CM )
Entire test

set (CM )

12 0.435±0.009 0.440 0.301 0.465 0.284 0.418 0.388

6 0.402±0.003 0.431 0.281 0.457 0.262 0.410 0.376

4 0.421±0.001 0.435 0.279 0.457 0.286 0.418 0.387

3 0.420±0.004 0.432 0.278 0.457 0.282 0.415 0.384

2 0.414±0.005 0.428 0.268 0.459 0.252 0.407 0.373

1 0.388±0.005 — — — — — —
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and 2 leads. The single lead classificationmodel got a G score of 0.74with a balanced ratio among sensitivity and
specificity of 0.75 and 0.76.

In table 11, we show the results achieved for the individual binary classifiers during the cross-validation in
the public training set, where the next ten different cardiac conditions had G scores equal to or greater than 0.85
in some lead combinations: AF, AFL, CLBBB|LBBB, CRBBB|RBBB, LAD, LAnFB, PR, SA, SB and STach.

Finally, figure 6 shows the boxplots of the G score values for each of the cardiac conditions during the cross-
validation in the public training set, using the values obtainedwith all the leads combinations. There, we observe
that AF, AFL, CLBBB|LBBB, PR, SB and STach present G score values higher than 0.85 in all the leads
combinationswith no significant differences among them.

5.Discussion

As expected, the best performance was achievedwith 12 leads, which suggests that the standard 12-lead system
should not be replaced by reduced lead systems in clinical practice. However, performance decrease using fewer
leadswas low, according to the reported results of CM and G scores. These results show a great potential of
reduced lead sets out of the clinical environment, e.g. intended formassive screenings andmonitoring for early
detection. It should also bementioned that classification using four and three leads outperformed the ones using
six leads. Although at afirst glance this seems surprising, these results can bewell explained by the fact that,

Table 10.Mean±standard deviation of other performancemetrics among the classification of the 26 scored
classes for ourfinal selectedmulti-lead classificationmodels using 3-fold cross-validation on the public training
set: AreaUnder the ROCCurve, F-measure, Sensitivity, Specificity andGmetric.

#Leads AUROC F-measure Sensitivity Specificity G

12 0.817±0.008 0.286±0.001 0.817±0.003 0.795±0.007 0.804±0.004
6 0.811±0.017 0.261±0.002 0.784±0.005 0.779±0.005 0.777±0.001
4 0.828±0.014 0.270±0.002 0.800±0.005 0.787±0.002 0.788±0.002
3 0.837±0.009 0.269±0.002 0.801±0.002 0.784±0.004 0.786±0.002
2 0.823±0.011 0.262±0.004 0.787±0.004 0.779±0.004 0.775±0.002
1 0.784±0.007 0.240±0.001 0.751±0.006 0.757±0.006 0.744±0.005

Table 11. G metric values for the single binary classifiers, using 3-fold cross-validation on the public training set.

Class G (12-leads) G (6-leads) G (4-leads) G (3-leads) G (2-leads) G (1-leads)

AF 0.86±0.00 0.87±0.01 0.86±0.00 0.87±0.00 0.87±0.01 0.87±0.00
AFL 0.87±0.01 0.86±0.01 0.87±0.00 0.86±0.00 0.85±0.01 0.84±0.00
BBB 0.76±0.01 0.73±0.04 0.75±0.03 0.72±0.00 0.72±0.02 0.68±0.01
Brady 0.75±0.04 0.73±0.03 0.78±0.01 0.78±0.02 0.79±0.05 0.73±0.03
CLBBB|LBBB 0.91±0.01 0.90±0.00 0.90±0.01 0.89±0.01 0.88±0.01 0.87±0.02
CRBBB|RBBB 0.91±0.01 0.85±0.00 0.88±0.01 0.88±0.01 0.86±0.01 0.85±0.00
IAVB 0.75±0.03 0.78±0.01 0.76±0.00 0.77±0.01 0.78±0.00 0.75±0.00
IRBBB 0.80±0.01 0.69±0.01 0.75±0.01 0.75±0.01 0.68±0.01 0.66±0.01
LAD 0.87±0.00 0.86±0.00 0.83±0.02 0.83±0.00 0.83±0.00 0.66±0.00
LAnFB 0.90±0.01 0.91±0.00 0.90±0.00 0.90±0.00 0.91±0.01 0.66±0.02
LPR 0.66±0.03 0.66±0.02 0.71±0.02 0.70±0.00 0.69±0.02 0.69±0.03
LQRSV 0.79±0.01 0.76±0.00 0.76±0.01 0.78±0.01 0.77±0.01 0.70±0.01
LQT 0.76±0.01 0.74±0.02 0.75±0.03 0.76±0.00 0.74±0.00 0.73±0.01
NSIVCB 0.69±0.01 0.66±0.01 0.68±0.00 0.69±0.00 0.69±0.00 0.68±0.01
NSR 0.80±0.01 0.79±0.00 0.79±0.01 0.79±0.01 0.80±0.00 0.79±0.01
PAC|SVPB 0.80±0.01 0.80±0.00 0.79±0.01 0.79±0.01 0.80±0.00 0.78±0.00
PR 0.89±0.01 0.86±0.00 0.88±0.02 0.88±0.00 0.87±0.01 0.84±0.00
PRWP 0.77±0.03 0.61±0.04 0.74±0.00 0.76±0.01 0.67±0.00 0.64±0.00
PVC|VPB 0.80±0.03 0.78±0.00 0.79±0.01 0.79±0.02 0.78±0.02 0.76±0.01
QAb 0.69±0.01 0.68±0.01 0.68±0.01 0.69±0.01 0.63±0.02 0.63±0.01
RAD 0.66±0.01 0.56±0.00 0.46±0.01 0.44±0.02 0.39±0.02 0.30±0.02
SA 0.84±0.01 0.83±0.01 0.84±0.00 0.85±0.00 0.84±0.01 0.86±0.01
SB 0.93±0.00 0.93±0.00 0.93±0.00 0.93±0.00 0.93±0.00 0.93±0.00
STach 0.94±0.00 0.94±0.00 0.93±0.00 0.93±0.00 0.93±0.00 0.94±0.00
TAb 0.75±0.00 0.72±0.00 0.72±0.00 0.72±0.01 0.72±0.00 0.69±0.00
TInv 0.76±0.00 0.72±0.01 0.74±0.00 0.72±0.01 0.72±0.01 0.70±0.01
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among the limb leads that contained the 6-lead subset, only two of them are independent; indeed, the 6-lead
limb system is recorded using only three electrodes. On the other hand, the 3- and 4-lead subsets add the
precordial leadV2,which is independent of the limb leads and hence, adds clinically valuable information.
According to this, performance using the 6-lead subset should be contrastedwith the 2-lead subset for amore
fair comparison. In fact,models with 2 leads had the closest scoring results to the ones obtainedwith 6 leads (we
got CM values of 0.373 and 0.376 in the hidden test set, andmean G values of 0.775 and 0.777 during the 3-fold
cross-validation in the public training set, both using 2 and 6 leads, respectively). These results also suggest that
more important than increasing the number of leads is to include leads that contain complementary
information.

5.1. Results with one lead and suitability for smart devices
Focusing on the outcomes using only lead I, during the cross-validation, we gotmean CM and G values of 0.39
and 0.74 each using a single lead, whereas using thewhole 12-leads set, the same scores were 0.43 and 0.80,
respectively. Besides the fact that the performance decreased, these results are of high interest, as this allows the
ECG recording and automated diagnosis in a number of daily situations where the standard 12-leadwould not
be possible (e.g. using awearable or smartwatch, handling a smartphone orwhen drivingwith a smart steering
wheel, just tomention a few). Furthermore, it should be highlighted that, for some cardiac conditions,
classification performance using only lead I equaled or even improved classificationwith 12 leads. Specifically, G
values for single binary classifiers during the 3-fold cross-validation in the training set were: 0.86with 12-leads,
0.87with one lead for AF; 0.75with 12-leads, 0.75with one lead for IAVB; 0.66with 12-leads, 0.69with one lead
for LPR; 0.84with 12-leads, 0.86with one lead for SA; 0.93with 12-leads, 0.93with one lead for SB; and 0.94
with 12-leads, 0.94with one lead for STach.Most of these single binary classification results even improve using
the 2-leads classificationmodel.

However, this work also shows that some cardiac conditions need information fromprecordial leads to be
better detected, such as BBB, LAD, LAnFB, LQRSV, PRWP andRAD,where the 12 leads configuration
outperformed clearly with respect to other configurations. This suggests that this approach should be used
cautiouslywhen intended to detect cardiac conditions with low performance in our results.

Despite the benefits of automated ECGmonitoringwithwearables and smart devices, there are still some
inaccuracies in the diagnosis. Therefore, special care should be takenwhen presenting the result to the user in a
non-clinical scenario. On the one hand, false negatives could lead to a false sense of security. On the other hand,
false positives could trigger an unnecessary visit to the doctor that, when handledmassively, could lead absurdly
to the collapse of health centers. Future optimization of these classifiers, e.g. by addingmore disease-specific
features and/or clinical rules, could prevent these inconveniences.

From a computational point of view, the average classification timewith one lead halved the average
classification timewith 12 leads in the testing stage. Therefore, smart devices such aswearables would also
benefit from lower computational costs and battery consumption.

Figure 6.Boxplot of the G metric values for each single binary classifier, using the values obtainedwith all the lead combinations
during the 3-fold cross-validation on the public training set.
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5.2. Improvements of thework reported in computing in cardiology 2021
An initial version of this workwas previously done and reported in theComputing in Cardiology 2021 congress in
the context of thePhysionet Challenge (Jiménez-Serrano et al 2021). However, the current work presents
important changes that lead us to improvements in the performance of all the scoringmetrics. Regarding the
CM score, in Jiménez-Serrano et al (2021)we got values of 0.34, 0.34, 0.27, 0.30 and 0.34 using the combinations
of 12, 6, 4, 3 and 2 leads in the official hidden test set; whereas in this work, we improved the same scoreswith
values of 0.39, 0.38, 0.39, 0.38 and 0.37, respectively. The same happenedwith the G score during the 3-fold
cross-validation in the public training set, obtaining in Jiménez-Serrano et al (2021) values of 0.76, 0.74, 0.69,
0.69, 0.74 and 0.71 using combinations of 12, 6, 4, 3, 2 and 1 lead, whereas this work improved the previous ones
with values of 0.80, 0.78, 0.79, 0.79, 0.78 and 0.74, respectively. The changes wemade to achieve these
improvements with respect to the previous work in Jiménez-Serrano et al (2021) are as follows:

After the signal filtering stage, we used only 15 s of ECG recording, as other participants did (Xiaoyu et al
2021;Wickramasinghe1 andAthif 2021, Aublin et al 2021), improving the processing time and avoiding some
unwanted collateral effects of long records. Themain problem in this sense is that a long recording scores the
same as a short one, and in the database used, short recordings are themajority. Another problem that we found
with long recordingswas that the probability of foundingmore cardiac conditions increases, but the fixed
labelling of the records could bewrong in different parts of the records, e.g. paroxysmal atrialfibrillation could
appear and disappear in the same long ECG recording. Thus, splitting the signal into different parts with the
same labelling or using a long slidingwindowduring the feature extraction could become a no sense operation
for training the classifiers.

This way, the authors think that the automatic classification of short ECG recordings no longer than 30 s
have to be addressed in a different way than the classification of longer ECG recordings, as well as the labelling of
each segment of signal for long recordings. Furthermore, since one of the aims of this work is to achieve
classificationmodels suitable for smart devices and able to deal with short ECG registers, this work assesses our
classification scores in recordings lasting nomore than 15 s.Moreover, onemore difference from Jiménez-
Serrano et al (2021) is that in this work, we no longer used features useful for long ECG recordings, such as stats
over long signals applying a slidingwindow. Thus, in total, we removed 46 previous features of this type. On the
other hand, we addedmore specificQRS andT pattern features that improved our classification scoring.

Next, we added data preprocessing in order to use only 26 classesmixing the cardiac conditions that
weighted the same, and also, we avoided using samples that did not belong to any of the 26 cardiac categories for
training.We also changed the threshold value in the second stage of the feature selection respect (Jiménez-
Serrano et al 2021), from0.90 to 0.95 in the correlation coefficient among two different features, slightly
improving the validation results.

Finally, we added amixed approach using supervised and unsupervisedmachine learning techniques, where
each binary classifier could bemade of an FFNN,NB, orHC,whereas in Jiménez-Serrano et al (2021), we only
used FFNNas binary classifiers. The proposed hybrid classification system is based on an unsupervised k-means
algorithm,where 3 cluster centroids are looked for, and an FFNNorNB is associatedwith each of them.
Moreover, amodel selection system for these binary classifiers was created for the training process.

To conclude the description of changes that wemade regarding (Jiménez-Serrano et al 2021), we fixed some
minor bugs and inaccuracies, releasing the latest version of the code in https://github.com/sjimenezupv/itaca_
upv.cinc2021.special_issue. As a result, we improved all the classification scores with respect to the
previouswork.

5.3. Comparisonwith otherworks
As far as the authors’ knowledge, other workswere proposed in order to address thismulti-leads classification
problemwith the same database during theComputing inCardiology 2021, mostly based on deep learning. As
observed in the comparative table in Reyna et al (2021), other competitors in theChallenge obtained
substantially superior scores than those presented in thismanuscript. Theseworks presented different
approaches to those used here.

InXiaoyu et al (2021), amodel based on SE-ResNet was built incorporating peak detection as a self-
supervised auxiliary task. The CM scores were 0.55, 0.58, 0.58, 0.57 and 0.57 using the combinations of 12, 6, 4, 3
and 2 leads in the official hidden test set.

InWickramasinghe andAthif (2021), two separated deepCNNswere trained using ECG segments of 20 s
and their Fast Fourier Transform. The CM scores were 0.55, 0.51, 0.56, 0.55 and 0.56 using the combinations of
12, 6, 4, 3 and 2 leads in the official hidden test set.

In Aublin et al (2021), a voting systemwas designed, where ECG segments of 10 s feed a large deepCNN for
each available lead. The CM scores were 0.48, 0.47, 0.47, 0.47 and 0.46 using the combinations of 12, 6, 4, 3 and 2
leads in the official hidden test set.
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Thementionedworks had promising results, but none of them evaluated the performance in a single lead
with the challenge database aswe did. Furthermore, our set of extracted features could be evaluated in an easy
way by expert physicians in order to understand ourmodels’ results. Finally, we also highlight that our system
was designed in amodular way, allowing future upgrades (or even downgrades), such as adding new classes,
features and classificationmodels to the training and validation system in an easy and cleanway.

6. Conclusion

Wepresented and evaluated amethodology formultiple cardiac disease detection through ECG registers that
combines feature extraction and selection, and aOne-versus-Rest classification approach using FFNN,NB and a
novelHybrid approach as binary classifiers. Interestingly, after a systematic analysis, the classification results
using only one or two leadswere not far from the results with twelve leads, showing lower computational costs
and beingmore suitable for wearables. Furthermore, for some individual cardiac conditions, using one or two
ECG leads showed equal or better score values than the others leads setups. Improving the identification of some
cardiac rhythms by incorporatingmore specific features or clinical rules for those cases where the performance
was low should be an interesting direction to explore in futureworks.
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