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Abstract

In the context of the energy trilemma (equity, sustainability, and security) the reliance on nat-
ural gas is experiencing important drawbacks. Climate change pledges call for electrification,
while the second largest consumer of this fossil fuel is the residential sector. An alternative to
traditional gas boilers are heat pumps. However, the operation of heat pumps is threatened
by faults, which can hinder performance, diminish efficiency, increase operation costs, and
reduce equipment’s lifespan. Still, literature shows small deployment of FDD methods in the
residential sector, mostly due to the high costs of a comprehensive sensor array, absence of
data, wide range of models, and variability of installations. Within FDD classification, data-
driven techniques, based on machine learning algorithms, stand out for their versatility and
ease of deployment. These methods do not require complex models, can handle noisy data,
and a reduced set of inputs. This thesis compares three supervised machine learning algo-
rithms, trained for the fault detection and diagnosis (FDD) of a residential-sized air-to-water
heat pump operating in heating mode. The algorithms considered in this thesis are artificial
neural networks, decision trees and ensembles, and supported vector machines. To address
the obstacle of the sensor array, a set of inexpensive temperature measurements is proposed.
The first objective of this work is to explore the performance attainable by a model with only
these inputs. Then, considering that real household data is scarce and comprehensive exper-
imental trials represent a major effort, a simulation model is developed. Data is generated
using Modelica Language and Dymola software, taking an existing heat pump as reference.
Across the spectre of common soft faults, evaporator fouling and refrigerant leakage are se-
lected. The fault modeling strategies involve decreasing the refrigerant mass for leakage or
undercharge, similarly, the fan speed and overall heat transfer coefficient are reduced to em-
ulate fouling. The simulations only consider steady-state, however, variance is introduced
through weather data in typical year simulations. Next, simulated datasets are split in train-
ing and test sets, extracting representative fractions of the winter period from the first and
last trimester of the year. The aforementioned temperature measurements are interpreted as
features by the machine learning algorithms. As a result, the detection of evaporator fouling
was successfully achieved through classification-based and regression-based strategies, which
are developed and compared. Across all stages, neural networks exhibit the best scores, with
the regression algorithms outperforming the classifiers. The resulting algorithm showed in
the final evaluation with a 71% correct rate, 29% false alarm, and 0% missed detection rate.





Zusammenfassung

Im Kontext des Energie-Trilemmas (Gerechtigkeit, Nachhaltigkeit und Sicherheit) hat die Ab-
hängigkeit von Erdgas entscheidene Nachteile. Daher, und um Klimaziele erreichen zu können,
wird die Elektrifizierung erdgasbasierter Prozess angestrebt. Der Wohnungssekto ist derzeit
der zweitgrößte Verbraucher von Erdgas. Eine Alternative zu herkömmlichen Gasheizungen
imWohnungssektor sind Wärmepumpen. Allerdings ist der Betrieb von Wärmepumpen durch
Störungen bedroht, die die Leistung beeinträchtigen, die Effizienz verringern, Betriebskosten
erhöhen und die Lebensdauer der Geräte verkürzen können. Dennoch zeigen Untersuchun-
gen eine geringe Verbreitung von Methoden zur Störungserkennung und -diagnose (FDD)
im Wohnungssektor, hauptsächlich aufgrund hoher Kosten für Sensorik, Datenmangel, einer
Vielzahl von Modellen und der Varianz der Installationen. Im Bereich der FDD-Klassifikation
zeichnen sich datengetriebene Methoden auf Basis von maschinellen Lernalgorithmen durch
ihre Vielseitigkeit und einfache Implementierung aus. Diese Methoden erfordern keine kom-
plexen Modelle, können mit störungsbehafteten Daten umgehen und benötigen nur einen
reduzierten Satz von Eingangsgrößen. Diese Arbeit vergleicht drei überwachte maschinelle
Lernalgorithmen, die für die Fehlererkennung und -diagnose einer luftgekühlten Wärmepum-
pe in Heizbetrieb ausgelegt sind. Die betrachteten Algorithmen sind künstliche neuronale
Netze, Entscheidungsbäume und Ensemble-Methoden sowie unterstützte Vektor-Maschinen.
Um das Hindernis der umfassenden Sensorik zu umgehen, wird ein Satz kostengünstiger Tem-
peraturmessungen vorgeschlagen. Das erste Ziel dieser Arbeit besteht darin, die erreichbare
Leistung eines Modells mit nur diesen Eingangsgrößen zu erforschen. Da jedoch reale Haus-
haltsdaten knapp sind und umfassende experimentelle Versuche einen erheblichen Aufwand
darstellen, wird ein Simulationssmodell entwickelt. Die Daten werden unter Verwendung der
Modelica-Sprache und der Dymola-Software generiert und eine vorhandene Wärmepumpe als
Referenz herangezogen. Unter Berücksichtigung einer Vielzahl von gängigen Fehlern werden
Verdampferverschmutzung und Kältemittelleckage ausgewählt. Die Strategien zur Fehlermo-
dellierung umfassen die Verringerung der Kältemittelmasse für Leckagen oder Unterkühlung
sowie die Reduzierung der Lüftergeschwindigkeit und des gesamten Wärmeübergangskoeffi-
zienten zur Emulation der Verschmutzung. Die Simulationen berücksichtigen nur den statio-
nären Zustand, jedoch wird die Varianz durch Wetterdaten in Simulationen eines typischen
Jahres eingeführt. Anschließend werden die simulierten Datensätze in Trainings- und Testsets
aufgeteilt, wobei repräsentative Anteile des Winterzeit raums aus dem ersten und letzten Tri-
mester des Jahres entnommen werden. Die Temperaturmessungen gehen als Eingangsgrößen
in die maschinellen Lernalgorithm ein. Als Ergebnis konnte die Erkennung von Verdampfer-
verschmutzung erfolgreich durch Klassifikations- und Regressionsstrategien erreicht werden,



die entwickelt und verglichen wurden. In allen Phasen erzielten neuronale Netzwerke die
besten Ergebnisse, wobei die Regressionsalgorithmen die Klassifikatoren übertrafen. Der re-
sultierende Algorithmus zeigte in der abschließenden Bewertung eine korrekte Rate von 71%,
eine Fehlalarmrate von 29% und eine Rate verpasster Erkennungen von 0%.
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1 Introduction

In 2020, around 13000 pentajoules (PJ) of raw energy were consumed in heating applications.

This energy was generated, mainly, by the combustion of fossil fuels, speci�cally, coal and

natural gas. When focusing only on the natural gas consumption for heating, the residential

and commercial sectors are second and third largest consumers [1]. Furthermore, in 2021

almost half of the energy demand for buildings was used for heat spaces and water [2].

Currently, Europe faces several obstacles to secure heating energy. The principal reason

is that heat is generated through the use of materials that are experimenting shortages in

supply, exhibiting high costs, and have important climate change repercussions. Amidst this

complex scenario, more attention is being drawn to the electri�cation of heating, which also

represents an opportunity for the transition toward net-zero goals. This sets up the stage for

the adoption of new technologies, where, right in the conjunction between heating technologies

and renewable energies, heat pumps enter the scene. A device capable of providing heat with

electricity as an energy source, well-suited for most of the residential and commercial sector

needs. Thus, heat pumps are considered by International Energy Agency (IEA) a central

pillar in improving the e�ciency of energy consumption and reducing emissions. [2]

In Germany, the aggregate of heating and cooling from all sectors accounts for up to 50%

of the �nal energy consumption. Moreover, the residential sector is third in consumption of

energy and heat. The adoption from this sector of heat pumps will represent many bene�ts:

to the environment (given the CO2 emissions reduction), to the grid (reduction of demand

due to increased e�ciency), and the �nal user (because of energy security and a�ordability)

[3]. This technology experienced during 2022 a record year in sales, growing by nearly 40%

in Europe, with nearly 3 million units sold. The sales are particularly good for air-to-water

heat pumps models, which jumped by almost 50% in Europe. One of the reasons is that

these devices, in particular, are compatible with typical radiators and under�oor heating

systems [4]. The previous trends are enhanced by the REPowerEU policies, their purpose

is to accelerate and enlarge the goals for 2030. Amid their objectives, lays doubling the

deployment of heat pumps [5]. This would imply that sales in heat pumps rise up to 7

million for 2030. IEA estimates that, in order to meet with the climate pledges worldwide,

heat pumps will have to meet nearly 20% of global heating needs in buildings by 2030 [4].

Nevertheless, heat pumps have detractors, which claim slow and noisy operations, high cost,

among other reasons. Although the veracity of these claims is arguable, there is evidence

1



1 Introduction

installed heat pumps performing with degraded e�ciencies. Field surveys show signi�cant

losses in the e�ciency performance of heat pumps installed in buildings. Research exhibits

that 20 to 50% of heat pumps could be operating at 70�80% e�ciency or lower than their

design e�ciency, with faulty operation contributing an additional 40% of energy consumption

[6]. The reduction of e�ciency derives in increased operation costs due to increased energy

consumption for the same application. In addition, faults can imply the need for extra

maintenance, which is another associated cost. If faults are not corrected early, the lifespan

of the devices is threatened [7]. Therefore, there is a need to ensure e�cient and reliable

operation through time.

To address the faults in this type of devices, the �eld of Fault Detection and Diagnosis

(FDD) has been applied to heating, ventilation and air conditioning (HVAC) for over 20

years, developing techniques for early detection and damage prevention. In this day and age,

with Internet-of-Things, cloud services, a�ordable sensors, novel automated processes can be

implemented to step further in the reliability of heat pumps. This technological advances are

the base for a group of methods referred asData driven-methods and are amidst the most

popular for FDD research [8]. Current technology developments allow for broadening the

implementations of FDD. However, authors such as Rogers et al. [9] state out that, in the

residential sector, FDD has not being fully implemented. This sheds light on the importance

to diversify the implementation of FDD and research each sectors needs.

In addition, Data-driven methods harness another important trend, such as machine learn-

ing algorithms. Leveraging from data that is usually being collected for historical trends or

monitoring, algorithms can be trained to discern between normal operation and abnormal

patterns. Considering the current availability of techniques for data collection in households

and the possibility of implementing Data-driven FDD to analyze this information, the de-

velopment of FDD residential-sized heat pumps seems attainable. This could translate into

early detection of faults and clearer service by technicians, considering all the information

derived from the implementation of FDD.

The combination of investment (motivated by heat pump's current momentum), technology

deployment (exposed in the recent popularity of heat pumps), and need for reliability, brings

the opportunity for the design of new heat pumps. For these heat pumps, FDD considerations

must be brought to the design phase, where an array of sensors is placed for monitoring and

data collection. This instrumentation shall not increase largely the costs of the equipment,

it should be the minimum to aid the detection and diagnosis, preserving the life span of the

device.

Because of all the exposed reasons, this thesis aims to compare the performance of three

machine algorithms, trained for fault detection and diagnosis, within the possibilities of a

residential-sized propane heat pump. Faults will be imposed at diverse intensities in di�erent

2



operating conditions of common domestic heating through simulated data. The features are

constrained to those inexpensive and coherent with household equipment. The alternatives

of machine learning methods are: arti�cial neural networks, decision trees, and supported

vector machines.

Section 2.1 introduces the basic concepts of heat pumps, next, Section 2.2 covers the state-of-

the-art of FDD, strategies, and tools, Section 2.3 provides an overview of Machine Learning

concepts and Algorithms. Regarding the methodological framework, Section 3.1 describes

the use case, reference heat pump, and assumptions, Section 3.2 goes over the generation of

the datasets to trains the algorithms and fault modeling strategies, Section 3.3 explains the

testing and selecting of the estimators. At last, Section 4.1 reviews the simulation outputs,

while 4.2 evaluates the algorithms' performance.

3
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2 Theoretical Background

This chapter begins with an introduction to heat pumps, detailing classi�cation and compo-

nents, along with a brief summary of the vapor-compression cycle in Section 2.1. Section 2.2

presents the Fault Detection and Diagnosis research �eld with its categorizations, tools, and

challenges. At last, Section 2.3 provides a comprehensive introduction to machine learning

algorithms used for fault detection.

2.1 Basics of Heat Pump Technology

Heat pumps are conduits to transfer low-grade energy from a space (heat source) where it is

available to a place where it is useful (heat sink). In general terms, heat pumps harness the

latent heat of a work �uid to increase the temperature of a secondary �uid in direct contact

with the heating demands; commonly, these devices are implemented for heating purposes,

increasing the temperature of �uids such as air or water. Still, cycle reversal is also possible

to provide cold conditions. Frequent heat sources are found in nature (e.g., ambient air,

ground, lake or seawater) or in residuals of di�erent kinds (e.g., exhaust air, sewage water).

The most bene�cial heat source is one with a high and stable temperature level. The type

of heat source will have a strong in�uence on the heating capacity characteristics of the heat

pump. Due to its availability, ambient air is a heat source of great potential for practical

applications. However, ambient air has typically the most pronounced variations among heat

sources, which leads to heating capacity (i.e., heating power) variations; meaning very low

capacity on the coldest day given the evident small amount of available energy. [10]

Heat pumps can be classi�ed based on the type of natural source/sink they use [11]:

� Air-to-air.

� Air-to-water.

� Water-to-water.

� Ground-to-water.

� Ground-to-air.

Most heat pumps operate under the vapor-compression cycle, where the working �uid is called

a refrigerant . The refrigerant circulates in a closed loop and is subject to four processes:
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evaporation, compression, condensation, and throttling. The basic con�guration of these

systems include an evaporator, a compressor, a condenser, and an expansion valve. [10, 12]

In vapor-compression cycles, the heating capacity is strongly a�ected by the temperatures

in the evaporator and the condenser. From the second law of thermodynamics, it is known

that operating energy must be supplied in order to accomplish this process. The operating

energy in relation to the heat output is a strong function of the temperature levels of the

heat source and the heat sink. [10]

The elemental principle of the vapor compression cycle is that a compressor, the work provider

component, assures appropriate pressures at the two temperature levels. At the lower tem-

perature side, a low pressure is maintained, allowing the liquid refrigerant to be vaporized or

evaporated. At the higher temperature side, a high pressure is maintained, forcing the vapor

to be lique�ed, or condensed. [12]

During vaporization at the lower temperature, the refrigerant absorbs heat. In this process,

the temperature of the refrigerant remains essentially constant, and the temperature is called

the evaporating temperature(Tevap). During the stage at the higher temperature side, the re-

frigerant rejects heat. Here, the refrigerant vapor is brought back to liquid state through con-

densation, and the corresponding temperature is called thecondensing temperature(Tcond).

Pure �uids evaporate and condense at a saturation temperature, this temperature is charac-

teristic of each �uid and depends on the pressure. [12]

2.1.1 Evaporators

The evaporator is a container wherein the refrigerant vaporizes at a low temperature. Under

steady-state conditions, the evaporator is supplied with a continuous �ow of refrigerant, which

is vaporized successively by the heat transferred from the heat source. The pressure drop

in the �ow direction of the refrigerant is regularly small. At the inlet to the evaporator,

the refrigerant consists of a mixture of saturated liquid and saturated vapor. To protect the

compressor, it is preferred that the vapor continues to absorb heat from the refrigerated space

and become slightly superheated before it leaves the evaporator. [12]

When the heat source is air, a typical heat exchanger con�guration consists of a �nned tube

bundle with rectangular box headers on both ends of the tubes; this con�guration is known

as �n-and-tube . Refrigerant �ows in the tubes, often made of copper, and air is blown by fans

[11]. For temperatures below 0°C on the evaporator surface, there will be frost deposits on

the evaporator. This corresponds to ambient temperatures usually below 5°C. To maintain

the evaporator's performance, it is necessary to arrange defrosting at certain intervals [10].
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2.1.2 Compressors

The compressor maintains a pressure di�erence allowing the refrigerant to vaporize in the

evaporator and to condense in the condenser. The refrigerant enters the compressor as a

slightly superheated vapor. The work input to the refrigerant in the compressor makes it

possible to lift the heat absorbed in the evaporator to a higher temperature level. This pro-

cess is often considered. An electric motor commonly supplies the work. In the theoretical

cycle, the compression process is assumed isentropic. In reality, multiple factors intervene.

As a consequence, a ratio between the theoretical and real process is de�ned, calledisentropic

e�ciency (Equation 2.1), which often is in the range [0,6; 0,8] [12]. Moreover, further e�cien-

cies are established, the main ones are the volumetric e�ciency (Equation 2.2) to describe

recirculations within the compressor's stroke, and the mechanical e�ciency (Equation 2.3),

to account for the losses due to mechanical friction, slips, or magnetic losses in the coil, etc,

which diminishes the power input from the power consumed. Another parameter is used to

assess the units of energy supplied per energy consumed, known ascoe�cient of performance

or COP (Equation 2.4.

� is =
Wis

W
(2.1)

� vol =
Vref,o

Vref,i
(2.2)

� mec =
Wo

Wi
(2.3)

COP =
Qh

W
(2.4)

Compressors must be enabled to work o� their nominal load. The on-o� control is the

simplest way to reach this goal, but it is the most energy consuming. In this way, a reference

signal is chosen to control its operation. Generally, a secondary �uid supply temperature is

chosen as a set-point, The di�erence between the measurement and the set-point activates

or deactivates the compressor according to upper and lower limits. A method to obtain this

continuous modulation consists in changing the rotation speed of the driving motor. Heat

pumps often use an inverter to control the electric motor. Such a device changes the feeding

frequency from lower values than the nominal or to higher frequencies. [11]

2.1.3 Condensers

The condenser is a recipient wherein the refrigerant lique�es, in speci�c conditions of constant

pressure and temperature. The discharge line delivers the high pressure/high temperature
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vapor from the compressor to the condenser. Due to the high pressure level, the vapor is

brought to condensation [12]. As a safeguard to the expansion valve, the liquid's temperature

is further decreased (subcooled). This is necessary to avoid vapor bubbles formation that

would damage the following component [11].

If refrigerant exchanges heat with water (as in air-to-water heat pumps), plate and frame heat

exchangers are used, also known asplate heat exchangers. They show a high heat transfer

e�ciency while being compact devices. Plates are compressed together in a rigid frame and

form a set of parallel channels with alternating hot and cold �uids. They have corrugated

metal plates to transfer heat between the �uids. [12]

2.1.4 Expansion Valves

The expansion device (also called refrigerant �ow control element) has a twofold purpose: ac-

complish the throttling process and maintaining the pressure di�erence between the condenser

and the evaporator. The expansion valves adjust the refrigerant �ow rate to the evaporator,

keeping the evaporator �lled with refrigerant liquid, avoiding the liquid to be carried over to

the compressor. In the throttling step the valve discharge area is reduced, hence the pressure

drops and the liquid begins to vaporize at a constant enthalpy [12]. Controllable expansion

valves can be used to establish a superheating control. To keep the vapor superheat at the

compressor inlet to a �xed set-point, the valve opening is adjusted correspondingly. The usual

valves are capillary tubes, �xed-ori�ce (FXO), thermostatic expansion (TXO), and electronic

(EEV) [11].

2.2 Fault Detection and Diagnosis

Fault Detection and Diagnosis (FDD) is a research �eld concerned with automating the

processes of unveiling defects and identifying their causes. The fundamental objective of an

FDD system is early detection, thus enabling correction of the irregularities before additional

damage to the system or loss of service takes place. This is achieved by: continuously

monitoring operations, recognizing abnormal conditions, assessing the faults associated with

those conditions, evaluating the signi�cance of the detected faults, and deciding suitable

responses. [13]

Faults are conditions within the system that can lead to failure or degradation in the per-

formance. Therefore, faults are de�ned as any deviation from an acceptable range of an

observed variable or estimated parameter related with the evaluated process. Faults can be

classi�ed ashard faults or abrupt faults, and soft faults or gradual faults. Hard faults lead to

complete system failures, hence being easier to detect than soft faults [14]. Rogers et al. [9]
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di�erentiates both faults through the way in which they can be detected: hard faults may be

detected by analyzing the provided indoor conditions, while insight to the system operation

is necessary for detecting soft faults. Soft faults can remain undetected for longer periods of

time because their severity is progressive [14].

According to Kim and Katipamula [15], over the past three decades, close to 200 automated

fault detection and diagnosis (AFDD) studies related to building heating, ventilation and air-

conditioning systems (HVAC), have been published. The third most popular FDD research

topic in HVAC is the electrically driven vapor-compression air-conditioner or heat pump

systems (31 studies of 197 until 2016). Matetic et al. [16] con�rm that heat pumps are on

the �rsts trending research subjects in the FDD �eld.

Air-cooled vapor compression air-conditioning equipment are excellent candidates for FDD

methods, considering that the deployment of this technology is abundant, also these systems

typically receive less intensive maintenance than larger systems. Another notable attribute

to applying FDD in HVAC is that most devices are manufactured at relatively low-cost,

specially at residential and small to medium commercial levels. Consequently, they tend to

have a high incidence of faults [17]. Finally, cooling and heating applications account for

large portions of �nal consumption energy, more e�cient systems decrease operational costs

and carbon footprint [18].

FDD tools are applied to air-conditioning systems primarily to avoid degradation of capac-

ity and loss of e�ciency, thus having a distinct accent on soft faults. These faults could

pass unnoticed by equipment operators, even between applications of routine maintenance.

Moreover, they may remain unnoticed by maintenance technicians during more intensive

maintenance tasks. [17]

Early detection has many bene�ts: fundamentally, it prevents damages to the system that

would shorten the equipment's life span. On a residential scale, detecting faults before the

home occupant notices the e�ects allows him to address those issues during shoulder seasons.

This reduces the strain on air conditioning during peak season, furthermore, it would reduce

repair costs for the homeowners as fault will not have worsened [9]. Additionally, energy

consumption and associated costs will not increase. However, major emphasis is placed on

the role of faults as threats to system's life under the light of the studies of Hu et al. [19]. The

authors stated that: "the impact of faults on equipment life represent a larger contribution to

operating cost than the impact of increased energy usage". Rogers et al. [9] listed the main

bene�ts of FDD implementation:

� Reduced maintenance costs.

� Reduced electricity costs.

� Improved commissioning.
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� Reduced peak demand.

� Reduced carbon emissions and electricity costs.

2.2.1 FDD categories

The most adopted classi�cation for FDD in HVAC was established by Katipamula and Bram-

bley in 2005 [13], categorizing AFDD methods into three main categories:qualitative model-

based(QlM), quantitative model-based methods(QtM), and process history-based(Phb) [13].

In a later investigation, Kim and Katipamula (2017) [15] stated that the previous taxonomy

Fault Detection and Diagnosis

Qualitative
Model-based

Quantitative
Model-based

Process
History-based

Detailed Physics
Models

Simpli�ed
Physics Models

Rule-based Qualitative
Physics-based

Black-box ModelsGray-box Models

Figure 2.1: FDD Classi�cation according to Katipamula and Brambley [13].

was still applicable. The main classes of AFDD can be further sub-classi�ed. Out of the

197 articles reviewed by the latter authors, 74% of the studies on AFDD utilized black box

(55%). A summary of their research is provided by Figure 2.2. The upcoming subsections

explain the main FDD classes in detail.

2.2.1.1 Qualitative model-based methods

Qualitative model-based methods (QlM) rely on deductive knowledge to draw conclusions

about the state of a system. They can be subdivided in: rule-based and qualitative physics-

based AFDD techniques. The most commonly used qualitative model-based technique is the

rule-based technique (Rb), which employs a large set ofif-then-else rules and an internal

inference logic to identify the process condition from a previously de�ned set of potential

states. The rule-based method relies on expert analysis of speci�c building systems and

the setting of thresholds or alarms, which are derived from analysis of the historical sensor

data [15]. The qualitative physics-based models contain equations derived from qualitative

descriptions of relationships among the process variables or knowledge about the fundamental

behavior of the system. Fault detection is performed by comparing the predicted qualitative

behavior of a system based on a model with the actual observation [13].

One of the biggest strengths of qualitative models is that they are simple to develop and

apply. These models are ideal for data-rich environments and noncritical processes because
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Figure 2.2: FDD methods trends [15].

the models can assess a process without precise numerical inputs and exact expressions that

govern the process. Moreover, the logic of the model is transparent and easy to interpret [15].

2.2.1.2 Quantitative model-based methods

Quantitative model-based (QtM) methods use an explicit mathematical model of the mon-

itored plant. The mathematical equations to represent each component of the system are

developed and solved to simulate the steady and transient behavior of the system. The

quantitative model-based methods need to be properly validated with experimental data for

fault-free and/or �faulty� operations before any credibility can be placed on their prediction

accuracy and usefulness. These models can be further sub-classi�ed into detailed physical
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and simpli�ed physical models [15], both referred asPhM in Figure 2.2d.

Simpli�ed physical models are based on the very fundamental knowledge governing the behav-

ior of the system. In contrast, detailed physical models frequently consist in sets of intricate

mathematical equations based on the mass, momentum, and energy balances as well as heat

and mass transfer relations [14]. The simpli�ed physical models calculate a physical quantity

using a lumped parameter approach with limited assumptions. This approach is compu-

tationally simpler because coupled space partial di�erential equations are transformed into

ordinary di�erential and algebraic equations [15].

A main advantage of quantitative models is that they are based on sound physical or engineer-

ing principles, which provide the most accurate estimators. A substantial e�ort is required

to develop such models. Often the data required for modelling is not available in the �eld

and these models cannot be generalized easily. In addition, the method needs adequate and

reliable sensors for data acquisition, which compromises cost-e�ectiveness. Therefore, these

models are more suited for critical industrial processes than for commercial or residential

systems; still, simpli�ed quantitative models can play an important role in building AFDD

application. [15]

2.2.1.3 Process history-based methods

Process history-based (Phb) models derive in complex relationships established directly from

measurement data obtained over time. These AFDD methods have been the most popular

because their reliance on historical information to train the models. The models are automat-

ically formulated through learned patterns from the data. Process history-based approaches

can be split into grey-box (Gb) and black-box (Bb) models [15]. The black box model relies

on parameter estimation to identify faults in the system, although in many cases the physical

meaning of the parameter deviation is not known. The gray box model is formulated such

that the parameter estimates used for AFDD can be traced to actual physical parameters

that govern the system or the component.

Process history-based models are well suited to problems for which theoretical models of

behavior are poorly developed or inadequate. The models are ideal when training data is

substantial and/or inexpensive to create and collect; since large amount of data is required to

make accurate conclusions. Additionally, an important shortcoming of these models is their

limited ability to extrapolate beyond the range of the training data. They are suited to the

system for which they are trained and rarely applicable to other systems. [15]

Gray-box models

Gray box models (Gb) use physical knowledge or �rst principles to specify the mathematical

form of terms in the model, and measured data are used to empirically determine the model
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parameters. The parameters of the gray box models are estimated using a training data set.

The training data can be obtained from the equipment manufacturer, laboratory tests, or the

�eld when the unit is operating normally. Gray box models that are based on �rst principles

also require a thorough understanding of the system and expertise in statistics. As a result,

the use of a gray box model requires a high level of user expertise both in formulating the

appropriate form for the model and in estimating model parameters. Consequently, gray box

models are more robust than black box models for AFDD and online control applications,

and they can also provide insight into and understanding of faults for fault diagnosis. In

addition, when using a gray box model fewer data is required to obtain an acceptable �t and

there is better con�dence that the model extrapolates well for operating conditions outside

of the range used to obtain the parameters. Another advantage is that they can be used for

limited extrapolation outside of the training data range [15].

Black-box models

A black box (Bb) model is formulated based on a relationship between the inputs and outputs

of a process or a system, but does not consider any physical signi�cance. A black box model

consisting of behavioral models is derived from process history data. Most utilized black-box

approaches are: statistical models, arti�cial neural networks, and pattern recognition [15].

In spite of Kim and Katimapula's [15] former validation of the FDD classi�cation, Zhao et al.

[8], proposed a modern taxonomy acknowledging more the role of arti�cial intelligence (AI)

on FDD. According to these authors, FDD methods can be classi�ed into two subcategories:

Data driven-based(Ddb) and Knowledge driven-based(Kdb).

Fault Detection

Data
Driven-based

Knowledge
driven-based

Classi�cation-
based

Unsupervised
Learning-based

Regression-based Model-based Rule-based

Fault Diagnosis

Data
Driven-based

Knowledge
driven-based

Classi�cation-
based

Unsupervised
Learning-based

Inference-based Diagnostic
rule-based

Figure 2.3: FDD Classi�cation according to Zhao et al. [8].

Knowledge driven-based methods (Kdb) develop detection models or rules based on prior
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expertise that generally has clear physical meanings. They seek to simulate the diagnostic

thinking of domain experts. In contrast, Data driven-based (Ddb) methods detect faults by

�nding changes in patterns in the measurements of selected variables. They rely mainly on

pattern similarities and use machine learning algorithms to automatically extract patterns;

which may not have clear physical interpretations. This classi�cation uses a disaggregated

interpretation of black-box models, describing in more detail the existing methods. Figure 2.4

describes the classes and subclasses distribution according to the literature review of Zhao et

al. [8].

Ddb

79%

Kdb

21%

(a) FDD classi�cation distribution.

Clasb
24.0%

Regb

20.0%

UnsupLb
35.0%

BayeNb

8.0%
Fb

9.0%

InAb4.0%

(b) FDD subclasses distribution.

Figure 2.4: FDD methods trends according to modern classi�cation [8].

Zhao et al. [8] categorization separates detection and diagnosis phases; also inheriting classes

from the machine learning nomenclature. Figure 2.3 exhibits this classi�cation. It is note-

worthy that the authors identify AI algorithms within the inference-based techniques of the

diagnostic phase.

2.2.2 Development of FDD methods

FDD protocols typically involve techniques for deducing the underlying faults from measured

data, given a single fault can lead to several symptoms. Likewise, di�erent faults can produce

similar e�ects. This represents the fundamental complexity of the FDD inference process [8].

The general FDD process in HVAC can be summarized by [9]:

� Selecting features that use the available measurements.

� Detecting steady-state operations and �ltering the data accordingly. This encompasses

removing noise, errors, outliers, etc.
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� Modeling the steady-state fault-free behavior of the system at the current operating

conditions.

� Classifying the current operations as faulty or not.

Commonly, FDD methods for HVAC systems use measured temperature and/or pressure at

various locations of the system, moreover, other implementations also utilize thermodynamic.

Frequently, the detection system runs continuously, while the diagnostic system is triggered

only upon the detection of a fault. In other applications, the detection and diagnostic systems

run in parallel, and in particular instances, the detection and diagnostics are performed in a

single step [13]. To collect the data, it is a common practice to wait until the system reaches

a steady state within a de�ned tolerance range. Some methods use a steady-state detector,

others require a system to run for a given period of time, moreover, certain protocols rely on

user experience to determine whether steady operation has been achieved [18].

On each system, a subset of the tests is done with no fault present, typically at several sets of

driving conditions that correspond to the driving conditions for fault tests. Common driving

conditions are: ambient air temperature, humidity and (external �uid) return temperature.

The reason for conducting the no-fault tests is that the fault e�ects on performance are a key

concern for the researchers, evidently, they cannot be properly assessed without a baseline for

comparison. A common and advisable practice is to develop anormal model from the no-fault

test's measurements, using techniques such as multiple linear regression to predict capacity

and COP to assess degradation [17]. Rogers et al. [9] report that third-order polynomials

are better suited to be fault-free models than the neural networks due to a lack of signi�cant

non-linearity, as suggested by [20, 21]. The �rst reason to develop such models is that it

signi�cantly reduces bias error because it obviates the problem of trying to match the test

conditions between fault and no-fault tests exactly. The second is that it reduces the random

error associated with the comparison of two test results at the same conditions [17].

2.2.2.1 FDD protocols evaluation

Evaluating FDD tools performance requires knowledge of accuracy in detecting and correctly

diagnosing faults across a range of fault types and fault intensities, and under a range of

operating conditions. The assessment is further complicated by the many approaches taken

and the functionalities of existing FDD tools. In particular, there is currently no standard

method for determining how well the FDD performs in HVAC [17]. As a response, Rogers

et al. [9] provide three fundamental questions to assess FDD protocols: �rst, how they were

validated; how many sensors are required; which faults may be diagnosed. For a general case,

any protocol that detects and isolates without an indication of the fault's magnitude delivers

�ve possible outcomes, these are illustrated by Figure 2.5. There are protocols that are not
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Figure 2.5: FDD protocol outputs [17].

intended to diagnose all of the faults. In these cases, the remnant faults could be missed,

misdiagnosed or fail to provide any output [17]. Although that approach is a comprehensible

simpli�cation, the synergistic nature of the faults must be taken into consideration [22].

Studies such as Hu et al. [19], provide insight into the compensatory and synergistic e�ects

of multiple simultaneous faults.

In brief, a comprehensive AFDD method should be able to diagnose all fault sources simulta-

neously. If only one fault is diagnosed and repaired, the system will continue to operate with

an undiagnosed fault that could cause the system to fail again [22]. Apart from the desire for

robust systems, this characteristic attends to a probabilistic reason. When one fault occurs,

there is an increased probability that another will occur in parallel, because faults often result

from low-quality installation, lack of maintenance, or harsh operating conditions [19].

Metrics

Once the results for a given set of test cases are generated, statistics are generated to provide

overall performance indicators [17]. From the �ve previous possible outputs from an FDD

system, "no response" will not be considered because the selected approaches selected ensure

an output. Yuill and Braun [18] utilized the following metrics in their research, assessing an

existing protocol with experimental data:

False Alarm Rate =
misclassif ied nofault cases

all actual nofault cases
(2.5)
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Missed Detection Rate =
misclassif ied nofault cases

all actual fault cases
(2.6)

Misdiagnosis Rate =
misclassif ied fault cases

all cases correctly diagnosed as faulty
(2.7)

The aforementioned authors [18] remark that false alarms are a specially serious error that

an FDD protocol can make since it could trigger service being done on a properly working

system. Likewise, they state that misdiagnoses can lead to the wrong corrective action, thus

opening the possibility of a greater negative impact than taking no action. At last, it is

concluded that missed detection could be considered the least serious error for a protocol to

deliver since it does not result in unnecessary and potentially detrimental service.

2.2.3 Common Faults in Heat Pumps

In the study from 1998, Breuker and Braun [23], a database of 6000 commercial units from

1989 to 1995 were analyzed, from which �ve soft faults were selected for further research. The

authors selected as the most common faults: refrigerant leakage, condenser fouling, evapora-

tor fouling, liquid line restriction, compressor valve leakage. Those faults are still considered

the most common faults in HVAC. This is demonstrated throughout more recent HVAC FDD

studies, for example: Mehrabi and Yuill (2017, 2018) [24, 25], Hu et al. (2021a,2021b) [19, 7].

In addition, Bellanco et al. (2021, 2022) [6, 26], where non-condensables and refrigerant

overcharge are added.

Bellanco et al. [6] and Rogers et al. [9], among other authors, generalizefouling to ac-

count for reversible operation modes (as in heat pumps) or faults in the fan. The proposed

nomenclatures are: outdoor unit fouling/outdoor mechanical component failure, indoor unit

fouling/indoor mechanical component failure or low air�ow . Due to the fact that most soft

faults are mechanical, the previous titles allow the grouping of several causes that produce the

same e�ects on the equipment. For instance: incrustation of dirt, debris, or leaves; blockage

of any kind; or malfunction of heat exchanger's fan.

Acknowledging the precedent nomenclature, it is possible to consider refrigerant leakage and

fouling among the most common and costliest faults in heat pumps; particularly, for air-to-

water heat pumps as claimed to insurances and manufacturers. According to Madani's results

[27], from the analysis of 37.000 faults reported to manufacturers over the period 2010�2012

in Sweden.

The results of Kim and Katipamula [15] estimate that a refrigerant undercharging in the

range of 25% can lead to an average reduction of 20% in cooling capacity and 15% in energy

e�ciency. Furthermore, an undercharge of about 25% would cause an average penalty in

seasonal energy e�ciency ratio (SEER) of about 16 % and a cost penalty of US$60 per year
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per refrigeration ton of rated capacity. These penalties could be considered cost savings

associated with improving refrigerant charge levels and are very signi�cant.

For evaporator fouling, a reduction in air�ow of 50 % decreases the average capacity by

14%, whereas the energy e�ciency decreases by 12%. The average SEER value decreases

by 10% and annual cost increases by US$24 per refrigeration ton. For condenser fouling,

a 50% reduction in air�ow decreases the average capacity by 9%, whereas energy e�ciency

decreases by 22%. The SEER value decreases by 20% and annual cost increases by US$80

per refrigeration ton. Evaporator fouling has more in�uence on capacity than on e�ciency,

while condenser fouling has more impact on e�ciency [15].

2.2.3.1 Evaporator Fouling

Fouling is de�ned by Awais and Bhuiyan [28] as the accumulation of unwanted or undesirable

deposits on heat transfer surfaces, which result in thermal conductivity and pressure drop

detriments by the presence of corrosion, erosion, incrustation, or bacterial growth. Notwith-

standing, in the context of HVAC FDD, fouling is referred to as the e�ects of low �ow through

a heat exchanger (HX) occasioned by previously mentioned phenomenons.

Research has demonstrated that the main consequence of fouling is not the reduction of

surface heat transfer coe�cient (in certain cases slightly improved), instead, the dominant

e�ect is the increased pressure drop. This reduces the �ow of air or water through the HX

reducing the overall heat transfer coe�cient (UA) [17]. This research will take into account

only the low outdoor air�ow of the HX responsible for capturing heat in the vapor-compression

cycle, i.e., evaporator fouling (EF). Nonetheless, it has been reported that EF and condenser

faults can produce the same patterns at high intensities. This observation indicates that the

expansion device plays an essential role in the system's response to certain faults [29].

Du et al. [29] conducted a comparison study between di�erent types of HVAC devices. They

concluded that there are substantial similarities between the repercussions of the same faults

in heating and cooling modes, while noting speci�c sensitivities that must be accounted for in

each mode. This is an important caveat to bear in mind, because fewer studies are conducted

on heating mode, as demonstrated in Mehrabi and Yuill [24, 25], where relationships for EF

could not be provided. Response of systems to faults may di�er from equipment to equipment

due to di�erences in their overall type, design or component selection (mainly in expansion

valve and accumulators), and control system [30, 29, 7].

General e�ects of EF are [31, 30, 29, 25, 32, 6]:

� Decrease of evaporator's temperatures as a consequence of a drop in evaporator satu-

ration temperature (e.g liquid line, suction line, superheat, exit air�ow temperatures).
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� Lower refrigerant's mass �ow rate.

� Compressor's discharge temperature increase.

� Raise in condensing temperature.

� Reduction of COP and capacity.

� Boost in compressor's speed.

Several researchers have proposed simulation of air-side fouling by covering portions of the

face of the heat exchanger with paper (e.g., [25, 6]). Others have limited the fan speed to

induce the reduction in air�ow (e.g., [32, 26]). The present work will focus on evaporator

fouling and refrigerant leakage further on, including refrigerant undercharge within leakage.

2.2.3.2 Refrigerant Leakage

Refrigerant leakage (RL) is depicted by an insu�cient quantity of working �uid within the

vapor-compression cycle. This could happen during commissioning or service because of

inadequate charging, or due to the rupture of a pipe, seal, valve, among other components [6].

The International Institute of Refrigeration in his 24th technical note reports losses up to 10%

per year of refrigerant on commercial and residential air conditioning [33]. The experimental

replication of this fault is straightforward in the cases of undercharge or leakage [29, 32].

Nevertheless, compressor's valve or 4-way valves leakages (CVL) can induce recirculations

that could have di�erent impacts. This fault is modeled by bypassing the refrigerant in

speci�c sections of the cycle. CVL will not be further considered in this study.

General e�ects of RL [31, 30, 34, 29, 25, 32, 6]:

� Signi�cant degradation of COP due to diminished capacity.

� Condenser temperature and subcooling decrease.

� Increase of evaporator's and compressor's temperatures (superheat, suction, discharge

temperatures) as a result of the reduction in refrigerant mass �ow.

� Power consumption is somewhat a�ected, however, the consequences will vary depend-

ing on the expansion valve and speed regulation.

2.2.4 FDD Challenges

The primary bottlenecks to FDD implementation in the �eld are the high initial costs of

additional sensors, and the need for customization of software solutions for each speci�c

building or equipment [22, 15, 9, 8]. Another di�culty in applying the existing approaches is

in handling multiple faults that occur simultaneously because the state variables can depend
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on more than one fault along with the operating conditions [22, 9, 18]. Kim and Katipamula

[15] identi�ed the following general challenges for FDD applications:

� Lack of automated tools and processes to automatically map data sources to AFDD

tools. This impedes scaling AFDD services and also increases the cost of deployment.

Many researchers have recognized this as one of the key challenges to overcome. Low-

cost reliable sensing certain type of measurements (air �ow, pressure, power, etc.) are

necessary.

� Most AFDD techniques, especially rule-based ones and classi�ers, rely on simple thresh-

olds of the features to identify faults. If the thresholds are not properly selected or are

not general enough, too many false alarms may be generated or faults may be misiden-

ti�ed. [15, 9].

� Detection of faults and diagnosing the cause of the faults are two important steps in

the AFDD process. However, without an estimate of fault severity and of the energy

and cost impact, building operators lack the knowledge to prioritize whether to address

and/or repair the fault. Many studies have focused on the identi�cation of faults and

diagnosis of their causes, still, there is a relative void in studies that focus on estimating

the fault impact.

� Considering the spectrum of black-box models, parameters, data preprocessing and

other techniques, it is necessary to develop methods that eliminate the need for manual

model identi�cation or algorithm training. This provides �exibility for adapting the

methods to the change in the con�gurations of HVAC systems. Some self-training

models have been developed in the literature to adapt to the changes of the system

within time, clearly, these models are to be developed after system installed. This goal

is accomplished by slowly developing the model as di�erent operating conditions become

available [9]. As illustrated by Bode et al. [35] in his "real-world" application study,

determining the no-fault status of an installed system after several years of operation,

is a case on its own.

Zhao et al. [8] expand the previous list adding the shortcomings for data-driven methods.

They distinguish incomplete information and uncertainty as the major issues. Incomplete

information refers to the lack of sensors, normal data, faulty data and physical parame-

ters. Uncertainty in this context entails measurement errors, probabilistic relations among

symptoms and faults, as well as inaccurate knowledge. Additionally, provide relevant insight

into:

� Inadequacy of current data storage practices: where states that data commonly is only

temporary saved.

� Poor accuracy of a large portion of measurement devices.
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� Fault propagation by control loops.

� Lack of public databases: as a benchmark and base for new normal data and faulty

data of some typical buildings developments.

Speci�c challenges for the residential sector are listed by Roger et al. [9]:

� The majority of methods use an extensive set of laboratory experiments to characterize

the behavior. Nevertheless, these experimental results are not available for all systems.

Even when they are available, these models may not capture the installation varia-

tions (for example in split-systems further apart than expected). Installed systems will

probably need to be benchmarked during the commissioning process.

� The required sensor package must be signi�cantly simpli�ed. This simpli�cation in-

volves reducing the number of sensors, accounting for the type of sensors used, and

considering where these sensors must be installed. This would be an important part of

increasing the cost-e�ectiveness of FDD methods.

� There is not an established benchmark for HVAC applications. In terms of square

footage and location, similar households could be compared through such framework.

By leveraging the data from many homes, researchers could provide insight to speci�c

homes via anomaly-detection methods to faulty or even less e�cient cases. The utility of

process-history approaches would be signi�cantly improved with an expanded dataset.

Up to this point, the marketplace has been slow to o�er these high-level features. Primarily,

it has been justi�ed by the high costs associated with providing site-speci�c solutions relative

to the savings potential. The additional costs are due to additional sensor requirements

and labor to engineer and program these applications [22]. It is essential to understand the

bene�t of FDD throughout the value chain. Unequivocally, the increase in costs from FDD

implementation must be accounted by someone, still, multiple parties could share the costs

once these bene�ts are reckoned [9]. Examples of incentives could be:

� Electric-grid operators could provide an incentive in the form of a cash rebate for

customers who install the FDD system. The reduced peaks in electricity demands

facilitate a more stable grid.

� Manufacturers could o�er an FDD-enabled system to the dealer at a discounted price

to receive feedback about their services.

� The dealer, installer, and service company could also pay for access to the FDD data.

This information from the value chain (excluding �nal consumer) could provide a direct

source of improvement opportunities, also assuring a history of reliability.
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2.2.5 Virtual Sensors

One of the key areas of improvement is the development of low-cost AFDD algorithms that

reduce the number of sensors. Faults have e�ects over the entire cycle, which makes it neces-

sary to measure several variables in order to detect a set of faults; moreover, the degradation

of the performance of a system. Studies have relied mostly on techniques to create analytical

�virtual� sensing as derived parameters [36, 37, 38, 15, 39] calledvirtual sensors. These pa-

rameters are equations formulated from energy and mass balances, numerical approximations

or empirical relationships. Among the bene�ts of the virtual sensors (VS), Kim and Lee [22]

identify:

� The derived indicators can provide a check on the accuracy of an installed sensor, even

enabling virtual calibration. The combination of this features results in more robust

FDD systems.

� The diagnostic approaches based on these methods can identify and isolate speci�c

faults using only a number of low-cost physical sensors.

� The FDD process can be simpli�ed through simple thresholds between the output of

the virtual sensor and the real sensor in order to detect faults.

� VS can be modeled to represent features speci�c to a fault, hence, insensitive to other

possible faults; this is known as "decoupled virtual sensors".

� These methods could simplify the diagnostic task. Fault diagnoses would result directly

from the deviation of decoupled features from expected values.

Virtual sensors are based on the early work of Li and Braun [36], where the �rst equations

were presented. This methodology treats each component of the vapor-compression cycle

independently in order to assess speci�c features and faults. The outputs are VS which can

be used as an input in other equations. This work will reference to the most updated version

of some of these equations [39], for further concerns review the early works of Li and Braun

or the posterior studies from Kim and Braun [36, 37, 38, 15, 39].

Equation 2.8 is referred to asPower virtual sensor. Evidently, it is an ANSI/ARI Standard

540-1999 10 coe�cient polynomial for �xed speed compressors, whereci are the polynomial

coe�cients (i=[1 ; 10]), S is the suction dew point temperature and D represents discharge

dew point temperature. Kim and Braun [38] studies demonstrated that is an appropriate

estimate even in faulty conditions; as long as faults in the compressor are not being accounted

for.

Equation 2.9 represents theRefrigerant's mass �ow virtual sensor, where � loss depicts a

model for compressor's heat loss,hdis compressor's discharge enthalpy,hsuc compressor's

22



2.3 Machine Learning

suction enthalpy. Kim and Braun [38] note that � loss is generally very small (< 5%), thus it

will be neglected for further implementations in this study.

Equation 2.10 depicts Evaporator's volume air�ow , which introduces hliq is the liquid line

enthalpy, he,out stands for the enthalpy at the exit of the evaporator, ha,in and ha,out the

air enthalpy at the inlet and outlet respectively. This equation and the previous (2.9) both

rely on enthalpies that can be calculated using thermodynamical relationships of pressures

measurements. The authors allow this within a low-cost sensor approach since Li and Braun

[37] established a method to position surface-mounted thermocouples to obtain saturation

temperatures in the condenser and evaporator. Nevertheless, this method is limited to sys-

tems with �n and tubes heat exchangers, whereas an air-to-water heat pump will not entirely

apply.

Equations 2.11 is theHeating capacity virtual sensor, which presentshdis the discharge en-

thalpy, hc,out is the enthalpy at the exit of the condenser. Finally, 2.12 relates to theCoef-

�cient of performance virtual sensor, this is the ratio between the capacity and the power

consumption. These last VS are known as the performance virtual sensors.

_Wvs = c1 + c2 � S + c3 � D + c4 � S2 + + c5 � S � D + c6 � D 2+

+ c7 � S3 + c8 � S2 � D + c9 � S � D 2 + c10 � D 3
(2.8)

_mref,vs =
_Wvs � (1 � � loss)

hdis(Pc; Tdis) � hsuc(Pe; Tsuc)
(2.9)

_Va,vs = _mref,vs � va �
hliq (Pcond; Tliq ) � hev,out (Pevap; Tev,out )

ha,in � ha,out
(2.10)

_Qh,vs = _mref,vs � va � hdis(Pdis; Tdis) � hcond,out (Pcond; Tcond,out ) (2.11)

COP =
_Qh,vs

_wvs
(2.12)

2.3 Machine Learning

Already in 2005, Katimapula and Brambley [13] recognized methods that took advantage of

historical data, in their classi�cation named Process history-based FDDexplained in Section

2.2.1.3. Within these methods, they identify the black-boxmodels, whose deployment is now

largely extended. With this idea, Zhao et al. [8] propose another classi�cation, where the pre-

vious category evolved toData Driven-basedmodels and its subcategories are inherited from

a research domain calledmachine learning. The upcoming concepts establish a framework

to explore the association of FDD and this �eld.
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The �eld of machine learning (ML) is concerned with the question of how to construct com-

puter programs that automatically improve with experience. This can be de�ned as: "A

computer program is said to learn from experienceE with respect to some class of tasksT

and performance measureP, if its performance at tasks in T, as measured byP, improves

with experience E" [40]. Thus, "Machine Learning is the science and art of programming

computers so they can learn from data" [41], where data is treated as the translation of

experience.

2.3.1 Machine Learning Concepts

The following sections aim to describe the most important concepts to consider when working

with machine learning models, these notions are fundamental to assess performance and

improve accuracies.

2.3.1.1 Generalization

Most Machine Learning tasks are about making predictions. Given a number of training

examples, the model needs to be able to make good predictions for examples it has never

seen before. Training a model implies running an algorithm to �nd parameters that will make

it best �t the training data and make good predictions on new data. [41, 42]. This opens

two possibilities:

� The model over-generalizes, performing too well on the training data but poorly on

new instances, this is calledover�tting . Over�tting happens when the algorithm is too

complex relative to the amount and noisiness of the training data [41].

� The model under-generalizes, unsuccessfully adapting to any data, both training and

new examples. Occurs when the model is too simple to learn the underlying structure

of the data [42].

Evidently, the only way to know how a model will generalize to new cases is to try it out

on unseen cases. Hence, the task on how to partition the data arises. A common strategy

is to split the available examples into training sets and test sets; the latter is reserved and

only used to evaluate performance. The error rate on the new cases provided by the test set

is called the generalization error. If the error during training is low, but the generalization

error is high, the current model is over�tting the training data [41].

A key aspect to consider when fractionating the data isdata leakage. Leakageinsinuates that

information is revealed to the model which gives an advantage to make better predictions.

For instance, this could happen when data from the future is leaked to the past in a time-

dependent dataset. Any time that a model is given information that it should not have access

to when it is making predictions in real-time in production, there is leakage. [43]
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Another common approach is to further divide the training set to generate an intermediate

test set, known as thevalidation set; which can be used to compare di�erent algorithms or

parameters of the same algorithm, before the �nal evaluation. If the generalization error is

estimated directly using the test set, the result is at risk of being too biased towards the

user's requirements. This is calleddata snooping bias, it unveils an important liability: if the

test set does not represent in a good measure the data that the model will encounter, there

is no certainty of its future performance. [41]

Additionally, Géron [41] identi�es important aspects which the data must comply for any

machine learning algorithm:

� Su�cient quantity representative of the cases to generalize: smallsampling noiseand

adequate sampling method, where thesampling biasis accounted for.

� High quality: low levels of errors, outliers, noise or missing information.

2.3.1.2 Variance and Bias

The generalization error can be expressed as the sum of:

� Bias: this part of the generalization error is due to wrong assumptions. A high-bias

model is likely to under�t the training data.

� Variance: implies excessive sensitivity to small variations in the training data. A model

with many degrees of freedom, such as a high-degree polynomial is likely to have high

variance, thus over�tting the training data.

� Irreducible error: this part is due to the noisiness of the data itself.

There is a correlation between these factors known as thevariance-bias trade o� : increasing

model complexity increases its capacity to �t the training data (over�tting and increased

variance), while reducing complexity can lead to under�tting (increased bias). [41]

2.3.2 Supervised Learning

In his book "Machine Learning", Mitchell (1997) [40] establishes notions ofdirect and indirect

training, where the roles of the model (learner), user (teacher) and how much information a

possiblefeedbackprovides, are conceptualized. These de�nitions established a framework for

the modern classi�cations of learning.

Machine Learning systems can be classi�ed according to the amount and type of supervision

they get during training. There are four major categories: supervised learning, unsupervised

learning, semi-supervised learning, and reinforcement learning [41]. This work will cover only

the �rst one mentioned previously, because it is the most explored in the current literature.

25



2 Theoretical Background

When the machine is trained with labeled dataand tested with new data is calledsupervised

machine learning, the fact that an example is labeled suggests that it has been previously

tagged with the correct output [14]. In other words, the training set fed to the algorithm

includes the desired solutions [41]. This approach requires that both the input and output

data must be known in order for a supervised model to develop a mathematical function that

describes the relationship between input and output. Based on this function, the model can

predict the output value using previously unobserved input values.

Supervised learning can be further divided intoclassi�cation (for discrete output values) and

regression(for continuous output values). This type of learning is often highly interpretable;

which provides a sense of reliability [16]. The considered supervised learning algorithms in

this work are:

� Support Vector Machine (SVM).

� Decision Trees (DT).

� Arti�cial Neural Networks (ANN).

2.3.3 Algorithms

This section pursues to conceptualize the ML algorithms employed in the realization of this

research. Machine learning models are basically mathematical functions that represent the

relationships between di�erent aspects of data [42]. Each represent alternative approaches to

obtain accurate discrete or continuous outputs; furthermore, certain algorithms are utilized

to reveal patterns among data.

Many models have important parameters which cannot be directly estimated from the data.

These model parameters are referred to astuning parameters [44] or hyperparameters. Model

parametersare those variables (within the model's internal structure) that are able to modify

directly from its interaction with the data, commonly from the training set. On the other

hand, hyperparameters are not learned, hence, a �rst speculation is made for a latter tuning

step. A noteworthy remark about hyperparameters lies in their potential impact on perfor-

mance and prediction accuracy, di�erent settings could represent substantial di�erences in

prediction accuracy and generalization [42].

2.3.3.1 Support Vector Machine

Support Vector Machines (SVM) are built on statistical learning theory for structural risk

minimization [45]. SVMs are capable of performing linear or nonlinear classi�cation, regres-

sion, and outlier detection. Additionally, they are particularly well suited for the classi�cation

of complex small to medium-sized datasets [41]. SVM is a binary maximum margin classi�er,
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de�ned by a boundary that is unit-separated from the nearest instances of both classes using

the simplest possible representation (regularization e�ect) [16]. The fundamental concept

of the SVM is to draw a decision boundarythat separates the data into distinct categories.

This decision boundary is known as ahyperplane, where the points closest to the line from

both classes are known assupport vectors [14]. SVM will not only separate the two classes,

also stays as far away from the closest training instances as possible. They are the closes

points to the boundaries (gray lines) that de�ne the street. An SVM classi�er will �t the

widest possible street between the classes [41]. The goal of the model is to determine the

boundary, ensuring the largest distance between it and the closest data instances of the two

classes [16]. The distance between the hyperplane and support vectors is known asmargin.

This maximized margin draws an optimal hyperplane through a process calledlarge margin

classi�cation [14, 41].

Although SVMs are considered linear classi�ers, they are not limited to problems with linear

patters. Complex distributions can be encoded usingkernel functions, this is referred to as

the kernel trick. A kernel function is basically a computation of high-dimensional relations of

input data without the need to explicitly transform the data. It reduces the computational

cost by avoiding the transformation of the data, and allows the computation of relations in

an unbounded number of dimensions. Polynomial kernels and radial basis function kernels

are the most commonly used [16].

2.3.3.2 Decision Trees

A Decision Tree (DT) is a model that usessample featuresto build rules that classify data

predictively. The decision tree selects the best features to segment the data in a recursive

manner [46]. DTs consist ofroot nodes, decision nodes, and leaf nodes. A root node, also

called a parent node, represents the entire population and divides the data into two or more

nodes [16]. Root nodes can be pictured as the stem. Within this structure, each non-leaf

node represents one feature, each branch of the tree represents a di�erent value for a feature,

and eachleaf node represents a class of prediction [47]. This means that the leaf nodes are

in the last layer of the tree, thus, are closer to the algorithms output. When developing

a tree, decisions must be made about which features to include as input, the conditions

for splitting and when to stop further branching of the tree [16]. DTs have become a very

popular ML technique because of its simplicity, ease of use, and interpretability; as it can

be easily visualized and explained [48, 16]. Furthermore, this algorithm is used as a base for

more complex classi�ers, which instead of training one instance, assemble groups of several

DTs trained and grown under distinct methodologies. These combinations are known as

an ensemble, relevant to this work are two types of ensemble learners: Random Forest and

Extreme Boosting Gradient.
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Random Forest

The Random Forest (RF) algorithm introduces extra randomness when growing trees. In-

stead of searching for the very best feature when splitting a node, it searches for the best

feature among a random subset of features [41]. An RF model predicts a class by averaging

the results of multiple trees, and its accuracy improves as the number of trees increases.

This is accomplished through a process of sampling with replacement calledbaggingcoupled

with the random feature selection mentioned earlier, performed at each tree-building step

to train ensembles of trees for attaining higher predictive accuracy [16]. Consequently, the

algorithm results in greater tree diversity, which trades a higher bias for a lower variance,

generally yielding an overall better model [41]. RF is a model able to handle encoding of

more complex distributions by using highly expressive individual models whose variance is

in turn constrained through voting during inference [16]. In conclusion, RF models are an

improved version of population intelligence-based decision tree model. The unpredictability

of random forest refers to the use of a random attribute selection strategy for training each

decision tree, ensuring that there is no correlation between them [46].

Extreme Boosting Gradient

Boosting is a typical classi�cation learning integration method in which a series of weak

classi�ers are learned by iteratively modifying the training data's probability distribution,

and then these weak classi�ers are linearly merged to generate a strong classi�er. When the

decision tree is the basis function, boosting is called Boosting Tree (BT). Gradient Boost-

ing (GDBT) integrates multiple weak learners into the �nal predictive model, and at each

iteration, a learner that minimizes loss in the direction of the steepest gradient is generated

to compensate for the de�ciencies of the existing model [46]. This method tries to �t the

new predictor to the residual errors made by the previous predictor [41]. Unlike the random

forest, which generates decision trees independently of each other, the GDBT model builds

on the previous trees from the second tree onwards [46]. An optimized implementation of

Gradient Boosting is available called XGBoost, which stands for Extreme Gradient Boosting.

This package aims to be extremely fast, scalable, and portable [41].

2.3.3.3 Arti�cial Neural Networks

An Arti�cial Neural Network is a nonlinear informational processing device, which is built

from interconnected elementary processing devices calledneurons. Each input is multiplied

by a connection weight. The products andbiases(special additions) are summed and trans-

formed through a transfer function (algebraic equations such aslog-sigmoid, tangent-sigmoid,

or recti�ed linear unit ) to generate a �nal output. The process of combining thesignals and
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generating the output of each connection is represented asweight [49]. Model weighting is

adjusted until the model has the smallest possible margin of error. Due to their structure,

ANNs can encode more complex representations by adding more hidden layers [49].

Multiple layers of neurons with nonlinear transfer functions allow the network to learn linear

and nonlinear relationships between input and output vectors [49]. An MLP is generally

composed of one pass-throughinput layer, one or more layers of threshold logic units (TLUs)

known as hidden layers, and one �nal layer of TLUs called the output layer. TLUs are the

neurons, they compute a weighted sum of its inputs, then applies the transfer function to

that sum and output a result. Training a TLU in this case means �nding the right values for

each weight [41].

The Back-propagation algorithm (BPA) is widely used to train an ANN. BPA optimizes the

weight connection by allowing the error to spread from output layers towards the hidden layer

and input layer [49]. For each training instance, the backpropagation algorithm �rst makes

a prediction (forward pass) and measures the error, then goes through each layer in reverse

to measure the error contribution from each connection (reverse pass), to �nally modify the

connection weights to reduce the error [41].

2.3.4 Performance metrics

In a generic sense, performance metrics are linked to the concepts of distance and similarity

[50]. One of the fundamental tasks in building any ML model is to de�ne how to evaluate

its performance. The achievement and degree of success require to be comprised within an

objective metric to assess the compliance of the set goals. Furthermore, the de�nition of an

appropriate metric prior to the establishment of objectives can lead to more attainable goals

[42]. The selection of the performance metric should account for:

� Model learning type.

� Model phase: training, testing or evaluation.

� Data scale.

� Data distribution.

If within the data, there are signi�cantly more examples of one group than another, some

metrics will give a very distorted picture because the most represented class will dominate

the statistic. Any metric that gives equal weight to each instance of a class has a hard time

handling imbalanced classes. The extension of issues that arise from this scenario transcend

to all development stages. They are problematic not only for the �nal evaluation stage, also

when training the model. If class imbalance is not properly dealt with, the resulting model

could be unable to predict the minority classes [42].
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The following metrics are applicable to supervised learning, speci�cally to classi�cation and

regression tasks.

2.3.4.1 Classi�cation metrics

The classi�cation process aims to predicting class labels given input data. Evidently, inbinary

classi�cation there are two possible output classes and inmulticlass classi�cation there are

more than two possible classes.

The next measures de�ne a relationship betweentrue positive (TP), true negative(TN), false

positive (FP), false negative(FN). TP are the elements that have been labelled as positive by

the model, and they are actually positive, while FP are the elements that have been labelled

as positive by the model, but they are negative in reality. On the other hand, FN are the

elements that have been labelled as negative by the model, but they are positive. These last

two are referred in statistics as: Type I and Type II error. Additionally, the total number of

possible outputs (classes) is indicated byC, the total number of instances by N, i refers to

row number and k alludes to column number.

Confusion matrix

Despite the confusion matrix (CM) is not a metric by itself, it provides a clear graphical

representation of the posterior concepts, enclosing all the relevant information about the

algorithm and classi�cation rule performance. Basically, it is a distribution of the model's

predictions, counting each individual instance and presenting it in a matrix's cell. It shows

a more detailed breakdown of correct and incorrect classi�cations for each class. The rows

of the matrix correspond to actual labels, and the columns represent the predictions. The

confusion matrix is a squared matrix of sizeC x C. The classes are listed in the same order

in the rows as in the columns, therefore the correctly classi�ed elements are located on the

main diagonal from top left to bottom right [51, 41, 42].

Table 2.1: Confusion matrix example.
Predicted

Class 1 Class 2 Class 3 . . . Class k
Class 1 c11 c12 c13 . . . c1k

Class 2 c21 c22 c23 . . . c2k

Actual Class 3 c31 c32 c33 . . . c3k

.
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.
Class i ci 1 ci 2 ci 3 . . . cik

N

Accuracy
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The accuracy re�ects how often the classi�er makes the correct prediction, it is the probability

that the model prediction is correct. Represents the ratio between the number of correct

predictions and the total number of predictions [42, 51]

Accuracy =
TP + TN

TP + TN + FP + FN
=

CP

i =1
cii

N
(2.13)

Precision

The precision is the fraction of TP elements divided by the total number of positively pre-

dicted units (diagonal cell divided by the sum of the column). Expresses the proportion of

units our model classi�es as positive that are actually positive [51].

P recision =
TP

TP + FP
=

cii
CP

i =1
cik

(2.14)

Recall

The recall is the fraction of TP elements divided by the total number of positively classi�ed

units (diagonal cell divided by the sum of the row). Recall measures the model's predictive

accuracy for the positive class, it measures the ability of the model to �nd all the positive

units in the dataset. Recall is also known assensitivity or true positive rate (TPR) [51].

Recall =
TP

TP + FN
=

cii
CP

k=1
cik

(2.15)

Balanced Accuracy

The formula of the balanced accuracy is essentially an average of recalls. First is evaluated the

recall for each class, then the values are averaged in order to obtain the Balanced Accuracy

score. The value of recall depicts the likelihood for each class of each individual class to be

classi�ed correctly. Hence, the balanced accuracy provides an average measure of this concept

across the di�erent classes [51].

Balanced Accuracy =
1
2

�
TP

TP + FN
+

TN
TN + FP

�
=

1
C

�
CX

i =1

cii
CP

k=1
cik

(2.16)
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2.3.4.2 Regression metrics

In regression tasks, the model learns to predict numeric scores. The distance between the
actual value and the prediction is calculated to obtain a measure of the error in the prediction
[42]. Botchkarev [50] groups the following metrics as "Primary metrics" given they are used
for constructing further numerical indicators. Essentially, primary metrics involves three
steps: calculating point distance, performing normalization and aggregating point results
over a data set.

Root Mean Squared Error

The root-mean-square error (RMSE) is the most commonly used metric for regression tasks,
it is defined as the square root of the average squared distance between the actual score and
the predicted score. This equation computes the Euclidean distance between the vector of
the true scores and the vector of the predicted scores, averaged by

√
n, where n is the number

of data points, yi denotes the true score for the ith data point and ŷi denotes the predicted
value. RMSE describes an error range in which the predictions of a regression model lie.
Although RMSE can be affected by large outliers, it is able to withstand them better than
other primary metrics such as: Mean Absolute Error, Mean Squared Error, etc, because of
an attenuating effect of the square-root function. [42, 50]

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2 (2.17)

Coefficient of determination

The coefficient of determination (R2) can be viewed as a measure of the proportion of the
sum of squares of deviation of the yi about their mean. Hence, R2 measures the goodness
of fit, in the sense of comparing a model with another in which none of the independent
variables appear. In practical applications, R2 is used as a metric of the usefulness of a
regression equation in the sense of comparing two models [52], generally the predictions are
compared with the expected output of a constant horizontal line. This measure is of common
use within optimization functions in hyperparameter tuning. While the RMSE only accounts
for the mean difference of actual values and predictions, R2 considers the variation of the
data, providing a metric of how well the predictions emulate the actual trend. To illustrate
the difference, suppose the case of two similar curves with an offset. In this case, R2 will not
give insight of this event, while RMSE will provide a result that shows the offset.

R2 = 1−

n∑
i=1

(yi − ŷ)2

n∑
i=1

(yi − ȳ)2
(2.18)
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Where n is the number of observations, and ȳ is the mean value of the dependent variable.

2.3.5 Machine Learning Libraries

2.3.5.1 Scikit-learn

Scikit-learn (SKL) is a Python module integrating a wide range of ML algorithms for medium-
scale supervised and unsupervised problems. This package focuses on machine learning using
a general-purpose high-level language. Emphasis is put on ease of use, performance, documen-
tation, and API consistency. SKL harnesses this rich environment to provide state-of-the-art
implementations of many well-known ML algorithms while maintaining an easy-to-use in-
terface tightly integrated with the Python language. It depends only on Numpy and Scipy
libraries to facilitate distribution. Additionally, Scikit-learn provides over 300 pages of user
guide [53].

Scikit-learn comprises a wide variety of machine learning algorithms, using a consistent, task-
oriented interface, thus enabling easy comparison of methods for a given application. Since it
relies on the scientific Python ecosystem, it can easily be integrated into applications outside
the traditional range of statistical data analysis [53].

In his internal structure, objects are specified by the interface, not by inheritance. Hence,
to facilitate the use of external objects with SKL, inheritance is not enforced. Instead, code
conventions provide a consistent interface. The central object is an estimator, that implements
a fit method, accepting as arguments an input data array and, optionally, an array of labels.
Supervised learning estimators can implement a predict method. Some estimators, referred to
as transformers, implement a transform method, returning modified input data. Estimators
may also provide a score method, which is an evaluation of the goodness of fit [53].

2.3.5.2 Hyperopt - Scikit learn

Hyperopt-scikit learn (HPSKL) is a module build over the idea that: "the choice of classi-
fier (also applies for regressors) and even the choice of preprocessing module can be taken
together to represent a single large hyperparameter optimization problem". When there is
no preference over the classifier, generally the selection is made based on the one that pro-
vides greater accuracy. In this light, the choice of classifier can be seen as hyperparameter.
Likewise, the choice and configuration of preprocessing components can be included in this
optimization pipeline [54].

This approach is possible given the size of data sets and the speed of computers have increased
to the point where it is often easier to fit complex functions to data using statistical estimation
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techniques than it is to design them by hand. The fitting of such functions, which in this case
would be the training of ML algorithms, remains a relatively arcane art, typically mastered in
the course of a graduate degree and years of experience, according to Komer [54]. Considering
that algorithms like RF or SVM have a small enough number of hyperparameters that manual
compared to ANN, there is an increased probability that manual tuning, or grid search
approaches provided satisfactory results until this point.

HPSKL uses Hyperopt to describe a search space over possible configurations of Scikit-learn
components (DT, SVM, ANN), including preprocessing (scalers, dimension reductors), clas-
sification, and regression modules. The Hyperopt library offers optimization algorithms for
search spaces that arise in algorithm configuration [54]. To use Hyperopt, the user must
define:

• Search domain.

• Objective function.

• Optimization algorithm.

The search domain is specified via random variables, whose distributions should be chosen
so that the most promising combinations have high prior probability. The objective function
maps a joint sampling of the random variables defined in the search domain to a scalar-valued
score that the optimization algorithm will try to minimize [54].

The optimization algorithm is defined and implemented through the fmin function, whose call
carries out the simple analysis of finding the best-performing configuration, and returns that
to the caller. The optimization algorithms present in Hyperopt are: random search, annealing
search, and tree of parzen estimators. Testing has showed that HPSKL implementation is
viable, however, it can be of slow convergence [54].

HPSKL provides a parameterization of a search space over pipelines, that is, of sequences of
preprocessing steps and classifiers. Hyperopt description language allows us to differentiate
between conditional hyperparameters (which must always be assigned) and non-conditional
hyperparameters (which may remain unassigned when they would be unused). We make
use of this mechanism extensively so that Hyperopt’s search algorithms do not waste time
learning by trial and error [54].

HPSKL defines an estimator class with a fit method and a predict method. The fit method
of this class performs hyperparameter optimization, and after it has completed, the predict
method applies the best model to test data. Each evaluation during optimization performs
training on a large fraction of the training set, estimates test set accuracy on a validation set,
and returns that validation set score to the optimizer. At the end of search, the best config-
uration is retrained on the whole data set to produce the classifier that handles subsequent
predict calls [54].
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Testing of HPSKL implementation in three different benchmark datasets (20-Newsgroups,
MNIST, and Convex Shapes) shows that the scores of HPSKL are relatively good on each data
set. Moreover, the results indicate that Hyperopt’s optimization algorithms are competitive
with human experts. From these outcomes, the difficulty and importance of hyperparameter
search is highlighted [54].

2.3.5.3 Automated Data-Driven Modeling tool

The Automated Data-Driven Modeling tool (ADDMo) was designed for building’s energy
systems optimization and control, example applications are: component of a grey-box model
development, forecasting, and set-point alteration. Fundamentally, ADDMo is a software
tool developed to generate and optimize regression models. It automates data preprocessing,
feature engineering, and model selection tasks. Studies comparing ADDMo results and a
manual modeling approach via Scikit-learn revealed that obtains better results in all tested
use cases [55].

Figure 2.6: ADDMo workflow.
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ADDMo was built under the consideration that achieving the optimal model is a highly time-
consuming endeavor; it requires a large amount of computational power. Particularly, manual
modeling additionally requires expert knowledge in black box modeling and the implemen-
tation of various tuning methods, which result in increase workload. There is an immense
amount of possibilities for tuning, which leaves the user in uncertainty whether the respective
tuning approach is going to be beneficial. This could lead to unsuccessful tuning attempts or
incomplete tuning methods (early stopped) [55].

ADDMo executes most of the time-consuming and error-prone processes of data-driven mod-
eling. It is structured to provide mechanisms to the following challenges of black box modeling
[55]:

• Preprocessing of initial data.

• Selection of proper training and test data periods.

• Selection and creation of optimal features.

• Selection of a model.

• Hyperparameter tuning.

• Overfitting and underfitting.

• Trade-off between accuracy and computational costs.

These challenges are addressed in two stages: Data Tuning and Model Tuning. Data tuning
comprises:

• Preprocessing: involving resolution, scaling and normalizing, and “Not a Number"
(NaN) dealing.

• Period selection.

• Feature construction.

• Feature selection.

• Sample processing.

On the other hand, Model tuning entails:

• Model and tool selection.

• Hyperparameter tuning.

• Training, testing, and evaluation of the final model’s performance.

Finally, ADDMo implements a variety of models, referred to as model families, which are
supposed to summary most machine learning approaches. These are: Multilayer Percep-
tron (ANN), epsilon-Support vector Regression (SVR), Random Forest (RF), Gradient Tree
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Boosting (GB), and Least Absolute Shrinkage and Selection Operator (Lasso). In conclusion,
ADDMo framework represents a comprehensive and versatile tool, with high specificity in
several steps of the modeling process, and proved effectiveness [55].
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This chapter is divided in three sections. First, Section 3.1 details the base model and a
reference heat pump that defines input parameters and a baseline to compare performance
trends; both in no-fault and fault conditions for heating mode. Section 3.2 describes the
fault modeling strategies, the evaluation of the simulation model, and its limitations. At last,
Section 3.3 enters the machine learning specifics, characterizing the strategies to develop a
FDD protocol, and finishes with the criteria to select the most suitable method.

3.1 Use Case

As introduced in Section 2.2.2, the development of a FDD protocol conventionally requires
of two models: the no-fault (normal) model and the fault model. To generate the necessary
data for the black-box model, the use of simulation models was deemed as an adequate
approach. Amasyali et al. [47] depicts that only a 19% of the data used in data-driven
energy consumption prediction studies came from simulation models, as observable in Figure
3.1 where PBM stands for Public Benchmark, SIM means Simulated data, and Real represents
Real data. Nonetheless, Bellanco et al. [6] currently report an increased use of virtual
environments in heat pumps fault behavior research. The need for large datasets and reference
libraries for HVAC components and buildings drives the trend towards simulation models in
data-driven AFDD [56].

Real

67%

SIM

19%
PBM

14%

Figure 3.1: Data sources for data-driven methods [47].
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Yuill and Braun [57] concluded that simulation models are the best method for providing
AFDD evaluation input data. AFDD tool performance involves several hundred scenarios,
which calls for immense laboratory time and high skilled technicians. Demonstrations of how
labor-intensive this processes can become are found in studies such as Hu et al. [19]: where
over one hundred experiments carried out to characterize multiple simultaneous faults at one
ambient condition. For these reasons, simulation models validated with experimental data
become a necessary alternative, because they are scalable, rapid, adaptable and cost-effective
[56]. Experimental data is still required, however, the effort will be optimized.

Figure 3.2 represents the sequence of the upcoming subsections: first, the virtual environment
is depicted, upon which the data is generated after further development; next, a real heat
pump is presented to reference the modeling and performance. At last, the initial parameters
for the specialization of the simulation are established.

Base Model Test Bench
inputs

Sensors
Correlation

Control
Scheme

Figure 3.2: Model development outline.

3.1.1 Base simulation model

The base model is built in Dymola [58] software, with components from the TIL Suite li-
brary [59] in Modelica language [60]. This virtual environment emulates an air-to-water heat
pump utilizing a simple vapor-compression cycle. Figure 3.3 portrays Dymola’s graphical
user interface, it allocates a simplified graphic of the heat pump main components. Each
component represents their physical counterpart through several input variables, parameters,
and calculation approaches.

The model consists of:

• Fin-and-tube evaporator

• Reservoir

• Fixed-speed compressor

• Brazed plate condenser

• Separator

• FXO expansion valve

The separator component is a computational formulation for numerical stability, its role
differs from the real counterpart. This element is considered a virtual element which shall
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remain unaltered. Likewise, the SIM square (at the upper-right side) holds multiple pertinent
setups; only applicable to the simulation. In particular, it allows specifying the simulation
fluids: the refrigerant is R290 (propane), the hydraulic circuit fluid is liquid water, and
ambient air is represented as moist air gas. The fluid models are taken from TIL media
libraries [59].

Figure 3.4 illustrates the connections of all the elements within the model, how the main input
variables associate with the corresponding component, and distinguishes the key parameters
that are relevant for this study (lighter color). The scheme discriminates between major
groups and parameters by a color code. Certain names provided were relabeled to assure an
easy interpretation. The component-specific configuration approximates to the methodology
described by Sterling et al. [61].

3.1.2 Reference test bench

To approximate to a reduced sensor configuration, an existing experimental test bench is
selected, given its wide range of available measurements and suitable attributes for emulating
faults. This device was constructed based on the work of Klebig [62] who pursued the con-
struction of a modular-structured heat pump for low-GWP refrigerants. The strategy will
be to take advantage of the existing sensors for modeling, data generation, and algorithm

Figure 3.3: Base heat pump simulation model.
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Figure 3.4: Base model breakdown.

training. Leveraging on the results of an extensive sensor configuration, reduced sensor al-
ternatives will be explored.

Figure 3.5 shows the current distribution of the components of the test bench [62]. It is
noteworthy to mention that the evaporator’s case only contains a fin-and-tube HX and a
fan. Table 3.1 provides an overview of the main components’ specifications. This heat
pump features inverter technology to regulate compressor’s speed, control loops to maintain
a constant superheat through the expansion valve opening manipulation, and fan speed set-
point based on the voltage signal; which also allows to carry on adaptations depending on
the requirement.
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Condensates tray
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Sensor's wiring

Refrigerant circuit

Stop button
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(a) Test bench overview
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Compressor

Pressure switch
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Hot gas line

(b) Refrigerant cycle close-up

Figure 3.5: Experimental heat pump test bench [62].

With the intention to objectively assess the quality of the generated data, certain datasets

gathered by Kleipass [63] are set as a baseline, for the outputs of both no-fault and fault

models. The study carried out several experimental trials with the forenamed heat pump

under numerous fault and no-fault conditions. A key note at this stage: this data will merely

serve to establish context to the simulation output; by no means, the simulation model will

intend to act as a precise digital counterpart of the physical heat pump. The validation of

the simulation model, in order for it to replace the steady-state outputs of the equipment

(under strict accuracy standards) is outside of the scope of this work. A fair resemblance

Table 3.1: Heat pump reference model speci�cations.

Component Capacity Type Brand Model

Evaporator 6,5 kW Fin-and-tube Daikin ERGA08DAV
Compressor 7,475 kW Rolling Piston Hitachi Highly WHP07600PSD
Condenser 10 kW Brazed Plates SWEP B8LASHx30/1P-SC-M

Expansion Valve - EEV Danfoss ETS 6 - 18
Reservoir 3,4 l - EFM -
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